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Abstract—It has recently been shown that if we twist
an arbitrary subset of edges of a mesh on an orientable
surface, the resulting extended graph rotation system
(EGRS) can be used to induce a cyclic weaving on the
surface. In extended graph rotation systems, an edge is
viewed as a paper strip that can be twisted. The sides
of the paper strips provide “two strands” to construct
weaving structures. Either these strands are “parallel” to
the mesh edge for an “untwisted edge”, or they both cross
over the edge and over each other for a “twisted edge”. If
an arbitrary subset of edges of a mesh on an orientable
surface is twisted in the same helical sense, then the
EGRS induces a cyclic plain-weaving on the surface, which
consists of cycles that cross other cycles (or themselves) by
alternatingly going over and under.

In this paper, we show that it is always possible to create
a single-cycle plain-weaving starting from a mesh on an
arbitrary surface, by selecting an appropriate subset of
edges to be twisted. We also demonstrate how, starting
from a mesh, to construct a large number of single-cycle
plain-woven objects. Interestingly, the single-cycle solutions
with a minimal number of edge twists correspond to plain-
woven objects that are visually similar to Celtic knots.

For converting plain-weaving cycles to 3D thread struc-
tures, we extend the original projection method, which
previously worked only when all mesh edges are twisted.
With the extension described here, our projection method
can also be used to handle untwisted edges. We have
developed a system that converts any manifold mesh into
single-cycle plain-woven objects, by interactively control-
ling the proportion of edges that are twisted. The system
also allows us to change the shapes of the threads with a set
of parameters, interactively in real-time. We demonstrate
here that by using this system, we can create a wide variety
of single-cycle plain-woven objects.

1. INTRODUCTION

A plain-woven object consists of threads that are

interlaced so that a traversal of each thread alternatingly

goes over and under the other threads (or itself) as it

crosses them. It has recently been shown how to create

plain-woven objects from any given manifold mesh

surface, by constructing an alternating projection of a

link on the surface. It has also been shown how to create

such plain-woven objects from any given manifold mesh

by twisting some of the edges of a related orientable

manifold mesh [1], [2]. Akleman et al. showed that

twisting all the edges of a manifold mesh is a useful

approach for creating objects that visually resemble

plain-weaving. Nonetheless, there are two problems with

twisting all the edges: (1) it does not control the number

of cycles that will be created, and (2) the visual results

are too uniform. On the other hand, if we randomly twist

some of the edges, we can get interesting results, as

shown in Figure 2. However, random twisting does not

control the number of cycles. In this paper, we develop

a method that allows us to control the number of cycles

in a plain-weaving, which, in particular, enables us to

construct single-cycle plain-weavings on an arbitrary

surface. We also show that there exist a large number

of single-cycle plain-weaving structures and that some

of the single-cycle plain-weaving structures visually

resemble Celtic knots (See Figure 1).

Twisting all the edges of a manifold mesh is theo-

retically related to drawing Celtic knots in 2D using

planar graphs [3], [4]. Twisting all edges makes the

resulting weaving visually look like physical weaving.

However, we have noticed that to visually achieve the

look of Celtic knots in 3D, we need to leave many edges

untwisted. One problem with leaving many edges un-

twisted is that the resulting weaving can be a separable

link, which means that a sphere can be inserted into

3D-space that does not intersect the link, such that part

of the link lies on one side of the separation and part

on the other (See Figure 2). A separable link will fall

apart if it is physically realized. By reducing the number

of components of the link to one, we guarantee that

physical structure will not fall apart.

The mathematical links without solid shape need to

be converted to 3D thread structures, such as extruded

lines (ribbons) or extruded surfaces (yarns). The pro-

jection (PR) method introduced in [1] for converting

mathematical links to 3D thread structures is provided

only for twisted edges. Since we use untwisted edges

in this paper, there is a need to extend the projection

method to handle untwisted edges.

As a practical implementation, we have developed a

system that converts any manifold mesh into a single-

cycle plain-woven object. Our system converts the math-

ematical knots and links to 3D thread structures, such

that the shapes of the threads can be interactively
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54.99% twisted 65.61% twisted 75.02% twisted 99.83% twisted

Fig. 1. Rainbow colored single-cycle plain-woven bunnies. Each bottom image magni es the detail of the single-cycle plain-woven bunny
immediately above. The number below each bottom image indicates the percentage of edges that are twisted. These details illustrate how the
percentage of twisted edges impacts the visual results. We painted the single thread with rainbow colors to better illustrate its structure.

