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Abstract

In this paper, we consider a class of cellular networks,
called irregular cellular networks, which may have a non-
uniform distribution of base stations and a non-uniform cell
size. The communication (between base stations) graph of
such a cellular network forms a so-called trigraph, i.e., a
plane triangulation with inner vertices of degree at least six.
We show that each trigraph with � vertices admits a label-
ing that assigns � � � � � � � 	 bit labels to vertices of the graph
such that the distance between any two vertices 
 and � can
be determined in constant time by merely inspecting the la-
bels of 
 and � , without using any other information about
the graph. Furthermore, we show that there is a labeling,
assigning labels of size � � � � � � � 	 bits to vertices, which al-
lows, given the label of a source vertex and the label of a des-
tination, to compute in constant time the port number of the
edge from the source that heads in the direction of the des-
tination. These two results for trigraphs provide elegant so-
lutions to a few problems in irregular cellular networks. The
distance labeling scheme allows efficient implementation of
the distance-based tracking protocol, by providing informa-
tion, generally not available to the user, and means for ac-
curate cell distance determination. Our routing and distance
labeling schemes provide compact and efficient routing and
connection re-routing protocols. Although these results are
primarily developed for cellular networks, they may find ap-
plications also in other types of wireless networks that have
a fixed backbone infrastructure.

1. Introduction

Cellular communications have experienced an explosive
growth recently. In a cellular network, a service area is di-
vided into smaller areas called cells. Each cell is served by
a base station (BS) to which mobile users must connect to

make or receive phone calls. Mobile users are normally con-
nected to the nearest BSs and, thus, the BSs divide the service
area such that each BS serves all users that are located inside
a cell centered at BS. Cellular designs often use the hexag-
onal configuration because it is able to cover the maximum
area with the minimum number of BSs [4, 16]; hexagons fit
together without any overlap or gap in between them and
their shape approaches a circular shape which is the ideal
power coverage area. In a such designed cellular network,
two BSs can directly communicate with each other if the
corresponding hexagons are neighbor cells. Let formally de-
fine a hexagonal system as a subgraph of the regular hexag-
onal grid which is formed by a simple circuit of the grid and
the region bounded by this circuit. Then communications be-
tween the BSs go via the dual graph of a hexagonal system,
a so called triangular system. The vertices of this triangular
system are the BSs and two BSs are connected by an edge if
and only if the corresponding cells (hexagons) share a com-
mon boundary (see Figure 1 for an illustration). All triangu-
lar systems are connected subgraphs of the triangular grid.

Mobile users with cellular phones have to register fre-
quently to facilitate their location when phoning them. They
move from cell to cell, but do not always contact their new
BS to update their position since too many messages may
be required and the system may be blocked for regular calls.
In [2], Bar-Noy et al. proposed three dynamic location up-
date (or registration) schemes: time-based, movement based,
and distance-based. It has been shown that the distance-
based scheme is the most efficient among the three [2]. In the
distance-based location update scheme, a mobile user keeps
track of the cell distance between the current cell and the last
reported cell. Here, the cell distance is the number of cells on
a shortest route between the two cells (i.e., it is the graph dis-
tance between the corresponding BSs computed in the trian-
gular system). When the cell distance reaches a predefined
threshold, say � , the mobile user updates its location. The

Proceedings of the Sixth International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing and First  
ACIS International Workshop on Self-Assembling Wireless Networks (SNPD/SAWN’05) 

0-7695-2294-7/05 $20.00 © 2005 IEEE



Base Stations
Cells

Mobile User

Figure 1. A cellular network modeled by a tri-
angular system. (The distance between two low-
est non-adjacent vertices in the system is 8 while
the distance between them in the full triangular grid
would be 3 (or 4). Thus, it is not an isometric sub-
graph of the triangular grid.)

cell distance based strategy guarantees that the mobile user
is located in the area that is within a cell distance � from the
last reported cell. When an incoming call arrives for a mobile
user, the cellular system will page all the cells within a dis-
tance of � from the last reported cell. The cell distance based
strategy is dynamic, and the distance threshold � can be de-
termined on a per-user basis depending of his/her mobility
patterns.

Thus, additional to efficient routing protocols for cellu-
lar networks, there is a need in efficient computation of the
cell distance between any two cells. However, it has been
claimed in [2] that it is hard to compute the distance between
two cells, or it requires a lot of storage to maintain the dis-
tance information among all cells [12]. Current cellular net-
works do not provide information that can be used to derive
cell distances. In [13], Nocetti et al. proposed a very simple
method to compute the cell distance between any two cells
in the case when a cellular network is modeled by an isomet-
ric subgraph of the triangular grid (that is, the distance be-
tween any two vertices in the subgraph coincides with the
distance in the triangular grid). The distance computation of
[13] is based on a new cell addressing scheme which pro-
vides also a short and elegant routing protocol.

