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Abstract—The paper proposes an information generation and
summarisation algorithm to detect behavioural change in applica-
tions such as long-term monitoring of vulnerable people. The al-
gorithm learns the monitored subject’s behaviour autonomously
post-deployment and provides time-suppressed summaries of the
activity types engaged with by the subject over the course of their
day to day life. It transmits updates to external observers only
when the summary changes by more than a defined threshold.
This technique substantially reduces the number of transmis-
sion required by a wearable monitoring system, both through
summarisation of the raw data into useful information and by
preventing transmission of duplicated or predictable data and
information. Based on evaluation using simulated activity data,
the proposed algorithm results in an average of one transmission
per month following an initial convergence period (reaching less
than 1 transmission per day after only three days) and detects a
change in behaviour after an average of 1.1 days.

Index Terms—body sensor networks, pervasive sensing, be-
havioural change detection

I. INTRODUCTION

The ability to monitor a subject’s daily activities is a key
requirement for a series of emerging societal trends, such as
assistive living scenarios and interventions driving obesity-
related behavioural changes in adults and young children.
Given recent advances in body sensor networks (hardware
and associated signal processing), many common daily tasks
performed by subjects within and around the home can be
monitored with a single wearable device (such as a mo-
bile phone or a dedicated sensing node). Challenges remain
however in 1) effectively deploying such systems in real-life
scenarios, ii) ensuring a system battery life commensurate
with the requirements of the application and iii) adequately
presenting “information” rather than “data” to the stakeholders
(both the observed subjects as well as the medical stakehold-
ers). The paper here relates to the last two challenges and
demonstrates that wearable activity monitoring systems can
be effectively designed to be long lived if the informational
outputs are clearly defined. In turn, by designing systems to
deliver information rather than data, providing visualization
to enable decision-making becomes a straightforward design
task.

The authors’ core insight is the relationship between data
and information in activity monitoring systems: Wearable
devices for activity monitoring usually contain high data rate
sensors such as accelerometers and gyroscopes (with sampling
rates from tens to hundreds of Hz per sensor). However,

the resulting extracted activity information is generally much
smaller than the data required to generate it.

One of the biggest challenges in monitoring system design
is the common need for wireless communication, with radio
transcievers often being the largest consumers of available
power on a node. The Shimmer devices, for example, typically
consume 0.1 mA for the CPU, 1 mA during ADC conversions,
and up to 20 mA for the 802.15.4 radio [1]. Processing the
gathered data to generate the information that the end-user
requires may allow large savings, particularly in applications
such as activity monitoring where high-rate source data is
used to generate smaller quantities of information. Particularly,
this makes it possible to use the radio’s sleep mode for
longer periods; in the example of the Shimmer devices this
reduces radio power consumption to less than 0.03 mA. The
implication therefore is that generating this information closer
(in terms of communication hops) to the sensing devices
themselves will allow a significant reduction in transmissions
and power usage.

This paper proposes the use of an information generation
and summarisation algorithm named Bare Necessities (BN) [2]
to allow for detection of behavioural change in applications
such as long-term monitoring of vulnerable people. This
application is used as an example to demonstrate the utility
of the algorithm in transmission reduction and automated
behavioural change detection, but is not the sole focus of the
work. The algorithm supports the development of long-lived
“deploy and forget” systems targetted at detecting behavioural
change by transmitting behavioural information updates only
when required to show that a behavioural change has occured.
Such summarisation then allows for changes in behaviour
over a period of time to be detected. Furthermore, the level
of supervision required by human observers is reduced as
redundant information is not transmitted. These advantages are
particularly beneficial where multiple subjects are monitored.

The advance described by this paper, therefore, is a method
of activity summarisation that allows a significant reduction
in wireless communication from an on-body activity classi-
fication system. This method further reduces transmissions
by eliminating redundant information, and as a side-effect
autonomously highlights changes in behaviour.

This paper is structured as follows: Section II discusses
existing research related to the work here, particularly in the
area of activity monitoring. Section III describes the BN algo-
rithm, while Section IV discusses its application to behavioural



change detection. Section V gives the application example
used for evaluation of the BN-based algorithm presented in
this paper and describes the simulator developed to generate
activity information for evaluation. Section VI presents the
results of evaluation using the simulator. Finally, Section VII
concludes on the work presented.

II. RELATED WORK

Monitoring of day-to-day activities is a common target
application in the posture and activity classification domain
and has prompted the development of a variety of sensing
systems, ranging from wearable systems (based on inertial and
other sensors) to ambient systems (which use video cameras,
motion sensors, or open/close sensors on doors and cupboards,
or example). A brief survey of the state of the art is given here
to demonstrate the types of activities that have been commonly
targetted for classification using these systems. Generally,
current work based around one of three main activity groups:
activities within the home, leisure/fitness activities outside of
the home, and office activities.

