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A post-selection algorithm for improving dynamic ensemble selection

methods

Paulo R.G. Cordeiro1, George D.C. Cavalcanti2 and Rafael M.O. Cruz3

Abstract— Dynamic Ensemble Selection (DES) is a Multiple
Classifier Systems (MCS) approach that aims to select an en-
semble for each query sample during the selection phase. Even
with the proposal of several DES approaches, no particular
DES technique is the best choice for different problems. Thus,
we hypothesize that selecting the best DES approach per query
instance can lead to better accuracy. To evaluate this idea,
we introduce the Post-Selection Dynamic Ensemble Selection
(PS-DES) approach, a post-selection scheme that evaluates
ensembles selected by several DES techniques using different
metrics. Experimental results show that using accuracy as a
metric to select the ensembles, PS-DES performs better than
individual DES techniques. PS-DES source code is available in
a GitHub repository4.

I. INTRODUCTION

Multiple Classifier Systems (MCS) are often used to im-

prove the accuracy and reliability of machine learning mod-

els [1]. MCS has three main phases: generation, selection,

and combination. In the generation phase, a pool of classifiers

is created by training base classifiers with techniques such

as Bagging [2], different models, and variations of learning

algorithms [3].

The selection phase selects the most competent classifiers

in the pool to predict a given query sample. Two main

approaches for selecting classifiers are static selection [4]

and dynamic selection (DS) [1]. In the static approach,

the selection is performed during training and works on

the classifiers’ overall performance on a validation set. In

contrast, the DS approach selects the classifiers on the fly

based on their competence in predicting a specific query

sample. When only one classifier is selected, it is called

Dynamic Classifier Selection (DCS), and when more than

one classifier is selected, it is called Dynamic Ensemble Se-

lection (DES). Examples of DES techniques include META-

DES [5], Dynamic Ensemble Selection Performance (DES-

P) [6], and K-Nearest Oracles Union (KNORA-U) [4]. The

last phase of an MCS is combination, also called integration.

In this phase, the output of all the classifiers selected is

combined to produce a final prediction. The combination or

integration of the predictions can be done in various ways,

including voting and weighting [7].
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Currently, research efforts in DES are focused on propos-

ing new methods to improve phases, such as generation [8],

selection [9], and combination [10]. Additionally, there have

been attempts to apply DES to other areas of knowledge [11].

Despite the progress that has been made, no DES technique

is suitable for all problems. This is in line with the statistical

rationale for MCS [12], which suggests that combining

multiple classifiers increases the likelihood of finding the

optimal result for any given problem. However, to the

authors’ knowledge, the field still lacks techniques that work

on evaluating the ensembles selected by DES methods and

explores the advantages of pre-selected ensembles to obtain

better performance.

Aiming to evaluate this gap in DES’ research field, we

pose the following research question: “How to analyze

ensembles selected by different DES techniques and choose

the one having the highest correct prediction potential?”

To investigate this question, we propose the Post-Selection

Dynamic Ensemble Selection (PS-DES) approach. PS-DES

is based on the assumption that different selection criteria

may lead to different selected ensembles, and the best criteria

used to select an ensemble may differ on an instance-to-

instance basis. PS-DES aims to analyze and choose the best

ensemble from a set of ensembles generated by various DES

techniques to obtain more reliable predictions. Therefore, our

proposal work as a post-selection scheme, i.e., it performs

after the selection phase of different DES methods and before

the combination phase.

Moreover, the best ensemble is selected based on a new

concept of ensemble potential proposed in this work. In

contrast to the selection criteria employed in many DES

methods such as META-DES [5] that work by estimating the

quality or competence of each model, the proposed ensemble

potential evaluates whether the final selected ensemble of

classifiers is reliable. We propose three approaches based

on classical performance estimation metrics for measuring

the ensemble potential: Accuracy, F-score, and Matthew’s

Correlation Coefficient.

Experiments over 20 classification datasets and consider-

ing three different performance evaluation metrics demon-

strate that the post-selection scheme based on the ensemble

potential leads to systematic improvement in classification

performance over state-of-the-art DES methods. Thus, the

evaluation of the pre-selected ensemble capabilities should

not be neglected. The rest of the paper is organized as

follows: Section II shows a literature review on DES. Section

III presents our proposal. Section IV shows the experimental

setup. The results are discussed in Section V, and Section VI
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presents the conclusions.

