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Abstract

We present a generic framework for realtime rendering

of 3D surfaces. We use the common elevation map prim-

itive, by which a given surface is decomposed into a set

of patches. Each patch is parameterized as an elevation

map over a planar domain and resampled on a regular grid.

While current hardware accelerated rendering approaches

require conversion of this representation back into a trian-

gle mesh or point set, we propose to render the elevation

maps directly in a hardware accelerated environment. We

use one base data set to render each patch in the common

vertex and fragment shader pipeline. We implement mesh-

or point-based rendering by using a base mesh or a base

point set respectively. This provides the basis for the under-

lying primitive for the final rendering. We show the bene-

fits of this method for splat rendering by replacing attribute

blending through a simplified and fast attribute interpola-

tion. This results in rendering acceleration as well as an

improvement in visual quality when compared to previous

approaches.

1 Introduction

Today’s 3D acquisition devices, in particular laser scan-

ning systems, are capable of producing complex high qual-

ity representations of real world objects in a relatively short

time [18]. The resulting rapid increase in accessible 3D

content requires displaying the data that consist of a large

number of primitives at interactive rates. The most com-

mon approach, which is efficiently implemented in graph-

ics hardware and therefore used in many applications, is the

rendering with polygons, e.g., triangle meshes. However,

mesh rendering suffers from fixed topological relationships

between vertices. The construction of this connectivity and

its efficient representation is a non-trivial problem, such as

triangulation [10] and stripification [31, 21] of 3D data sets.

Point-based rendering was invented by Levoy and Witted

[19] and extended by Grossman and Dally [12]. The point

primitive does not rely on connectivity information and is

therefore suitable for applications, such as dynamic shape

modelling [25]. Also with regard to efficient rendering,

points have shown to be a suitable primitive in hardware ac-

celerated environments [27, 5]. However, current splatting

implementations on graphics hardware require several ren-

dering passes for blending attributes of overlapping splats.

The blending itself tends to produce blurring artifacts that

are visible at a closeup range.

We consider hardware-based rendering of 3D geometry

using the height-field representation [23]. As denoted in

figure 1, a given surface is decomposed into a number of

patches, each of which is resampled as an elevation map

over a compactly supported planar domain, and hence it

can be held as a 2D texture. In [23] it has been shown that

this representation can be used for high-performance com-

Figure 1. Patches on the Shakyamuni statue with
1.6 million points (left) can be rendered with splats

(top) and triangles (bottom). Our high-quality splat

renderer achieves 12 fps.

http://nbn-resolving.de/urn:nbn:de:bsz:352-229971


pression of point-sampled geometry. Thus, it enables us to

archive a large number of 3D models at low memory usage.

In this paper we focus on benefits of the elevation map

representation for hardware-accelerated rendering. We con-

sider the scenario that 3D models are available in com-

pressed form, e.g., in a digital library by using the approach

in [23]. In their model representation, each patch consists

of an elevation map and parameterization parameters. The

parameters consist of a reference point in 3D space and a

normal vector that define a base plane, yielding a generic

surface parameterization.

To render this data, the straight forward approach is to

decode the model into main memory and to render the data

as a simple list of primitives with common methods [5].

However, drawbacks of this method are that neighbor infor-

mation is lost. Moreover, the decoded model has a higher

memory usage than is required for our elevation maps, since

point positions are in the (x, y, z) representation.

We propose to render the elevation maps directly. More

specifically, the graphics card holds a base data set, e.g., a

regularly structured triangle mesh or point set. In order to

render a patch, its elevation map is applied to the base data

set, which is then transformed according to plane parame-

ters. Our approach has the following advantages:

• Efficient geometry representation: Images resulting

from resampling can efficiently be held in graphics

hardware, e.g., using textures. The rendering is im-

plemented by using a base data set that is similar for

all patches in the model. This results in less memory

usage than is required for holding the model in its orig-

inal form.

• Rendering of triangles and splats: Rendering mod-

els with our representation allows us to easily switch

between triangle- and splat-based rendering. From the

regular structure of the elevation maps we directly de-

rive a triangulation as well as a stripified representation

of a patch in linear time. We also realize splat ren-

dering by displaying the base data set as points with

associated normals and radii.

• Efficient attribute interpolation: We propose an in-

terpolation scheme that removes blurring artifacts of

state-of-the-art splat renderers that results in an im-

provement of the overall visual quality. We achieve

this by exploiting neighbor information in the regu-

larly resampled model. This interpolation is efficiently

implemented in the fragment shader using fast tex-

ture lookups. This procedure allow us to replace time-

consuming multi-pass rendering by fast one-pass ren-

dering.

