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Abstract— Tracking of inventory and rearrangement of mis-
placed items are some of the most labor-intensive tasks in
a retail environment. While there have been attempts at
using vision-based techniques for these tasks, they mostly
use planogram compliance for detection of any anomalies,
a technique that has been found lacking in robustness and
scalability. Moreover, existing systems rely on human inter-
vention to perform corrective actions after detection. In this
paper, we present Co-AD, a Concept-based Anomaly Detection
approach using a Vision Transformer (ViT) that is able to
flag misplaced objects without using a prior knowledge base
such as a planogram. It uses an auto-encoder architecture
followed by outlier detection in the latent space. Co-AD has
a peak success rate of 89.90% on anomaly detection image sets
of retail objects drawn from the RP2K dataset, compared to
80.81% on the best-performing baseline of a standard ViT auto-
encoder. To demonstrate its utility, we describe a robotic mobile
manipulation pipeline to autonomously correct the anomalies
flagged by Co-AD. This work is ultimately aimed towards
developing autonomous mobile robot solutions that reduce the
need for human intervention in retail store management.

I. INTRODUCTION

In recent years, there have been significant technological
innovations in retail store management, focusing on supply
chains, logistics, and inventory tracking. With demographic
shifts in industrialized economies, there is a push towards
automating repetitive, labor-intensive tasks in domains such
as retail stores and supermarkets. Advancements in robotics
have enabled the possibility of deploying mobile manipu-
lator robots for performing these tasks efficiently and au-
tonomously.

One of the key activities in the retail domain is planogram
compliance. A planogram is a schematic diagram predefined
by store operators, laying out the shelf-wise location of each
product, aimed at maximizing visibility and sales potential.
Compliance implies checking the current layout and ensuring
that it adheres to the planogram by correcting any deviations
from it. Anomalies in the context of this paper refer to such
deviations from the planogram. Most planogram compliance
solutions depend on recognition of individual product cate-
gories followed by comparison with the reference planogram
to detect anomalies. These solutions call for at least one
reference image per product and a broad layout of how things
should be placed [1]. Such solutions are reliant on manual
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Fig. 1: Concept-based Anomaly Detection (Co-AD) can act
as a key element in autonomous anomaly correction pipelines
using mobile manipulator robots.

updates as new product varieties are constantly introduced
and shop layouts are updated often. Also, there may be large
variations in the kinds of planograms that are available at a
given retail store. For instance, a planogram may simply con-
tain representative shapes or gray scale images corresponding
to each product. This negatively affects the performance of
systems that rely solely on planogram matching to check for
anomalies. To address this challenge, we propose Concept-
based Anomaly Detection (Co-AD) which is a method for
detecting out-of-context products in a retail environment. We
also demonstrate how Co-AD can be a key component in
developing mobile manipulation solutions that autonomously
correct any flagged anomalies.

A. Related Work

Current state-of-the-art solutions for autonomous retail
store shelf management through computer vision typically
solve the problem of detecting anomalies in a two-stage
manner. The anomalies are flagged by checking whether or
not the observed image is in agreement with the pre-defined
planogram [1]–[6]. In the first stage, each product placed
on the shelf is localized and classified. The recognition is
done using either traditional hand-crafted feature descriptors
such as key-points, gradients, patterns, colors, or feature
embeddings acquired from deep learning (DL) models [7].
In [2], the products are detected based on different methods
such as sliding window-based HOG (Histogram of Oriented
Gradients) and BOVW (Bag of Visual Words) features.
Some solutions [1], [3], [4] use SURF, SIFT and Hough
transform-based features for detection. The other solutions
for planogram compliance use template matching based on
morphological gradients [5] and recurrent pattern recogni-
tion [6]. In the second stage, matching is done between the
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observations of the first stage and the actual layout given
by the planogram. The methods used for matching include
sub-graph isomorphism [1] and spectral graph matching [6].

However, the dependence on planograms limits the use
of such systems in retail settings due to periodic layout
updates and constant introduction of anomalies by human
agents (store visitors). Also, there are challenges arising from
accurate object detection and recognition in cluttered scenes,
classification with extremely high number of object classes,
and adaptability towards new classes [8]. These difficulties,
along with class imbalances, large label spaces, and low
inter-class variance limit the success of these methods.

