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Abstract— A timely detection of seizures for newborn infants
with electroencephalogram (EEG) has been a common yet life-
saving practice in the Neonatal Intensive Care Unit (NICU).
However, it requires great human efforts for real-time moni-
toring, which calls for automated solutions to neonatal seizure
detection. Moreover, the current automated methods focusing
on adult epilepsy monitoring often fail due to (i) dynamic
seizure onset location in human brains; (ii) different montages
on neonates and (iii) huge distribution shift among different
subjects. In this paper, we propose a deep learning framework,
namely STATENet, to address the exclusive challenges with
exquisite designs at the temporal, spatial and model levels.
The experiments over the real-world large-scale neonatal EEG
dataset illustrate that our framework achieves significantly
better seizure detection performance.

I. INTRODUCTION

As neurological disorders caused by epilepsy, seizures are
associated with high morbidity and mortality for new born
infants [1]. And the timely detection and proper treatments
become a common yet vital practice in the Neonatal Intensive
Care Unit (NICU). Although it can be observed and detected
through electroencephalogram (EEG) of an individual which
has been considered as the “golden standard", it requires
significant human efforts from experts for monitoring, caring
and intensive diagnosis. Thus, building an accurate auto-
mated framework to detect seizure events in real time can
help free experts from tedious works to better focus on the
treatments.

Automated seizure detection attracts lots of attention in
both signal processing and machine learning (ML) commu-
nities. Signal processing methods [2]–[4] mainly focus on
statistical or hand-crafted features of EEG, requiring lots of
expert knowledge. Besides, ML approaches [5]–[7] rely on
data-driven paradigm to process EEG for seizure detection.
But these solutions are mainly focusing on adult epilepsy
monitoring and can not be directly applied to neonates
considering several clinical differences. While some deep
learning methods [8]–[10] were proposed for EEG seizure
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detection in neonates, they did not explicitly handle the crit-
ical challenge in this problem, i,e, dynamics in the number of
electrodes and seizure patterns, which often introduces more
artifacts as burdens of detecting informative seizure events.

To address these exclusive challenges, we propose a
deep learning framework, SpaTiAl-Temporal EEG Network
(STATENet). In STATENet, we incorporate a channel-level
temporal modeling component for fine-grained brain signal
processing, which is more flexible when tackling varying
yet limited EEG channels on neonates. After the temporal
modeling process, we leverage a spatial fusion module to
comprehensively synthesize channel-level temporal patterns
for detection. This process has been optimized through an
end-to-end manner without explicitly signal preprocessing
or human-crafted artifact removal. Moreover, we propose a
model-level ensemble by dynamically aggregating the out-
comes of diverse spatial-temporal deep models to better gen-
eralize among different neonates. We conduct experiments
on a real-world large-scale neonatal dataset, to compare our
model with several competitive baselines focusing on adult
seizure detection and illustrate that our method has achieved
significantly better seizure detection performance. Further-
more, we limit the number of channels to simulate a different
clinical scenario and transfer the learned model directly, and
we observe little performance drop in the detection quality of
STATENet, which illustrates the robustness of our method.

II. PRELIMINARIES

A. Materials

In this paper, we utilize the neonatal EEG recording
dataset [11], which collected multi-channel EEG signals
from a cohort of 79 term neonates admitted to the NICU at
the Helsinki University Hospital. The recordings have been
annotated by three experts individually and an average of 460
seizures were annotated per expert in the dataset; Among
them, 39 neonates had seizures and 22 were seizure free, by
consensus of all experts.

The dataset provides a standard 18-channel bipolar mon-
tage [11], with the electrode graph of solid blue arrows
illustrated in Fig. 1a. Note that, the head size of neonates
is relatively smaller, which may make the full montage, that
is successfully tested on adults, inappropriate for neonates.
Thus, additionally, we select 3-channel bipolar montage:
C3-P3, C4-P4 and P3-P4, following the findings of human
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(a) The two bipolar montages of electrode graph. The blue arrows
represent 18-channel one and the red arrows are 3-channel montages.

(b) EEG signal sample visualization with epileptic seizure state in
highlighted time range annotated by human experts.