Unfortunately, the analytic method from [13], works only
for those triangular systems which are the isometric sub-
graphs of the triangular grid. Recently in [6], we proposed
an addressing scheme for arbitrary triangular systems by em-
ploying their isometric embeddings into the Cartesian prod-
uct of three trees. This embedding provides a simple repre-
sentation of any triangular system with only three small in-
tegers per vertex, and allows to employ the compact labeling
schemes for trees for distance queries and routing. We have
shown that each such system with � vertices admits a label-
ing that assigns � � � � � � � � bit labels to vertices of the system

such that the distance between any two vertices 	 and 
 can
be determined in constant time by merely inspecting the la-
bels of 	 and 
 , without using any other information about
the system. This provides, for example, the following com-
pact and efficient dynamic location update scheme. Each mo-
bile user stores locally, using only � � � � � � � � bits, the label
of the last base station it was registered with. Upon receiv-
ing the � � � � � � � � -bit label of a base station in cell of which
it is currently located, it computes in constant time the cell
distance between the two base stations and updates location
if the cell distance exceeds a predefined threshold. Note that
for a cellular network with at most 10000 base stations, our
label sizes will not exceed 353 bits. Additionally, we have
shown in [6] that there is also a labeling, assigning labels of
size � � � � � � � bits to vertices of a triangular system, which al-
lows, given the label of a source vertex and the label of a des-
tination, to compute in constant time the port number of the
edge from the source that heads in the direction of the desti-
nation. This provides an elegant and efficient routing proto-
col for a cellular network modeled by an arbitrary triangular
system.

Irregular cellular networks and the results of this paper.
Although a uniform configuration of BSs (which results in
uniformly-sized, hexagonal shaped cells and in a triangu-
lar system type connection between BSs) is always used in
the planning, the final base station placement may not be
uniformly distributed because in reality an obstacle such as
a river (a lake, a historic site, etc.) prevents a base station
from being placed at the planned location. Moreover, in or-
der to accommodate more subscribers, cells of a previously
deployed cellular network need to be split or rearranged into
smaller ones to make more efficient use of the limited fre-
quency spectrum allocated [4, 16]. As a result, the cell size
in one area may be different from the cell size in another area.
For instance, in a dense-populated area of a city the cell size
may be smaller than the cell size in a rural area.

Very little is known about the cellular networks with non-
uniform cell sizes or a non-uniform distribution of base sta-
tions (we call them non-uniform cellular networks). Only re-
cently, some of these issues have been partially addressed in
papers [9, 10].

In this paper, we make one step further in analyzing non-
uniform cellular networks. We do not require from BSs to
be set in a very regular pattern. Our only requirement is that
cells resulted from this BS deployment should obey the fol-
lowing property: each inner cell (cell which is not incident to
the service area boundary) has at least six neighbor cells (a
property naturally fulfilled by the hexagonal systems, where
each inner cell has exactly six neighbor cells). These non-
uniform cellular networks will be called irregular cellular
networks (see Figure 2 for an illustration). Irregular cellu-
lar networks give a more flexible way of designing a cellular
system.
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Figure 2. An irregular cellular network mod-
eled by a trigraph.

In a cellular network, the area covered by a BS can be
viewed as the Voronoi polygon [15] of the BS. Let assume
that a set � � � � � � � � � � � � � of 	 BSs is arbitrarily posi-
tioned in the Euclidean plane and a service area they cover
is given by a polygonal region 
 . Then the Voronoi poly-
gon of a BS � � will consist of all points of 
 which are
closer to � � than to any other points of � , i.e., it is a poly-
gon � � 
 � � � � � � � � 
 � � 
 � � � � � � � 
 � � � � � [15]. These
polygons divide the service area 
 into 	 cells, each of which
is associated with a BS from � . We say that a cell is an in-
ner cell if it is not incident to the boundary of the service
area 
 , and two cells are neighbor cells if the correspond-
ing polygons share a common side. Define the communica-
tion (dual) graph of this cellular system as follows: the ver-
tices of this graph are the BSs and two BSs are connected by
an edge if and only if the corresponding cells are neighbor
cells (see Figure 2). Thus, the communication graph is sim-
ply the geometric dual of the Voronoi tesselation, whence it is
nothing else but the Delaunay graph of the set � [15]. In par-
ticular, the communication graph of an irregular cellular net-
work is a plane triangulation with all inner vertices of degree
at least 6. These kind of plane triangulations were called tri-
graphs in [5].

In this paper we show that each trigraph with 	 vertices
admits a labeling scheme that assigns � 
 � � � � 	 � bit labels
to vertices of the graph such that the distance between any
two vertices � and � can be determined in constant time by
merely inspecting the labels of � and � , without using any
other information about the graph. This distance labeling
scheme allows efficient implementation of distance-based
tracking protocol in any irregular cellular network, by pro-
viding information, generally not available to the user, and
means for accurate cell distance determination. Additionally,

we show that there is also a labeling scheme, assigning la-
bels of size � 
 � � � � 	 � bits to vertices of a trigraph, which al-
lows, given the label of a source vertex and the label of a des-
tination, to compute in constant time the port number of the
edge from the source that heads in the direction of the des-
tination. This provides an elegant and efficient routing and
connection re-routing protocols for all irregular cellular net-
works. Note that these results can find applications also in
other types of wireless networks having a fixed backbone in-
frastructure.

