
GPU Smoothing of Quad Meshes

T. Ni∗

University of Florida.

Y. Yeo†

University of Florida.

A. Myles‡

University of Florida.

V. Goel§

Advanced Micro Devices.

J. Peters¶

University of Florida.

ABSTRACT

We present a fast algorithm for converting quad meshes on the GPU
to smooth surfaces. Meshes with 12,000 input quads, of which 60%
have one or more non-4-valent vertices, are converted, evaluated
and rendered with 9× 9 resolution per quad at 50 frames per sec-
ond. The conversion reproduces bi-cubic splines wherever possible
and closely mimics the shape of the Catmull-Clark subdivision sur-
face by c-patches where a vertex has a valence different from 4.
The smooth surface is piecewise polynomial and has well-defined
normals everywhere. The evaluation avoids pixel dropout.

Keywords: subdivision, GPU, smooth surface, quadrilateral mesh

Index Terms: I.3.5 [Computer Graphics]: Computational Geom-
etry and Object Modeling—Curve, surface, solid, and object repre-
sentations; I.3.7 [Computer Graphics]: Three-Dimensional Graph-
ics and Realism—Animation

1 INTRODUCTION AND CONTRIBUTION

Due to the popularity of Catmull-Clark subdivision [3], quad-
meshes are common in modeling for animation. Quad meshes are
meshes consisting of quadrilateral facets without restriction on the
valence of the vertices. Any polyhedral mesh can be converted into
a quad mesh by one step of Catmull-Clark subdivision, but a good
designer creates meshes with the quad-restriction in mind so that
no global refinement is necessary.

For real-time applications such as gaming, interactive animation
and morphing, it is convenient to offload smoothing and rendering
to the GPU. In particular, when morphing is implemented on the
GPU, it is inefficient to send large data streams on a round trip to
the CPU and back. Smooth surfaces are needed, for example, as the
base for displacement mapping in the surface normal direction [8]
(Fig 1). Current and impending GPU configurations favor short ex-
plicit surface definitions as derived below over recursively defined
surfaces.

For GPU smoothing, we distinguish two types of quads: ordinary
and extraordinary. A quad is ordinary if all four vertices have 4
neighbors. Such a facet will be converted into a degree 3 by 3 patch
in tensor-product Bézier form by the standard B-spline to Bézier
conversion rules [4]. Therefore, any two adjacent patches derived
from ordinary quads will join C2. The interesting aspect of this
paper is the conversion of the extraordinary quads, i.e. quads having
at least one and possibly up to four vertices of valence n 6= 4. We
present a new algorithm for converting both types of quads on the
fly so that

1. every ordinary quad is converted into a bicubic patch in
tensor-product Bézier form, Figure 2, (b);

∗e-mail: tni@cise.ufl.edu
†e-mail:yyiguy@gmail.com
‡e-mail:marcianx@gmail.com
§e-mail:Vineet.Goel@amd.com
¶e-mail:jorg@cise.ufl.edu

Figure 1: GPU smoothed quad surfaces with displacement mapping.

2. every extraordinary quad is converted into a composite patch
(short c-patch) with cubic boundary and defined by 24 coef-
ficients, Figure 2, (c);

3. the surface is by default smooth everywhere (Lemma 1);

4. the shape follows that of Catmull-Clark subdivision;

5. conversion and evaluation can be mapped to the GPU to ren-
der at very high frame rates (at least an order of magnitude
faster than for example [2, 12] on current hardware).

(a) quad neighborhood (b) bicubic (c) c-patch

Figure 2: (a) A quad neighborhood defining a surface piece. (b) A
bicubic patch with 4× 4 control points. This patch is the output if the
quad is ordinary, and used to determine the shape of a c-patch (c) if
the quad is extraordinary. A c-patch is defined by 4×6 control points
displayed as • and can alternatively, for analysis, be represented as
four C1-connected triangular pieces of degree 4 with degree 3 outer
boundaries identical to the bicubic patch boundaries.

