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Abstract

In [3] we introduced a new general representation of al-
gebraic surfaces, that we called semi-implicit, which encap-
sulates both usual and less known surfaces. Here we spe-
cialize this notion in order to apply it in Solid Modeling: we
view a surface inR3 as a one-parameter (algebraic) fam-
ily of algebraic low-degree curves. The paper mainly ad-
dresses the topic of performing the usual CAD operations
with semi-implicit representation of surfaces. We derive for-
mulae for computing the normal and the curvatures at a reg-
ular point. We provide exact algorithms for computing self-
intersections of a surface and more generally its singular
locus. We also present some surface/surface intersection al-
gorithms relying on generalized resultant calculations.

1. Introduction and examples

Evolving curves occur in a wide variety of settings and
were also used to describe boundaries of volumes. This
gave rise in shape description to the natural idea of active
contours. This paradigm has received various mathemati-
cal interpretation ranging from meshes to level set methods.
We aim to develop an algebraic and geometric interpreta-
tion of this paradigm in order to contribute with new mod-
els depending on a reduced number of parameters having a
rich geometry and on which one can perform efficiently the
usual CAD (Computer Aided Design) operations.

In the sequel we first give precise definitions and ba-
sic properties of ours semi-implicit surfaces and provide
an algorithm to compute their implicit representation. Then
we mention the approximation and interpolation problems
of a point cloud by a semi-implicit surface, illustrating
our approach on a piece of the classical example of Stan-
ford’s bunny. Finally, we provide formulae for computing
the equation of the tangent plane together with the second
fundamental form of a semi-implicit surface at a regular
point, give an algorithm to compute the self-intersection and

singularity locus of a semi-implicit surface, and describe
resultant-based methods in order to solve intersection prob-
lems.

A semi-implicit representation of a surface consists in
representing this surface as aparameterizedfamily of im-
plicit space curves. Actually all algebraic surfacesS in R

3

can be seen as such a family of curves, i.e. admits a semi-
implicit representation, by cutting it with planes of equa-
tions z = z0 with z0 ∈ R. Similarly revolution surfaces
can easily be seen “semi-implicitly”. In classical geome-
try such a representation already appeared, for instance for
conic surfaces [6]. Here is an example showing the rich ge-
ometry involved in these representations.

A linear family of conics is a surface obtained as the im-
age of a regular map (withoutbase points)

P
1 × P

1 φ
−→ P

3

(s : t) × (u : v) 7→ (f0(s, t; u, v) : · · · : f3(s, t; u, v)),

where polynomialsfi(s, t; u, v) are bi-homogeneous of bi-
degree(1, 2). For all fixed (s0 : t0) ∈ P

1 the image of
φ|(s0:t0) is a conicC(s0:t0) in P

3 which is, as all conics inP3,
contained in a plane that we denoteH(s0:t0). We thus have
a family H of planes parameterized byP1; it corresponds
to a bi-homogeneous polynomialL(x, y, z, w; s, t), linear
in x, y, z, w and of degree≤ 3 in s, t (this follows immedi-
ately from the definition ofφ). Consequently linear families
of conics are contained in a larger class of surfaces which
are semi-implicitly represented by a family of planesH and
a family of surfaces of degree 2 given by a bi-homogeneous
polynomial C(x, y, z, w; s, t) of bi-degree (2,2). Observe
that C(s0:t0) = C(x, y, z, w; s0, t0) ∩ L(x, y, z, w; s0, t0)
(set-theoretically at least). Let us comment how the degree
of the familyH in variabless, t affects the geometry of the
associated surface. We have a map

θ : P
1 → P

3⋆
: (s : t) 7→ H(s0:t0)

whose image is a curveΓ in P
3⋆

(where⋆ stands for the
dual), assuming thatL does not have an irreducible factor



independent ofx, y, z, w. Thus if deg(Γ) = 1 then we de-
duce thatH has a fixed line, and ifdeg(Γ) = 2 thenH as a
fixed point.

2. Definition

An implicit representation of a surfaceS in P
3 consists

in viewing it as a closed subvariety ofP
3, i.e. described as

the zero locus of a non-zero homogeneous polynomial in
C[x, y, z, w]. A semi-implicitrepresentation basically con-
sists in viewing a surfaceS ⊂ P

3 as the projection on the
first factor of a certain closed subvarietyZ of P

3 × P
1.