Fig. 1: Visualization of the bipolar montages and the EEG signal samples with seizure onset.

experts [12], [13], as illustrated in red dotted line annotation
of Fig. 1a. As an example shown in Fig. 1b, the pieced EEG
waves of the selected three bipolar channels contain normal
state and epileptic waving state. In seizure state (with orange
area), the brain signal waves of all the channels present
apparent disorder; while in the non-seizure state, the signal
waves recover to normal fluctuation.

B. Solution Formulation

The whole dataset consists of N EEG samples
{(x(i), y(i))}Ni=1 with seizure labels. Without cause of con-
fusion, we omit the index notation i for clearer clarification.

The goal of seizure detection is to estimate the probability
p̂ = Pr(y = 1|x) that there exists a seizure state (y = 1)
in the current time piece given the EEG wave sample x,
where y ∈ {0, 1}. The input x = [x1, . . . ,xc, . . . ,xC ]

⊤

is a multivariate time-series instance containing totally C
channels of EEG time-series signals, as illustrated in Fig. 1b.
Each univariate time series is xc ∈ RL where L is the overall
timestep number. Concretely, L = 6000 for the 30-second
EEG signal recorded in 200Hz sampling frequency.

Formally, given the sample input x, each model f(·; θ)
with parameter θ estimates the seizure probability as p̂ =
fθ(x). The learning objective is to minimize the cross-
entropy loss w.r.t. the model parameter θ as

= − 1

N

N∑
i=1

[
y(i) log p̂(i) + (1− y(i)) log(1− p̂(i))

]
+ λ

1

2
∥θ∥2,

(1)

with the regularization term weighted by hyperparameter λ.

C. Challenges of Neonatal Seizure Detection

Here we describe the existed challenges in processing and
modeling the EEG signal data for neonatal seizure detection,
which also motivates our model design detailed later.

Challenge 1: Epilepsy seizure events occur dynamically
in different channels. In Fig. 1b, when in the seizure

Fig. 2: The t-SNE [15] visualization of 5 different neonates.

state, the EEG waves illustrate typical disorder with high-
frequency spike and wave discharges. However, the signals
xc at different channels have shown different patterns or
even do not illustrate seizure, which corresponds to different
causes of epileptic seizure and their paroxysm location in the
brain. The existing methods such as [5] often overlook the
fine-grained seizure pattern situation and takes the signals
of all channels as a whole which may confound various
patterns thus degenerate the detection performance. Thus,
fine-grained EEG signal processing is required.

Challenge 2: The channel number is variant even lim-
ited on neonatal brain health monitoring. Since the head
size of neonates is much smaller than adults, which results
in the limited sensing electrodes limited in the real scenario.
And the sensing devices in different centers can be quite
different, which leads to variant channel information in the
data. Several related works [1], [13], [14] have also studied
neonatal seizure detection with limited channels, e.g., only
two channels. All the observations encourage researchers
to conduct dynamic modeling techniques for dynamically
modeling various even limited EEG signal channels for
seizure detection.

Challenge 3: Seizure patterns vary among neonates
resulting in model generalization issue. The EEG dataset
often contains the recordings from a cohort of people and



a large variance of data distributions from different subjects
have been observed, as shown in Fig. 2. From the figure, we
can find that different clusters representing the EEG signal
distributions of different neonates diverge in a large margin,
which places obstacles for machine learning models to
generalize from the training dataset to the test dataset which
violates the independently identical distributional assumption
of machine learning.

III. METHOD

A. STATENet: Spatial-Temporal EEG Network

For each input EEG montage x, we first conduct a
channel-level temporal modeling that independently models
the signal of each channel. To get the final prediction p̂
and dynamically detect seizure from different channels, we
then utilize a multi-channel spatial fusion module to fuse
the information from multiple channels, as described below.
This proposed framework manages to conduct fine-grained
modeling on single channel while remains feasible to handle
the input with various channel numbers, tackling above
Challenges 1 and 2.
Channel-level Temporal Modeling. We utilize temporal
convolutional network (TCN) [16] for channel-level temporal
modeling. By stacking L dilated convolution layers with 1-
d convolution filters, we independently model each channel
with relatively low time complexity. The process can be
formulated as

h0
c = xc, hl

c = ReLU(hl−1
c ∗wl), hc = hL

c , (2)

where wl is the convolution filter of the l-th layer, which
is shared among all channels, ∗ is the dilated convolution
operation, hl

c is the extracted hidden representation of the
c-th channel at the l-th layer, and ReLU(x) = max(x, 0) is
the activation function.
Multi-channel Spatial Fusion. We utilize a multi-channel
spatial fusion module to fuse the information from each
channel as

p̂ = fs(g([h1,h2, ...,hC ])) , (3)

where g : RC×d 7→ Rd is an aggregation function and fs
is a three-layer multi-layer perception (MLP) with ReLU as
activation function.