II. LITERATURE REVIEW

Typically, the development of a DES involves three stages.

Firstly, in the generation phase, a pool of classifiers is gener-

ated. Secondly, in the selection phase, a subset of classifiers

(ensemble) is chosen from the pool created in the generation

phase. Finally, the classifiers in the ensemble are combined

to classify a given query sample in the combination, or

integration, phase.

During DES’ generation phase, a pool of classifiers is

created, denoted as P = {C1, C2, . . . , CM}, where M

represents the number of classifiers in the pool. The clas-

sifiers in the pool must exhibit both diversity and accuracy.

Diversity [12] refers to the property that the classifiers should

not make the same prediction mistakes, as this is crucial

to cover the feature space adequately. Several approaches

can be used to generate a pool. These approaches include

using different distributions of the training set, such as

Bagging [2], using different parameters for the same base

classifier (e.g., variations in the number of neighbors in

a k-Nearest Neighbors algorithm), or using different base

classifiers altogether, which are called heterogeneous ensem-

bles [3]. Heterogeneous ensembles tend to be more diverse

than homogeneous ones due to their different mathematical

formulations, which typically result in different classification

results [13].

The second phase of developing a DES is selection, which

aims to choose a subset of classifiers (P ′ ⊆ P ), also known

as an ensemble. There are two approaches to selection,

namely static and dynamic [1]. A fixed subset of classifiers

is chosen for all test samples in the static approach. In

contrast, the dynamic approach, called Dynamic Ensemble

Selection (DES), involves selecting a subset of the pool for

each query sample xq . In dynamic selection, classifiers are

chosen based on some criteria, given the pool created in the

previous phase. Among the criteria found in the literature are

the Oracle approach, as seen in KNORA-E, KNORA-U [4],

and K-Nearest Output Profile (KNOP) [14], accuracy-based

methods, such as DES Performance (DES-P) [6], and meta-

learning, as in the case of META-DES [5]. These criteria are

typically computed from the Region of Competence (RoC),

a local region for a query sample (xq), denoted as θxq
, which

is a fundamental concept in dynamic selection approaches.

The RoC is usually obtained by applying k-NN or clustering

methods to a validation set (DSEL) or the training set itself,

such that θxq
= {x1, . . . ,xk}, where k is the size of the

ROC.

The final phase of a DES is integration, also called

aggregation or combination, which involves combining the

classifiers selected in the selection phase when multiple

classifiers are chosen. Techniques used in this phase include

majority vote, product rule, and sum rule [12].

It is worth noting that research papers related to DES

do not focus on assessing ensembles that DES techniques

have already generated. Elmi and Eftekhari [9] presented a

solution by utilizing the selection phase of DES approaches.

However, their proposed approach only allowed for layer-

by-layer ensemble selection and did not allow the evaluation

of the collective output of all ensembles generated by DES

methods.

III. POST-SELECTION DYNAMIC ENSEMBLE SELECTION

The proposed Post-Selection Dynamic Ensemble Selec-

tion (PS-DES) is based on the notion of potential, the

capability of an ensemble selected by a given DS technique

to make a correct prediction. Consequently, it works as

a post-processing scheme for ensembles chosen according

to different criteria (e.g., meta-learning, Oracle, accuracy).

In addition, this proposal aims to evaluate the quality or

potential of a selected ensemble, which contrasts with the

current DES methods that build an ensemble by selecting

multiple competent classifiers individually without trying to

characterize the selected dynamic ensemble. This approach

consists of three phases: (1) pool generation and setup, (2)

post-selection, and (3) combination.

A. Phase 1: Pool generation and DES’ setup

The initial stage of PS-DES involves generating a pool

of classifiers and configuring the DES techniques. First,

Bagging generates multiple bootstraps (T b) from the orig-

inal dataset (T ), where b is the number of bootstraps.

Then, a pool of b × m classifiers, denoted as P =
{C1

1 , C
2

1 , . . . , C
b
m}, is constructed by training each of the

m classifiers (C1, . . . , Cm) on each of the b bootstraps gen-

erated by Bagging. Finally, any DES techniques specified by

the user, including META-DES, KNORA-U, and DES-P, are

initialized using the same pool P as input. These techniques

can be used to select an intermediate ensemble later validated

by our post-processing scheme to obtain the optimal one.

