
Applying Dynamic Change Impact Analysis in Component-based Architecture
Design

Tie Feng
College of Computer Science and Technology

Jilin University, China
Changchun Jilin 130012

fengtie@jlu.edu.cn

Jonathan I. Maletic
Department of Computer Science

Kent State University, US
Kent Ohio 44242

{hkagdi, collard, jmaletic}@cs.kent.edu

Abstract
Change impact analysis plays an important role in
maintenance and evolution of component-based software
architecture. Viewing component replacement as a
change to composition-based software architecture, this
paper proposes a component interaction trace based
approach to support dynamic change impact analysis at
software architecture level. Given an architectural
change, our approach determines the architecture
elements causing the change and impacted by the change.
Firstly, component-based software architecture and
component interaction trace are defined. An algorithm
for generating component interaction trace from static
structure model of software architecture and UML
sequence diagram is provided. Secondly, the taxonomy of
changes on composition-based software architecture is
presented, according to which a set of impact rules are
suggested to determine the transfer of the changes in
component and among components. Thirdly, by
performing slicing on component interaction traces
according to impact rules, the impact analysis results are
obtained. Finally, the architecture design of SOCIAT, a
tool supporting our approach, is developed and explained.

Keywords: Change impact analysis, software architecture,
component composition, program slicing

1. Introduction

Frequent changes and expansion to legacy system
cause unexpected influence on the other parts of it.
Component-based software engineering is an effective
way to alleviate this problem to some extent, because the
internal information of the component is not available to
the public and components only communicate through
their interfaces.

However, it is never a simple procedure to retrieve
proper components from component repository and
replace the old ones with them so that changed system
functionality and performance are obtained. In many
cases, the existing components have less or more services

provided and requiring than expected ones. Besides
customizing the retrieved components or developing new
components, change impact analysis is also an effective
way to support maintenance and evolution of component
based software development by determining subsequent
changes, if component replacement is considered as a
change to legacy system.

Change impact analysis is to identify the potential
consequences of a change or estimate what needs to be
modified to accomplish a change [1]. Much effort has
been made to study static and dynamic change impact
analysis technologies at the code level of software
systems. However, very few techniques have been
proposed to support change impact analysis on
component composition at software architecture level,
and much fewer research have been conducted to support
dynamic change impact analysis on component
composition at this abstract level.

On the other hand, composition based software
architecture of a system defines its high-level structure,
exposing its gross organization as a collection of
interacting components [2]. It offers a way to partition
complex systems into well-defined parts [3, 4]. We try to
apply change impact analysis to composition based
software architecture in order to support software
architecture maintenance and evolution.

It is important to understand dynamic analysis on
component composition at architecture level to determine
our research scope. Our approach considers the system
dynamic behaviors at a rather higher level and focus on
studying effects on software product of adding or
removing components at runtime. Starting from
component interaction traces describing the interaction
sequences among components through their interfaces,
our approach study the impacts of changes on
architectural elements according to a special system
execution with a set of given inputs or interaction
triggered by user.

In order to develop dynamic change impact analysis
technique on composition based software architecture,
interaction mechanism and composition model among
components of architecture are required. In this paper,

Proceedings of the Seventh ACIS International Conference on Software Engineering,
Artificial Intelligence, Networking, and Parallel/Distributed Computing (SNPD’06)
0-7695-2611-X/06 $20.00 © 2006 IEEE

components are integrated together through interfaces and
methods in them. Moreover, a dynamic component
composition model is defined and derived from static
structure model of component composition and a set of
UML sequence diagrams describing object interaction.
Then the dynamic change impact analysis is
accomplished through slicing on component interaction
traces. The slicing criterion is constructed on intra-
component and inter-component impact rules for
taxonomy of changes of interface and methods of
components.

2. Composition based software architecture

The software architecture of a system is the structure
or structures of the system, which comprise software
components, the externally visible properties of those
components, and the relationships among them. In this
paper, composition based software architecture is defined
as a special kind of software architecture in which
component is considered as the first-class entity and
connectors is not obviously modeled. Components are
integrated together through interfaces to achieve special
system functionality.