1.1 Some Alternative Mesh Smoothing Techniques on
the GPU

A number of techniques exist to smooth out quad meshes. Catmull-
Clark subdivision [3] is an accepted standard, but does not easily
port to the GPU. Evaluation using Stam’s approach [13] is too com-
plex for large meshes on the GPU. [2, 12, 1] require separated
quad meshes, i.e. quad meshes such that each quad has at most one
point with valence n 6= 4. To turn quad meshes into separated quad
meshes usually means applying at least one Catmull-Clark subdi-
vision step on the CPU and four-fold data transfer to the GPU. In

Figure 3: GPU smoothed quad surfaces: orange patches correspond
to ordinary quads, blue patches to extraordinary quads.

more detail, Shiue implements recursive Catmull-Clark subdivision
using several passes via the pixel shader, using textures for stor-
age and spiral-enumerated mesh fragments [12]. Bolz tabulates the
subdivision functions up to a given density and linearly combine
them in the GPU [1]. Bunnell provides code for adaptive refine-
ment. Even though this code was optimized for an earlier genera-
tion GPUs, this implementation adaptively renders the Frog (Figure
3) in real-time on current hardware [2] (See Section 5 for a compari-
son with our approach). The main difference between our and Bun-
nell’s implementation is that we decouple mesh conversion from
surface evaluation and therefore do not have the primitive explosion
before the second rendering pass. Moreover, we place conversion
early in the pipeline so that the pixel shader is freed for additional
tasks.

Two alternative smoothing strategies mimic Catmull-Clark sub-
division by generating a finite number of bicubic patches. Peters
generates NURBS output [11], that could be rendered, for example
by the GPU algorithm of [6]. But this has not been implemented to
our knowledge. The method of [10] generates one bicubic patch per
quad following the shape of Catmull-Clark surfaces. Since these
bicubic patches typically do not join smoothly, Loop and Schae-
fer compute two additional patches whose cross product approxi-
mates the normal of the bicubic patch. As pointed out in [14], this
trompe l’oeil represents a simple solution when true smoothness
is not needed. Comparing the number of operations in construction
and evaluation, the method of [10] should run at comparable speeds
to our GPU quad mesh smoothing (see also Section 6).

2 THE CONVERSION ALGORITHM

Here we give the algorithm for converting the quad mesh into coef-
fcients that define a smooth surface of low degree. Analysis of the
properties of this new surface type and the implementation of the
algorithm on the GPU follow in the next sections. Essentially, the
algorithm consists of computing new points near a vertex using Ta-
ble 1 and, for each extraordinary quad, additional points according
to Table 2 (see Figure 4). In Section 3, we will verify that these new

vertex neighborhood: Table 1 c-patch interior: Table 2

Figure 4: Vertex neighborhoods with coefficients vi and ei
j and c-

patch interiors with coefficients bi
211, bi

121, bi
112 .

points define a smooth surface and in Section 4, we show how the
two stages naturally map to the vertex shader and geometry shader
stage, respectively, of the current GPU pipeline.

p0

p1

p2

p3

p∗

p2n−2
p2n−1

f0

f1

fn−1

v
e0

e1

en−1

Figure 5: Smoothing the vertex neighborhood according to Table 1.
The center point p∗, its direct neighbors p2 j and diagonal neighbors
p2 j+1 form a vertex neighborhood.

f j := (4p∗ +2p2 j +2p2 j+2 + p2 j+1)/9
e j := (f j + f j−1 + p∗ + p2 j)/4

v := 1
n ∑

n−1
j=0 f j +2e j +(n−3)p∗

t j := v+ 1
nσn

∑
n−1
ℓ=0 cos

2π(j−ℓ)
n

eℓ, j = 0,1.

Table 1: Computing control points v, e, f and t, the projection
of e, at a vertex of valence n from the mesh points p j of a
vertex neighborhood; the subscripts are modulo 2n. By default,

σn :=
(

cn +5+
√

(cn +9)(cn +1)
)

/16, the subdominant eigenvalue of

Catmull-Clark subdivision.