2. Geometric properties of trigraphs

In this section, we provide all necessary definitions and
the geometric properties (named (P1)-(P4)) of trigraphs on
which our distance and routing labeling schemes are based.
Most of these properties have been established in [7] in a
more general context; see also [1] for other related prop-
erties of trigraphs. All graphs � � 
 � � � � occurring in
this paper are trigraphs, i.e., undirected, unweighted, con-
nected, 	 -vertex plane graphs [15, 17] such that all inner
faces are triangles and all inner vertices have degree at least
6. The distance � 
 � � � � � � � � 
 � � � � between two vertices

� and � is the length of a shortest 
 � � � � -path. For a ver-
tex � and a subset of vertices � � the distance from � to �
is � 
 � � � � � �  ! � � 
 � � " � � " � � � � An induced subgraph of

� (or the corresponding vertex set) is called convex if it in-
cludes all shortest paths between any of its vertices. For a set

� # � and a vertex $ of � � the projection � % 
 $ � � � of $ on
� consists of all vertices � � � at minimum distance from

$ � Notice that, for a convex set � # � and any pair of ver-
tices " � � and $ � � & � � there is a shortest path from $ to

" passing through � % 
 $ � � � �
Two neighbors $ � ' of a vertex � of � are called consec-

utive if � � $ � ' belong to a common inner face of � � For an
edge � � of a graph � , define the following partition of the
vertex set � :

( 
 � � � � � � � $ � � � � 
 $ � � � ) � 
 $ � � � � �
( 
 � � � � � � � $ � � � � 
 $ � � � ) � 
 $ � � � � �

( * 
 � � � � � � $ � � � � 
 $ � � � � � 
 $ � � � � �
For a graph � � 
 � � � � and a vertex $ � let + 
 $ � � �

, - . � 
 $ � � � � Any vertex minimizing the function + is
called a median vertex of the graph � � Notice the follow-
ing simple but important property of the function + � if � � is
an edge of � � then + 
 � � & + 
 � � � / ( 
 � � � � / & / ( 
 � � � � / �
From this we immediately conclude that if � is a median ver-
tex of � � then / ( 
 � � � � / � / � / 0 1 for any neighbor � of � � A
linear-time algorithm for computing medians of trigraphs is
proposed in [8].

A cut � 2 � 3 � of � is a partition of the vertex-set � into
two parts, and a convex cut is a cut in which the halves 2
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�

�

� � � �
� � � � � �

� � � � � �

Figure 3. A convex cut � 	 
 � � 
 its zone 
 � 	 
 � � 

its border lines � 	 and � � and the set � � 	 
 � �
of edges crossed by this cut.

and � are convex. Denote by � � 	 
 � � the set of all edges
of � having one end in 	 and another one in � 
 and say
that those edges are crossed (or cut) by � 	 
 � � � The zone


 � 	 
 � � of the cut � 	 
 � � is the family of inner faces (tri-
angles) of � sharing edges with � � 	 
 � � (see Figure 3 for
an illustration). A zone 
 � 	 
 � � is called a strip if the faces
of 
 � 	 
 � � induce a simple path in the dual graph of � and
two faces � � 
 � � � of 
 � 	 
 � � intersect if and only if they
share an edge of � � 	 
 � � � We will use the same notation


 � 	 
 � � for the (plane) subgraph of � induced by the ver-
tices and the edges occurring in the faces of this zone. The in-
ner faces of this graph are exactly the inner faces of � from


 � 	 
 � � . For a strip 
 � 	 
 � � , call the subgraphs induced by
� 	 � � 
 � 	 
 � � � 	 and � � � � 
 � 	 
 � � � � the border
lines of the cut � 	 
 � � �

We continue with the definition of an alternating cut. Sup-
pose that all inner faces (triangles) of � are oriented clock-
wise. An edge � of a triangular face � has two opposite
edges, a left opposite edge � � and a right opposite edge � � �
We say that the cut � 	 
 � � makes a right or a left turn on a
face � � 
 � 	 
 � � depending on which of the pairs � � 
 � � �
or � � 
 � � � it crosses. A cut � 	 
 � � of a plane triangulation

� is alternating if the turns on it alternate. As was shown in
[1, 7], the following property holds for all trigraphs.

(P1) The alternating cuts of trigraphs are all convex, their
border lines are convex paths and their zones are strips
sharing two edges with � � 
 the boundary of the plane
graph � .

As a consequence, every edge of � is crossed by exactly two
alternating cuts. Notice also, that

(P2) The projection of a vertex � on the zone of an alternat-
ing cut is a convex path whose vertices have the same
distance to � .

Thus, information about this projection of vertex � can be
compactly represented by the end vertices of this path and
the distance from � to the projection. Also, for routing mes-
sages from � via the zone 
 � 	 
 � � of an alternating cut, the
following property is crucial.

(P3) Either � has a neighbor which is one step closer to

 � 	 
 � � and whose projection on this zone coincides
with that of � , or there exist two neighbors � � and  � of

� one step closer to the zone and whose projections on

 � 	 
 � � cover the projection of � .