All DES approaches, DESset = {des1, des2, . . . , desn}, are

consolidated into the set DESset.

B. Phase 2: Selection

This phase seeks to identify the optimal ensemble from

a set of ensembles generated by different DES techniques,

and Algorithm 1 shows its pseudo-code. Given a query

sample (xq), the validation dataset DSEL, and a set of DES

techniques (DESset), this phase involves selecting several

dynamic ensembles P ′, each one created using a different

DES method, and assessing their effectiveness in order to

determine which ensemble is most likely to perform well

for the given xq .

This phase begins by computing the Region on Compe-

tence (RoC) (θxq
) for the query sample xq using the k-

NN algorithm. It is essential to note that all DESn utilize

the same RoC (θxq
) based on the k-NN, thereby reducing

the computational burden of implementing multiple selection

criteria.

Then, for each technique in DESset, a set of classifiers

is selected according to its competence estimation and se-

lection criterion, forming the ensemble P ′ (lines 5 and 6).

Subsequently, the potential of the generated ensemble P ′ is

evaluated (line 7). As the class label of xq is unknown, the



Algorithm 1 PS-DES selection

1: procedure PS-DES SELECTION(xq, DSEL,DESset)

2: potmax ← 0
3: P sel ← ∅
4: θxq

← calculate ROC(xq, DSEL)
5: for des in DESset do

6: P ′ ← get ensemble(des, θxq
)

7: potdes ← calculate pot(P ′)
8: if potdes ≥ potmax then

9: potmax ← potdes
10: P sel ← P ′

11: end if

12: end for

13: return P sel

14: end procedure

potential assumes that the output class of xq corresponds to

the majority vote of the ensemble. Consequently, it computes

the potential of this ensemble by assessing the proportion of

methods in it that contribute to this decision. For instance,

given a binary classification problem and an ensemble with

seven base classifiers, P ′ = {C1, . . . , C7} selected by a

given DES technique, and let yP ′ = {0, 1, 0, 0, 1, 1, 1} be

the predictions of the base classifier for the given xq . The

majority vote would give the class 1 as the answer. The

potential is then estimated based on a classical performance

metric comparing the ensemble majority vote and the votes

of each classifier using a performance metric. If accuracy is

used to calculate P ′ potential, the value would be potdes =
0.57. If the F-score is chosen as the potential metric, the P ′

potential is potdes = 0.73.

After evaluating the potential of all possible ensembles,

the one that obtained the highest value, P sel, is returned as

the selected one for the combination step.

C. Phase 3: Combination

Once the P sel selection is complete, Phase 3 begins, which

is accountable for combining the classifiers into P sel, using

techniques such as majority vote or sum rule.

IV. EXPERIMENTAL SETUP

Datasets. The experiments were conducted using 20 datasets

from the UCI Machine Learning Repository [15], which

vary in sample size, dimensions, number of classes, and

Imbalance Ratio (IR) (Table I). Each dataset T is split into

three parts: training (50%), DSEL (25%), and testing (25%).

This split is stratified, meaning that the proportions of the

classes between the three datasets are maintained. For each

dataset, we run 30 replications, changing the distribution

of the sets (holdout) to obtain the average values for the

evaluated metrics. The data is scaled using the Standard

Scaler (also known as Z-score normalization [16]).

Phase 1. First, Bagging, 100 bootstraps were used for all

experiments, consistent with previous studies [1], [4], [5].

For the pool generation, three base classifiers (Perceptron,

Logistic Regression, and Naive Bayes) were selected for

TABLE I

DATASETS MAIN CHARACTERISTICS. THE NUMBER OF SAMPLES,

DIMENSIONS (DIM), CLASSES, AND IMBALANCE RATIO (IR).

