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Free-Boundary Linear Parameterization of 3D Meshes
in the Presence of Constraints

Zachi Karni
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Abstract

Linear parameterization of 3D meshes with disk to-
pology is usually performed using the method of barycen-
tric coordinates pioneered by Tutte and Floater. This im-
poses a convex boundary on the parameterization which
can significantly distort the result. Recently, several
methods showed how to relax the convex boundary re-
quirement while still using the barycentric coordinates
formulation. However, this relaxation can result in other
artifacts in the parameterization. In this paper we explore
these methods and give a general recipe for “natural”
boundary conditions for the family of so-called “three
point” barycentric coordinates. We discuss the shortcom-
ings of these methods and show how they may be rectified
using an iterative scheme or a carefully crafted "virtual
boundary". Finally, we show how these methods adapt
easily to solve the problem of constrained parameteriza-
tion.

1. Introduction

One of the most widespread methods for parameteri-
zation of 3D manifold mesh data with the topology of a
disk is based on Floater's generalization [3] of the power-
ful "spring-embedding" theorem of Tutte [15]. This theo-
rem postulates that if the boundary of the mesh is embed-
ded as a convex shape in the plane, the position of each
interior vertex is a convex combination of those of its
neighbors, and edges are drawn as straight lines — the re-
sult will be a planar embedding with convex faces. A pla-
nar embedding means that the edges of the embedded
mesh will not intersect. The planarity of the embedding is
crucial for many applications using parameterization, in-
cluding texture mapping, remeshing and morphing, as it
provides a bijective mapping between the mesh and a
region of the plane (the parameter domain). Embeddings
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which are not planar may contain “flipped” orientation
faces, or regions “covered” by more than one face. The
convex combinations are also sometimes called barycen-
tric coordinates.

Tutte's theorem provides a very general and efficient
method for parameterizing a disk-like mesh which essen-
tially boils down to solving two sparse linear systems: one
for the x coordinates of the embedded mesh vertices, and
one for the y coordinates. The geometric properties of the
embedding may be tuned to reflect the geometry of the
original mesh by using different recipes for the barycen-
tric coordinates. The most popular are the so-called
shape-preserving weights [3], conformal (also known as
the discrete harmonic) weights [14] and mean-value
weights [4]. Conformal weights are derived as a discreti-
zation of the continuous conformal mapping, hence tend
to minimize angular distortion. See the survey by Floater
and Hormann for more details [5]. Recently, Floater et al.
[6] have showed that many of these weights are actually
members of a larger parametric family which we will
elaborate on later.

1.1. The convex boundary

The main drawback of the basic method of Tutte is the
convex boundary requirement. Many inputs have an in-
herently non-convex shape, and forcing the boundary to
be convex introduces a glaring distortion into the result.
This is especially disturbing when the input mesh is flat
with a very non-convex boundary. Although there exists a
planar embedding of the input which has no distortion
whatsoever (the input itself!), the method will generate
something quite different. This means that the method
does not have the desirable property of reproducing 2D
inputs. This property is sometimes called linear precision.
See Figure la-b.

Realizing that for many applications, less distortion in
the parameterization is more important than efficient
computation of it, a few methods have been devised to
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Figure 1: Embedding of a flat mesh. (a) The input mesh. (b) Planar embedding using Tutte's
method: convex boundary and uniform weights. (c) Planar embedding of Lee et al [12] using virtual

boundary (red triangles) and uniform weights.