The remaining part of this paper is organized as follows.

In the next section we review related work in the field of

patch-based model representation and hardware-accelerated

rendering of complex 3D geometry, focusing on splatting

techniques for point-rendering. In section 3 we introduce

our rendering pipeline including construction of elevation

map data for given point- and mesh-based 3D models. After

discussing experimental results in section 4, we conclude

our work and outline future work.

2 Related Work

2.1 Hardware Rendering

Since rendering of complex 3D meshes is already ef-

ficiently implemented on today’s GPUs, we focus on re-

cent advances in splat-based hardware rendering of point-

sampled geometry.

Point-rendering was introduced by Levoy and Whitted

[19] and improved by Grossman and Dally [12]. Pfister et

al. [26, 32] propose to use points with normals and radii

that define discs (surfels) that locally approximate a given

surface. Alexa et al. [3] render a model by constructing a

moving least squares surface for a given set of points. The

surface is represented by a set of projections onto the sur-

face, and hence, an arbitrary number of points can be used

to render the model. This approach has been extended for

ray tracing in [1].

QSplat was invented [28] to cope with dense data sets,

e.g., with several million points. Here the point set is hi-

erarchically partitioned into a set of bounding spheres that

are used for dynamic level of detail rendering. The prob-

lem of rendering such large models is also discussed in [8]

where an octree is constructed for a given densely sampled

data set. This hierarchical data structure is used for efficient

storage and fast rendering. However, current graphics hard-

ware is not designed to implement these advanced rendering

pipelines.

Krüger et al. [16] propose to represent and render

densely sampled point models through a set of runs, in

which positions of neighboring points are encoded using a

chain coding like method. They use space filling twelve

sided polyhedrons which results in advantageous relation-

ships between neighboring cells.

Hardware acceleration capabilities for rendering of

points with current graphics cards has been studied in [27].

During the past three years, an improvement to methodical

and performance aspects was introduced by Botsch et al.

[6, 7, 33, 5]. A main contribution of their work was to use

hardware accelerated and screen aligned point sprites. The

point sprites are projected onto the surface and cut by dis-

carding fragments in order to simulate circular or elliptical

splats. The pipeline is implemented in at least two consec-

utive rendering passes. In the first pass, the model is ren-

dered into the depth buffer in order to avoid incorrect over-



lapping splats. The second pass is required to accumulate

attributes, such as color or normal vector, for smooth blend-

ing between overlapping splats. The attribute values of each

fragment are weighted according to the distance of the frag-

ment to the splat center using a Gaussian function. In the

final fast normalization pass, the attribute values for each

fragment are divided by the sum of weights of contributions

from overlapping splats. This framework can be extended

with the approach in [30], in which distances of fragments

to their splat centers are mapped to the depth buffer. The

resulting splats appear as screen aligned Voronoi regions.

Although splatting can be implemented on graphics

hardware, it has some drawbacks, such as blurring artifacts

at a closeup view. This is caused by blending through Gaus-

sian filtering in regions where splats overlap. Overlapping

splats are also a problem with respect to rendering speed.

Intense overlapping results in undesirable overdraw, mean-

ing that significantly more fragments are produced than are

finally displayed. Another limitation is that splat blending

in current GPU-based implementations relies on multiple

rendering passes for blending of overlapping splats. This

leads to loss in rendering speed, and moreover, it is more

difficult to integrate multipass approaches into hybrid ren-

dering systems, e.g., models are rendered using different

primitives, such as splats together with triangles.

2.2 Patch-based Representation

Representing 3D geometry through a set of parameter-

ized patches has been successfully developed during recent

years in the computer graphics. Given a mesh, Lee et al.

[17] consider a displaced subdivision surface by construct-

ing a smoothed control mesh, which is displaced by scalar

valued maps. Gu et al. [13] proposed geometry images:

complete surface is parameterized on a planar domain and

resampled on a regular grid, providing one image that rep-

resents the surface. They extend their method to multichart

geometry images [29] in order to achieve a better approxi-

mation of the original model. However, this method uses a

more complex parameterization than just displacing geom-

etry orthogonal to a base domain, and thus, is less suitable

for a real time rendering application.

Another approach for representing geometry with height

fields is given by spatial patches [14] . However, their

method tends to end up with a number of patches about

two to three magnitudes higher than the one we propose to

use. For example, the bunny model is represented by 1526

patches, while we only need 30 patches applying our con-

struction method. It is essential to represent the model with

a small number of patches, since the rendering of each patch

requires a number of API calls to the graphics driver.