In terms of robotic solutions, there have been mobile
robots deployed in large retail stores for inventory track-
ing [9], using cameras mounted on a mobile base [10], [11].
These robots are designed to detect missing items on shelves,
and alert store employees so that they may take corrective ac-
tion. However, the reliance on human intervention along with
the aforementioned limitations of planogram compliance-
based approaches affect the scalability and profitability of
these systems.

A possible solution to these shortcomings involves us-
ing scalable perception methods such as Co-AD, together
with mobile manipulators to correct anomalies as they are
detected, minimizing human intervention. In this paper, we
focus mainly on perception—detecting the anomalies, while
demonstrating a correction pipeline using existing techniques
for task planning, motion planning and grasping. Another
line of recent work in this field focuses on reactive action
planning for mobile manipulators given a target object and
goal state [12]. Our ongoing and future work is in this
domain as well, using our custom mobile base [13] with
a manipulator arm as a research platform (Fig. 1) for
autonomous task and motion planning in retail scenarios.

B. Contributions and Overview

The key contributions of this paper are:
• A concept-based anomaly detection method (Co-AD)

for out-of-context objects in a retail environment. This
method does not rely on planogram compliance.

• A demonstration of how such an anomaly detection
technique can drive a robotics pipeline involving mobile
manipulation to correct the anomalies.

In Sec. II, we define the problem statement and the
overall robotics pipeline. In Sec. III, we describe the Co-
AD algorithm in detail. In Sec. IV, we find that Co-AD
has a peak success rate of 89.9 % on a retail image dataset
(RP2K [14]), and 95.83 % on simulated images (YCB [15]).
Sec. V includes a demonstration of the application of Co-
AD on mobile manipulation pipelines in simulated and real-
world settings, followed by conclusions and future outlook
in Sec. VI.

II. SYSTEM DESCRIPTION

A. Anomalies in the Retail Setting

Anomalies in retail settings are particularly different from
the ones that have been tackled by current computer vision

approaches. In the computer vision literature, anomalies can
be classified as spatial or temporal, based on the type of
input data [16]. In case of temporal anomalies, the goal
is to detect the anomalous activity in a video. In spatial
anomalies, the goal is to find an image which deviates from
the distribution of a normal class. For example, for the
CIFAR10 [17], MNIST [18] and ImageNet [19] datasets,
anomaly detection problems are posed as One-Class Novelty
Detection where one class is considered as the normal class
and the remaining classes are treated as anomalous [20]–
[22]. Another example is defect detection [23], where the
aim is to detect and localize spatial anomalies like cracks
and structural changes in given images. The spatial anomalies
discussed so far have a well defined distribution of normal
class, however in our case the anomalies are contextual,
making the problem of anomaly detection difficult. To ease
some of these difficulties, we propose the following four
types for categorizing anomalies in retail settings–

1) Misplaced: A misplaced item anomaly occurs when an
object of type P has been incorrectly placed on a shelf row
that has majority of type Q objects. The intervention would
be to move the object P to either a region containing other
type P objects, or to move it to an inventory buffer location
such as a backroom or storage area.

2) Out-of-stock: An out-of-stock or missing-item anomaly
occurs when several objects of type P are unavailable on a
shelf row or the shelf row is empty. The intervention, in case
of an empty shelf, would be to report that shelf is vacant else
restock the objects P back to the shelf row from the inventory
buffer location such as a backroom or storage area.

3) Misalignment: A misalignment anomaly occurs when
one or several objects of type P are found in undesirable
orientations. The intervention would be to re-align the objects
P back to their original orientation on the shelf row by
inferring the original orientation from the already existing
group of objects of type P.

4) Rearrangement: A rearrangement anomaly occurs
when one or several objects of type P and Q are shuffled on a
shelf that is meant for them. The intervention would be to re-
arrange or regroup the objects P and Q back to their original
positions on the shelf by inferring the original positions by
gauging the existing object setup (based on count).