In the first part, we focus on a vertex neighborhood. A vertex
neighborhood consists of a mesh point p∗ and mesh points pk,
k = 0, . . . ,2n− 1 of all quads surrounding p∗ (Figure 5). A ver-
tex v computed according to Table 1 is the limit point of Catmull-
Clark subdivision as explained, for example, in [7]. For n = 4,
this choice is the limit of bicubic subdivision, i.e. B-spline evalua-
tion. The rules for e j and f j are the standard rules for converting
a uniform bicubic tensor-product B-spline to its Bézier representa-
tion of degree 3 by 3 [4]. The points t j are a projection of e j into a
common tangent plane (see e.g. [5]). The default scale factor σn is
the subdominant eigenvalue of Catmull-Clark subdivision. We note
that for n = 4, e j+2 = 2v− e j and σ4 = 1/2 so that the projection
leaves the tangent control points invariant as t j = e j:

for n = 4, t j = v+
2

4
(e j −e j+2) = v+(e j −v) = e j. (1)

In the second stage, we focus on the quads. Combining informa-
tion from four vertex neighborhoods as shown in Figure 6, we can
populate a tensor-product patch g of degree 3 by 3 in Bézier form
[4]:

g(u,v) :=
3

∑
k=0

3

∑
ℓ=0

gkℓ

(
3

k

)

uk(1−u)3−k

(
3

ℓ

)

vℓ(1−v)3−ℓ.

The patch is defined by its 16 control points gkℓ. If the quad is
ordinary, the formulas of Table 1 make this patch the Bézier repre-
sentation of a bicubic spline in B-spline form. For example, in the
notation of Figure 6, (gk0)k=0,..3 = (v0,t0

0 ,t1
1 ,v1). If the quad is

extraordinary, we use the bicubic patch to outline the shape as we

v0

f 0

e0
0 ∼ t0

0

e0
1

v1

f 1 e1
0

t1
1 ∼ e1

1

u1
u2

if extraordinary

00 10 20 30

01 11 21 31

02 12 22 32

03 13 23 33

g

bi

bi+1bi−1

bi−2 = bi+2

400 310 220 130 040

301 211 121 031

202 112 022

103 013

004

Figure 6: Patch construction. On the left, the indices of the control
points of g are shown. Four vertex neighborhoods with vertices vi

each contribute one sector to assemble the 4× 4 coefficients of the
Bézier patch g, for example g00 = v0, g10 = e0

0, g11 = f 0, g30 = v1,
g31 = e1

0 (we use superscripts to indicate vertices; see also Figure 8).
On the right, the same four sectors are used to determine a c-patch
if the underlying quad is extraordinary. Note that only a subset of the

coefficients of the four triangular pieces bi is actually computed to

define the c-patch. The full set of coefficients displayed here is only
used to analyze the construction.

bi
211 := bi

310 + 1+c
i

4 (t i+1
1 − t i

0)+ 1−c
i+1

8 (t i
0 −vi)

+ 3
4(si+s

i+1)
(f i −ei

0)

bi
121 := bi

130 + 1+c
i+1

4 (t i
0 − t i+1

1)+ 1−c
i

8 (t i+1
1 −vi+1)

+ 3
4(si+s

i+1)
(f i+1 −ei+1

1)

bi
112 := g∗ +3(bi

211 +bi
121 −bi+1

121 −bi−1
211)/16

+(bi+1
211 +bi−1

121 −bi+2
211 −bi−2

121)/16

Table 2: Formulas for the 4× 3 interior control points that, together
with the vertex control points vi and the tangent control points t i

j ,

define a c-patch. See also Figures 8 and 9. Here c
i := cos 2π

ni
, s

i :=

sin 2π
ni

and superscripts are modulo 4. By default, g∗ := (∑3
i=0 vi +

3(ei
0 + ei

1)+9 f i)/64, the central point of the ordinary patch.

replace it by a c-patch (Figure 2, c). A c-patch has the right degrees
of freedom to cheaply and locally construct a smooth surface. We
introduce the c-patch in terms of a well-known Bézier form of a
polynomial piece bi of total degree 4 [4]:

bi(u1,u2) := ∑
k+ℓ+m=4
k,ℓ,m≥0

bi
kℓm

4!

k!ℓ!m!
uk

1uℓ
2(1−u1 −u2)

m. (2)

The c-patch is equivalent to the union of four bi, i = 0,1,2,3 of
total degree 4. But it is defined by only 4× 6 c-coefficients con-
structed in Tables 1 and 2:

vi,t i
0,t

i
1,b

i
211,b

i
121,b

i
112, i = 0,1,2,3.