2.1. Component and interface

Each component comprises a set of interfaces and the
application logic [5]. Interfaces can be divided into two
categories: provider interface providing services to other
components or external environment, and requirement
interface requiring services from other components or
external environment. Each interface is consist of a set of
methods indicating the identifications of provided
services or required ones. The structure of an example
component C is shown in Fig. 1. Component C has 2
provider interfaces (Ip1 and Ip2) and 2 requirement
interfaces (Ir1 and Ir2). Interface Ip1 is composed with 2
methods, each of which indicates a service C provides
through interface Ip1.

Fig. 1. An example of component

To demonstrate our approach, we introduce following
primitives in Table 1.

Table 1. Primitive for Component, Interface and Method

Primitives Parameters Return
Interface C: Component A set of interfaces of component C

PorR I: Interface Provider if I is a provider interface,
Requirement otherwise

Method I: Interface A set of methods of interface I
Definition 1: Initial Component. Let C be a

component, if for∀ I∈Interface(C), PorR(I)=Requirement,
then we say C is an initial component.

Definition 2: Final Component. Let C be a component,
if for∀ I∈Interface(C), PorR(I)=Provider, then we say C
is an final component.

Components communicate through their interfaces and
there are three kinds of relationships between two
interfaces: interface equivalence, interface satisfaction
and interface inclusion.

Definition 3: Interface Equivalence. Let C1 and C2 be
two components, if ∃ I1 ∈ Interface(C1) ∧ I2 ∈ Interface
(C2) so that (PorR(I1)=PorR(I2)) ∧ (Method(I1) =
Method(I2)), then we say interface I1 is equivalent to
interface I2, which is denoted as I1 ≡ I2.

Definition 4: Interface Satisfaction. Let C1 and C2 be
two components, if ∃ I1∈Interface(C1) ∧ I2∈Interface(C2),
so that (PorR(I1) =Provider ∧ PorR(I2)=Requirement) ∧
(Method(I1) ⊇ Method(I2)), then we say interface I1

satisfies interface I2, which is denoted as I1 I2.
Definition 5: Interface Inclusion. Let C1 and C2 be two

components, if ∃ I1∈ Interface(C1) ∧ I2∈ Interface(C2), so
that (PorR(I1)=PorR(I2)) ∧ (Method(I1) ⊇ Method(I2)),
then we say interface I1 includes interface I2, which is
denoted as I1 ≥ I2.

From above definitions, it is obvious that interface
equivalence is a special example of interface inclusion.
That is to say if I1 ≥ I2 ∧ I2 ≥ I1, then I1 ≡ I2.

2.2. Static structure model of composition

Static structure model is composed of components and
connection among components according to interface
inclusion and interface satisfaction. We develop two
composition rules to configure components as follows.

Rule 1: Let I1 and I2 are two interfaces of two different
components C1 and C2, if it is satisfied that (I1 ≥ I2)
∧ (PorR(I1)=PorR(I2)=Provider), then we create a new
provider interface I’=I1.

Rule 2: Let I1 and I2 are two interfaces of two different
components C1 and C2, if it is satisfied that I1 I2, then the
binding of the two interfaces indicates that the service
required by C2 through interface I2 is provided by C1
through interface I1.

For example, Fig. 2 shows an example of application
of rule 1 and rule 2. Rule 1 is applied between Ip1and Ip2
and a new provider interface Ip is created. Rule 2 is
applied between Ip and Ir3, Ip3 and Ir1, Ip4 and Ir2.Of course,

Proceedings of the Seventh ACIS International Conference on Software Engineering,
Artificial Intelligence, Networking, and Parallel/Distributed Computing (SNPD’06)
0-7695-2611-X/06 $20.00 © 2006 IEEE

the application of rules must meet the prerequisite of the
rules.

Fig. 2. An example of static structure model of composition-
based software architecture

2.3. Dynamic interaction model of composition

Dynamic interaction model represents the interactions
among components through their interfaces. Taking the
static structure model shown in Fig. 2 for instance, two
possible dynamic interactions among components are
shown in Fig. 3 (a) and Fig. 3 (b). In this paper, we
introduce a new concept of component interaction trace to
describe the dynamic behavior model of composition. It is
the foundation of our approach on change impact analysis.