B. Problem Formulation

As discussed in Sec. I, any disruptions to a retail shelf
arrangement that may require intervention from employees,
are encapsulated under the umbrella term of “anomalies”.
In a real large-scale store, it would not be feasible to
enumerate every instance of the possible anomaly types
and generate relevant plans for the robot to correct them.
Based on feedback from retail store employees, particularly
supermarkets, we restrict the scope of this work to one of the
most commonly encountered anomalies— misplaced items.

The problem formulation for carrying out an intervention
using a mobile manipulator therefore involves the following
steps:



Fig. 2: The proposed solution pipeline for autonomous anomaly correction in a retail store.

• Scan single rows in a shelf to detect anomalous ob-
ject(s). Identification or categorization of the object is
not necessary to detect a misplaced item.

• Identify the misplaced item. Determine its goal position
in the store using prior knowledge (planogram or group
locations or buffer zone in a store room).

• Autonomously grasp the object, plan a path, navigate
and place the object at its goal location.

C. Solution Pipeline

We propose a modular framework that would allow the
robot to achieve the aforementioned steps (Fig. 2). We
broadly categorize the anomaly detection and correction
problem into the following three modules, allowing for
incremental future scaling of each step of the solution:

• Anomaly Detection using Perception
• Planning to correct the Anomaly using a High-Level

Task Planner
• Executing the plan using Motion Planning
By doing so, it becomes easier to replace the algorithms

in a module with another whereas an end-to-end approach
does not offer such flexibility since it requires retraining or
fine-tuning the the entire system. The anomaly detection
module within the perception module and its inter-play with
the other modules is the focus of this paper.

1) Perception Module: The Perception Module perceives
the environment around the robot with the help of sensors
and uses this information to realise the anomalous object.
In our current approach, we take a snapshot of the entire
shelf and process it row by row. At first, we localize all
the objects in the same shelf row (in simulation we directly
use the ground truth whereas one can rely on prior works
like [24]). Then we localize each object in the shelf row
using Yolo-v6 [25] and pass the cropped images of them to a
feature extraction module which produces the latent concept
embeddings corresponding to each object. These embeddings
will be used to identify the anomalous object.

2) High-Level Planner Module: The High-Level Planner
Module takes inputs from the Perception Module about the
anomalous object and the existing Knowledge Base (eg: its
target location) and synthesizes a plan that enables the robot
to correct the anomalies. In our current approach, we use
PDDL [26] to plan and schedule the sequence of subroutines
that would allow the robot to move and manipulate the
anomalous object for correction.

3) Execution Module: The Execution module comprises
of lower-level task primitives such as autonomous navigation
and grasping that enable the robot to interact with the envi-
ronment and correct any anomalies. In our current approach
we use the ROS MoveIt! package [27] for motion planning
which uses state-of-the-art inverse kinematics solvers, path
planning algorithms, and collision detection. In case of
grasping, we plan an inverse-kinematic path for the robotic
arm’s end-effector in joint space, placing it in front of the
target object, followed by the execution of a two-fingered
grasp.

All of these modules are integrated with one another using
the ROS framework.

III. ANOMALY DETECTION MODULE

The Co-AD approach consists of a number of components,
which we will describe in order: product localization, dis-
entangled concept embedding extraction and finally the full
algorithm that arrives at anomaly detection and localization
decisions.

(a) Simulated shelves (b) YOLO-v6 Results

Fig. 3: Simulation setup in Gazebo: (a) Simulated shelves,
(b) The localization results of YOLO-v6.

A. Product Localization Module

The first module uses a single-stage deep learning detector
to localize retail products. We use a YOLO-v6 [25] detector
to perform localization of different products in a given
shelf image. The input to this module is pre-processed shelf
images. The detector is trained on the SKU110k dataset [28]
for 400 epochs and batch size of 16 on a Tesla V100 GPU
machine.