Height fields have also been used for processing point-

sampled geometry using spectral methods. Pauly and Gross

[24] decompose a point model into a set of patches that are

resampled to rectangular images. These images are ana-

lyzed and modified in the frequency domain using discrete

Fourier transform for geometry filtering. In [23], this ap-

proach has been used for the application of compression.

The difference to [24] is that patches are not resampled to

rectangular images, but rather have irregular shapes. The re-

sampling technique is also optimized in the sense that points

are resampled on the MLS surface of the original model.

Except for the work of Ivanov and Kuzmin [14], all these

approaches only discuss applications of a patch representa-

tion, such as modelling, compression and shape analysis,

rather than addressing rendering. In our work, we focus

on the problem of fast rendering of these data on the GPU

under the constraint to keep the data in a compact repre-

sentation. We furthermore discuss the generality of the el-

evation maps rendering approach with regards to using dif-

ferent primitives such as triangles and points. Furthermore,

we focus on the advantages of exploiting the regular struc-

ture of the elevation maps for attribute interpolation for splat

rendering.

3 Pipeline

Our proposed renderer is capable of displaying mesh- as

well as splat-based surfaces. Our input data consists of a

set of planes in 3D space that are expressed by a reference

point r in R
3 and a normal vector n. For each plane we have

a height map that gives the signed distance of each point to

its plane in 3D space. Moreover, the elevation maps have

irregular shapes, thus, the planes have compact supports.

For completeness, we will revisit the scheme of patch

construction as described in [23]. Please note that this

method relies on point-based input data. In the next section

we show that this approach can be extended to mesh-based

surfaces in a straight forward fashion.

3.1 Patch Construction and Resampling

We consider a given 3D model as set of points M ⊂ R
3,

e.g., points that have been acquired by a laser range scanner

and approximate the real surface. For this set we associate

a continuous surface S = S(M) ⊂ R
3, which we need

to evaluate geometry normal vectors for the input model.

For point-based models we define S by the Moving-Least-

Squares surface (MLS) [3, 2] for which the surface normal

can be evaluated for any point on S. For mesh models we

define S to be the set of piecewise linear interpolation sur-

faces that are defined by the triangles. Please note that the

resulting surface may not be differentiable on the positions

of the input points (vertices). For these points we therefore

define a surface normal by averaging the normals from in-

cident triangles.



Figure 2. Construction of elevation maps for a given surface patch P (left); original samples are projected

onto the base plane, defining the support of the elevation maps (left middle); the support is resampled
on a regular grid, providing new samples which are elevated in order to produce points on the original

surface P . The resulting surface P̂ is an approximation of the original one (middle right); the resulting

elevation map is a shaped 2D image (right).

We now define a surface patch P as subset of S. Given

P , we consider

n̂(P) = arg min
n∈R3

max
x∈P

‖nP(x) − n‖,

whereas nP(x) is the surface normal of P in x, ‖nP(x)‖ =
1. The vector n(P) = n̂(P)/‖n̂(P)‖ gives the axis of the

normal cone, when considering the normals in P . For com-

putation of n(P) we use miniballs [11], while we evaluate

the surface normals at a number of points in the patch.

Given n(P) we compute the cone aperture A(P) :=
minx∈P

(

1 − 1

2
‖nP(x) − n(P)‖2

)

. A condition thatP can

be parameterized as height field is A(P) ≥ cosφ, φ = 90◦.

In practice, we choose an angle of φ < 90◦ in order to

bound the variance of surface normal vectors in the patch.

As in [23, 24], our patch layout is constructed in a split-

merge fashion. We start by letting U := {S}. For any

P ∈ U we evaluate A(P) and replace P in U by two new

patches P0 and P1 with P0 ∪ P1 = P , and P0 ∩ P1 = ∅.

To obtain P0 and P1, we split up P , if A(P) < cosφ.

The splitting is performed using principal component anal-

ysis (PCA), whereby P is split through its center and across

its major principal axis, which is computed by solving the

Eigensystem of the covariance matrix of P and selecting the

Eigenvector with the largest absolute Eigenvalue.

After splitting, we have a set of patches {Pi}, each of

which fulfills the normal cone condition. In a second phase

we reduce the number of patches by iteratively merging

pairs, which lead to the least increase in normal approxi-

mation error E(P):

E(P) =

∫

x∈P

‖nP(x) − n(P)‖2dx.