Datasets Examples Dim Classes IR

appendicitis 106 7 2 2.52

australian 690 14 2 1.12

balance 625 4 3 2.63

cmc 1473 9 3 1.30

column 3C 310 6 3 2.50

diabetes 768 8 2 1.86

glass1 214 9 2 1.82

glass6 214 9 2 6.38

haberman 306 3 2 2.78

hayes 160 4 3 3.40

heart 270 13 2 1.25

led7digit 500 7 10 1.54

mammographic 830 5 2 1.15

musk 476 166 2 1.29

pima 768 8 2 1.90

sonar 208 60 2 1.14

vehicle 846 18 4 1.10

vehicle2 846 18 2 2.88

vowel 990 13 11 1.00

wdbc 683 9 2 1.85

the experiments. As they have different mathematical foun-

dations and low computational costs [1], [10], [17] they

are suitable for building a diverse and lightweight pool of

classifiers. Thus, the classifier pool (P ) consisted of 300

classifiers (3 base classifiers × 100 bootstraps). Since the

focus of the research was not on optimizing each base

model’s hyperparameters, the default hyperparameters values

from scikit-learn were used.

Four DES approaches (KNORA-U, KNOP, DES-P, and

META-DES) were chosen due to their application of vari-

ous selection criteria (e.g., Oracle, accuracy, meta-learning).

These approaches showed superior performance in a recent

empirical study [1]. We applied these DES methods default

hyperparameter configurations of the DESlib 0.3 library [18]

to guarantee experiment consistency. Moreover, the same

pool of classifiers was utilized to fairly compare all DES

techniques.

Phase 2. The Region of Competence (RoC) was calculated

applying k-Nearest Neighbors (k-NN) with k = 7, as sug-

gested in [1]. To assess the performance of the ensembles,

we employed a range of evaluation metrics, including accu-

racy, F-score, and Matthews Correlation Coefficient (MCC).

Accuracy is a popular metric for DES techniques, although it

may not be suitable for imbalanced datasets (i.e., high IR).

Meanwhile, F-score and MCC are more suitable for such

datasets. F-score is advantageous in scenarios where there

is an appreciation for recall and precision, since these two

metrics are used in its calculation. The MCC considers false-

negative rates in its formulation, which can be of interest to

specific problems.

The PS-DES variants are labeled according to the metric

used to calculate the potential: accuracy (PS-DES-acc), F-

score (PS-DES-F), and Matthews Correlation Coefficient

(PS-DES-MCC). To assess whether the proposed metrics

perform better than random selection, we also conducted an



experiment that randomly selected the best ensemble (PS-

DES-Random).

Phase 3. Finally, majority voting was used as a combination

approach since individual DES techniques usually apply

it [1].

V. RESULTS AND DISCUSSIONS

The proposed method is evaluated based on three metrics:

accuracy (Table II), F-score (Table III), and MCC (Table IV).

Upon examining the tables, our results indicate that PS-

DES-acc outperforms all the other approaches in all metrics.

The PS-DES-acc obtained the best rank considering all

performance metrics, followed by the variant using the F-

score metric for computing the ensemble’s potential. These

results are interesting since, even though the final proposal

may be evaluated regarding a different performance metric

(e.g., F-score or MCC), using accuracy as the metric for

computing the ensemble potential is more advantageous.

Analogously, MCC obtained the lowest ranking among all

PS-DES variants even when in the scenario that MCC is used

as a performance evaluation metric to compute the overall

method performance. This result indicates no relation be-

tween the metrics selected for calculating ensemble potential

and the same metric applied to evaluate the approaches. For

accuracy, F-score, and MCC, the chosen metric for calculat-

ing the potential does not interfere with the approach’s eval-

uation. Nevertheless, according to these tables, the average

ranking of PS-DES approaches is systematically better when

compared to individual DS techniques (e.g., META-DES).

Thus, the proposed post-processing selection scheme indeed

leads to more robust dynamic ensemble selection systems.

However, to see if such a difference in performance is

significant, we need to go further and perform a more

fine-grained analysis by comparing pair of techniques over

multiple datasets. Hence, we also conducted one analysis

based on the number of wins, ties, and losses (w/t/l) obtained

by a control technique and the Wilcoxon signed rank test

with a confidence level of 95%. Results of these pairwise

comparisons are presented in Tables V, VI, and VII for

the PS-DES-acc, PS-DES-F and PS-DES-MCC methods,

respectively.

The pairwise statistical analysis of PS-DES-acc shows it

outperforms KNORA-U, KNOP, META-DES, Random, and

PS-DES-MCC regarding accuracy (Table V). No significant

difference is observed between PS-DES-acc and DES-P or

PS-DES-F. However, considering the presence of datasets

with IR > 1, it is necessary to consider F-score and

MCC. The F-score analysis reveals that PS-DES-acc out-

performs all DES individual techniques and Random, with

no significant difference to PS-DES-F and PS-DES-MCC.