20% twisted 40% twisted 60% twisted 80% twisted 98% twisted

3138 cycles 1351 cycles 346 cycles 35 cycles 3 cycles

Fig. 2. Random twisting with no cycle control. Each bottom image is magni ed detail from the plain-woven Rockarm object immediately
above. The number below a bottom image indicates the percentage of edges that are twisted and the number of cycles. These details illustrate
how the percentage of twisted edges impacts the visual results.

controlled with a set of parameters. The 3D structure

of the single thread can cover the original orientable

manifold mesh, without leaving large gaps. In Section 3,

we provide examples of some single-cycle plain-woven

objects. In addition, we show in Section 4 that the

number of single-cycle solutions are statistically high.

Section 5 gives our conclusions and describes possibil-

ities for future work.

2. THEORY FOR SINGLE-CYCLE WEAVING

As introduced formally in [1], a cyclic plain-weaving
on an orientable surface So is a projection of a link

L on So, such that (1) there are no triple intersections

at any single point of So, and (2) a traversal of the

image on So of each component of L goes over and

under alternatingly as it crosses the images of other

components or of itself.

Graph Rotation Systems have been a powerful model

in the study of topological graph theory [5], [6], [7], [8].

A rotation at a vertex of a graph is a cyclic ordering of
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the set of the edge-ends that are incident at that vertex. It

is well-known (see Theorem 3.2.2 of [5]) that a rotation

system specifies a graph embedding and that every graph

embedding can be specified by a rotation system.

Akleman et al. introduced extended graph rotation

systems [2] to facilitate a representation of cyclic weav-

ing in which edge twists are used to create crossings in a

weaving. In extended graph rotation systems, an edge is

viewed as a paper strip that can be twisted clockwise

or counter-clockwise in helical sense (see Figure 3).

The sides of the paper strips provides “two strands” in

the generated weaving pattern. These strands are either

“parallel” to the mesh edge for an “untwisted edge”, or

they both cross over the edge and over each other for

a “twisted edge”. The type of the crossover depends on

helical twist type (i.e. clockwise or counter-clockwise).

If an arbitrary subset of edges of a mesh on an orientable

surface So is twisted in the same helical sense, then the

GRS induces a cyclic plain-weaving on So [2].

Formally, let ρo(G) be a graph rotation system with

no twisted edges, which corresponds to an embedding

of the graph G on an orientable surface So. Let A be

an arbitrary subset of edges of G. Twisting all edges

in A in the same helical sense (i.e. either clockwise

or counter-clockwise; see Figure 3) gives an extended
graph rotation system ρ(G). The face tracing algorithm

[1] applied on ρ(G) returns all face boundaries for the

faces in ρ(G), which can be regarded as cycles mapped

to the surface So (See Figure 4). These cycles mapped

on So make a cyclic plain-weaving W on the surface

So. We say that the cyclic plain-weaving W is induced
by the extended graph rotation system ρ(G).

(a) Edge (b) 0 Twisted (c) +1 Twisted (d) -1 Twisted

Fig. 3. In computer graphics, an edge is usually drawn as shown in
(a) and it is not considered to be twisted. In extended graph rotation
systems, an edge is viewed as a paper strip that can be twisted
clockwise or counter-clockwise. (b) shows a visual interpretation of
an untwisted edge, which is called 0-twisted. In plain-weaving, twisted
edges can only be in one of two possible states. These states are shown
in (c) +1 (i.e. counter-clockwise) twisted or (d) −1 (i.e. clockwise)
twisted.

To construct a plain-weaving based on the projection

method proposed in [1], Akleman et al. suggested that

all edges of the mesh be twisted. In particular, it was left

unspecified how the projection method should be applied

if certain edges are untwisted. In this paper, we extend

the projection method and allow some edges to be left

(a) (b) (c)

(d) (e) (f)

Fig. 4. An example of creating plain-weaving on a surface with face
tracing. The mesh in (a) is an octahedron constructed by untwisted
edges embedded in a sphere. As shown in (c), the eight face-boundary
walks of the octahedron are unlinked in 3D. However, if some edges
are twisted as shown in (d), then the cycles represented by the
boundary walks become linked, as in (f).

untwisted. By controlling which edges are to be twisted,

we create single-cycle plain-woven objects. Edmonds

proved that every connected graph has a one-face non-

orientable embedding [9]. The following theorem that is

a weaving version of Edmonds’ theorem is fundamental

to this paper.