For fast patch merging, we use a priority queue that holds

merge pair candidates of adjacent patches with respect to

their error increases. We merge the candidate (Pi,Pj) with

the least increase in error as long as A(Pi ∪ Pj) < cosφ.

For each patch Pi, we have a reference plane that is

given by the axis vector ni of the normal cone and a ref-

erence point ri. We choose ri such that the signed distance

between the original point p ∈ Pi to its projection onto

the plane is positive: 〈ri − p, ni〉 < 0. Having the ref-

erence plane, we construct a regularly sampled version of

Pi, namely P̂i, by placing sample positions on the plane on

a regular grid with a defined resolution. The resolution is

chosen such that the number of samples in P̂i is approxi-

mately the same as the number of points in Pi. If the orig-

inal surface S is defined by a mesh, we linearly interpolate

the elevation values of points in P̂i from elevation values in

Pi. In the case that S represents a MLS surface, we use the

iterative method in [23] in order to find the elevation values

for the samples in P̂i. The process of parameterization and

resampling is summarized in figure 2.

Using the resampling procedure, we also implement an

elevation map test, since the normal cone condition is a nec-

essary, however, not a sufficient condition for the underly-

ing surface to be an elevation map. During resampling, we

compare the elevation values of each sample to elevation

values in the 8-neighborhood. When the resulting variation

is larger than a given threshold, we declare the patch not to

be an elevation map over a planar domain. Using PCA, we

split up all patches that do not fulfill the resampling eleva-

tion variation test.

After partitioning and resampling we have a set of

patches P̂i that give an approximation Ŝ of S. Each patch

P̂i consists of the following components:

• Plane parameters: These are three values (ri, ni, si)
that denote the position and the orientation of the ref-

erence plane in 3D space and the sampling step length

respectively.

• Elevation map: These are the elevation values for

each sample on the reference plane with compact sup-

port. For points that do not belong the map we set the

elevation value to be zero.

Besides the elevation maps, we have additional attribute

maps, e.g., normal maps which store the surface normal for

each sample.



Figure 3. Overview of our rendering pipeline; Elevation maps are encoded using vertex buffer objects
and are passed to the vertex and fragment shader unit of the GPU; we implement either mesh-based or

point-based rendering by using a mesh or points as base data set respectively.

3.2 Representation on the GPU

Both, elevation maps and side information, can effi-

ciently be stored in the GPU memory. Figure 3 shows an

overview of our rendering pipeline. Due to regular sam-

pling, point positions on the plane can directly be repre-

sented by an integral number, namely the row and column of

the respective point on the grid. For hardware-accelerated

rendering of the resampled model Ŝ we apply the stan-

dard vertex and fragment shader pipeline to a base data set,

which consists of a regularly distribution of rendering prim-

itives, e.g., triangles or points. To render a patch, the vertex

shader identifies and elevates the individual samples in the

base data set according to the elevation map. In order to

move the samples to their position in 3D space, a single

matrix multiplication is applied. Considering the fact that

our maps have arbitrary shapes, we need to remove ver-

tices in the base data set when rendering a patch. Since

current vertex shaders do not allow removing vertices, this

is performed in the fragment shader, where fragments can

be discarded. However, this straight forward approach has

the disadvantage that the vertex unit produces an overhead

of geometry that leads to performance loss. With our maps

this waste may grow up to about 80% of the entire model.

We therefore propose to store a list of addresses of map

supported samples in the elevation map of each patch by us-

ing vertex buffer objects. For each patch we have two com-

ponents. Firstly, the elevation map that holds the geometric

information, and secondly, the index map that defines the

support of the elevation map as well as topological infor-

mation for mesh rendering. We postpone the description

of the index map to the next two subsections in which we

discuss mesh and point rendering in more detail.

For both rendering primitives, we use the same type of

maps that hold elevation and attributes, such as the nor-

mal vector for each sample in Ŝ . For efficient storage we

quantize elevation values to 16 bits, which is sufficient even

for models with complex geometry [9]. The normal vectors

are expressed in polar coordinates, which are also quantized

with 16 bits each. In experiments we found that quantiza-

tion to this level leads to rendering without noticeable ar-

tifacts. For each sample we have a total bit budget of 48

bits that are stored using three short integral numbers. In

comparison to rendering the original model S, we have a

slight overall memory savings compared to the common ap-

proach, although if similar quantization of coordinates and

normals is used.

3.3 Mesh Rendering

To render the complete model, we implement mesh ren-

dering by using a single mesh as the base data set. This

means that only the base set needs to be triangulated, see

figure 3, which can be performed in linear time.