These 24 c-coefficients imply the missing interior control points
of the representation (2) by C1 continuity between the triangular
pieces: for j = 0,1,2,3 and i = 0,1,2,3,

bi
3− j,0,1+ j = bi−1

0,3− j,1+ j := (bi
3− j,1, j +bi−1

1,3− j, j)/2; (3)

and the boundary control points bi
kℓ0 are implied by degree-raising

[4]:

bi
400 := vi, bi

310 := (vi +3t i
0)/4, bi

220 := (t i
0 + t i+1

1)/2,

bi
130 := (vi+1 +3t i+1

1)/4, bi
040 := vi+1. (4)

In particular, a tensor-product patch g and a c-patch have
identical boundary curves of degree 3 where they meet.

bi
112

bi
121

bi−1
112

bi−1
211

Figure 7: Dark lines cover
the control points involved in
the C2 constraints (5). The
points on dashed lines are
implied by averaging.

Basis functions corresponding to
the 24 c-coefficients of the c-
patch can be read off by setting
one c-coefficient to one and all
others to zero and then applying
(3) and (4) to obtain the repre-
sentation (2).

To derive the formulas for
bi

211 and its symmetric counter-

part bi
121 note that the formulas

must guarantee a smooth tran-
sition between bi and its neigh-
bor patch on an adjacent quad,
regardless whether the adjacent
quad is ordinary or extraordi-
nary. That is, the formulas are
derived to satisfy simultaneously
two types of smoothness constraints (see Section 3). By contrast,
bi

112 is not pinned down by continuity constraints. We could choose

each bi
112 arbitrarily without changing the formal smoothness of the

resulting surface. However, we opt for increased smoothness at the
center of the c-patch and additionally use the freedom to closely
mimic the shape of Catmull-Clark subdivision surfaces, as we did
earlier for vertices. First, we approximately satisfy four C2 con-
straints across the diagonal boundaries at the central point b004 by
enforcing






1 −1 0 0
0 1 −1 0
0 0 1 −1
−1 0 0 1












b0
112

b1
112

b2
112

b3
112







=
1

2







b0
211 −b1

121 −q

b1
211 −b2

121 −q

b2
211 −b3

121 −q

b3
211 −b0

121 −q







, (5)

where q := 1
4 ∑

3
i=0(b

i
211−bi

121). The perturbation by q is necessary,

since the coefficient matrix of the C2 constraints is rank deficient.
After perturbation, the system can be solved with the last equation
implied by the first three. We add the constraint that the average of

bi
112 matches g∗ := g(1

2 , 1
2), the center position of the bicubic patch.

Now, we can solve for the bi
112, i = 0,1,2,3 and obtain the formula

of Table 2.

3 SMOOTHNESS VERIFICATION

In this section we formally verify the following lemma. For the
purpose of the proof, we view the c-patch in its equivalent repre-
sentation (2) as four Bézier patches of total degree 4.

Lemma 1 Two adjacent polynomial pieces a and b defined by the
rules of Section 2 (Table 1, Table 2, (3), (4)) meet at least

(i) C2 if a and b correspond to two ordinary quads.

(ii) C1 if a and b are adjacent pieces of a c-patch;

(iii) C1 if a and b correspond to two quads, exactly one of which
is ordinary;

(iv) with tangent continuity if a and b correspond to two different
extraordinary quads.

Proof (i) If a and b are bicubic patches corresponding to ordinary
quads, they are part of a bicubic spline with uniform knots and
therefore meet C2. (ii) If a and b are adjacent pieces of a c-patch
then Equations (3) enforce C1 continuity.

For the remaining cases, let b be a triangular piece. Let u the pa-
rameter corresponding to the quad edge between b400 = v0, where

u = 0 and the valence is n0 and b040 = v1 where u = 1 and the va-
lence is n1 (see Figures 8 for (iii) and 9 for case (iv)). By construc-
tion, the common boundary b(u,0) = a(0,u) is a curve of degree

3 with Bézier control points (v0,t0
0 ,t1

1 ,v1) so that bicubic patches
on ordinary quads and triangular patches on extraordinary quads
match up exactly.