Theorem 2.1: Let ρ(G) be a graph rotation system

that is obtained from a mesh on a surface So by possibly

twisting some of its edges. Suppose that the cyclic

plain-weaving induced by ρ(G) has at least two distinct

cycles. Let e be an edge in G whose two sides belong to

two different cycles c1 and c2 in the weaving. If we twist
e , then we combine the two cycles c1 and c2 into one

cycle and reduce the number of cycles in the weaving

by one. Using this procedure, we can always reduce the

number of cycles in a weaving to one.

Proof: In a graph rotation system, if an edge at

the intersection of two faces is twisted, the two faces

are merged into one face1. Since cycles are simply the

boundaries of faces, twisting an edge combines the two

cycles that correspond to the boundaries of the two faces.

Since the surface So is connected, we can always find an

edge e whose two sides belong to two cycles of ρ(G).
Therefore, we can always reduce the number of cycles

to one.

The single-cycle plain-weaving structures that are

created by this procedure are topological knots and do

not have shape in space. In order to create geometric

forms, these knots need to be converted into 3D thread

structures, such as ribbons (extruded lines) or yarns

1If e is already twisted, twist operation untwist the edge e. Similarly,

if the original edge e is untwisted, twist operation makes e twisted.

Also note that in both GRS and EGRS, a face is considered as the

domain that always lies on one (either left-hand or right-hand) side of

a thread, as one traverses one of cycles of the weaving.
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(extruded polygons). The resulting 3D thread structures

must look smooth and must not self-intersect. For con-

version of topological links into geometric forms, we

need to extend the projection method introduced in [1],

so that it will work well for untwisted edges.

3. EXTENDING THE PROJECTION METHOD TO

UNTWISTED EDGES

For a rotation system ρ0(G), we consider only the

polygonal mesh surfaces, where every vertex has valence

at least 3, every face has at least three sides (i.e.

triangles), every edge has positive length, and every

vertex has position information. Whereas Akleman et

al. gave a detailed explanation of the projection method

for twisted edges, here we explain how to handle both

twisted and untwisted edges. Moreover, in addition to

explaining the method in 3D, we provide explanation

for a mesh in the plane, which can provide a better

understanding of the process.

(a) Top (b) Bottom (c) Together

Fig. 6. Strip construction with c and w control for twisted case.

(a) One Side (b) Other side (c) Together

Fig. 7. Strip construction with c and w control for untwisted case.

Figure 5 shows the steps of the extended projection

method for a mesh in the plane with one untwisted edge.

The procedure consists of five steps as follows:

1) Project the initial mesh to a local plane. The

result will locally be a planar tiling as shown in

Figure 5(a).

2) Connect the center of each face to the vertices

of that face, thereby forming a quadrilateral for

each edge. Graph theorists call this construction

the radial graph of the embedding. In Figure 5(b)

small black dots identify the centers of the faces

(called “face-points” of the radial graph) and the

vertex positions (called “vertex-points”). Figure

5(c) and (d) show the 24 quadrilaterals constructed

by joining the face-points and the vertex points for

every edge. These quadrilaterals are called edge-
regions.

3) a) For every twisted edge, project the corre-

sponding edge-region to two small planar

regions, one slightly above and the other

slightly below the original plane shown in

Figure 6(a) and (b).

b) For every untwisted edge, create two side-

by-side quadrilaterals in the original plane.

These are triangular-looking shapes that are

shown in Figure 7(a) and (b). Each quadri-

lateral consists of the original edge and two

vertices that are co-located in the center of

its corresponding face. Since two vertices

are co-located in the center of the face, the

procedure yields a quadrilateral instead of a

triangle. Figure 5(e) shows projected edge

regions for one untwisted edge and for the

other edges twisted.