Definition 2.1 We call a semi-implicit representation of an
algebraic surfaceS ⊂ P

3 a couple of bi-homogeneous
polynomialsF (x, y, z, w; s, t) andG(x, y, z, w; s, t) defin-
ing a closed subvarietyZ ⊂ P

3×P
1 such that its projection

on the second factor is surjective and isS on the first fac-
tor. If F is linear in the homogeneous variablesx, y, z, w

then the semi-implicit representation is called linear.

It is possible to give a similar definition of more gen-
eral semi-implicit representations involving more than two
equations (see [3]). Passing from a semi-implicit represen-
tation to an implicit representation ofS is a useful opera-
tion, especially for intersection algorithms. One can com-
plete it as follows.

Proposition 2.2 Let S be a surface semi-implicitly
represented by both bi-homogeneous polynomials
F (x, y, z, w; s, t) and G(x, y, z, w; s, t) of respec-
tive bi-degree(k1, d1) and (k2, d2), then S is of de-
greek1d2 + k2d1 and the Sylvester resultant ofF and G

with respect to the homogeneous variabless, t gives an im-
plicit representation ofS.

Proof. This follows from standard properties of the
Sylvester resultant. We refer the reader to [5, chap-
ter 3,§1] for a detailed description of the Sylvester matrix,
whose determinant gives the so-called Sylvester resul-
tant. (see e.g. [5]). ¤

Notice that inR
3 one obtains all algebraic surfaces but

with different degrees. However only rational surfaces may
be parameterized (that is only surfaces with zero genus).
Thus we can handle more general surfaces with semi-
implicit representations than parameterized representations.

3. Point data approximation

Point data approximation is an important subject in CAD
and has been extensively studied during the last 40 years.
One particular class of methods attacks the problem by con-
sidering parallel slices of the object and then combining the

individual reconstructions of each slice in the third direc-
tion. See e.g. [1,7,8] and references therein. In our settings,
and dealing more with a representation problem than a re-
construction problem (we assume known some topological
informations), this amounts to consider an approximate can-
didate surface in a linear semi-implicit representation de-
fined by two equations inR3×R

1. One of an evolving plane
H(x, y, z; t) and one of an evolving surfaceC(x, y, z; t)
which will delimit a “moving contour” curve in that plane.

The approximation process requires to combine two suc-
cessive marching algorithms. The first one amounts to de-
fine a curve in the dual space of planes inR

3 giving a “good
ondulation” to the planesHt which will contain the active
contours. The second one proceeds by projection on such a
Ht0 , for some discretised values oft ∈ R, of a near-by por-
tion of the 3D-point cloud to give a 2D point cloud which
is later approximated by a portion of an algebraic curve of
low degree with a controlled typical shape. For complicated
shapes, we do not pretend that this is an easy and conver-
gent process. However, this paradigm leaves open the pos-
sibility of a fruitful compromise with a rich geometry be-
tween the rigidity (but good understanding) of algebraic ge-
ometry and the possibility to decompose a complicated ob-
ject into a (small) number of well controlled patches.

As an application of this previous interpolation method
we were interested in a semi-implicit representation of a
rabbit ear given by a scattered data representation which
consists of 927 points. This is a toy example which could
be easily complicated, but this is not yet our current pur-
pose. Cutting by equally distributed horizontal planes, we
formed 20 sets of 45 co-planar points. The approximation
of these 45 points in each “slice” by an algebraic curve im-
plicitly represented is the more time-consuming step of the
process. A way to perform it is to use a particular family
of planar quartic curves, calledbinoids, whose real part is
formed by a multiple point and an oval (the oval modelizes
an active contour and the multiple point its skeleton follow-
ing the general idea of Blum [2]).

This conference sketch paper does not present achieved
works and implementations for this difficult problem of
point data approximation but a new framework and targets
that we plan to develop further and discuss with researchers
in the field. Efficiency will be addressed in future works.

4. Usual differential geometric invariants

Given a semi-implicitly represented surface, it is possi-
ble to compute at any regular point the usual differential ge-
ometric invariants such as the equation of the tangent plane,
and thus the normal, or the second fundamental form, and
thus the curvatures.

Let us do it for a surfaceS passing by the origin and
represented by a family of plane curves parameterized by



t (the origin being obtained fort = 0). S is given by the
two equations:L(x, y, z, t) of degree one inx, y, z and of
possibly higher degree int; F (x, y, z, t) of any degree in
x, y, z, t. With our hypothesis they satisfyL(0, 0, 0, 0) = 0,
andF (0, 0, 0, 0) = 0.