The EEG signal of each channel reflects the brain activity
in a certain brain region. It is important to model the spatial
relations between these channels to better detect unusual
EEG patterns and locate the source of seizure. However,
existing methods either overlook the spatial relations be-
tween channels or relies on a predefined graph to describe
the connections between channels [5], which is unavailable
under neonatal EEG scenario when the number and positions
of channels are not fixed. To solve this problem, we utilize
Graph Neural Networks (GNN) as our aggregation function
g, which are commonly used for spatial-temporal model-
ing [17]–[19] including EEG modeling [5]. Specifically, we
implement the aggregation function g as a graph attention
network (GAT) [20] to dynamically decide the strength

of spatial connectivity between channels. The process is
denoted as

m0
c = hc, (4)

αl
i,j =

eWml
i·Wml

j∑C
k=1 e

Wlml
iW·ml

k

, 1 ≤ i, j ≤ C, (5)

ml+1
c =

C∑
k=1

αl
c,kWml

k, (6)

g[h1,h2, ...,hC ] =
1

C

∑
c

mL
c , (7)

where 0 ≤ l ≤ L is the layer of GAT, ml
c is the node

representation vector of the c-th channel at the l-th GAT
layer, W ∈ Rd×d are learnable parameters, and α is the
edge weights dynamically decide by the node representations
of the last layer. This module flexibly models the spatial
relations between changing number of channels and effi-
ciently aggregates the information from different channels.
The dynamic spatial relation mining of g also helps locating
EEG seizure source, as we will exhibit in Sec. IV-C.

B. Mixture of Experts for Cross-Person Generalization

To tackle the generalization issue of Challenge 3 described
in Sec. II-C, we incorporate diverse models which own
different specialties and utilize a mixture-of-expert (MoE)
framework [21] to specify their contributions to predicting
each test sample. Ensemble learning is known as an effec-
tive method to improve the generalization ability of neural
networks [22], [23]. Meanwhile, MoE has demonstrated
excellent performance in computer vision [24], natural lan-
guage processing [25], etc. In addition, although multiple
models are included, the computational cost of ensemble is
manageable and can even be compared to or lower than that
of a single model [26].

Specifically, each sample x(i) is assigned to K mod-
els, and their predictions [p̂

(i)
1 , . . . , p̂

(i)
K ] are weighted by

normalized sample-level ensemble weights w(i) ∈ RK to
output the ensemble prediction, which is obtained by p̂(i) =∑K

k=1 w
(i)
k p̂

(i)
k where

∑K
k=1 w

(i)
k = 1.

To obtain its ensemble weights, each sample x(i) is first
embedded using a standard GRU network [27], and the
output is then fed into a single-layer MLP. The MLP output
is normalized using the softmax operation Softmax(z)k =
ezk/

∑K
j=1 e

zj to obtain the sample-level ensemble weights

w(i) = Softmax
[
MLP(GRU(x(i)))

]
. (8)

Note that the integrated base models are not fine-tuned, and
only the parameters of the GRU network and the single-
layer MLP are updated. In Sec. IV-C, we demonstrate
that despite incurring additional computational costs, our
proposed ensemble yields significant performance gains.

Our proposed ensemble method offers several advantages
over existing methods. Firstly, our approach leverages a
diverse set of models, allowing for greater flexibility in
capturing a wide range of seizure patterns. Secondly, our



ensemble method dynamically dispatches models based on a
given neonatal sample, enhancing the adaptability of ensem-
bles to individual differences. Moreover, our approach does
not require complex calibration or training phases, making
it easy to implement in existing clinical settings.