accommodate non-convex boundaries. The most promi-
nent is the Angle-Based-Flattening method [16] for trian-
gle meshes, which operates in angle space. This is a
highly non-linear method, and sophisticated numerical
techniques must be employed in order to solve it effi-
ciently [17]. Two other methods are related to Tutte's lin-
ear method: The first is the so-called "virtual boundary"
of Lee et al. [12], also used in the polygon morphing
methods of Gotsman and Surazhsky [8]. Here the mesh is
"padded" with a small number of layers of triangles. The
padded mesh is then embedded as usual with a convex
boundary, which is then "peeled" off to leave just the
original connectivity, which will hopefully have had suf-
ficient freedom to relax to a less distorted non-convex
shape. Lee proposes a number of heuristics that maximize
the freedom of the boundary, but there seems to be a fair
amount of arbitrariness in the method, which undoubtedly
introduces bias in the result in unpredictable ways. While
the result is always a planar embedding, it still does not
reproduce 2D inputs, even those with convex boundaries.
See Figure 1c. The second, more direct linear method, is
that of Desbrun et al. [1] that works only for triangle
meshes. In this method, explicit linear conditions are for-
mulated for the boundary vertices. These boundary condi-
tions are "natural" extensions of the conformal weight
recipe. The resulting embedding is guaranteed to repro-
duce 2D inputs, and usually yields very nice results for
3D inputs. However, there is no guarantee that the result-
ing embedding will be planar, even if the conformal
weights are positive. An interesting difference between
this method and the regular Tutte method is that it re-
quires the solution of one 2nx2n linear system coupling
the x and y coordinates (instead of two nxn decoupled
linear systems).

1.2. Accommodating constraints

For many computer graphics applications, in particular
those involving texture mapping and remeshing, it is de-
sirable that the parameterization satisfy hard constraints
on the embedded positions of some of the mesh vertices.
This makes the parameterization problem much more
difficult. It renders the linear systems used in the method
of barycentric coordinates over-determined, no matter
whether the boundary is fixed or free. Hence, satisfying
the constraints usually comes at the expense of the planar-
ity of the embedding.

More sophisticated parameterization methods have
been devised to solve the problem of constrained planar
parameterization [2][11], but these are quite complex and
difficult to implement. Furthermore, they introduce so-
called Steiner (extra) vertices into the embedding in order
that it both satisfy the constraints and be planar.

2. Our Contribution

This paper introduces two methods to generate planar
free-boundary embeddings of manifold 3D triangle
meshes with disk topology. Both methods are 2D repro-
ducing. One is an iterative method capable also of satisfy-
ing a set of given constraints, if this may be done without
introducing Steiner vertices.

Both our methods rely on the free-boundary linear
systems introduced by Desbrun et al. [1], which, as men-
tioned above, is not guaranteed to generate an planar em-
bedding by itself. For the iterative method, we also rely
on recent results by Gortler et al. [7] on barycentric em-
beddings with non-convex boundaries. These provide
precise conditions on the boundary vertices of an embed-
ding generated using barycentric coordinates, in order that



it be planar. We show how to iterate the linear barycentric
systems in order to satisfy the conditions stipulated by
Gortler et al., incorporating also constraints. Thus our
embeddings are guaranteed to be planar.

3. The Free-Boundary Equations

Desbrun et al. [1] derived natural boundary conditions
for a triangle mesh in the special case of the conformal
barycentric weights. We now show how to derive analo-
gous boundary conditions for the larger family of bary-
centric coordinates containing these.

3.1. The general case

Floater et al. [6] showed that the following construc-
tion leads to the family of so-called “three point” bary-
centric coordinates of a point x, relative to its neighbors
X1,.., X in the plane.

Denote by r; the lengths of the edges {xox;} and
choose points y; along the edges, at distances d; from x,.
Now observe just the oriented triangle {x(,x;,x,} in Figure
2a. In this triangle we start from the trivial identity:
R (y2-9)=R*(y2-x0)-R*°(y1-x0) where R is the 90° rota-
tion operator transforming (u,v)—(-v,u). We may express
the two vectors on the right-hand side of this identity as
linear combinations of unit vectors aligned with the two
triangle edges {x¢x;} and {x¢,x,}:
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So, for this triangle we finally get:

[d1 cot(a) — silf?a)]' 4 ;1% = )

R90[d2$2—$0_d1$1—$0]

b] n

Let us examine this identity for some special cases:

Conformal (d;=r,):

Using the sine rule r,/r;=sin(f)/sin(y) and the identity
sin(y)=sin(a+f), we reduce to the identity stated by
Desbrun et al. [1]:

cot(y) - (zg — x) + cot(B) - (2 —xp) =

Rgo(@ —T)

Mean-Value (d;=1):