The tangent space ofS at the origin is generically the
projection of the tangent space at the surface defined byL

andF at (0, 0, 0, 0) in R
4. So in order to compute the tan-

gent space we can truncateL and F and keep only their
affine Taylor expansions, that we callL1 andF1. To be more
specific let

L1 := lx + my + nz + pt, F1 := ax + by + cz + dt,

then the equation of the tangent space is:

T := (−pa + dl)x + (−pb + dm)y + (dn − pc)z.

If p andd are both zero, thenL1 andF1 should be propor-
tional in order that the origin is non singular onS, in that
case we keep either equation. The three coefficients ofT de-
fine the coordinates of the normal ofS at the origin.

The computation of the second fundamental form is
more complicated. It amounts to compute an implicit equa-
tion of S near by the origin, truncated at orders greater than
three. We take the Taylor expansions ofL andF at order 3
in x, y, z (we should not truncate also int). Let us call them
L2 andF2. They are two polynomials inx, y, z, t. We use
a resultant to eliminatet betweenL2 andF2 and we get a
polynomialG(x, y, z) in x, y, z whose degree depends on
the degrees int of L2 andF2. Then we compute a Taylor
expansion at order 3 ofG at the origin and get a polyno-
mial of degree 2 which writesT + Q1, with Q1 a quadratic
form in x, y, z. This provides a local equation ofS at the
origin.

Then it suffices to perform a change of coordinates
(which preserves the metric), callX, Y, Z the new coordi-
nates, so that the previous local equation ofS at the ori-
gin becomesZ + Q(X, Y, Z) = 0, whereQ is a quadratic
form. Finally the second fundamental form forS at the ori-
gin is simplyQ(X,Y, 0).

5. Singularities and self-intersection points

An important problem in Computer Aided Geometric
Design is the detection of singularities and self-intersection
points of a 3D-surface. We describe a method to complete
such a detection in case the considered surface is semi-
implicitly represented.

Let S be a surface semi-implicitly represented by both
polynomialsF (x, y, z, w; s, t) andG(x, y, z, w; s, t) of re-
spective bi-degree(k1, d1) and(k2, d2). A given pointq ∈

S ⊂ P
3 is a self-intersection point if there exist two dis-

tinct points(s1 : t1) and(s2 : t2) in P
1 such that:

F (q; si, ti) = G(q; si, ti) = 0, for i = 1, 2.

By proposition 2.2 we know that an implicit equation ofS

can be obtained as the determinant of the Sylvester matrix
of F andG with respect to the homogeneous variabless, t.
We denote byR(x, y, z, w) this Sylvester matrix and take
a given pointp ∈ P

3. If p is not onS then clearly the ker-
nel ofR(p) is reduced to 0 since its determinant is non-zero.
Now if p is onS then obviously the kernel ofR(p)t (where
t stands for transpose) is not reduced to zero since it con-
tains a multiple of the vector of monomials(s0, t0)

d1+d2−1,
where(s0 : t0) ∈ P

1 is such that

F (p; s0, t0) = G(p; s0, t0) = 0

(observe that we can consequently compute(s0 : t0)). If
now p is a self-intersection point ofS then the dimension
of the kernel ofR(p)t is at least 2 since this kernel contains
both non collinear vector of monomials(s1, t1)

d1+d2−1 and
(s2, t2)

d1+d2−1. Thus a necessary condition for a pointp to
be a self-intersection point is thatrank(R(p)) ≤ d1+d2−3.
Similarly, if (p; s0, t0) is a singular point of the semi-
implicit representation such thatF, G, ∂sF, ∂sG all van-
ish at this point then both non-collinear monomial vectors
(s0, t0)

d1+d2−1 and ∂s((s0, t0)
d1+d2−1) are in the kernel

of R(p). In other words, singularities and self-intersection
points of the semi-implicit representation ofS are located
on the zero locus of the(d1 + d2 − 2) × (d1 + d2 − 2) mi-
nors of the Sylvester matrixR(x, y, z, w) in P

3.

6. Intersecting a semi-implicit surface

We now investigate the intersection problems be-
tween different curves and surfaces. Our aim is to show
that semi-implicit representations are well adapted to
these operations. We illustrate it on the three main con-
figurations, say the intersection between a semi-implicit
surface and a parameterized curve, a parameterized sur-
face and a semi-implicit surface. HereafterS denotes a
surface semi-implicitly represented by both polynomi-
als F (x, y, z, w; s, t) and G(x, y, z, w; s, t) of respective
bi-degree(k1, d1) and(k2, d2).