IV. EXPERIMENT

A. Experimental Setup

Dataset Preparation. The dataset [11] presented in Sec.II-A
consists of the EEG records of 79 neonates, and we randomly
split the dataset into training and test sets by patients
following [5], which is realistic since the automated seizure
detection service is trained on existing data and predicts for
future coming patients. Based on the data split, we conduct
four-fold cross-validation for evaluation. We further obtain
30-s EEG clips using non-overlapping sliding windows and
overall sample number is more than 40 thousand. And each
clip is annotated as a positive sample if all the three experts
annotated the presence of seizure.
Compared Methods. We compare our method with existing
seizure detection and time series classification methods, in-
cluding GBDT [28], a gradient boosting decision tree model
utilizing spike, temporal feature extracted from EEG data;
ROCKET [29], which utilizes random convolution kernels
to extract feature vectors from EEG data and uses a ridge
regression to get final predictions; GRU [27], a recurrent
neural network (RNN) with a gating mechanism to efficiently
capture information in long signals; TCN [16], a dilated
convolutional neural network (CNN) designed for time-series
modeling; MLSTM-FCN [30] combining CNN and RNN
with squeeze-and-excitation blocks; InceptionTime [31] en-
hancing CNN and RNN with time-series Inception modules;
DCRNN [5] utilizing correlation between variables to build
a graph to capture relations between brain activities and
leveraging Fourier transform to capture meaningful infor-
mation in EEGs for seizure detection and classification. All
methods are evaluated using area under precision-recall curve
(AUPRC) and area under receiver operating characteristic
curve (AUROC). For both metrics, higher value indicates
better performance. Each reported number is averaged from
three runs of different random seeds. We will publish the
codes upon the acceptance of this paper.
Setting of Ensemble. To enhance the generalization capabil-
ity of our neural network models, we propose an ensemble
method that leverages diverse network architectures. Specif-
ically, our ensemble consists of four independently trained
models, each based on a different network architecture: GRU,
DCRNN, TCN, and STATENet. These models are dispatched
to different test samples by the MoE framework.

B. Experimental Results

The experiment results of all cross-validation folds and
the average performance on both 18-channel and 3-channel
datasets are presented in Table I. We have the following
observations from the results. (1) Superiority of individual

model: Our proposed STATENet achieves the best perfor-
mance compared with other baseline models without en-
semble on most folds of two datasets, which illustrates
that the fine-grained channel-level temporal modeling and
spatial fusion offer great capacity for EEG modeling. (2)
Advances of ensemble: Over a diverse set of trained models,
the ensemble model further boosts the performances, which
results from the better generalization ability brought by the
ensemble learning process. (3) Transferability: STATENet
achieves a comparable performance on 3-channel datasets
to that on 18-channel datasets, indicating that STATENet
manage to adapt to limited channel scenario, thus more
suitable for neonatal seizure detection. This observation is
also consistent with clinical observations [14].

C. Extended Investigation

1) Transfer Across Montages: Note that in Eq. (2), the
filters of our dilated convolution layers are shared across
channels, and the spatial fusion operation in Eq. (3) can adapt
to montages with variant number of channels. As a result,
our STATENet method can be easily transferred to EEG data
with different channels without retraining. Table II presents
the results of the transferred models. The results show that
although the transferred models suffer performance drop
compared with the results in Table I, the performances are
still comparable and outperform all our baselines. It indicates
that our spatial-temporal modeling framework offers great
flexibility and is perfectly suitable for the neonatal EEG
scenarios where the channel number is variant or even
limited.

2) Occlusion Map Based Localization: We leverage oc-
clusion map techniques to analyze the localization ability of
our models. Figure 3 shows the occlusion map of a same
sample from 3-channel and 18-channel datasets, using the
prediction of STATENet trained on 18-channel dataset. We
observe that both occlusion maps indicate that the seizure
occurs at the early phase of this sample, which accord with
the annotations of experts. The occlusion maps show that our
STATENet method has good interpretability and can help for
seizure localization, and the ability is also transferable across
data with varying number of channels.

3) Model Suitability: Motivated by the evidence that data
distributions differ significantly from people, we design a
mixture-of-expert based framework that dynamically assigns
models to each sample. Here we analyze its dispatching be-
haviors to reveal whether models are diversified to different
distributions in terms of people. Specifically, we randomly
select 4 neonates, on which we compute ensemble weights
assigned to each model averagely by our best-performed
ensemble, with results shown in Fig. 4. As can be seen,
we dynamically assign weights for predicting samples of
different neonates, and our promising ensemble performance
indicating that in this way we can achieve better cross-
person generalization. Furthermore, our analysis reveals that
STATENet is assigned the highest weight for all neonates,
further validating its usefulness in modeling neonatal physi-
ological patterns.