Fig. 3 (a). One possibility (b). Another possibility

Definition 6: Component Interaction Trace (CIT).
<CIT>=<CompName>

|<CIT>“(”<InterfacePair>“)”<CompName>
|<CIT><Mark>“(”<InterfacePair>“)”<CompName>

<Mark>=“r”|“r”<Mark>
<InterfacePair>=<RequirementIName>“:”<ProvIName>

 “r” indicates the return of control.
For example, the component interaction trace for

dynamic interaction models shown in Fig. 3 (a) is C4
(Ir3:Ip2) C1 (Ir1:Ip3) C3 rr (Ir3:Ip1) C2 (Ir2:Ip4) C3 rr and the
component interaction for Fig.3 (b) is C4 (Ir3:Ip1) C2 (Ir2:Ip4)
C3 rr.

In practical development of software systems using
UML, the static structure model of composition and the
interaction model of objects could be modeled through
modified UML component diagrams and sequence
diagrams. However, there is no automatic method
generating dynamic interaction model of composition and
component interaction trace. To perform dynamic change
impact analysis on CIT, we present an algorithm as
follow to automatically generate one CIT from static
structure model and sequence diagram.

Input: Static Structure Model(SSM) and a Sequence
Diagram
Output: CIT describing component dynamic interactions
1 Traverse the sequence diagram to create a vector V

in which each element is a message.
2 Every message has the structure of <BeginObject,

MessageName, EndObject>.
3 CIT=Component which includes the BeginObject of

the first message.
4 For each V[i]
5 For each component Cj in SSM
6 For each service interface Ipk of Cj
7 If V[i].MessageName∈Method(Ipk)
8 For each component Cm in SSM satisfying

that ∃ Ir∈Interface(Cm) ∧ (Ipk Ir)
9 Put all methods in all service interfaces

of Cm into a set S1.
10 u=i; Put all messageNames received by

V[u].BeginObject currently into a set
S2.

11 While (u>=0) ∧ (S1 ∩ S2= Φ)
12 u=u-1.
13 If (V[u].BeginObject ∉ Cm)

CIT=CIT+”r”.
14 Put all messageNames received by

V[u].BeginObject into S2.
15 If (u>=0)
16 CIT=CIT+”(”+Ir+”:”+ Ipk+”)”+ Cj..
17 Return CIT

In this algorithm, it is very easy to determine current
component and its current provider interface by
continuously analyzing the object message trace (line 1 to
line 7). However, to determine which requirement
interface of previous component is invoking service from
current provider interface of current component, we have
to retrace the sequence diagram until the message
indirectly sent to current component and indirectly
triggering the provider interface of current component is
found (line 8 to line 15).

This algorithm is provider interface driven because the
requirement interface information is not described in
sequence diagram although it is defined in static structure
model of composition.

3. Changes and impacts on composition
based software architecture

First of all, we give taxonomy of changes on
composition. Then the transition rules for inter-
component and intra-component are studied according to
various changes.

3.1. Taxonomy of changes

Proceedings of the Seventh ACIS International Conference on Software Engineering,
Artificial Intelligence, Networking, and Parallel/Distributed Computing (SNPD’06)
0-7695-2611-X/06 $20.00 © 2006 IEEE

Our approach focuses on the changes and impacts of
elements of components. Concretely, the provider
interfaces, requirement interfaces, methods in provider
interfaces and methods in requirement interfaces of
components are researched.

 Atomic Changes. An atomic change is that applied
on components or interfaces and can’t be decomposed
into smaller changes. The atomic changes on composition
based software architecture are listed in table2, which are
self-explanatory.

Table 2. Atomic Changes on Composition Based Software
Architecture

 Composite Change. A composite change, obtained
through iterative transitions of atomic changes, is much
more practical in change impact analysis. Sometimes, an
individual atomic change to software architecture has not
practical meanings. For example, typical addition of an
empty provider interface is often followed by some
additions of methods to it so that new services could be
provided through new interface. Four kinds of practical
composite changes on composition base software
architecture are studied and listed in Table 3.

Table 3. Typical Composite Changes on Composition Based
Software Architecture

Therefore, our approach focuses on 8 kinds of
practical changes to software architecture elements: API,
DPI, ARI, DRI, AMPI, DMPI, AMRI and DMRI. The
first 4 changes are related to interfaces of components and
the later 4 are related to methods of interfaces.