Let us assume that Is represents the shelf image which
contains several products (e.g. Fig. 3a). The problem is to
find the location of all the products in the given shelf image
by rows. The localization module takes Is as input and gives
Ns bounding boxes, denoted by bij where j ranges from 1
to Nsr and i ranges from 1 to Ns. Here, Nsr is the number
of shelf rows and Ns is the total number of objects. The



Fig. 4: The Concept Embedding Extraction Module Architecture.

localization results are shown in Fig. 3b. In simulation, we
directly use the ground truth to uniquely identify the group
of objects that are placed in different shelf rows after the
localization step. Further, we crop the product images based
on bij , which results in Ic which is a set of cropped images.
We process all the cropped images row-wise i.e., all cropped
images belonging to a row j are fed into a feature extraction
module which outputs the concept latent embeddings for
each object localized and is used for anomaly detection. This
process is repeated for all the shelf rows.

B. Concept Embedding Extraction Module

Assume that a retail product dataset contains images
of different products. Note that different products in the
dataset have different colors, orientations, physical and pixel
dimensions. We don’t assume the presence of a classification
label for each product. The goal of this module is to extract
features corresponding to each product, that can be used to
perform context-based anomaly detection.

In the retail domain, collecting labels for every product
may not be feasible in all cases and because of constant
change in product packaging, there is a high probability
that a model might not be able to classify different products
into their respective categories. Additionally, it has been ob-
served that even within the same class, there exist variations
in visual appearance based on different flavors (colors of
packaging), sizes, etc. Therefore, it might not be the best
strategy to train a classifier using class labels and then use
this classifier to extract discriminative features corresponding
to each product in order to perform anomaly detection.
As a result of these factors, an unsupervised technique is
required to get meaningful features that can be utilised to
establish contexts for context-based anomaly identification.
For instance, an anomaly can be color-based when a red
colored packet is placed on a shelf among blue packets or
it can be shape-based when a ball is placed among Rubik’s
cubes.

One possible solution which is extensively explored for
the planogram compliance problem is to use handcrafted
features like key-point-based (Scale-Invariant Feature Trans-
form (SIFT) [29], Speeded-Up Robust Feature (SURF) [30]),
gradient-based (Histogram of Oriented Gradients (HOG),
Sobel, Prewitt operators), color-based (color histogram),
pattern-based (Haar-like features). However, these techniques
do not always display sufficient information and it becomes
an engineering effort to choose the features and parameters
that fit best. To deal with this, we can use deep learning (DL)-
based solutions which have shown improved performance.
Thus, we propose an auto-encoder architecture which can
learn disentangled color and shape content latent embeddings
as in [31].

We compare the performance of our method with other
baselines and show that the disentangled latent embeddings
are useful for identifying the anomalies in an explainable
manner. Further, the advantage in having disentangled la-
tent embeddings over distributed embeddings is that only
important and necessary subsets of the embeddings can be
utilized for a downstream task. For example, a robotic gripper
requires information about the shape, size and texture of
the surface of the object to infer a grasp but does not
require color information. As a result, by providing relevant
information to the gripper, one can increase the signal-to-
noise ratio in the input space. This is not possible to do in
conventional auto-encoder setups since they contain all the
necessary information to accurately reconstruct the original
image, but the information related to different concepts like
shape, size, location, color, etc. are all in a tightly entangled
representation. This entangled information is not discrimi-
native enough to perform context based anomaly detection.
Also, the planning module typically acts on local repre-
sentations of the concepts but DL models give distributed
representations where concepts are denoted by continuous-
value vectors [32]. Thus, in order to bridge between the two
paradigms the first step is to disentangle the representations



given by standard DL models without the use of external
concept annotations.

In order to capture disentangled color and content in-
formation, we introduce two methods wherein we train a
vision transformer (ViT) [33], [34] to encode images into
latent embeddings. The two methods differ in how the shape
and texture information (content information) of the object
is captured in the latent representation. In the first method,
ViT concept mining DWT (ViT-CM-DWT), we use Discrete
Wavelet Transform (DWT) using Haar as the mother wavelet,
with content latent embeddings specialized to reconstruct the
DWT components of the gray scale image of the object (e.g.,
Level-1 DWT components: LL, HL, LH, and HH) similar to
[31]. In the second method, ViT concept mining (ViT-CM),
we extract content latent embeddings to reconstruct the gray
scale image of the object without using DWT. On the other
hand, the color latent embeddings are trained to capture the
color information of an image.