TABLE I: The detailed experiment results. The higher metric value is better. The best and the second-placed results are
formatted as bold font and underlined format, respectively.

Method Metric fold1 fold2 fold3 fold4 average

3 18 3 18 3 18 3 18 3 18

GBDT AUROC 72.1 73.8 76.6 76.4 81.3 78.8 81.0 79.7 77.7 77.2
AUPRC 37.4 36.2 45.5 46.2 56.5 54.5 57.9 47.4 49.4 46.1

ROCKET AUROC 75.7 64.8 76.4 73.1 86.0 80.3 85.4 84.4 80.9 75.7
AUPRC 49.2 37.7 43.1 32.4 60.5 59.4 59.9 50.4 53.2 45.0

GRU AUROC 61.9 82.5 51.7 74.7 58.7 80.1 81.0 78.8 63.3 79.0
AUPRC 30.2 59.5 13.4 51.9 27.4 65.2 55.0 45.4 31.5 55.5

TCN AUROC 77.7 79.3 75.8 75.6 90.2 89.0 85.3 82.1 82.3 81.5
AUPRC 54.1 54.5 52.9 54.1 76.2 76.1 63.3 53.1 61.6 59.5

MLSTM-FCN AUROC 78.3 77.2 75.6 74.2 85.5 85.9 84.0 81.2 80.9 79.6
AUPRC 51.2 48.2 48.7 49.0 61.4 71.1 61.4 51.6 55.7 55.0

InceptionTime AUROC 72.6 74.0 75.2 73.1 72.6 85.6 70.9 81.2 72.8 78.5
AUPRC 33.7 37.3 49.7 49.9 47.6 68.9 30.7 51.8 40.4 52.0

DCRNN AUROC 73.3 79.5 80.7 76.9 84.5 87.0 85.3 81.9 81.0 81.3
AUPRC 42.8 50.8 59.0 51.6 64.5 66.6 59.2 57.5 56.4 56.6

STATENet AUROC 87.1 91.5 85.2 87.7 89.5 93.4 88.2 91.2 87.5 91.0
AUPRC 70.1 78.0 71.5 74.8 78.8 85.3 74.1 77.4 73.6 78.9

MoE Ensemble AUROC 89.4 92.7 88.6 87.3 91.1 96.1 88.9 91.3 89.5 91.8
AUPRC 74.1 81.3 72.4 73.3 81.4 89.0 73.7 77.6 75.4 80.3

TABLE II: The results of transferred models. “3 to 18” means directly transferring the model trained on 3-channel data to
18-channel data, similarly for “18 to 3”.

Method Metric fold1 fold2 fold3 fold4 average

18 to 3 3 to 18 18 to 3 3 to 18 18 to 3 3 to 18 18 to 3 3 to 18 18 to 3 3 to 18

STATENet AUROC 82.3 90.1 83.0 89.1 80.0 91.9 85.7 86.9 82.8 89.5
AUPRC 58.3 75.5 66.3 75.7 68.4 76.8 71.4 65.4 66.1 73.4

Fig. 3: The occlusion map of STATENet model on the same sample on 3-channel and 18-channel datasets. The deeper the
color denotes more contribution to the positive prediction. The annotations of experts are shown with yellow lines.

V. CONCLUSION

This paper aims at neonatal seizure detection task based
on EEG signals, which has been recognized as a common
problem in NICU of the date while lack of enough attention.
We propose a spatial-temporal deep learning architecture
which applies multi-channel spatial fusion with channel-
level temporal modeling on EEG signal waves, tackling
the challenges in practical scenario of neonatal brain health

caring. We also utilize an ensemble of diverse models to
alleviate the generalization issue. The experimental results
on a large-scale real-world dataset of neonatal seizure detec-
tion have illustrated superior performance of our proposed
solution with promising transferring ability on different EEG
monitoring montages.



Fig. 4: Average ensemble weights assigned to models for four neonates (N1 to N4) and all neonates (All).
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