We will keep at � the information about such neighbors and
use it in the routing decision.

Let � � � ! be an edge of � � and let � 	 � 
 � � � and
� 	 � � 
 � � � � be the (not necessarily distinct) alternating cuts
crossing � , where � � 	 � � 	 � � and ! � � � � � � � � We
will specify now a relation between 	 � 
 � � 
 	 � � 
 � � � and the
sets

" � � 
 ! � 
 " � ! 
 � � 
 " # � � ! � � By removing the edges of
� � 	 � 
 � � � $ � � 	 � � 
 � � � � from � but leaving their end ver-
tices, we get a graph whose connected components are in-
duced by the pairwise intersections 	 � � 	 � � 
 � � � � � � 
 	 � �

� � � 
 and 	 � � � � � � It is established in [7] that these convex
sets coincide with

" � � 
 ! � 
 " � ! 
 � � and the connected com-
ponents of

" # � � ! � � More precisely, the following holds:" � � 
 ! � � 	 � � 	 � � 
 " � ! 
 � � � � � � � � � 
 while
" # � � 
 ! � � �

� � � 	 � � and
" # � ! 
 � � � � 	 � � � � � constitute a partition of" # � � ! � into two (maybe empty) convex subsets (Figure 4a).

Finally, the following partition into cones of a trigraph �
will be very useful for our labeling schemes. Let  be a me-
dian vertex of � 
 called the pivot of the partition, and let

� % 
 � & 
 � � � 
 � ' � & be its neighbors in counterclockwise order
around  
 according to the embedding of � in the plane. Ev-
ery edge  � ( is crossed by two alternating cuts � 	 � ( 
 � �( � and

� 	 � �( 
 � � �( � such that  � 	 � ( � 	 � �( and � ( � � �( � � � �( � Let
us orient the cuts � 	 � ( 
 � �( � and � 	 � �( 
 � � �( � such that  is on
the left border line of each of them. In this case, we will de-
note by � 	 � ( 
 � �( � that cut from the two alternating cuts sep-
arating � ( and  , such that the last turn before � (  is on the
right and the next turn after � (  is on the left. For each ver-
tex � ( , set ) * � � ( � � � �( � 	 � ( � & + , - . ' / and call ) * � � ( � a
cone with apex � ( � Every cone is convex as the intersec-
tion of two convex sets. Since ) * � � ( � 0 " � � ( 
  � and  
is a median vertex, we obtain 1 ) * � � ( � 1 2 3 4 5 � Furthermore,
the cones ) * � � % � 
 � � � 
 ) * � � ' � & � together with the vertex  
form a partition of the vertex-set of � (see Figure 4b). To re-
port the distance or a routing path between two query ver-
tices � and ! efficiently, yet another property of the par-
tition ) * � � % � $ � � � $ ) * � � ' � & � $ �  � is significant. We
call two neighbors � ( 
 � 6 of  7 -consecutive and their cones

) * � � ( � 
 ) * � � 6 � 7 -neighboring if min � 1 8 9 : 1 
 ; 9 1 8 9 : 1 � � 7 �
(P4) If ) * � � ( � , ) * � � 6 � are not 7 -neighboring for 7 2 5 and

� � ) * � � ( � , ! � ) * � � 6 � 
 then < � � 
 ! � � < � � 
  � =
< �  
 ! � .
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� � � � � � � � � 	 � � �
 � �


 � � � � � � � � � � � � 	 � � �

 � � �


 � �

�



� � � � � � � � � � 	 � � � � � � � � � � � � � 	 � � �

a)

�

� � � � � �

� �

�

�

��
�

b)

Figure 4. a) The pair of alternating cuts cross-
ing the edge � � � � ; b) The partition into cones
around the vertex � . Since � and � lie in  -
neighboring cones, we have ! " � # � $ � ! " � # % $ &

! " % # ' $ & ! " ' # � $ ( On the other hand, � and �
lie in ) -neighboring cones implying ! " � # � $ �

! " � # � $ & ! " � # � $ (

3. An overview of the method

Our distance and routing labeling schemes are based on
the geometric properties (P1)-(P4) of trigraphs presented in
the previous section and use a hierarchical subdivision of the
input trigraph * into cones. Namely, let � be a median vertex
of * and let + , " - . $ / ( ( ( / + , " - 0 1 2 $ / 3 � 4 be the partition
of * into cones (as defined in previous section). We recur-
sively subdivide into cones the subgraph * 5 induced by the
cone + , " - 5 $ for 6 � 7 # 8 #  # ( ( ( # 9 : 8 ( This suggests the ne-
cessity of building a decomposition tree ; " * $ of * # by tak-
ing pair " * # � $ to be the root and connecting the root of each
tree ; " * 5 $ as a child of " * # � $ . It is easy to see that a decom-
position tree ; " * $ of a graph * with < vertices has depth at
most = > ? @ < and can be constructed in A " < = > ? < $ time. In-
deed, in each level of recursion we need to find median ver-
tices of current subgraphs (which can be done in linear time
[8]) and to construct the corresponding cones. Also, since the

graph sizes are reduced by a factor 1/2, the recursion depth
is A " = > ? < $ .