Using the identity -cot(a)+1/sin(a)=tan(a/2), we re-
duce to the following identity:

(b)

Figure 2: Part of a mesh, showing: (a) one triangle face, (b) a vertex x, and its neighbors.
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Now, in order to obtain the barycentric coordinates of
X relative to xj,...,x;, consider the closed ring of triangles
around x,, as in Figure 2b. The sum of equation (1) over
all triangles in the ring vanishes, and this leads to the fol-
lowing equation:

k
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where o; is the angle between the i-th and (i+1)-th edges.
Note that the indices are cyclic, meaning that i;.1=i;. It is
straightforward to show that three known recipes for
barycentric coordinates are special cases within this fam-
ily:

o Conformal: d;=r, w;=cot(f;)+ cot(y.i)

e Mean-Value: d;=1, w;= (tan(a.,/2)+tan(a;/2))/r;

e Wachspress: d; = 1/r;, w; = (cot(f.1)+cot(y,))/r;

where f; and y; are the angles in the i-th triangle opposite
y; and ;.1 respectively. The weight w; will be positive
only if f;.;+y;<m. This is always guaranteed for the mean-
value coordinates because then the triangles {y;1,x0,);} are
all isosceles, hence their base angles are all acute.

There is a simple geometric interpretation of these
barycentric coordinates, observed by Kos [10]: Draw per-
pendiculars to the edges through the y; until they meet
each other, forming a polygon whose edges have length /;.
See Figure 2b. Then:

li
M
Given an entire mesh of triangles, equation (2) will
hold for every interior vertex, and asserts that the vertex
has harmonic behavior. The more interesting observation
is what equation (1) implies for a boundary vertex, which
is not surrounded by a closed ring of triangles. If one tri-
angle is “missing” from the ring, the sum of equation (1)
over those triangles does not vanish, but is the negative of
the value associated with that missing triangle. This yields
the “natural” boundary condition for a boundary vertex v,
with neighboring vertices v, and v, along the boundary:
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Geometrically, this means that the boundary vertex is
not positioned at the barycenter of its neighbors, as are the
interior vertices. Rather it is located at an offset from this
barycenter, given by either side of equation (1). Note that
this statement is valid also for a convex boundary vertex.
In both cases, reflex and convex, the offset vector points
“outwards”. Since these equations mix the x and y coordi-
nates, we obtain a 2nx2n system of linear equations in 2n
unknowns.

3.2. Lévy’s equations

Lévy et al. [13] proposed a different linear system for
solving for a free boundary. This is based on the follow-
ing simple trigonometric identity for a triangle: Two
edges of a triangle will coincide if you rotate one around
their common vertex by the angle between them, and then
rescale its length by the ratio between their lengths:

7 o
—1($2—$0)=R (21 — )
b}

Since there are many more equations than unknowns

Figure 3: A model of a cube with one boundary. This model was used to test

various embedding methods.



Figure 4: Free-boundary embeddings of the cube model using: (left) mean-value weights. (center) Lévy’s
weights (right) conformal weights. Red triangles have “flipped” orientation, hence the embedding is not planar.
Small images zoom into the non-planar area. Each row corresponds to fixing a different pair of vertices

(twice the number of triangles vs. twice the number of
vertices), Lévy proposed to solve this system in the least-
squares sense. However, it is also possible to do with
these triangle equations what we did with the family of
barycentric coordinates discussed in the previous section:
sum over the triangles around each vertex. This will then
result in a 2nx2n linear system for the x and y coordinates
of the mesh vertices.

3.3. Solving the free boundary equations

If the 3D mesh is developable, meaning that it can be
embedded in the plane without any distortion, the rank of
the 2nx2n matrix derived from the barycentric coordinate
equations (2) and (3) (when the weights are computed
from the 3D geometry) is 2n-4. The co-rank of 4 is due to
the equations being invariant to the four degrees of free-
dom of a similarity transform: two translation parameters,
one rotation and one scale parameter. So in order to pro-

duce a concrete solution, these degrees of freedom must
be fixed. An easy way to do this is fix two of the vertices
in the plane (two coordinates each) and solve for the oth-
ers. The fact that the embedding is 2D reproducible means
that any developable triangle mesh, including one which
is already a planar embedding, satisfies the barycentric
equations derived from its geometry.