4) Using the projected edge regions (i.e. quadrilater-

als) as control shapes, we form strips by using a

simple bilinear equation. Figures 6 and 7 show

how the strips are formed for the twisted and

untwisted cases.

a) For twisted edges, the procedure shown in

Figure 6(a) and (b) creates two strips that are

on top of each other, forming an “ ” shape

as shown in Figure 6(c). We calculate the 4
corners of the yellow quadrilateral regions,

in barycentric coordinates inside two grey

quadrilaterals slightly above and below the

original plane. The positions of these corner

points is parameterized by two parameters

w and c. The value of w controls the width

of the yellow quadrilateral region, and the

value of c controls the length of the yellow

quadrilateral region. Note that to compute the

upper and lower yellow quadrilateral regions,

we switch c and w values, which gives us

“ ” shape shown in Figure 6(c).

b) For untwisted edges, the procedure shown in

Figure 7(a) and (b) creates two strips that

are side-by-side as shown in Figure 7(c).

Figure 5(f) shows all strips: “ ” shapes for

twisted edges and two parallel strips for the

untwisted edges. We again calculate the 4
corners of the yellow quadrilateral regions,

in barycentric coordinates inside the grey

triangle-looking quadrilaterals. The value of

w again controls the width of the yellow

quadrilateral region, and the value of c con-

trols the length of the yellow quadrilateral re-

gion. On the other hand, to compute the two
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(a) Initial mesh (b) Face centers (c)Edge region of (d) Edge regions

and vertices an untwisted edge of all edges

(e) Projected edge regions (f) Stripes (g) Colored stripes (h) Threads (control strips)

showing structure obtained by connecting strips

Fig. 5. The steps of the projection method for a planar mesh with only one untwisted edge.

side-by-side yellow quadrilateral regions, we

use c and w values exactly the same way,

which gives us two ”parallel strands” shown

in Figure 7(c).

5) Connect the strips to form a ring of polygon strip,

which we call a “control strip”, which is used to

control the shape of the threads. These polygons

are smoothed to create the final ribbons or yarns.

Note that the shape of the control strip is defined

by the parameters w and c, where w is the locally

adjusted width of the ribbon which is relative to

the size of underlying edges, and c controls the

steepness of the transition between the upper and

the lower offset levels.

6) Smooth the control strip. A variety of approaches,

such as B-Spline or Bezier curves, can be em-

ployed to create smooth ribbons. To create smooth

yarns, first convert the control strip to control

yarns and then smooth the control yarns using a

subdivision scheme. For details see [1].

3.1 Examples and Results

We have developed a system that converts polygonal

meshes to single-cycle plain-woven objects. We provide

two parameters c and w to change the steepness c and

local width (or thickness) w of ribbons. A user can

interactively change the parameters c and w to achieve

different results. A dense weaving is obtained with c ≈ 1
and w ≈ 1. Small values of c and w provide sparse

weaving. All the plain-woven object images in this paper

are direct screen captures from the system. They were

all created in real-time. In the case of multiple-cycle

weaving structures, the colors of the thread cycles are

randomly chosen. For single-cycle woven objects, we

changed the hue of the ribbon color (rainbow coloring)

along the cycle to show the structure. The projection

algorithm guarantees that the sizes of strips are relative

to the underlying polygons. Therefore, the actual widths

of the ribbons vary in different parts of the mesh.

The projection method can close the gaps by creating

a dense look, as shown in Figures 8, and 9. Figures 1

and 10 include close-up images that show the visual

results impacted by percentage of twisting. Figures 11

and 12 show the single-cycle plain-weaving results

coming from meshes that are not quadrilaterals. For

pleasing looking results it is desirable to start with a

mesh with fairly uniform edge lengths and with no

very acute angles in any of the facets. The projection

method closes the gaps better if the angle θ between

two faces on the two sides of the edge [1], is between

1200 and 1800. The closer that θ approaches 1800, the

better it is for closing gaps. This can be achieved with

a few applications of a suitable subdivision scheme.

For example, using the Doo-Sabin scheme, after each

subdivision all θ values become closer to 1800, while the

faces become more nearly regular, more nearly convex,

and more nearly planar. We do not provide direct self-

intersection avoidance; however, choosing values of c

and w between 0 and 1 is sufficient to avoid self-
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54.52% Dense 54.52% Sparse 97.99% Dense 97.99% Sparse

57.27% Dense 57.27% Sparse 69.89% Sparse 99.95% Dense

Fig. 8. Single-cycle plain-woven Venus objects. Top images are uniform colored and bottom images are rainbow colored.

intersection.