Every vertex � B C belongs to at most A " = > ? @ < $ cones
in this subdivision. In order to compute the distances from

� to any other query vertex � or to route a message arriv-
ing in � # we keep in � the distances from � to the pivots
and to the zones of alternating cuts defining these cones, as
well as a compact (thanks to property (P2)) representation
of the metric projections of � on these zones. Now, given

� and � , in order to report the distance ! " � # � $ , we com-
pute the highest level of the subdivision such that � and �
lie in different cones. This can be done in constant time us-
ing the labeling scheme for depths of nearest common an-
cestors (NCA-depth labeling scheme) described below. If the
respective cones are neither 8 - nor  -neighboring then, ac-
cording to (P4), the distance ! " � # � $ is simply the distance
from � to the corresponding pivot � plus the distance from
the pivot to � # i.e., ! " � # � $ � ! " � # � $ & ! " � # � $ ( Other-
wise, if the cones containing � and � are 8 or  -neighboring,
then, according to (P1), ! " � # � $ is obtained as the sum of
the distances from � and from � to their respective projec-
tions % and ' on the zone of an alternating cut separating
them plus the distance between these two projections, i.e.,

! " � # � $ � ! " � # % $ & ! " % # ' $ & ! " ' # � $ (see Figure 4b). As
it will be shown in Section 3, the simple structure of an alter-
nating cut allows to compute the distance between two pro-
jections on its zone in A " 8 $ time.

Routing between � and � can be performed by convert-
ing the distance labeling scheme in the following way. To
route a message from � to � lying in different cones, addi-
tional to distances, we have to store in the label of � the out-
put port number of the first edge on a shortest path from � to
the pivot and, according to (P3), the output port number of
the first edge on a shortest path from � to each of the two end
vertices of the projection of � on the 1-neighboring as well
as 2-neighboring cones, or more precisely on the zones sep-
arating the respective cones. If � is its own projection on the
zone between � and � # we consider the relative position of �
and the projection of � on the zone to decide in constant time
via which edge the message should be sent.

As it was mentioned above, for the tree ; " * $ we need
a labeling scheme for depths of nearest common ances-
tors (NCA-depth labeling scheme). In [14] such a scheme
with A " = > ? @ < $ bit labels and with A " = > ? < $ query time was
presented for any tree with < nodes. The scheme assigns

A " = > ? @ < $ bit labels to nodes of the tree such that the depth
of the nearest common ancestor of any two query nodes can
be determined in A " = > ? < $ time by merely inspecting their
labels, without using any other information about the tree.
Here, we can use the fact that ; " * $ has the A " = > ? < $ depth
and get constant query time in this case. To do this one can
simply translate the technique of Harel and Tarjan [11] to a
labeling scheme. Note that whenever they access global in-
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formation, it is associated with an ancestor in a tree. Since
the depth of our tree is � � � � � � � , one can copy this ancestor
information down to each descendant and get the desired la-
bel of � � � � � � � � bits. Thus, tree � � 	 � can be preprocessed
in � � � � � � � � time for depths of nearest common ancestors.
This preprocessing step creates for � � 	 � an NCA-depth la-
beling scheme with � � � � � � � � bit labels and constant query
time.

4. Distance and routing labeling schemes

4.1. Computing the distance between 
 � � , 
 � �
In this section, we establish how to compute the dis-

tance � � � � � � between two vertices � � � and � � � �
where � � � � � is an alternating cut with the zone � � � � � � �
We will use the short-hands � � � � � � � � � � � � � � � and

� � � � � � � � � � � � � � � � The distance between � and � can be
computed using the formula � � � � � � � � � � � � � � � � � � � � �

� � � � � � whose correctness is provided by (P1).
Pick an edge  ! � " � � � � � # $ 	 � where  � $ � �

! � $ � � and $ � is the left border line of � � � � � � � Sup-
pose, without loss of generality, that the last turn of " � � � � �
before the edge  ! is to the right (the other case being anal-
ogous). Due to the simple structure of the zone of an alter-
nating cut presented in Section 2, the distance between two
vertices % � $ � and & � $ � is

' ( ) * + , - ' ( + * . , / ' ( ) * 0 , 1 2
if

' ( ) * 0 , 3 ' ( + * . ,
' ( ) * 0 , / ' ( + * . ,

if
' ( ) * 0 , 4 ' ( + * . , 5 (1)

Also, the distance between a subpath � of $ � having
% 6 � % 6 6 as end-vertices (with � � % 6 �  � 7 � � % 6 6 �  � ) and a sub-
path � of $ � having & 6 � & 6 6 as end-vertices (with � � & 6 � ! � 7

� � & 6 6 � ! � ) can be computed in constant time from the dis-
tances � � % 6 �  � � � � % 6 6 �  � � � � & 6 � ! � � � � & 6 6 � ! � � by using the fol-
lowing formula (see Figure 5):