The ViT auto-encoder (ViT-CM-DWT) architecture for
color and shape content feature specialisation is shown in
Fig. 4. The RGB images used to train the ViT-AE are of size
3x224x224 (CxHxW). The Linear Projection layer is made
up of a single convolutional network (input channels=3,
output channels=128, kernel size = 16 and patch size = 16)
which takes in an object image and implicitly splits them
into image patches of size 3x16x16 to generate a feature
vector of 128 dimension for each image patch. Further,
the latent embeddings are split into two equal halves of
dimension 64 each. One part of the embedding is passed
through the 4 shape transformer encoder layers (one for each
DWT component LL, HL, LH, HH) and the other half is
passed to the 3 color transformer encoder layers (one for
each Red channel, Green channel and Blue channel). Each
transformer encoder comprises of 4 attention heads, a feed
forward network with a hidden dimension of 2048 and uses
GELU activation function. The intention is to specialize a
part of the embedding to learn the different shapes and
textures present in the object image and the other part to learn
the colors. The position embeddings are only made available
to the latent embeddings for content. The latent embedding
f ∈ RN×NC×M of an input image Ic ∈ RH×W×3 is
produced by the encoder network (E).

f = E(Ic; θE) (1)

Here, latent embedding f ∈ RN×NC×M comprises of
disentangled color and content specialized features where
N represents the total number of patches (N=16), NC is
the total number of specialized features or concepts (NC=7
because there are 3 color channels and 4 DWT components)
and M denotes the dimension of these features.

f = {fcolor, fcontent}
fcolor = {fR, fG, fB}
fcontent = {fLL, fHL, fLH , fHH}

Similar to [31], the color embeddings fR, fG and fB are used
to modulate the content embeddings fcontent, as described

below:

fR
content = {fLL ⊙ fR, fHL ⊙ fR, fLH ⊙ fR, fHH ⊙ fR} (2)

fG
content = {fLL ⊙ fG, fHL ⊙ fG, fLH ⊙ fG, fHH ⊙ fG} (3)

fB
content = {fLL ⊙ fB , fHL ⊙ fB , fLH ⊙ fB , fHH ⊙ fB} (4)

Here, ⊙ represents the Hadamard product and fLL, fHL,
fLH and fHH are the specialized features for each of the
DWT components. Following this, the modulated features
are passed to the decoder bank to reconstruct the DWT
components of the input image Ic.

ϕx
DWT = D(fx

content; θD) (5)

Where, x ∈ {R,G,B}, θD represent the parameters of
decoder D. The image is reconstructed back using the IDWT
module [35] through the standard process.

The auto-encoder is trained in an end-to-end fashion
with squared L2 loss between the input image and the
reconstructed image. Note that to disentangle the color and
content information, we train the network alternatively where
in one iteration the fcontent embeddings are modulated with
fcolor embeddings as described in equations (2)-(4) above.
fcontent is detached from the computational graph so that
it does not learn to contain information about the color of
the object image. In this case, the L2 loss is calculated
between the RGB image and the reconstructed image. In the
next iteration, fcontent embeddings are passed as is, without
modulation, enforcing the network to only learn the content
features and no color information is passed to the decoder
for reconstruction. In this case, the loss is computed between
gray-scale input image and the reconstructed image.

In case of ViT-CM, we replace the 4 content encoder
layers with a single content encoder layer to learn the shape
and texture information of the object. The training process
remains the same except, we have a single content latent
embedding fcontent instead of 4.

To train our models and baselines we use the object RGB
images and segmentation masks in the YCB dataset [15]. We
train our models for 100 epochs with a learning rate of 1e-4
using Adam optimizer and mean squared error loss.

C. Algorithm for Anomaly Detection

The features obtained from the concept embedding extrac-
tion modules are then used to perform anomaly detection
using outlier detection algorithms. We implemented two
such algorithms. In the first one, we applied agglomerative
clustering on the concept embeddings corresponding to each
cropped image. In the second one, we calculated pairwise
distances between the embeddings corresponding to each
cropped image and then computed a row-wise sum on the
resulting distance matrix. On the aggregated distance we then
detected outliers based on the inter-quartile range.