When the mesh is not developable, the rank of the ma-
trix is only 2n-2. This is because there is no solution apart
from the trivial solution where all the triangles are degen-
erate, meaning that all vertices are positioned at one point,
which is invariant to translation only. To obtain a mean-
ingful solution, some of the constraints must be relaxed.
This is usually done by fixing two vertices and eliminat-
ing the boundary conditions at those vertices.

We would like the solution to the free boundary equa-
tions to yield a planar embedding. While for many practi-
cal inputs the solution is indeed such, this is not guaran-
teed. In fact, it is easy to construct simple 3D triangle



meshes whose conformal and mean-value free boundary
embeddings are not planar. We distinguish between local
planarity and global planarity. Local planarity is violated
when triangles cover some of the neighborhood around a
vertex more than once, either by changing orientation
(flipping), or cycling around the vertex more than once
(double covering). Global planarity is violated if the
boundary of the embedding is not simple, or has turning
number other than 2z. Figure 4 shows some embeddings
produced by the conformal, mean-value and Lévy free-
boundary equations when parameterizing the same 3D
input shown in Figure 3. The different embeddings were
generated by fixing different pairs of vertices. It may be
seen that the conformal embeddings are relatively well-
behaved, and not too sensitive to the two points fixed. The
mean-value embeddings seem to be quite sensitive.

4. The Iterative Method

Since none of the free boundary methods can guaran-
tee a planar embedding, a post-processing step is neces-
sary to "fix" any non-planarities that might be present in
the results. The previous section showed that planar em-
beddings satisfy their mean-value equations (this is the
2D reproduction property). Theorem 2, proven in the Ap-
pendix, shows that only planar embeddings, when consid-
ered as 3D meshes, satisfy their mean-value equations.
This fact implies that a possible way to achieve a planar
embedding is by iterating the mean-value weighted em-
bedding process (The proof of Theorem 1 in the Appen-
dix shows that the mean-value weights alone are suitable).
We can do this by applying the free-boundary method
again on the output of the previous stage, modifying the
barycentric coordinates used. Thus a planar input will not
be changed, but a non-planar input will (and, hopefully,
become “closer” to planar). This iterative process is not
guaranteed to converge, but Theorem 2 guarantees that if’
the process does converge, the limit embedding will al-
ways be planar.

Another way of thinking about this iteration is as a so-
lution to non-linear mean-value equations using the well-
known fixed point iteration method ([9], Chap. 5). More
formally, given a geometry x, the mean-value matrix A(x)
is derived from that geometry x, and x will satisfy its
mean-value equations if A(x):x=b, or x=A(x)"-b for an
appropriate b. The iteration is therefore x;.,=A(x,) b
where A(xo) is derived from the original 3D mesh geome-
try as described in the following pseudo-code.

1. Solve the free boundary equations using conformal
weights derived from the 3D geometry and fixing
two boundary points. Let £ be the resulting 2D
embedding.

2. If E is planar — stop and output E.

3. Solve the free boundary equations using mean
value weights derived from the 2D geometry of E.
Let E be the result of the new embedding.

4. Goto 2.

In step 4 the mean value parameterization is applied to
an embedding which is possibly non-planar, namely, con-
taining negative angles if orientation is considered. None-
theless we consider all angles as positive. The Appendix
states and proves Theorem 2. Figure 5 shows the results
of applying the iterated mean-value process to some of
the non-planar embeddings of Figure 4.

5. The Virtual Boundary Method

Another way to generate a planar embedding with a
free boundary is using a technique inspired by the virtual
boundary technique of Lee [11]. Since now we operate
purely in 2D, there is more information to build on. The
following technique is proposed:

1. k<2

2. Solve the free boundary equations using weights
derived from the 3D geometry and fixing £ bound-
ary points to a convex polygon.

3. If the resulting embedding E is planar — stop and

output E.