3.2. Intra-component impact rule and inter-
component impact rule

As mentioned in above section, our approach focuses
on the changes such as adding and deleting interfaces and
methods. It is time to answer following questions: (1)
what impacts would be produced on the same component

and neighbor components? (2) How does the impact
transmit?

 Intra-Component impact transition rule. Generally,
to provide a service, a component would always require
some services provided by other components. At the same
time, a required service is always used to implement one
or more provided services. Except for initial components
and final components (see definition 1 and 2), a many-to-
many mapping exists between methods in requirement
interface and methods in provider interface. To initial
components or final components, the changes has no
impact on the other interfaces and methods of the same
component because they have only requirement interfaces
or provider interfaces.

For example, table 4 shows a possible intra-component
method mapping of a single component shown in Fig. 1.
C depends on Method5(), Method6() and Method7() to
provide Method1().C depends on Method4()to provide
Method2(). According to table 4, it is easy to conclude
that interface Ip1 depends on Ir1, Ir2, while Interface Ip2
depends on Ir1 shown in Fig. 4.

Table 4. A Mapping among Methods between Provider
Interfaces and Requirement Interfaces

 Method4() Method5() Method6() Method7(
)

Method1() X X X
Method2() X X
Method3() X

Fig. 4. Dependency among interfaces in a single component

With information on method mapping and interface
dependency, it is easy to determine the intra-component
impacts. For example, the Ip1 will be impacted by
deleting the interface Ir2. Both interface Ip1 and Ip2 will
be impacted by deleting Ir1. Generally,

Rule 3: DMRI or DRI cause DMPI or DPI on the
same component.

Rule 4: AMPI or API cause AMRI or ARI on the
same component.

 Inter-Component impact transition rule.
Definition 7: Neighbor. Let C1 and C2 be two

components, if ∃ I1 ∈ Interface(C1) ∧ I2 ∈ Interface(C2) ∧
I2 I1, then we say C1 is left Neighbor of C2 and C2 is
right neighbor of C1.

According to definition 7, the concept of neighbor is
for static structure model of component composition. For
any segment in component interaction trace with form

AEPI Add an Empty Provider Interface to component
DEPI Delete an Empty Provider Interface from component
AERI Add an Empty Requirement Interface to component
DERI Delete an Empty Requirement Interface from component
AMPI Add a Method signature to a Provider Interface
DMPI Delete a Method signature from a Provider Interface
AMRI Add a Method signature to a Requirement Interface
DMRI Delete a Method signature from a Requirement Interface

API=AEPI+n*AMPI Add an empty Provide Interface to component,
then add n methods to it

DPI=n*DMPI+DEPI Delete n methods from an provider interface,
then delete that interface

ARI=AERI+n*AMRI Add an empty Requirement Interface to
component, then add n methods to it

DRI=n*DMRI+DERI Delete n methods from an Requirement interface,
then delete that interface

Proceedings of the Seventh ACIS International Conference on Software Engineering,
Artificial Intelligence, Networking, and Parallel/Distributed Computing (SNPD’06)
0-7695-2611-X/06 $20.00 © 2006 IEEE

Cm(Iri:Ipj)Cn(Irs:Ipt)Co, there exist that Cm is the left
neighbor of Cn and Co is the right neighbor of Cn. It is
obvious that the requirement interface Iri of component
Cm will be impacted by deleting the Ipj or methods in and
Ipj. Provider interface Ipt of component Co will be impact
by adding methods into requirement interface Irs of
component Cn. For the trace segment with return marks, it
is necessary to refer to static structure model to decide
neighbors. Taking the segment of component interaction
trace shown in Fig. 3 (a), C3rr(Ir3:Ip1)C2, for instance, the
left neighbor of component C2 is C4 but not C3. Generally,

Rule 5: DMPI or DPI of a component cause DMRI or
DRI of its left neighbor.

Rule 6: AMRI and ARI of a component cause AMPI
or API of its right neighbor.

4. Perform dynamic change impact analysis

4.1. Slices for component interaction trace

Definition 8: Sub-component and super-component.
Let C1 and C2 be two components. We call C1 is the sub-
component of C2 and C2 is the super-component of C1 if
and only if ∀ I∈Interface(C1), ∃ I’∈Interface(C2), so that
I’ ≥ I.