4. AN ANALYSIS OF SINGLE-CYCLE

PLAIN-WEAVING

One might correctly expect that single-cycle graph

rotation systems are sparsely distributed. An edge can

be in either of two states: twisted or untwisted. If the

number of edges is E, then, the total number of subsets

of edges that could be selected for twisting is 2E . Even

if the proportion of single-cycle selections is very low,

the absolute number of single-cycle selections can still

be very high, as we shall see now.

4.1 Lower Bound from Spanning Trees of the Dual

A large set of single-cycle solutions on a mesh M

with the smallest number of twisted edges can be

obtained from the dual mesh M of the original mesh

M . Note that each dual edge e between two vertices v1

and v2 in the dual mesh M corresponds to a primal edge

e (i.e., an edge in the original mesh) M that is on the

boundary of the two faces f1 and f2 in M . These two

primal faces correspond to, respectively, the two dual

vertices v1 and v2. Therefore, if we twist the primal edge

e, then the two primal faces f1 and f2 are merged into a

single face (Theorem 2.1). Correspondingly, the number

of cycles in the corresponding weaving is reduced by

one. Accordingly, if we construct a spanning tree T in

the dual mesh M , then twisting all the primal edges in

M would merge all the faces in the original mesh M

into a single face. This induces a single-cycle weaving.

It is also easy to see that this is the minimum number

of edges in M that must be twisted in order to obtain a

single-cycle plain-weaving.

Let μ denote the average number of sides in a primal

face (in the original mesh M ) and let F denote the

number of faces of M . Then it can be inferred from

the dual of Euler’s theorem (often called the edge-face

equation) that the sum of the degrees of the vertices is

twice the number of edges in a graph that μF = 2E.

Therefore, the minimum number of edges that need to

be twisted in order to obtain a single-cycle solution is

95



55.11% Dense 55.11% Sparse 98.02% Dense 98.02% Sparse

50.39% Dense 70.18% Dense 84.92% Dense 99.95% Dense

Fig. 9. Single-cycle plain-woven Rockarm objects. Top images are uniform colored and bottom images are rainbow colored.

the number of edges in a spanning tree of the dual graph,

i.e.

F − 1 =
2E

μ
− 1.

We also know (e.g. from Theorem 8.5.6 of [10]) that for

large polyhedral meshes of any genus, the value of the

average degree of a vertex and, dually, of the average

number of sides of a face μ is at least 3 and at most

a little more than 6. Therefore, we can safely predict

that the minimum number of twisted edges lies between

0.33E and 0.66E, depending on the type of the mesh.

For 0.33E, see Figure 11(b), which comes from a mostly

hexagonal mesh, geodesic dome. Most of our examples

in this paper are quadrilateral meshes, for which the

minimum number of twists is 0.5E. Of course, it is easy

enough to construct a spanning tree in the dual graph,

so we need not proceed by random selection of edges,

if our sole objective is to obtain a single-cycle weaving.

4.2 Very Simple Statistical Analysis

We have randomly twisted edges for a large number

of different types of meshes to understand the statistical

behavior of the number of cycles (See Figures 2 and 13).

Here, we will not provide a complete analysis. However,

these trials confirm our theoretical assessment given ear-

lier. As expected, the average number of cycles quickly

drops when larger percentages of edges are twisted.

As expected, random selection produces relatively few

single-cycle embeddings. On the other hand, we ob-

tained many 2-cycle and 3-cycle embeddings. Even this

result is not unexpected. If no edge is twisted, then every

face boundary walk on a polyhedral mesh is a cycle.

Therefore, the maximum number of cycles is equal to

the number of faces. Edge-twists combine face-cycles

and thereby reduce the number of cycles dramatically.

However, once the number of cycles becomes very low,

some twists can separate a cycle into two, and thereby

increase the number of cycles again. Therefore, although

a low number of cycles is highly probable, a single-cycle

embedding is not. On the other hand, there tend to be

many single-cycle embeddings.

Given any embedding of a graph G, and given any

spanning tree in the dual embedding, a single-cycle

embedding can be obtained by twisting each edge of G

whose dual lies in that spanning tree. Thus, the number

of single-cycle embeddings is at least as large as the

number of spanning trees in the dual.