However, rendering the base mesh for each patch leads to

problems on the patch boundaries. Since our patches have

irregular shapes, the removal of vertices would be neces-

sary. We emphasize that this leads to problems, since ver-

tices on the boundary are connected to vertices outside of

the patch. To overcome this problem we store a triangula-

tion for each patch individually using triangle strips that can

sphere patch parameterized triangle strip

mesh on resampled mesh

Figure 4. A given patch in mesh representation

(left) is parameterized on a plane (middle) and re-
sampled on a grid (right). The resulting triangula-

tion is represented through triangle strips.



(a) (b) (c) (d) (e)

Figure 5. Patch gaps occur when approximating the original model (a) by a resampled mesh with patches
(b); To close the gaps we propose two methods, firstly, we let patches slightly overlap (c); secondly, we

develop a method that fills the gaps with triangles (d); the resulting rendering provides similarly good
visual results for both methods (e).

directly be derived from the base triangulation and the sup-

port of the elevation map. These strips are constructed in

linear time by traversing the triangles with map supported

vertices row by row (see figure 4). The stripification re-

duces the total memory usage, since vertex indices are re-

dundantly stored when holding the data as triangle soup.

The advantage of this stripification method is its simplic-

ity of computation. As will be shown in the results section,

the combination of vertex position encoding (see subsection

3.2) and stripification reduces to total memory usage of the

original model down to about 70%.

For each patch we set up two vertex buffer objects. The

first one holds the addresses and quantized normal vectors

of the supported vertices as described in the last subsection.

The second VBO is the index buffer that holds the stripified

triangle mesh of the patch.

A basic problem of rendering the patches with a base

mesh is the occurrence of patch gaps due to lack of connec-

tivity information between patches (figure 5b). In the past,

several methods have been proposed that deal with closing

such gaps, e.g., the zippering method in [29], and the gap

filling approach in [4]. The main idea of the first method

is to partition the gaps into cut paths that are used to zipper

opposing boundary parts in consecutive unification steps.

The second approach [4] considers orthogonal projections

of border vertices onto opposing edges. For time-efficient

processing a priority-queue is maintained that holds candi-

dates for consecutive merging steps. Both methods produce

high-quality gap closings, but they rely on changing posi-

tions of vertices on the border of the patches. In our setting

we want to keep the vertices fixed and find a pure retrian-

gulation of the gaps. To achieve this we propose a new gap

filling method that is inspired by [4] and works as follows.

For each patch P̂i in the resampled surface Ŝ we consider

the boundary ∂P̂i which is the set of points on edges that

share only one triangle in the triangulation of P̂i and also the

boundary vertices that are incident to these edges. Our goal

is to connect vertices on the border of each patch with edges

on another patch. This provides new triangles that connect

the patches. For this purpose we consider projections of

boundary vertices v ∈ ∂P̂i onto ∂P̂j , i 6= j. More precisely,

for each P̂i and border vertex v ∈ ∂P̂i we compute

pj(v) := arg min
p∈∂P̂j

‖p − v‖. (1)

Since pj(v) is a point on the boundary ∂P̂j , this point will

either be on a boundary edge or a boundary vertex. In the

first case we consider the pair v1, v2 ∈ ∂P̂j of incident

vertices to this edge. In the second case we choose one in-

cident edge to the vertex pj(v) and also consider the pair of

incident vertices v1 and v2. We now form and insert a new

triangle between the three vertices v, v1 and v2, see figure 6.

In a consecutive step we update the border information for

edges and vertices that have been affected by this insertion

step as follows:

Figure 6. Triangle insertion in our gap filling

method; upper left: projection of border vertex v
onto an opposing edge (v1, v2); lower right: trian-
gles are inserted as long as they do not intersect

with an existing part of the surface.



(a) (b) (c)

Figure 7. Our attribute interpolation method; (a) Splats on the resampled surface Ŝ with associated nor-
mal vectors. The dotted line indicates smoothly interpolated normal vectors that we aim to achieve; (b)

Projection of fragment positions onto the base plane for computation of interpolation weights leads to

discontinuities; (c) We intersect the viewing ray with a plane through the samples in the neighborhood to
achieve a continuous attribute interpolation.

• The edge (v1, v2) becomes an inner edge, since it

shares two triangles.

• We have two new border edges, namely (v, v1) and

(v, v2), if there is no previously inserted triangle with

an edge (v, v1) or (v, v2) respectively.