Denote by ∂1b the partial derivative of b along the common
boundary and by ∂2b the partial derivative in its other variable.
Since b(u,0) = a(0,u), we have ∂1b(u,0) = ∂2a(0,u). The par-
tial derivative in the other variable of a is ∂1a. We will verify that
the following conditions hold, that imply tangent continuity:

if one quad is ordinary (case (iii)),

∂1b(u,0) = 2∂2b(u,0)+∂1a(0,u); (6)

if both quads are extraordinary (case (iv)),
(
(1−u)λ0 +uλ1

)
∂1b(u,0) = ∂2b(u,0)+∂1a(0,u), (7)

where λ0 := 1+c
0, λ1 := 1−c

1, and c
i := cos(

2π

ni
).

Both equations, (6) and (7), equate vector-valued polynomials of
degree 3 since we write ∂1b(u,0) in degree-raised form. The equa-
tions hold, if and only if all Bézier coefficients are equal. Off hand,
this means checking four vector-valued equations for each of (6)
and (7). However, in both cases, the setup is symmetric with re-
spect to reversal of the direction in which the boundary b(u,0) is
traversed. That means, we need only check the first two equations
(6’) and (6”) of (6) and the first two equations (7’) and (7”) of (7).
We verify these equations by inserting the formulas of Tables 1 and
2.

b

a

e0
0

e0
1

v0

f 1f 0

b301 b031
v1e1

1

e1
0

Figure 8: C1 transition between a triangular patch b (top) and a bicu-
bic patch a (bottom).

To verify (6), the key observation is that n0 = n1 = 4 if one quad
is ordinary. Hence c

0 = c
1 = 0 and s

0 = s
1 = 1 (cf. Table 2) and

t i
j = ei

j. Therefore, for example (cf. Figure 8)

2∂2b(0,0) = 2 ·4(b301 −v0) = 8
3

4
(

e0
0 +e0

1

2
−v0)

= 3(e0
0 +e0

1)−6v0,

where the factor 3
4 stems from raising the degree from 3 to 4; and

the second Bézier coefficient of ∂1b(u,0) (in degree-raised form)
and of 2∂2b(u,0) are respectively (cf. Figure 8)

3
(e0

0 −v0)+2(e1
1 −e0

0)

3
and

2 ·4(b211 −b310) = 8(
e1

1 −e0
0

4
+

e0
0 −v0

8
+3

f 0 −e0
0

8
).

Then, comparing the first two Bézier coefficients of ∂1b(u,0) and

2∂2b(u,0)+∂1a(0,u) yields equality and establishes C1 continuity:

3(e0
0 −v0)

︸ ︷︷ ︸

∂1b(0,0)

= 3(e0
0 +e0

1)−6v0

︸ ︷︷ ︸

2∂2b(0,0)

−3(e0
1 −v0)

︸ ︷︷ ︸

∂1a(0,0)

(6′)

(e0
0 −v0)+2(e1

1 −e0
0) = 2(e1

1 −e0
0)+(e0

0 −v0)+3(f 0 −e0
0)

−3(f 0 −e0
0). (6′′)

b

a

t0
0

t0
n0−1

t0
1

v0

f 1f 0

b301 b031

a301 a031

v1

t1
0

t1
1

Figure 9: G1 transition between two triangular patches.

The equations for (7) are similar, except that we need to replace
e j by t j and keep in mind that, by definition,

(t0
n0−1 −v0)+(t0

1 −v0) = 2c
0(t0

0 −v0).

Hence, for example,

∂2b(0,0)+∂1a(0,0) = 4(b301 −v0 +a301 −v0)

=
3

4
4 ·2c

0(t0
0 −v0).