IV. EVALUATION

We have evaluated our proposed approach for anomaly
detection on a simulated dataset as well as on publicly



Algorithm 1 Anomaly Detection

1: for evaluation set = 1, 2, . . . ,K do
2: for object images = 1, 2, . . . , N do
3: Compute feature vectors f̂1, . . . , f̂N using Eq 1
4: end for
5: Compute distance between feature vectors using a

similarity metric
6: anomaly[K] = argmax(distance)
7: end for

available retail product dataset, RP2K. To evaluate our
anomaly detection approach, we have created evaluation sets
by randomly choosing majority samples from one class and
anomalous sample from another randomly chosen class. The
Co-AD approaches tested here include ViT-CM and ViT-
CM-DWT architectures with selections of content features,
color features, or both. These are compared with a similar
architecture that uses convolutional neural networks (CNN)
for concept mining to generate latent embeddings (CNN-
CM-DWT) with the same feature selection choices [31]. We
have also compared our Co-AD approach with standard ViT
auto-encoders which do not need product labels, as well as
with a deep residual network (ResNet50) [36] that requires
labelled data. Co-AD was found to generate anomaly de-
tection outputs from a given simulated or real scene at ∼5
fps on the onboard computer of the mobile robot (NVIDIA
Jetson TX2).

A. Image Dataset - RP2K

The RP2K dataset [14] contains two components: the orig-
inal shelf images and the individual object images cropped
from the shelf images. All images are captured in physical
retail stores with natural lightings, matching the scenario of
real applications. In this dataset each individual object is
at least 80 by 80 pixels. To prepare the evaluation set, we
considered cropped images from the dataset. There are a
total of 198 test cases in the evaluation set. The anomaly
detection accuracy is listed in Table I. ViT-CM-DWT with
color features and a pairwise boxplot distance metric had the
highest accuracy for this dataset (89.9%).

B. Simulated Images

We also evaluate Co-AD on a set of images containing
objects arranged on shelves in a ROS Gazebo simulation en-
vironment. As shown in Fig. 3, the test set contains images of
12 different object classes drawn from the YCB dataset [15].
We have created 72 test cases containing different anomalous
objects. Table II lists the accuracy on simulated data. ViT-CM
with color features and a pairwise boxplot distance metric
had the highest accuracy for this dataset (95.83%).

C. Evaluation Sets - Failure Cases

To demonstrate the limitations of Co-AD approaches, we
present two examples of evaluation sets from the simulated
images and RP2K images where ViT-CM fails to identify
an anomaly. The failure cases are identified after using

Model
Agglomerative
clustering on

features

Boxplot on
pairwise
distance

ResNet 51.52% 69.7%
ViT-AE 74.75% 80.81%

CNN-CM-DWT
(Color features) 29.8% 43.43%

CNN-CM-DWT
(Content features) 46.97% 56.06%

CNN-CM-DWT
(Content & Color features) 48.48% 59.6%

ViT-CM-DWT
(Color features) 84.34% 89.9%

ViT-CM-DWT
(Content features) 41.41% 45.45%

ViT-CM-DWT
(Content & Color features) 83.84% 86.87%

ViT-CM
(Color features) 76.77% 84.85%

ViT-CM
(Content features) 57.58% 65.66%

ViT-CM
(Content & Color features) 80.3% 89.39%

TABLE I: Success rate on RP2K dataset

Model
Agglomerative
clustering on

features

Boxplot on
pairwise
distance

ResNet 75.0% 88.89%
ViT-AE 72.22% 70.83%

CNN-CM-DWT
(Color features) 50.0% 62.5%

CNN-CM-DWT
(Content features) 47.22% 50.0%

CNN-CM-DWT
(Content & Color features) 55.56% 69.44%

ViT-CM-DWT
(Color features) 86.11% 90.28%

ViT-CM-DWT
(Content features) 40.28% 43.06%

ViT-CM-DWT
(Content & Color features) 84.72% 88.89%

ViT-CM
(Color features) 80.56% 95.83%

ViT-CM
(Content features) 45.83% 47.22%

ViT-CM
(Content & Color features) 93.06% 91.67%

TABLE II: Success rate on Simulated dataset

agglomerative clustering on both color and content features.
In the first row of both Fig. 6 and Fig. 7, the ViT-CM
approach fails because the color feature vectors of each of
the object cannot be told apart. On the other hand, the second
row of both Fig. 6 and Fig. 7 we observe that the content
features of all the object images are close to each other that
leads to inaccurate anomaly detection.