• The vertex v is no longer a border vertex, but an inner

vertex, once all edges incident to v have become inner

edges.

When inserting a new triangle (v, v1, v2), we check for in-

tersections with triangles incident to v, v1 and v2 to cir-

cumvent the occurrence of overlapping triangles. This is

mandatory, since in (1) there is no topological condition that

prevents the triangle (v, v1, v2) to intersect with an existing

part of the surface.

Additionally to the gap filling method that produces wa-

tertight models (figure 5d), we propose a second approach

in which we do not connect the patches. For high-quality

rendering only, we assert that it is rather sufficient to al-

low slightly overlapping patches so that the gaps disappear

(figure 5c). We implement this overlapping by growing the

patches beyond their borders with triangles that are not far-

ther apart than a certain distance to the boundary of the orig-

inal patch. Although, this is a rather simple approach, it

results in high visual quality (figure 5e).

Results for our two gap closing methods are shown in

figure 5. Figure 5a shows the original Venus model and a

rendering of the resampled model with patch gaps. Figure

5b shows overlapping patches and the final rendering of the

reconstructed model. Figure 5c demonstrates the construc-

tion of new triangles in our gap filling method. Triangles

are iteratively inserted by projecting border vertices onto

opposing edges and by forming triangles that do not overlap

with an existing part of the surface. The resulting closeup

view of a region with gaps and the resulting rendering is

shown in 5d.

3.4 Splat Rendering with Attribute Inter-
polation

Splat rendering as a variant of point rendering is gaining

more and more interest, since it can be implemented in a

hardware accelerated environment and points do not rely on

topological constraints. In our scenario, we implement a

splat renderer by using a base point set. The vertex buffers

hold an elevation value, a normal vector, and a splat radius

for each point. The index buffer holds a list of addresses for

points in the support of the elevation map.

The resulting splat model can be rendered in a vertex and

fragment shader pipeline as proposed in [6]. This method

has proven to provide a good tradeoff between splatting

quality and rendering speed using a two pass rendering

approach. In the first pass, splats are rendered into the

depth buffer in order to enable blending only for splats that

slightly differ in depth value. In the second pass, weighted

contributions of overlapping fragments are accumulated by

alpha blending. The weighted sums are normalized in a fi-

nal normalization rendering pass.

In our framework, the points are regularly sampled on

the base plane of each patch. We propose to exploit this

information to implement a splat renderer that provides

smooth interpolation of attribute values without time con-

suming blending. Figure 7(top) shows an example of four

splats with associated normal vectors. Each fragment corre-

sponds to a specific position on a splat. For this position we

derive a normal vector that is an interpolation of the three

splat normal vectors in the neighborhood. In the following,

we denote points in Ŝ by p, and their projection onto the

respective base plane by p̄. Given a fragment f with posi-

tion pf in world space, we project back pf onto the base

plane, yielding a point p̄f on the plane. We identify the

three samples (p̄1, p̄2, p̄3) in the patch that form a triangle t̄
that contains p̄f .



The straight forward interpolation approach is estab-

lished by interpolating attributes for fragment f using the

barycentric coordinates of point p̄f in triangle (p̄1, p̄2, p̄3).
We emphasize that this leads to discontinuities in the re-

sulting rendering, since splats do not produce continuous

surfaces. In the example in figure 7b, we show the scenario

of a fragment being produced by two possible splats. Using

this direct interpolation method leads to different interpola-

tion weights due to spatial gaps between splats (indicated

by the two red-dotted lines).

To achieve smooth interpolation, we propose to use both,

attribute information and elevation values from neighboring

points. This enables us to construct a plane h through the

three points p1, p2 and p3. We intersect the viewing ray

with the plane h, yielding a point q. We now use the projec-

tion of q onto the base plane to interpolate attribute values

for fragment f . Figure 7c shows that we achieve identi-

cal interpolation weights for the fragments intersecting the

viewing ray on both splats.

Projecting fragment positions onto the base plane may

cause a situation in which attributes cannot be interpo-

lated due to missing neighbor information, e.g., at the patch

boundaries. In these cases we discard the respective frag-

ments in the fragment stage which prevents visual artifacts.

To ensure hole free rendering, we let patches slightly over-

lap during construction, as required for rendering with a

base mesh, see figure 5c.

We implement our interpolation scheme in the fragment

shader, where attribute values for fragments are needed for

lighting. For each fragment, we evaluate the attribute and

elevation values of points p1, p2 and p3 by using fast texture

lookups. The corresponding plane is evaluated by a small

number of cross product computations.