The first of the four coefficient equations of (7) then simplifies
to

3(1+c
0)(t0

0 −v0) = 4(b301 +a301 −2v0)

= 3(
t0
1 + t0

0

2
−v0 +

t
n0−1
1 + t0

0

2
−v0)

= 3
1

2
(2c

0(t0
0 −v0)+2(t0

0 −v0)). (7′)

Noting that terms (f0 − e0
0)/(8(s0 + s

1)) in the expansions of b211

and a211 cancel, the second coefficient equation is

6λ0(t
1
1 − t0

0)+3λ1(t0
0 −v0) = 12(b211 +a211 −2b310)

=
12 ·2(1+c

0)

4
(t1

1 − t0
0)+

12 ·2(1−c
1)

8
(t0

0 −v0). (7′′)

It is easy to read off that the equalities hold. So the claim of smooth-
ness is verified. |||

4 GPU IMPLEMENTATION

We implemented our scheme in DirectX 10 using the vertex shader
to compute vertex neighborhoods according to Table 1 and the ge-
ometry shader primitive triangle with adjacency to accumulate the
coefficients of the bicubic patch or compute a c-patch according to
Table 2. We implemented conversion plus rendering in two vari-
ants: a 1-pass and a 2-pass scheme.

The 2-pass implementation constructs the patches in the first pass
using the vertex shader and the geometry shader and evaluates po-
sitions and normals in the second pass. Pass 1 streams out only the

4×6 coefficients of a c-patch and not the 4×
(

4+2
2

)
Bézier control

Figure 10: 2-pass implementation detailed in Table 3. The first pass
converts, the second renders. Note that the geometry shader only
computes at most 24 coefficients per patch and does not evaluate.

Figure 11: At present, the 1-pass conversion-and-rendering must
place patch assembly and evaluation on the geometry shader. This
is not efficient.

Pass 1 Conversion

VS In p∗,n,σ
VS Use texture lookup to retrieve p2 j, p2 j+1

Compute v,e j, f j, t0,t1 (Table 1)
VS Out v,t0,t1, f j, j = 0..n−1

GS In vi,t i
0,t

i
1, f i, i = 0..3

GS if ordinary quad
assemble gkl ,k, l = 0..3 (Figure 6)

else

compute bi
211,b

i
121,b

i
112 (Table 2)

GS Out if ordinary quad, stream out gkl ,k, l = 0..3.
else stream out bi

400,t
i
0,t

i
1,b

i
211,b

i
121,b

i
112,

i = 0..3.

Pass 2 Evaluating Position and Normal

VS In (u,v)
VS if ordinary quad

compute normal and position at (u,v)
by the tensored de Casteljau’s algorithm

else
Compute the remaining Bézier control points (3)
Compute normal and position at (u,v)
by de Casteljau’s algorithm adjusted to c-patches.

VS Out position, normal

PS In position, normal
PS compute color
PS Out color

Table 3: 2-Pass conversion: VS=vertex shader, GS=geometry
shader, PS=pixel shader. VS Out of Pass 1 outputs n points f j for
one vertex (hence the subscript) and GS In of Pass 1 retrieves four
points f i, each generated by a different vertex of the quad (hence the
superscript).

points of the equivalent triangular pieces. The data amplification
necessary to evaluate takes place by instancing a (u,v)-grid on the
vertex shader in the second pass. That is, we do not stream back
large data sets after amplification. Position and normal are com-
puted on the (u,v) domain [0..1]2 of the bicubic or of the c-patch
(not on any triangular domains). In our implementation, the num-
ber of ALU ops for this evaluation is 59 both for the bicubic patch
and for the c-patch. Table 3 lists the input, output and the compu-
tations of each pipeline stage. Figure 10 illustrates this association
of computations and resources. Overall, the 2-pass implementation
has small stream-out, short geometry shader code and minimal am-
plification on the geometry shader.

In the 1-pass implementation, the evaluation immediately fol-
lows conversion in the geometry shader, using the geometry
shader’s ability to amplify, i.e. output multiple point primitives for
each facet (Figure 11). While a 1-pass implementation sounds more
efficient than a 2-pass implementation, DX10 limits data amplifica-
tion in the geometry shader so that the maximal evaluation density
is 8×8 per quad. Moreover, maximal amplification in the geome-
try shader slows the performance. The performance difference be-
tween the two implementations is easily visible when comparing
Tables 4 and 5, with the caveat that we did not spend much time
optimizing the clearly slower 1-pass approach.