If the dual graph is complete, then the number of

spanning trees would be

τ(G) = F F−2

based on Cayley’s formula, which is proved on page 155
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50.39% 69.60% 90.18% 99.96%

Fig. 10. Rainbow colored single-cycle plain-woven genus-3 objects and details.

(a) Original Mesh (b) 33.52% (c) 96.41%

Fig. 11. Uniform colored single-cycle plain-woven obtained from geodesic done.

of [10]. More generally, there is a recursion for τ(G), the

number of spanning trees of a graph G, which suggests

a reason why the number of spanning trees is usually

large. Let e be any proper edge. Then

τ(G) = τ(G − e) + τ(G/e)

where G−e is deletion and G/e is edge contraction. Of

course, τ(G− e) counts the spanning trees of G that do

not contain edge e, and τ(G/e) counts the spanning

trees that do include e. Since a random graph G is

4-edge connected with probability 1, it follows from

Kundu’s theorem [11] that it has two disjoint spanning

trees, which implies that deleting all the edges in one of

them does not disconnect the graph. This implies that

when the recursion is iterated over all the edges of one of

the trees, all 2F−1 terms at the final level are positive.

Thus, with probability 1, there are 2F−1 single cycle

embeddings of G.

In summary, it is easy to obtain single-cycle embed-

dings. When we twist more than F −1 edges of a mesh,

we usually obtain a low number of cycles. Then, twisting

a few edges that are chosen to lie on the boundaries

of two different cycles also brings us to a single-cycle

embedding.

5. CONCLUSION, FUTURE WORK AND

ACKNOWLEDGMENTS

We have shown that it is possible to create a single-

cycle plain-weaving over any manifold mesh for any

surface by selecting an appropriate subset of edges to

be twisted. We have extended the original projection

method of [Akleman2009mod1b] to handle untwisted

edges. We have developed a system that transforms any

manifold mesh into single-cycle plain-woven objects.

The users simply provide a “reasonable” ratio of the

edges that will be twisted. The system first randomly
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(a) Original Mesh (b) 52.22% (c) Original Mesh (d) 96.41%

Fig. 12. Uniform colored single-cycle plain-woven obtained from 2 different tilings of a sphere.

30% twisted 50% twisted 70% twisted 90% twisted

151 cycles 46 cycles 21 cycles 10 cycles

Fig. 13. Random twisting with no cycle control. The numbers below indicate the percentage of edges that are twisted and the number of cycles.
Each bottom images is magni cation of detail from the plain-woven Toroidal shapes immediately above. This illustrates how the percentage of
twisted edges impacts the visual results.

twists edges in the given ratio. Then, it twists and

untwists2 that are on the boundaries of two different

cycles until it obtains a single-cycle embedding. This

operation usually gives us a ratio which is reasonably

close to the user-provided ratio.

We have shown that single-cycle embeddings for

manifold meshes are not unique, and that there usually

exist a large number of single-cycle plain-woven objects

for any given orientable manifold mesh. Therefore, we

expect that the same ideas can be used to create low

number of cycles with interesting coloring patterns sat-

isfying a given aesthetic requirement. Theoretically, the

same results hold for non-orientable manifold meshes,

but we have not yet implemented them in our system.

Single-cycle plain-woven objects are not necessar-

ily as beautiful as multiple-cycle plain-woven objects,

2When it is possible, the system preferably alternates between twist

and untwist by keeping the ratio unchanged.

which can be more colorful, since for the former we

can theoretically only use one color. Uniform-colored

single-cycle woven objects, as shown in Figure 14 or

top images in Figures 8 and 2, are not particularly

exciting for their beauty, but, they are important in

demonstrating that we can effectively control the number

of cycles in a plain-weaving. With the suggestion of one

of the reviewers we used a rainbow coloring scheme for

painting the single-cycle ribbon with changing hue and

the resulting images become both aesthetically pleasing

and visually interesting by showing the structure of the

cycle. We are particularly grateful to the anonymous

reviewer who gave us this suggestion. We also thank the

other anonymous reviewers for their helpful suggestions

for the improvement of the paper.
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50.38% twisted 55.60% twisted 69.39% twisted 90.66% twisted

Fig. 14. Uniform colored single-cycle plain-woven bunnies. Each bottom image magni es the detail of the single-cycle plain-woven bunny
immediately above. The number below each bottom image indicates the percentage of edges that are twisted. These details illustrate how the
percentage of twisted edges impacts the visual results.
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