6.1. With a parameterized space curve

Let g0, g1, g2, g3, be four homogeneous polynomials in
both variabless, t of the same degreed, and letC be the pa-
rameterized curve (we write here, for simplicity, the affine
version of this parameterization, i.e. sett = 1 andw = 1)

C :

(

x =
g1(s)

g0(s)
, y =

g2(s)

g0(s)
, z =

g3(s)

g0(s)

)

.

We assume w.l.o.g. that there is no base point, i.e. that
gcd(g0, g1, g2, g3) is a constant. By proposition 2.2 we
know that there exists a resultant matrixR(x, y, z) whose



determinant is an implicit representation ofS. Now substi-
tuting respectivelyx, y, z by g1(s)

g0(s)
,

g2(s)
g0(s)

and g3(s)
g0(s)

we ob-
tain a matrixR(s) depending on the alone variables that
we can decompose asR(s) = Rds

d + · · · + R0, where
the coefficientsRi are numerical matrices of the same size
thanR(s). And we are looking for the values ofs such that
this surface and the curve intersect atC(s), that is such that
the determinant ofR(s) vanishes. This is related to known
methods for solving such “equation”, we refer e.g. to [4].

6.2. With a parameterized surface

Let f0, f1, f2, f3 be four homogeneous polynomials of
the same degreed in the homogeneous variablest0, t1, t2.
They define a parameterized surface inP

3 (here again we
present the affine point of view, settingt0 = 1 andw = 1):

S′ :

(

x =
f1(t1, t2)

f0(t1, t2)
, y =

f2(t1, t2)

f0(t1, t2)
, z =

f3(t1, t2)

f0(t1, t2)

)

.

Our goal is here again to represent the intersection curve
C of S andS′. We assume for simplicity that the param-
eterization ofS′ is without base point. By Bezout’s theo-
rem we deduce thatC is of degreed2(k1d2 + k2d1). By
proposition 2.2 we know that there exists a resultant matrix
R(x, y, z) whose determinant is an implicit representation
of S. Substituting respectivelyx, y, z by f1(t1,t2)

f0(t1,t2)
,

f2(t1,t2)
f0(t1,t2)

and f3(t1,t2)
f0(t1,t2)

we obtain a matrixR(t1, t2) depending only
on both variablest1 andt2. Its determinant defines a curve
(implicitly represented) which is of degreed(k1d2 + k2d1),
that is to say of lower degree thanC. This curve is arepre-
sentationof the intersection curveC since every pointt1, t2
such thatR(t1, t2) = 0 can be sent onC by the parameteri-
zation ofS′.

This method consisting of representing an intersection
spacecurve by a birationalplane curve is very useful in
practice. It has been widely studied (see e.g. [4] and refer-
ences therein) in the context of the intersection of two pa-
rameterized surfaces. We thus show here that we can also
represent in this process one of the surface semi-implicitly
instead of parametrically.

6.3. With a semi-implicit surface

In the case of the intersection of two semi-implicit sur-
faces we can, as in the previous paragraph, obtain a plane
curve which is birational to the intersection curve. As pre-
viously, to do this we are going to use a resultant. However
we need a more general resultant than the Sylvester one: we
need a so-called Macaulay resultant for four homogeneous
polynomials in four homogeneous variables [5, chapter 3,

§2]. If S′ is a semi-implicit surface defined by both poly-
nomialsF ′(x, y, z, w; s′, t′) andG′(x, y, z, w; s′, t′) of re-
spective bi-degree(k′

1, d
′
1) and(k′

2, d
′
2), it appears that the

resultant ofF, G, F ′ andG′ with respect to the homoge-
neous variablesx, y, z, w is a polynomial ins ands′. It van-
ishes at a given points0, s

′
0 if and only if both surfacesS

andS′ intersect with these parameters, i.e. there exists (at
least) a pointx ∈ P

3 such that

F (x; s0) = G(x; s0) = F ′(x; s′0) = G′(x; s′0).

Let us denote byR(s, s′) this polynomial. It defines a plane
curve in the plane of coordinates(s, s′) which is in corre-
spondence with the intersection (space) curve ofS andS′.
We can therefore, as in the previous paragraph, apply all the
techniques developed by many authors on such a represen-
tation of the intersection curve.

7. Conclusion

In this paper we presented new algebraic models for rep-
resenting shapes together with efficient algorithms to com-
pute their local differential geometric invariants, their sin-
gularity locus and their intersections. To represent a com-
plex shape in our context we will decompose it into smaller
parts. Each of these parts should be sliced in order to get
a family of curves having similar shapes. There are at least
two main next tasks : one is a detection/recovery problem,
and the other one is to reconstruct a model from a set of
such parts.
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