' ( 8 * 9 , : -
' ( ) ; ; * + ; ,

if
' ( ) ; ; * 0 , 3 ' ( + ; * . ,

' ( ) ; * + ; ; ,
if

' ( ) ; * 0 , 4 ' ( + ; ; * . ,
2

otherwise.
(2)

In view of these formulas, the function distance graphs
defined below can retrieve � � � � � � in � � < � time from the la-
bel

1 2 3 4

= > � � � < � � � � � � � � � � % 6 �  � � � � % 6 6 �  � �
of � � � and the label

1 2 3 4

= ? � � � @ � � � � � � � � � � & 6 � ! � � � � & 6 6 � ! � �
of � � � where % 6 � % 6 6 are the end vertices of � and & 6 � & 6 6

the end-vertices of � � The first entry in = > (and in = ? ) is a
bit that indicates if the last turn of " � � � � � , before the edge

A B

C D E F

G
H I

H I I

J I

J I I
K

C D L F

A B

C D E F C D L F

H I I
H I

G J I

b) c)

H I I
H I

G

J I I
J I
K

A B

C D E F C D L F
a)

J I I
K

Figure 5. Illustration to formulas (1) and (2):
a) � � � � � � � � � % 6 6 � & 6 � � � � ! � & 6 � M � �  � % 6 6 � � < ;
b) � � � � � � � � � % 6 � & 6 6 � � � �  � % 6 � M � � ! � & 6 6 � ; c)

� � � � � � � < �

 ! , is to the right. If the last turn is to the left, we need to
interchange the roles of � and � in the consideration.

function distance graphs(� N * � O )
if � N ( 2 , - �

then /* rename inputs */ set� : - � N * � N : - � O * � O : - �
if � N ( � , 3 � O ( � ,

then
return � N ( � , 1 ( � O ( � , / � N ( � , 1 2 , 1 � O ( � ,

else if � N ( � , 4 � O ( � ,
then

return � N ( � , 1 ( � N ( � , / � O ( � , , 1 � O ( � ,
else return � N ( � , 1 2 1 � O ( � ,

4.2. Distance decoder

Here we explain how, using the decomposition tree � � 	 � �
one can find the distance between any two vertices of 	 �
First, we will describe the labels of vertices of 	 �

Let P be a median vertex of 	 (which we assume to
be an inner vertex), and let Q R � � � � � Q S T U be its neighbors
in counterclockwise order around P � Recall that the cones

V W � Q X � , Y � � @ � � � � � Z M < � of 	 were defined as follows:
V W � Q X � � � 6X # � 6 X [ U D \ ] ^ S F . Each vertex � � _ � V W � Q X �
is separated from a vertex � � V W � Q X � by zone � � � 6 X � � 6X �
or by zone � � � 6 X [ U � � 6X [ U � . From (P1) we know that, if two
vertices � and � lie in two < -neighboring or ` -neighboring
cones, then � � � � � � is realized via their projections on the
zone separating these cones, and, from (P4), if � and �
belong to % -neighboring cones with % � ` � then � � � � � �
is realized via P � For any vertex � � V W � Q X � and index

a � Y � Y � < � Y � ` � � 	 � Z � , let = b> be the distance la-
bel of � with respect to the cut � � 6 b � � 6b � ( = > was defined
in the previous subsection with respect to an arbitrary cut

� � � � � ). Let also 	 X be a subgraph of 	 induced by V W � Q X �
(Y � � @ � � � � � Z M < � ).

Assume that a decomposition tree � � 	 � of 	 and its
NCA-depth labeling scheme are given. For a vertex � of 	 ,
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let � � � � be the deepest node of � � � � containing � and � �
be the label of � � � � in the NCA-depth labeling scheme. Let
also � � 	 � 
 	 � � � 	 � � be the nodes of the path of � � � � from
the root � � 	 � � (which is � � ) to the node � � � � 
 � � .

In the distance labeling, the label � � � � will be the con-
catenation of � � 	 and � � � tuples � �� 	 � �
 	 � � � 	 � �� where � ��

� � � � � 	 � � � 	 � � � is defined as follows. Let � � be a node
� � � 	 � � � of � � � � � Assume that � belongs to a cone � � � � � � �
of � � for some � � � � 	 � � � 	 � � � � � � � � � � (here � � � � � � � is the
degree of vertex � � in the graph � � ). Then,

1 2 3 4 5 6� �� � �  � ! 	 
 �  � � " ! # 
 �  � ! � � " ! 
 �� ! 
 � � �� ! 
 � � �� " !

where zones and projections are considered in graph � � . If
� 
 � � , we set �

� �� $ 
 � � � � � � � � 	 � � � � � � � 	 � 	 � 	 � 	 � � �
Since the depth of � � � � is % � & ' ( ) � , � � � � is of length

% � & ' ( * ) � bits for any � � + . Note that computation
of those tuples can be incorporated into the algorithm of
building � � � � , leading to an % � ) & ' ( ) � time computa-
tion of all labels � � � � 	 � � + (for a graph � � , the paths

, - � � 	 . � � / 0 	 1 /0 � � (2 
 � 	 � � � 	 � � 3 ) and corresponding
distances can be computed by running Bread-First-Searches
from � � and . � � / 0 	 1 /0 � (2 
 � 	 � � � 	 � � 3 )).