From definition 8, it is concluded that the sub-
component of component C would be obtained by
deleting some interfaces or interface methods from it. The
super-component of component C would be obtained by
adding some interfaces or interface methods to it.

Definition 9: Interface Slicing Criterion. A interface
slicing criterion for component interaction trace is a tuple
with 3 elements (C,I,X) in which C is a component,
I∈Interface(C), and X∈{+,-} indicating adding if X=”+”,
or deleting if X=“-”.

Definition 10: Method Slicing Criterion. A method
slicing criterion for component interaction trace is a tuple
with 4 elements (C,I,M,X) in which C is a component,
I∈ Interface(C), M∈Method(I), and X∈ {+,-} indicating
adding if X=”+”, or deleting if X=“-”.

Definition 11: Interface Slice. (1) A backward
interface slice for component interaction trace T, Sibt, on a
given slicing criterion (C,I,X) consists of all sub-
components and super-components of C in T that might
directly or indirectly cause the addition or deletion of
interface I; (2) A forward interface slice for component
interaction trace T, Sift, on a given slicing criterion (C,I,X)
consists of all sub-components and super-components of
C in T that might be directly or indirectly affected by
adding or deleting interface I; (3) A unified interface slice
for component interaction trace T, Siut, on a given slicing
criterion (C,I,X) equals the combination of Sibt and Sift, i.e.
Siut = Sibt ∪ Sift.

Definition 12: Method Slice. (1) A backward method
slice for component interaction trace T, Smbt, on a given
slicing criterion (C,I,M,X) consists of all sub-components
and super-components of C in T that might directly or
indirectly cause the addition or deletion of method M of
interface I; (2) A forward method slice for component
interaction trace T, Smft, on a given slicing criterion
(C,I,M,X) consists of all sub-components and super-
components in T that might be directly or indirectly
affected by adding or deleting method M of interface I; (3)
A unified method slice for component interaction trace T,
Smut, on a given slicing criterion (C,I,M,X) equals the
combination of Smbt and Smft, i.e. Smut = Smbt ∪ Smft.

With CIT, intra-component transition impact rule,
inter-component transition impact rule, interface slicing
and method slicing, we can determine all components,
interfaces and methods which would cause given changes
or are impacted by a given change. In section 4.2, we
illustrate the concrete analysis method with two examples.

4.2. Determine impacted architectural elements
To CIT C4(Ir3:Ip2)C1(Ir1:Ip3)C3rr(Ir3:Ip1)C2(Ir2:Ip4)C3rr,

obtained in section 2.3, and a concrete change DPI(Ip2)
of component C1, we could get a interface slicing
criterion δ =(C1,Ip2,-). We perform interface backward
slicing on slicing criterion δ to create a set consisting of
the sub-components of those components in set
{C1,C2,C3,C4}. Equally, we try to determine possible
components and their interfaces whose changes would
cause the deleting of Ip2.

According to rule 3 and supposing there is dependency
between Ir1 and Ip2 by referring to the mapping table
among requirement methods and provider methods of
component C1, it is concluded that DRI(Ir1) of the same
component C1 would cause the deleting of Ip2. Then what
change would cause the DRI(Ir1)? According to Rule 5,
change of DPI(Ip3) on C1’s right neighbor, C3 would
cause DRI(Ir1). Because component C3 doesn’t have right
neighbor, the impact transition stops. So we get all
components, interfaces and methods that could cause the
given change DPI(Ip2) on component C1. Remaining these
component and interfaces related to the change and
removing those interfaces unrelated to that change, the
trace’s backward slicing on slicing criterion δ is
C1{Ip2,Ir1}C3{Ip3}. In fact, the stop of impact transition not
only would be caused by return marks, but also would be
caused by lack of dependency relationship in mapping
table of provider interfaces and requirement interfaces.

5. SOCIAT-software composition oriented
change impact analysis tool

The architecture of SOCIAT, which is shown in Fig. 5,
includes 3 sub-systems: CIT generator, slicing performer

Proceedings of the Seventh ACIS International Conference on Software Engineering,
Artificial Intelligence, Networking, and Parallel/Distributed Computing (SNPD’06)
0-7695-2611-X/06 $20.00 © 2006 IEEE

and regression test suite scheduler. SOCIAT mainly has
following three functionalities: (1) automatically
generating component interaction traces according to a
given change; (2) producing component set with
indication of interfaces and methods that impact or be
impacted by a given change; (3) scheduling regression
test suite.