For MCC, PS-DES-acc performs exceptionally well and

obtains significantly better results compared to all techniques

apart from DES-P and PS-DES-F. Ultimately, this variant

based on accuracy for computing the ensemble potential

obtained more victories than all other models, regardless of

the performance metric used.

The statistical analysis of PS-DES-F (Table VI) indicates

that it performs better than KNORA-U, KNOP, and Random

on all three metrics. However, no statistical difference is

found for MCC when compared with DES-P. However,

the win-tie-loss analysis demonstrates that the PS-DES-

F systematically obtained more wins against the state-of-

the-art DES techniques and the random selection scheme

(between 13 to 15 wins over the 20 datasets). In contrast,

the analysis of PS-DES-MCC (Table VII) presents the worst

results compared to PS-DES-acc and PS-DES-F. Based on

Wilcoxon’s test analysis, PS-DES-MCC scores better than

KNORA-U and KNOP only in F-score. The hypothesis that

PS-DES-MCC scores better cannot be refuted for all other

metrics and comparisons.

In summary, the results indicate that PS-DES-acc and PS-

DES-F yield comparable outcomes. Still, PS-DES-acc holds

a slight advantage over its competitor, particularly when it

is compared against the state-of-the-art DES methods.

VI. CONCLUSION

This work proposed a new Dynamic Ensemble Selection

(DES) method: Post-Selection Dynamic Ensemble Selection

(PS-DES). This method is based on the idea that the optimal

criteria for ensemble selection may differ at the instance level

leading to ensembles with different qualities or “potentials”.

To this end, the approach evaluates the potential of ensembles

chosen by various DES techniques to determine which is

more suitable for labeling a given instance.

Experiments demonstrate no direct correlation between the

metrics applied for calculating the ensemble potential and for

evaluating the approaches, as the PS-DES-acc was found to

achieve the best overall results in all cases. Additionally, PS-

DES was consistently superior to the existing state-of-the-art

DES techniques, which implies that evaluating the selected

ensembles as a collective is more important than assessing

and choosing each base classifier separately, as is the trend

in most DES methods. Thus, post-processing approaches in

DES are vital, and future works will explore new metrics for

measuring the ensemble’s potential.
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TABLE IV

AVERAGE MCC AND RANKINGS OF THE EVALUATED METHODS FOR EACH DATASET. THE BEST RESULT PER DATASET IS PRESENTED IN BOLD.

Datasets KNORA-U KNOP META-DES DES-P Random PS-DES-MCC PS-DES-F PS-DES-acc

appendicitis 0.503 0.517 0.489 0.563 0.500 0.529 0.574 0.566
australian 0.694 0.691 0.694 0.691 0.690 0.695 0.697 0.695
balance 0.794 0.801 0.812 0.795 0.798 0.813 0.809 0.806
cmc 0.227 0.232 0.196 0.238 0.224 0.187 0.223 0.232
column 3C 0.755 0.753 0.748 0.759 0.756 0.744 0.755 0.757
diabetes 0.466 0.468 0.454 0.460 0.464 0.453 0.466 0.472

glass1 0.019 0.008 0.226 0.242 0.134 0.247 0.189 0.196
glass6 0.729 0.723 0.770 0.755 0.749 0.775 0.774 0.764
haberman 0.131 0.130 0.144 0.193 0.157 0.138 0.201 0.185
hayes 0.416 0.427 0.505 0.467 0.461 0.499 0.529 0.524
heart 0.673 0.677 0.667 0.682 0.673 0.674 0.677 0.674
led7digit 0.696 0.697 0.678 0.693 0.692 0.666 0.674 0.694
mammographic 0.660 0.662 0.644 0.655 0.660 0.652 0.647 0.650
musk 0.547 0.551 0.566 0.575 0.562 0.572 0.574 0.579

pima 0.471 0.466 0.451 0.462 0.461 0.452 0.455 0.464
sonar 0.547 0.544 0.594 0.570 0.576 0.575 0.595 0.600

vehicle 0.672 0.673 0.684 0.674 0.671 0.676 0.681 0.684

vehicle2 0.867 0.863 0.886 0.873 0.872 0.884 0.880 0.883
vowel 0.784 0.782 0.885 0.798 0.808 0.877 0.864 0.864
wdbc 0.933 0.933 0.931 0.934 0.933 0.931 0.932 0.929

ranking 5.45 5.30 4.80 3.80 5.35 4.65 3.55 3.10

TABLE V

STATISTICAL ANALYSES FOR PS-DES-ACC AGAINST STATE-OF-THE-ART DS METHODS. THE LINE (W/T/L) PRESENTS THE NUMBER OF WINS, TIES,