5 RESULTS

We compiled and executed the implementation on the latest graph-
ics cards of both major vendors under DirectX10 and tested the
performance for several industry-sized models. Two surface mod-
els and models with displacement mapping are shown in Figure 3
and 1 respectively. Table 4 summarizes the performance of the 2-
pass algorithm for different granularities of evaluation. The frog

Figure 12: Comparison between the Catmull-Clark (CC) subdivision
limit surface and the smoothed quad mesh surface for the same in-
put.

model, in particular, provides a challenge due to the large number
of extraordinary patches.

Mesh Frames per second
(verts,quads, eqs) N = 5 9 17 33

Sword (140,138, 38%) 965 965 965 703
Head (602,600, 100%) 637 557 376 165
Frog (1308,1292, 59%) 483 392 226 87

Table 4: Frames per second for some standard test meshes with
each patch evaluated on a grid of size N ×N; eqs = percentage of
extraordinary quads. Sword and Frog are shown in Figure 3, Head in
Figure 12.

Mesh Slower 1-pass implementation
N = 2 5 8

Sword 389 96 43
Head 108 34 15
Frog 44 10 4

Table 5: Performance of the 1-pass implementation.

The Frog Party shown in Figure 16 currently renders at 50 fps
for uniform evaluation of nine frogs for N=9, i.e. on a 9× 9 grid.
That is, the implementation converts nine times 1292 coarse input
quads, of which 59% are extraordinary, and renders of 1 million
polygons 50 times per second. On the same hardware, we measured
Bunnell’s efficient implementation (distribution accompanying [2])
featuring the single frog model, i.e. 1/9th of the work of the Frog
Party, running at 44 fps with three subdivisions (equivalent to tes-
sellation factor N=9). That is, GPU smoothing of quad meshes is
an order of magnitude faster. Compared to [12], the speed up is
even more dramatic. While the comparison is not among equals
since both [12] and [2] implement recursive Catmull-Clark subdi-
vision, it is nevertheless fair to observe that the speedup is at least
partially due to our avoiding stream back after amplification (data
explosion due to refinement). We expect that more careful storage
of vertex neighborhoods, in retrieving order, will further improve
our use of texture cache and thereby improve the frames per second
(fps) count.

Figure 12 compares the smoothed quad mesh surfaces with
densely refined Catmull-Clark subdivision surfaces based on the
same mesh. Both geometric distance, as percent of the local quad
size, and normal distance, in degrees of variation, are compared.

Especially after displacement, large models rendered by subdivi-
sion and quad smoothing appear visually indistinguishable. The
relatively small examples, without displacement, shown in Figure
12 and the close up in Figure 13 are also important to support our
observation that c-patches do not create shape problems compared
to a single bicubic patch: despite the lower degree and internal C1

join, their visual appearance is remarkably similar to that of bicubic
patches.

The accompanying video (see screen shots in Figures 13, 14,
15, 16) illustrates real time displacement and animation. It was
captured with a camcorder to show real time performance. The fps
rates shown are lower than the ones in Table 4 since we captured it
before we separated ordinary and extraordinary quad conversion in
the implementation.

6 DISCUSSION

Smoothing quad meshes on the GPU offers an alternative to highly
refined facet representations transmitted to the GPU and is prefer-
able for interactive graphics and integration with complex morph-
ing and displacement. The separation into vertex and patch con-
struction means that the number of scaled vertex additions (adds)
per patch is independent of the valence. The cost of comput-
ing the control points per patch, i.e. with the cost of vertex com-
putations distributed, is 4 × (4 + 1 + 1 + 2) = 32 adds per bicu-
bic construction and computing t j from t0 and t1 and determining

bi
211, bi

121 and bi
112 according to Table 2 amounts to an additional

4× (2+6+6+12) = 104 adds per c-patch. The data transfer be-
tween passes in the 2-pass conversion is low since only 4×6 con-
trol points are intermittently generated. This compares favorably
to, say [10] where 16+12+12 coefficients are generated. Therefore
c-patches are an attractive representation not only on the GPU.

Since we only compute and evaluate in terms of the 24 c-patch
coefficients, the computation of the cubic boundaries shared by a
bicubic and a c-patch is mathematically identical. An explicit ‘if’-
statement in the evaluation guarantees the exact same ordering of
computations since boundary coefficients are only computed once,
in the vertex shader, according to Table 1. That is, there is no pixel
drop out or gaps in the rendered surface. The resulting surface is
watertight.