Since our attribute interpolation method replaces com-

monly used splat blending, it is no longer necessary to accu-

mulate contributions of overlapping splats. This means that

we reduce the rendering complexity by one rendering pass

which results in a significant acceleration of the entire splat

rendering pipeline. The interpolation also removes blur-

ring artifacts that are visible in the closeup view when using

standard splatting techniques. This provides the same supe-

rior visual quality as achieved with high resolution meshes.

The drawback of our method is a slightly increased

memory usage in comparison to traditional splat rendering.

Due to hardware limitations, per point elevation and normal

data has to be stored twice on the GPU: Firstly, as VBO for

the vertex shader, and secondly, as texture for the interpo-

lation in the fragment shader. We stress that this problem

can be fixed by using the textures also in the vertex shader.

However, vertex texture lookups on current GeForce archi-

tectures still limit the vertex rate to a peak throughput of 33

millions vertices per second. A corresponding implementa-

tion would lead to a significant loss in rendering speed.

4 Results

For our experiments, we use a 2.8GHz Intel Pentium4

CPU, 2 GB DDR-RAM and a GeForce 6800GT/AGP/SSE2

graphics card running Linux, using OpenGL2.0 API with

Nvidia driver version 76.76. Our shaders are implemented

using the Nvidia Cg shading language [20].

To compare our renderer to state-of-the-art methods, we

render the original models as triangle meshes and circu-

lar splats. The original meshes are rendered in two ways,

firstly, as a simple triangle list, and secondly, using triangle

strips that are computed in a preprocessing step by using the

NvTriStrip library [22]. For splat rendering of the original

models, we reimplemented the renderer in [6]. We consider

both variants, fast, but low-quality splat rendering without

blending, and slower, but high-quality rendering with blend-

ing.

Figure 9 shows renderings of the Dragon model using

the different rendering approaches. The three closeup views

show renderings of our representation in figure 9a. The

closeup view in figure 9b illustrates the results using a mesh

setup. Figures 9c and 9d use a point setup with attribute

blending and attribute interpolation respectively. Our splat

attribute interpolation method (figure 9d) provides visual re-

sults that are similar to the quality achieved through render-

ing our representation with the base mesh, figure 9b. In

the splat rendered image (figure 9c), there are visible blur-

ring artifacts. This is due to the fact that the Gaussian pixel

color blending does not lead to reconstruction of accurate

lighting. With our interpolation method, we achieve visual

results similar to the quality of mesh rendering.

Figures 10 and 11 compare the rendering performance

for models of various complexity for the different rendering

approaches discussed in this paper. Comparing the results

with respect to memory efficiency and rendering speed, we

note three major results:

1. Rendering the models with our representation in a

mesh setup yields better frame rates, and at the same

time, requires significantly less memory in comparison

to rendering the original model as a pure triangle list.

The NvTriStrip method [22] produces slightly better

triangle strips than our method and therefore achieves

a slight improvement in rendering speed.

2. With our interpolation method, we achieve higher

frame rates than by using the standard blending tech-

nique. Since our method is implemented using only

one rendering pass, we achieve a significant acceler-

ation in rendering speed compared to the commonly

used blending technique. For large models, e.g., the

Model of Imperia [15], our interpolation scheme pro-

vides frame rates that are slightly below the rates that

are achieved by plain splat rendering without blending.



Figure 8. Model of Imperia rendered using 3.6M

splats without interpolation at a screen resolution

of 1024×1024 with 9.6 fps. When splat sizes drop
down to few pixels and neither blending nor inter-

polation improves the visual quality.

3. At a comparable model complexity, mesh rendering

is still outperforming splat rendering with respect to

speed, since current graphics API and hardware has

been aggressively optimized for fast triangle render-

ing. In contrast, the splat rendering pipeline has to be

simulated through shader programs, which makes this

approach more time-consuming. However, rendering

very dense and complex data sets, e.g., the Model of

Imperia with about 3.6 million points (figure 8), re-

duces the advantages of mesh rendering. The cause is

that the size of the triangles drops down to a few pixels,

and the graphics card cannot profit from the hardware

encoded triangle rasterization. Generally speaking, the

rendering speed mainly depends on the throughput rate

of the fragment shader, and less on the vertex shader.

Figure 12 shows renderings of the David head. In the

closeup view we observe a better visual quality for our in-

terpolation method (right figure). The middle and the left

figure show splat rendering without blending, using our el-

evation maps and the original data set respectively.