Algorithm DISTANCE DECODER: Distance decoder for tri-
graphs.

Input: two labels �  � " � � � � � �� � � �
� � � � � � � �� and �  � " �

� 4 � � 4� � � 4
� � � � � � � 4� .

Output:
#  � ! � "

, the distance between
�

and
�

in � .
Method:

use
� � and

� 4 to find the depth � in �  � "
of

the nearest common ancestor of �  � "
and �  � "

;
extract from �  � "

and �  � "
the tuples � �� and � 4� ;

if � ��  5 " � � ��  � "
then output � 4�  � "

and stop; /*
� � � � */

if � 4�  5 " � � 4�  � "
then output � ��  � "

and stop; /*
� � � � */

/* if the cones are 1-neighboring */
if � ��  5 " � � 4�  5 " 6 5

or � 4�  5 " �  
and � ��  5 " � � ��  � " 6 5

then output distance graphs(� ��  ! " ! � 4�  " "
) and stop;

if � 4�  5 " � � ��  5 " 6 5
or � ��  5 " �  

and � 4�  5 " � � ��  � " 6 5
then output distance graphs(� 4�  ! " ! � ��  " "

) and stop;
/* if the cones are 2-neighboring */
if (� ��  5 " � � 4�  5 " 6 �

or � 4�  5 " �  
and � ��  5 " � � ��  � " 6 �

or � 4�  5 " � 5
and � ��  5 " � � ��  � " 6 5

) then output
distance graphs(� ��  # " ! � 4�  " "

) and stop;
if (� 4�  5 " � � ��  5 " 6 �

or � ��  5 " �  
and � 4�  5 " � � ��  � " 6 �

or � ��  5 " � 5
and � 4�  5 " � � ��  � " 6 5

) then output
distance graphs(� 4�  # " ! � ��  " "

) and stop;
else output � ��  � " 7 � 4�  � "

.

4.3. Routing from 8 9 : to ; 9 <
From (P3), we know that any vertex � � � has one or two

neighbors � � and � � such that $ � � 	 = � > � � � 	 � � � %
 & for any
vertex = � 1 (here, $ � � 	 = � $ 
 � � � + $ ? � � 	 � � � ? � � 	 = � 


? � � 	 = � � ). Thus, the message from � should be forwarded to
that of these neighbors which is closer to = � If � � � ' @ � 	

then � � 	 � � � � and this decision can be made in % � � �
time by decoding the distances ? � = 	 � � � and ? � = 	 � � � � Define

� A ( B � � � � to be equal to 1 if � and � � are separated by the cut
� � 	 1 � and 0 otherwise ( � A ( B � � � � 	 � A ( B � � C � 	 � A ( B � � C � are
defined analogously). Then, in this case we can make a rout-
ing decision in % � � � time from the label

1 2 3 4 5) � � �  
 � ! 
 * D ! 
 + D ! E , - .  � ! � � " ! E , - .  � ! / � " !
6 70 1 � E  � � " ! 0 1 � E  / � " "

of � and the label F C of = � 1 (vice versa, to route from
= � 1 ' @ 1 to � � � we need the label

1 2 3 4 5) 4 � �  
 4 ! 
 * G ! 
 + G ! E , - .  � ! � 4 " ! E , - .  � ! / 4 " !
6 70 1 � E  � 4 " ! 0 1 � E  / 4 " "

of = and the label F � of � ).
We assert that the same labels H � and H C suffice for a

routing decision in case � � @ � � The neighbors � � and � �
of � are either both vertices of @ 1 	 or one of them belong
to @ � and another to @ 1 � In the second case only the dis-
tance from = to the vertex of @ � can be decoded using H �
and H C , say ? � � � 	 = � � If ? � � 	 = � 
 ? � � � 	 = � � � 	 then the mes-
sage is forwarded to � � 	 otherwise it is sent to � � � Finally, if

� � 	 � � � @ 1 	 then the routing decision can be taken by em-
ploying the items ? � I 	 � / � 	 ? � I 	 � / / � of F C (here � / and � / / are
the end vertices of , - � = 	 . � � 	 1 � � � �

function routing decision(
) � ! ) 4 )

if
) �  # " 2� 5

then
if distance graphs

 ) �  5 " ! ) 4  5 " " �
distance graphs

 ) �  � " !
) 4  5 " " 7 5

then output
) �  " "

else output
) �  ! "

else if
) �  3 " 2� 5

then
if distance graphs

 ) �  5 " ! ) 4  5 " " �
distance graphs ) �  � " ! ) 4  5 " " 7 5

then output
) �  ! "

else output
) �  " "

else extract 
 4  " "
from

) 4  5 "
extract 
 * D  � "

from
) �  � "

extract 
 + D  � "
from

) �  � "
if 
 + D  � " J 
 * D  � "

then
if 
 4  " " J 
 + D  � "

then output
) �  ! "

else output
) �  " "

else if 
 4  " " J 
 * D  � "
then output

) �  " "
else output

) �  ! "

4.4. Routing decision

Here we explain how, using the decomposition tree � � � � 	
one can route between any two vertices of � � The method is
very similar to the one we used for distance decoding.