We advertised a 2-pass scheme, since, as we argued, the DX10
geometry shader is not well suited for the data amplification for
evaluation after conversion. The 1-pass scheme outlined in Section
4 may become more valuable with availability of a dedicated hard-
ware tessellator [9]. Such a tesselator will make amplification more
efficient and support watertight adaptive tesselation (which is why
we only discussed uniform tesselation in Section 4). Such a hard-
ware amplification will also benefit the 2-pass approach in that the
(u,v) domain tessellation, fed into the second pass will be replaced
by the amplification unit.

ACKNOWLEDGEMENTS

This work benefitted from CGAL’s half-edge data structure, and
used Bay Raitt’s Frog and the ZBrush Sword model.

REFERENCES

[1] J. Bolz and P. Schröder. Rapid evaluation of Catmull-Clark subdivi-

sion surfaces. In Web3D ’02: Proceeding of the seventh international

conference on 3D Web technology, pages 11–17, New York, NY, USA,

2002. ACM Press.

[2] M. Bunnell. GPU Gems 2: Programming Techniques for High-

Performance Graphics and General-Purpose Computation, chapter

7. Adaptive Tessellation of Subdivision Surfaces with Displacement

Mapping. Addison-Wesley, Reading, MA, 2005.

[3] E. Catmull and J. Clark. Recursively generated B-spline surfaces on

arbitrary topological meshes. Computer Aided Design, 10:350–355,

1978.

[4] G. Farin. Curves and Surfaces for Computer Aided Geometric Design:

A Practical Guide. Academic Press, 1990.

[5] C. Gonzalez and J. Peters. Localized hierarchy surface splines. In S. S.

J. Rossignac, editor, ACM Symposium on Interactive 3D Graphics,

pages 7–15, 1999.

[6] M. Guthe, A. Balázs, and R. Klein. GPU-based trimming and tes-

sellation of NURBS and T-spline surfaces. ACM Trans. Graph.,

24(3):1016–1023, 2005.

[7] M. Halstead, M. Kass, and T. DeRose. Efficient, fair interpolation

using Catmull-Clark surfaces. Proceedings of SIGGRAPH 93, pages

35–44, Aug 1993.

[8] A. Lee, H. Moreton, and H. Hoppe. Displaced subdivision surfaces.

In K. Akeley, editor, Siggraph 2000, Computer Graphics Proceed-

ings, Annual Conference Series, pages 85–94. ACM Press / ACM

SIGGRAPH / Addison Wesley Longman, 2000.

[9] M. Lee. Next generation graphics programming on

Xbox 360, 2006. http://download.microsoft.com/download

/d/3/0/d30d58cd-87a2-41d5-bb53-baf560aa2373/next genera-

tion graphics programming on xbox 360.ppt.

[10] C. Loop and S. Schaefer. Approximating Catmull-Clark subdivision

surfaces with bicubic patches. Technical report, Microsoft Research,

MSR-TR-2007-44, 2007.

[11] J. Peters. Patching Catmull-Clark meshes. In K. Akeley, editor, Sig-

graph 2000, Computer Graphics Proceedings, Annual Conference Se-

ries, pages 255–258. ACM Press / ACM SIGGRAPH / Addison Wes-

ley Longman, 2000.

[12] L.-J. Shiue, I. Jones, and J. Peters. A realtime GPU subdivision kernel.

ACM Trans. Graph., 24(3):1010–1015, 2005.

[13] J. Stam. Exact evaluation of Catmull-Clark subdivision surfaces at

arbitrary parameter values. In SIGGRAPH, pages 395–404, 1998.

[14] A. Vlachos, J. Peters, C. Boyd, and J. L. Mitchell. Curved PN tri-

angles. In 2001, Symposium on Interactive 3D Graphics, Bi-Annual

Conference Series, pages 159–166. ACM Press, 2001.

Figure 13: Close-up of the Frog.

Figure 14: Real time displacement on the twisting Sword model. See
the video.

Figure 15: Real time displacement on the twisting Frog model. See
the video.

Figure 16: Asynchronous animation of nine Frogs. See the video.