4. If B - the boundary of £ - is not simple: k < k+1,
goto 2

5. Construct a virtual boundary B’ that is the convex
hull of B

6. Triangulate the simple polygon holes between B
and B’ and add the new faces to £, yielding an ex-
tended embedding £’

7. Solve the mean-value equations with boundary B’
with weights derived from the 2D geometry of £ .

By Tutte's theorem, the resulting embedding is guar-
anteed to be planar. Furthermore, because the mean-value
equations are 2D reproducing, the geometry of the result
will probably not be too different from the non-planar
geometry of E, if it was such. Also note that if the input to
this procedure is developable, it will be reproduced.

Figure 6 shows the results of applying the virtual
boundary process to some of the non-planar embeddings
of Figure 4.
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Figure 5: The iterative method: (a), (d) input (taken from Figure 4 (a) and (b)). (b),(e) and (c),(f) zoom into

the fixed and non-planar regions.

6. Texture Mapping with Hard Constraints

One possible application that can benefit from the pla-
nar embedding techniques presented above is texture
mapping with hard constraints. In texture mapping an
image is wrapped on a mesh surface in order to give it a
realistic look (e.g. a picture of a face mapped to a 3D
mesh of a human head). However, in many cases it is im-
portant to register the image and the 3D mesh in order to
generate a realistic result. For example, in a 3D face
mesh, it is important to register the eyes of the mesh and
the eyes in the image, and the same for the mouth, nose
and any other prominent features. Figure 8 shows some
examples of these registrations (also known as correspon-
dences) taken from Kraevoy et al. [11].

The constrained texture mapping problem can be con-
sidered as a planar embedding of the 3D mesh while con-
straining some of the vertices to lie in a specified position
in the texture coordinate plane. However, depending on
the given correspondence, it is sometimes impossible to
satisfy all of them and still provide a planar embedding.
Eckstein et al. [2] and the Matchmaker method of
Kraevoy et al. [11] added Steiner vertices to the mesh in
order to increase the degrees of freedom of the problem
and to enable it to satisfy all the constraints. In addition,

Matchmaker requires that the ABF method first be run to
generate a simple free boundary. This is a major disad-
vantage of that method.

Although Steiner vertices can be crucial for the em-
bedding, they sometimes can be avoided. The following
method uses one of the free-boundary embedding meth-
ods describes above to initially embed the mesh into the
plane. Although only two vertices must be fixed in order
to get an embedding, the entire set of correspondences can
be fixed as well, by eliminating their harmonic equations
or by using a hard-constrained least-squares solution. Fix-
ing the constrained points means that the embedding satis-
fies them. If the resulting embedding is planar — the mis-
sion is accomplished. However, in most cases the embed-
ding will not be planar and the iterative solution described
above can be used to fix it. The drawback is that if the
initial embedding is not planar, its boundary must be a
simple polygon or at least have turning number of 2w in
order to apply the iterative method. By using a least-
squares system it is possible to weight the different con-
straints according to their importance. Figure 9 shows the
results of embedding the mesh of Figure 8 with its corre-
spondences. Although the initial embedding with the con-
straints was not planar, the iterative method managed to
correct this within a few iterations.
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Figure 6: The virtual boundary method: (a) input (taken from Figure 4b), (b) the convex hull (red) and the holes
(green), (c) holes triangulation, (d) the result, (¢) zoom in on “flipped” faces in the non-planar input, (f) zoom in on

same faces in the planar output.

7. Discussion and Conclusion

This paper has shown how to fix some of the short-
comings in the linear methods for free-boundary parame-
terization based on the method of barycentric coordinates.
It has also shown how to incorporate constraints into the
parameterization.

Our iterative method bears some resemblance to the
method of Belyaev et al. [18] for minimizing parametric
stretch distortion, in the sense that they modify barycen-
tric weights between iterations in order to achieve less
distortion. Our method, however, concentrates on achiev-
ing the planarity effect.