AND LOSSES IT OBTAINED COMPARED TO THE COLUMN-WISE TECHNIQUE. THE P-VALUE LINE SHOWS THE RESULT OF APPLYING THE PAIRED

WILCOXON STATISTICAL TEST. STATISTICALLY DIFFERENT RESULTS (α = 0.5) ARE HIGHLIGHTED IN BOLD.

Metric KNORA-U KNOP META-DES DES-P Random PS-DES-MCC PS-DES-F

Accuracy
w/t/l 16/0/4 14/0/6 13/0/7 13/0/7 17/1/2 12/1/7 12/0/8
p-value 0.002 0.003 0.005 0.062 0.001 0.016 0.071

F-score
w/t/l 17/0/3 17/0/3 13/0/7 14/0/6 18/0/2 12/0/8 12/0/8
p-value 0.000 0.000 0.049 0.020 0.000 0.066 0.139

MCC
w/t/l 16/0/4 14/0/6 13/0/7 13/0/7 18/0/2 13/0/7 11/0/9
p-value 0.001 0.001 0.029 0.077 0.000 0.049 0.261

TABLE VI

STATISTICAL ANALYSES FOR PS-DES-F AGAINST STATE-OF-THE-ART DS METHODS. THE LINE (W/T/L) PRESENTS THE NUMBER OF WINS, TIES, AND

LOSSES THAT IT OBTAINED COMPARED TO THE COLUMN-WISE TECHNIQUE. THE P-VALUE LINE SHOWS THE RESULT OF APPLYING THE PAIRED

WILCOXON STATISTICAL TEST. STATISTICALLY DIFFERENT RESULTS (α = 0.5) ARE HIGHLIGHTED IN BOLD.

Metric KNORA-U KNOP META-DES DES-P Random PS-DES-MCC PS-DES-acc

Accuracy
w/t/l 13/1/6 13/1/6 13/0/7 10/0/10 13/0/7 15/0/5 8/0/12
p-value 0.015 0.032 0.049 0.237 0.018 0.024 0.934

F-score
w/t/l 15/0/5 15/0/5 13/0/7 11/0/9 15/0/5 14/0/6 8/0/12
p-value 0.003 0.005 0.174 0.147 0.003 0.066 0.869

MCC
w/t/l 13/0/7 14/0/6 14/0/6 11/0/9 14/0/6 14/0/6 9/0/11
p-value 0.010 0.013 0.045 0.139 0.005 0.041 0.751

TABLE VII

STATISTICAL ANALYSES FOR PS-DES-MCC AGAINST STATE-OF-THE-ART DS METHODS. THE LINE (W/T/L) PRESENTS THE NUMBER OF WINS, TIES,

AND LOSSES THAT IT OBTAINED COMPARED TO THE COLUMN-WISE TECHNIQUE. THE P-VALUE LINE SHOWS THE RESULT OF APPLYING THE PAIRED

WILCOXON STATISTICAL TEST. STATISTICALLY DIFFERENT RESULTS (α = 0.5) ARE HIGHLIGHTED IN BOLD.

Metric KNORA-U KNOP META-DES DES-P Random PS-DES-F PS-DES-acc

Accuracy
w/t/l 12/0/8 10/0/10 10/0/10 9/0/11 12/0/8 5/0/15 7/1/12
p-value 0.174 0.205 0.580 0.649 0.273 0.978 0.984

F-score
w/t/l 13/0/7 12/0/8 7/0/13 9/0/11 13/0/7 6/0/14 8/0/12
p-value 0.032 0.045 0.861 0.522 0.101 0.938 0.938

MCC
w/t/l 13/0/7 12/0/8 9/0/11 9/0/11 11/0/9 6/0/14 7/0/13
p-value 0.071 0.088 0.676 0.663 0.194 0.962 0.955

“DESlib: A dynamic ensemble selection library in python,” Journal
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