Let again � be a median vertex of � and � � 	 � � � 	 � K L 

be its neighbors in counterclockwise order around � . For any
vertex � � � � � � � � and index 2 
 � 	 � � � 	 � � 3 � 4 5 ? M � ,
denote by H 0� the routing label of � with respect to the cut

� � / 0 	 1 /0 � ( H � was defined in the previous subsection with
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respect to an arbitrary cut � � � � � ). Let � � � � be the deep-
est node of the decomposition tree 	 � 
 � of 
 containing

� and � � be the label of � � � � in the NCA-depth labeling
scheme of 	 � 
 � . Let also � � � � 
 � � � � � � � be the nodes of the
path of 	 � 
 � from the root � 
 � � � (which is � � ) to the node

� � � � � � � . Denote as before by 
 � a subgraph of 
 in-
duced by � � � � � � (� � � � � � � � � � � � � ).

In the routing labeling scheme, the label � � � � will be the
concatenation of � � � and � � � tuples � �� � � � 
 � � � � � � �� where

� �� � � � � � � � � � � � � � is defined as follows. Let � � be a node
� 
 � � � � � of 	 � 
 � � Assume that � belongs to a cone � � � � � � �
of 
 � for some � � � � � � � � � � � � � � � � � � � � Then,

1 2 3 4 5� ��  ! " � # 	 
 � " � � $ # % � 
 � 
 � " � # � � $ # � �� # � � � �� #
6 7� � � �� # % � 
 � 
 � " � � # � $ $ &

If � � � � , we set �
� �� ' � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Clearly, again � � � � is of length ( � ) * + , - � bits for any
� � . and computation of those tuples can be incorpo-
rated into the algorithm for building 	 � 
 � , leading to an

( � - ) * + - � time computation of all labels � � � � � � � . (for
a vertex � of a graph 
 � , the special neighbors � /� and

� /� can be computed by running Bread-First-Searches from
0 � � 1 / � � 1/ � (2 � � � � � � � � � 3 )).

Algorithm ROUTING DECISION: Routing decision for tri-
graphs.
Input: two labels � " � $ ! � � � � �� � � �

� � � � � � � � � and � " � $ !
� 4 � � 4� � � 4

� � � � � � � 4 � .
Output:

% � 
 � 
 " � # � $
, the port number of the first edge on a short-

est path from
�

to
�

in � .
Method:

use
� � and

� 4 to find the depth � in � " � $
of

the nearest common ancestor of � " � $
and � " � $

;
extract from � " � $

and � " � $
the tuples � � and � 4  ;

if � � " 5 $ ! � � " ! $
then output � 4  " " $

and stop; /*
� ! � � */

if � 4  " 5 $ ! � 4  " ! $
then output � � " # $

and stop; /*
� ! � � */

/* if the cones are 1-neighboring */
if � � " 5 $ ! � 4  " 5 $ 6 5

or � 4  " 5 $ ! $
and � � " 5 $ ! � � " ! $ 6 5

then output routing decision(� � " % $ # � 4  " & $
) and stop;

if � 4  " 5 $ ! � � " 5 $ 6 5
or � � " 5 $ ! $

and � 4  " 5 $ ! � � " ! $ 6 5
then output routing decision(� � " & $ # � 4  " % $

) and stop;
/* if the cones are 2-neighboring */
if � � " 5 $ ! � 4  " 5 $ 6 !

or � 4  " 5 $ ! $
and � � " 5 $ ! � � " ! $ 6 !

or � 4  " 5 $ ! 5
and � � " 5 $ ! � � " ! $ 6 5

then output
routing decision(� � " ' $ # � 4  " & $

) and stop;
if � 4  " 5 $ ! � � " 5 $ 6 !

or � � " 5 $ ! $
and � 4  " 5 $ ! � � " ! $ 6 !

or � � " 5 $ ! 5
and � 4  " 5 $ ! � � " ! $ 6 5

then output
routing decision(� � " & $ # � 4  " ' $

) and stop;
else output � � " # $

.
Thus, we have

Theorem. The family of - -vertex trigraphs admits distance
and routing labeling schemes with labels of size ( � ) * + , - �
bits per vertex and constant time distance and routing deci-
sions. Moreover, the schemes are constructable in ( � - ) * + - �
time.

5. Conclusion

We conclude this paper with two related open problems
not addressed in this work.

Deployment Problem: Given a service area 7 with ob-
stacles and demands (different subregions may have differ-
ent demands), deploy minimum number of BSs (perhaps, re-
using the maximum number of old BSs) such that the de-
ployed BSs cover entire region 7 (satisfying all demands)
and their communication graph is a trigraph.

Channel Assignment Problem: Investigate the problem of
optimal � � 8 
 � 8 , � � � � � 8 9 � -coloring [3] in trigraphs.

Our future plans are to address these issues.
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