There are plenty of UML modeling tools that could be
used to model static structure model of components
composition and sequence diagram, such as Rational
ROSE. Working principles of CIT generator and slicing
performer have been illustrated in above sections.
Regression test suite scheduler is used to verification that
unchanged parts of system behavior same as before and
changed parts of system behavior work as specification.
The working principle of this sub-system is omitted in
this paper because of the limitation of space.

Fig.5. Architecture of SOCIAT

6. Related works

Previous research in change impact analysis of
software system has been carried out with various
approaches such as transitive closure on call graphs, static
slicing, dynamic analysis and integration of static analysis
and dynamic analysis. Although these classical impact
analyses previous to ours provide some inspiration to our
research, they only focus on code-level.

Jianjun Zhao [6] presented an approach to assess the
effect of changes of software architecture by analyzing its
Wright specification and to compute slices using flow
graph-based technique.

L. C. Briand et al. [7] proposed a methodology
supported by a prototype tool (iACMTool) to tackle the
impact analysis and change management of
analysis/design documents in the context of UML-based
development. Opposite to our approach, their research
focuses on consistency check among documents which is
a kind of traceability analysis [1]. However, our approach
belongs to the category of dependency analysis [1].

Another work that is similar to ours is that presented
by Stafford et al. [8], who introduced a software
architecture dependence analysis technique called
chaining to support software architecture development
such as debugging and testing. However, in contrast to
our intra-component and inter-component impact rules

based slice, they used a table-based approach to identify
the chain sets.

7. Conclusion

An important problem demanding prompt solution
with today’s software development is to deal with the
changes of software products. In this paper, a dynamic
change impact analysis at software architecture level is
proposed to support software architecture evolution.

The main contributes of this paper are listed as follows:
(1) Composition based software architecture is

presented.
(2) Changes and impacts on composition based

software architecture are explored.
(3) Interface slicing and method slicing based dynamic

change impact analysis procedure is proposed.
(4) The architecture of SOCIAT, software composition

oriented change impact analysis tool, is designed to
support our approach.

8. References

[1] Bohner SA, Arnold RS, Software Change Impact Analysis,
IEEE Computer Society Press: Los Alamitos CA, 1996.

[2] Shaw Mary, Garlan David. Software Architecture:
Perspective on an Emerging Discipline. Prentice-Hall:
Englewood Cliffs NJ, 1996.

[3] David Hemer, A formal approach to component adaptation
and composition, Proceedings of the Twenty-eighth
Australasian conference on Computer Science, Newcastle,
Australia, Pages: 259 – 266, 2005

[4] Steffen Göbel, Encapsulation of structural adaptation by
composite components, Proceedings of the 1st ACM SIGSOFT
workshop on Self-managed systems, Newport Beach, California,
Pages: 64 – 68, 2004.

[5] Luca de Alfaro and Thomas A. Henzinger, “Interface
Theories for Component-Based Design”, Proceedings of the
First International Workshop on Embedded Software
(EMSOFT), Lecture Notes in Computer Science 2211, Springer-
Verlag, 2001, pp.148-165.

[6] Jianjun Zhao, Hongji Yang, Liming Xiang and Baowen Xu,
Change impact analysis to support architectural evolution,
Journal of Software Maintenance and Evolution: Research and
Practice, Vol. 14, pp. 317-333, 2002.

[7] L. C. Briand, Y. Labiche, L. O’Sullivan, “Impact analysis
and change management of UML models”, Proceedings of the
International Conference on Software Maintenance (ICSM’03),
Amsterdam, Netherlands, pp.256-265, Sep. 2003.

[8] J.A. Stafford, A.L. Wolf and M. Caporuscio. "The
Application of Dependence Analysis to Software Architecture
Descriptions", Lecture Notes in Computer Science, Vol. 2804
Bernardo, Marco; Inverardi, Paola (Eds.) 2003, pp. 52-62.

Proceedings of the Seventh ACIS International Conference on Software Engineering,
Artificial Intelligence, Networking, and Parallel/Distributed Computing (SNPD’06)
0-7695-2611-X/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