Figure 13 shows that our interpolation method still

achieves satisfying visual quality, when reducing the den-

sity of the resampled model. We reduced the number of

splats from 1.6 million points in the full data set, figure 13b,

by factor ten.

5 Discussion and Future Work

We presented a framework for rendering of 3D surfaces

with elevation maps. We have shown that we can approxi-

mate a complex 3D model consisting of a large number of

primitives with a relatively small number of patches. We

profit from exploiting the regular structure of the underly-

ing base domains in the context of a fast and high-quality

attribute interpolation for splat rendering. This leads to an

improvement in both, visual quality and rendering speed.

A positive side effect of our elevation maps is that we

obtain fast mesh rendering using triangle strips that can

directly be derived from the regular structure. Simultane-

ously, the memory usage is lower in comparison to standard

stripification.

Another important advantage of our framework is that

we bring splat rendering in line with mesh rendering in two

ways. Firstly, since we do not need to blend overlapping

splats, we reduce the rendering complexity to only one ren-

dering pass. This makes our method suitable for hybrid

applications in which mesh and splat rendering primitives

are combined. Secondly, due to correct attribute interpo-

lation, we obtain consistent lighting for neighboring frag-

ments. With our rendering scheme, we are also able to

integrate common GPU shader algorithms that have orig-

inally been designed for triangle rendering in a splat-based

environment, e.g., Phong lighting, texture mapping, and

environment mapping. Using a similar rendering pipeline

for triangles and points, allows for choosing the applica-

tion specific best rendering primitive. For example, mesh

rendering can provide best results at a closeup view, while

points have shown to be superior in level-of-detail applica-

tions [28].

We can extend our approach of elevation maps to higher

order base domains. By fitting polynomials to the original

patches, we can replace the patch planes by patch polyno-

mials, which may be more suitable for approximating the

original surface.



(a) (b) (c) (d)

70.7 fps 15.8 fps 21.5 fps

Figure 9. Renderings of the Dragon with elevation maps; complete model with splats and interpolation
(a); closeup view for rendering with a base mesh (b); rendering with splats with blending (c); rendering

with splats and attribute interpolation (d).

model Balljoint David Head Dragon Sphere Shakyamuni Model of Imperia

our representation

# samples 138k 403k 442k 673k 1.6M 3.6M

# patches 19 383 303 39 208 769
our representation (mesh)

# triangles 267k 760k 833k 1.32M 3.24M 7.0M

memory usage 1.57M 4.58M 5.04M 7.73M 18.7M 41.6M

frames/s 173 75.6 71.4 53.2 19.9 9.8
our representation (splats)

memory usage (blended) 1.31M 3.84M 4.21M 6.42 15.6 34.8M

frames/s (blended) 31.9 15.6 15.1 16.4 8.0 4.7
memory usage (interpolated) 2.09M 6.14M 6.75M 10.3M 25.0M 55.7M

frames/s (interpolated) 36.2 19.2 20.3 23.9 11.4 8.9

Figure 10. The rendering performance of our elevation maps for various models at a screen resolution of

1024×1024.

model Balljoint David Head Dragon Sphere Shakyamuni Model of Imperia

original mesh

# vertices 137k 398k 437k 655k 1.6M 3.6M

# triangles 274k 794k 871k 1.3M 3.2M 7.2M

memory usage 2.90M 8.39M 9.23M 13.8M 35.7M 76.0M

frames/s 102 71.8 67.2 28.9 21.9 10.4
memory usage (stripified) 2.15M 6.25M 7.0M 9.6M 25.5M 56.1M

frames/s (stripified) 194 80.2 75.3 49.8 21.9 10.3
original splats

# splats 137k 398k 437k 655k 1.6M 3.6M

memory usage 1.83M 5.31M 5.8M 8.6M 22.7M 48.1M

frames/s (not blended) 74.7 30.6 32.1 31.3 15.3 8.4
frames/s (blended) 32.4 15.8 14.7 16.2 7.5 4.3

Figure 11. Rendering performance of the original models using the triangle and splat primitive. The

positions of the vertices/points, as well as normal vectors have been quantized 16 bits per value.



30.2 fps 29.6 fps 19.3 fps

Figure 12. Rendering of David Head with the original splat model without blending (left), with our rep-

resentation using splats also without blending (middle), and with our representation using interpolation

(right).

(b) (c)

(a) (d) (e)

Figure 13. Rendering of the Shakyamuni statue with our interpolation method (a); closeup views with dif-

ferent resolutions of the resampled model (b) and (d), and the final renderings with attribute interpolation
in (c) and (e), respectively.
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