Some questions still remain open. First and foremost,
we would like to formulate precise conditions for the
convergence of the iterative procedure. This would allow
us to determine in advance whether it is possible to apply
the method. It is also not clear how to prevent a non-
simple boundary from developing during the iteration
without significantly constraining it to some specific
shape.
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Appendix

Lemma 1: Let vy, ...v, be a set of points in the plane. As-
sume WLOG that v, and v, are consecutive on the convex
hull C=CH(vy, ...,v,). Consider the point u-d, where u is
arbitrary and d is the "offset" vector d=a(v,-u)+b(v,-u)
for some a@,b>0 such that the triangles 7(vy,u,v,) and
T(v1,u-d,v;) have the same orientation. If u-de C then also
uecC.

Proof: Assume u-deC. Since v, and v, are consecutive on
C then:

(A1) u-de T(vi,v2,v3),

where v; is some point on C other than the segment be-
tween v, and v,.

Assume that ug T(vi,v,,v3). This means u is equal to
some affine combination of vi,1,,v; with unique weights
wi,Wy,w3 summing to unity, where at least one is negative:
u=wvi+w,ov,+wsvs. wy cannot be negative, because then
the orientation of 7(vi,u,v,) would differ from that of

boundary

True barycenter
u-d

Figure 7: The scenario for a boundary vertex satis-
fying the mean-value equations: The vertex is offset
from the barycenter of its neighbors in a direction
which is within the wedge formed by that vertex and
its two neighbors.

T(vy,u-d,v,). So at least one of wy, w, is negative. Assume
WLOG that w;<0. Now:

u-d = wivitwovtwivs-a(vi-u)-b(v,-u) =
(wi-a+aw+bw)vi+(wy-b+aw,+bwy)va+ wi(1+a+b)vs.
It is easy to see that the coefficient of v, is negative,
meaning u-d¢ T(vy,v,,v3), in contradiction to (Al). O

We are now ready to state our main theorem:

Theorem 1: Let G be a planar 3-connected triangular
graph. An embedding of G with boundary having turning
number 27 is planar if and only if the embedding satisfies
the mean value equations (2) and (3) associated with it.

Proof: A. (only if) If the embedding is planar, then each
triangle in the embedding satisfies the mean-value trian-
gle equality (1) associated with that triangle. Since the
associated mean-value equations (2) and (3) are derived
by summing the triangle equalities around each vertex,
obviously the embedding still satisfies them.

B. (if) If the geometry of the embedding satisfies the as-
sociated mean-value equations, this means that each inte-
rior vertex is a convex combination of its neighbors. Ad-
ditionally, each boundary vertex u is either convex or re-
flex. If u is reflex, then examining the mean-value equa-
tion for the "missing" triangle shows that u is offset from
the barycenter of its neighbors u-d by a vector d which
coincides with the bisector of the exterior angle it forms



with its two neighbors v, and v,. See Figure 7. Thus the
scenario of Lemma 1 holds. Now since u-d is in the con-
vex hull of the neighbors of #, Lemma 1 implies that u is
also in this convex hull. Gortler et al. [7] have shown that
a straight-line embedding of a 3-connected triangular
graph with a boundary having a turning number 2w, such
that each interior vertex is in the convex hull of its
neighbors and each reflex boundary vertex is also in the
convex hull of its neighbors, is planar. As we have just
proved that satisfying the mean-value equations guaran-
tees that every reflex vertex of the boundary is contained
in the convex hull of its neighbors, the theorem of Gortler

@ (b)

et al is applicable and the embedding will be planar. o

Theorem 1 allows us to show that the limit of the iter-

ated mean-value process, if it exists, must be a planar em-
bedding.

Theorem 2: If the iterated mean-value process applied to
a 3-connected manifold triangle mesh converges to an
embedding with boundary having turning number 27, then
this embedding is planar.

Proof: Apply direction B of Theorem 1 to the limit em-
bedding. o

Figure 8: (a) A 3D model of a face together with several correspondence points. (b) A texture image with the
same correspondence points. (¢) Constrained texture mapping by MatchMaker [11].
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Figure 9: (a,c) Constrained parameterization using free-boundary weighted least-squares. The magenta points
were fixed using large weights while the cyan points were fixed using medium weights. Both are planar embed-
dings (containing no flips). (b,d) The resulting constrained texture mapping.