The Concept-based Anomaly Detection (Co-AD) approach
presented in this paper consists of various design choices–
inclusion of DWT, choice of color and content features
and choice of outlier detection algorithm. As seen in the
evaluation results, the anomaly detection performance on
different test sets varies with these choices. Co-AD can
therefore be suitably modified and adapted to a particular
application area through these design choices with minimal



Fig. 5: Representative images of retail objects present in the
RP2K dataset [14]

Fig. 6: Examples of images from the RP2K [14] evaluation
set where anomaly detection using ViT-CM fails due to color
features (top row) and content features (bottom row).

changes in the underlying architecture.

V. AUTOMATIC ANOMALY CORRECTION DEMOS

While the concept-based anomaly detection methods out-
performed baselines on the evaluation image datasets, their
real utility is as part of an autonomous robotics pipeline,
obviating the need for human intervention.

We demonstrate the pipeline on a mobile manipulation
platform (Fig. 1) consisting of a custom mobile base [13],
a Universal Robots UR5e arm, an OnRobot RG6 gripper
(Robotiq 2F-85 in simulation), and an Intel Realsense D415
depth camera.

A. ROS Gazebo Simulator

The ROS Gazebo simulation of a retail anomaly detection
task consists of a shelf with objects placed on two rows. The
objects are drawn from the YCB dataset [15] of everyday
objects. The depth camera is simulated via a Gazebo plugin
and placed on the robot’s body at roughly the same position
as the real camera. The robot’s objective is to scan the shelf,
flag the anomalous object using Co-AD, pick it up, and place
it on the table behind the shelf that serves as an inventory
buffer area (Fig. 8a) whose location is known a priori in the
world frame.

Following the procedure described in Sec. III, the soup
can is identified as the anomaly (Fig. 8b). This triggers
the pipeline shown in Fig. 2, calling a PDDL planner that
generates a task plan with the primitive actions move, pick-
up and put-down, for taking the can from the shelf to the
table. The task plan is parsed into sequence of motion plans
using Moveit [27] for planning the robotic arm’s trajectory
and ROS Navigation for the mobile base.

Fig. 7: Examples from the simulated images [15] evaluation
set where anomaly detection using ViT-CM fails due to color
features (top row) and content features (bottom row).

(a) Simulation environment (b) RGB image

Fig. 8: An illustrative task simulated in a ROS Gazebo
environment: (a) mock retail setup, (b) image captured by
the robot’s on-body camera with anomalous object shown.

B. Physical Demonstration

Another demonstration was conducted with the physical
robot, with one object of a different class placed among
four other objects (Fig. 9). The objects were picked from
a local grocery store. The anomalous object was detected
using Co-AD, and picked up with the robotic arm. Fig. 9c
shows boxplots for Co-AD concept embeddings for the five
objects in the image. The similarity metric is normalized
pairwise distances in the color features and shape content
features. The dissimilar object can be seen as an outlier.

VI. CONCLUSION

In this paper, we presented a concept-based anomaly de-
tection method (Co-AD) that allows for the detection of mis-
placed items in a retail store without relying on planograms
or labeled object databases. While this approach performed
well on real and simulated image datasets, investigation and
improvement of its real-world performance in physical retail
stores remains ongoing.

As part of a mobile manipulation platform that can au-
tonomously correct anomalies in retail stores, Co-AD is use-
ful due to its scalability and low computational burden. While
the current implementation uses well-established techniques
for task and motion planning, a real deployment requires
more reactivity and adaptability to changing environments in
terms of navigation and manipulation. These challenges have
been enumerated in [37] and the development of solution
strategies constitutes ongoing and future work.
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