Bao and Intille [3], for example, developed a classifier
targeting twenty different home and leisure activities includ-
ing walking, sitting while folding laundry, bicycling, and
vacuuming. Huynh er al. [4] also focused on home activi-
ties, drawing a difference between low-level activities (such
as walking, sitting, standing, eating, and washing dishes—
usually lasting up to several minutes) and high-level activities
(such as cleaning the house—composed of multiple low-
level activities and lasting as long as a few hours). Pansiot
et al. [S] present a system integrating an ear-worn activity
recognition sensor (e-AR, which senses tilt and movement
frequency spectrum) and ambient blob sensors that process a
video signal to identify blobs or silhouettes and their motion
based on optical flow. The system is capable of differentiating
between sitting, sitting (sofa), standing, standing (head tilted),
reading, eating, lounging, walking, and lying down. Ermes [6]
targeted a mixture of indoor activities (such as lying, working
on a computer, and standing reading a paper) and outdoor
activities (such as playing football, running, rowing, and
cycling). Laerhoven et al. [7] expanded on classification of
daily activities by introducing a rhythm model that captures the
user’s normal daily pattern of behaviour. Activities included
having breakfast, relaxing in the sauna, and watching TV. The
rhythm model allows the system to perform classification of
otherwise ambiguous sensor data. Gyllensten and Bonomi [8]
used a single Tracmor device mounted on the subject’s waist
to classify activity, along with an IDEEA device that was
considered to provide a high enough accuracy that it could
be used to determine the “ground truth” for activity.

Further to monitoring of activities, this paper presents a
solution to detecting changes in activity routines. Change in
daily activity and routine is an important area of research
in relation to the elderly, ill, disabled, or those with other
impairments to their day-to-day activities. Campbell et al. [9],
for example, studied the activity patterns of residents at a
retirement community during a quarantine. PIR sensors were

used to determine the number of transitions from room to
room that occur during a day. They demonstrate that there
was significant difference in room transitions between those
that remained healthy and those that fell ill. They show that,
while room transitions increased during the quarantine, the
time-adjusted count remained similar to pre-quarantine levels.
Furthermore, they show that the time-adjusted count was
significantly different between those that remained healthy and
those that reported feeling ill. Shin et al. [10] used IR sensors
in each room of a house to identify abnormal activity patterns
using the Support Vector Data Description technique. This
resulted in a positive predictive value of 90.5% when tested on
real data gathered in the home. Unlike the method described
in this paper, the technique used by Shin et al. requires
training prior to deployment, whereas the algorithm here forms
a model of normal activity autonomously after deployment.
Madan et al. [11] used data gathered using mobile phones to
investigate the effect of illness on behavioural features such as
communication and movement patterns, as well as the ability
to use these features to predict illness.

Common to most works mentioned is that the scope of
monitoring is to leverage condensed knowledge about the
subject’s behaviour, changes in behaviour, habits and routines.
While the works propose that these key domain questions are
answered through a series of post-processing, non-automated,
human-in-the-loop steps, the authors here promote a design
approach for the monitoring systems which stems from and
revolves around the domain questions. This approach to design
ensures highly optimized systems which deliver information
and knowledge to answer set questions, enable long-lived
monitoring, and promote simple visualizations of the systems’
output.

For the purpose of the work presented in this paper, the
monitoring scenario and associated high level question are
as follows: a wearable activity monitoring system is able to
classify, in real-time, daily activities within and around the
home; from an external (medical) observer viewpoint, the
system should report on changes in the subject’s behaviour
indicative of a decrease in energy intensive activities (such as
for example gardening) and an increase in sedentary activities
(such as laying in bed). With this in view, the next section
describes a summarization algorithm which, after a conver-
gence period (within which the system autonomously learns
the normal subject behaviour) issues transmissions only when
a behaviour change takes place. The algorithm is named Bare
Necessities, reflecting its nature: transmitting only information
relevant to the high level question.

III. THE BARE NECESSITIES ALGORITHM

This section provides an overview of the concept and opera-
tion of BN. For a more detailed discussion see Gaura et al. [2].
The BN algorithm provides a means by which transmission
by a monitoring system such as a Wireless Sensor Network
(WSN) can be dramatically reduced while still providing the
end-user with the information they require. The reasoning
behind BN is that once a monitoring system such as a WSN



Algorithm 1 Online BN algorithm for estimating exposure
band distribution B.

1) (update band counr)
B™ (i) = yB™ (i) +b(i,k),
for each measurand and for all 4.
The predicate function b (i,k) gives 1 if the current read-
ing k is in band ¢ and zero otherwise. The update decays
the current count estimate by decay constant 7 and then
increments the currently active band. The decay half-life is
ti2 =T1In2/ (1 —+) where T is the sensing period.
2) (update distribution)
B(i) B (i)Y, B (i),
for each measurand and for all 4.
This converts the counts to a distribution that sums to 1.
3) (event detect)
if, for any ¢, |B (i) — B’ (i)| > € then
a) transmit B and
b) update last transmitted state B’ < B

is validated and installed, it is no longer necessary to transmit
the raw gathered data. Instead, the information required by
the end-user can be generated locally (as close as possible to
the point of sensing). Furthermore, the information need only
be transmitted when it changes in a way that the end-user
would find interesting or important (this operational principle
is shared with the Spanish Inquisition Protocol [12]). BN
therefore allows for summarisation of the relative time spent in
given states (exposure bands) and transmission of updates only
when these bands change by more than a defined threshold.
Algorithm 1 summarises the BN algorithm.

Gaura et al. [2] evaluated BN for the case study of a social
housing monitoring system which allows landlords to assess
home comfort against energy use. Here the proportion of
time spent in various temperature ranges, for example, was
more important than the measured temperature at any given
time instant. The use of BN was found to give a 6800 fold
reduction in transmissions of the course of a year compared
to continuous transmission of the gathered data.

IV. THE USE OF BN IN BEHAVIOURAL CHANGE
DETECTION

The application of BN to behavioural change detection is
a natural evolution of its concept of exposure bands, wherein
each band can be assigned to a particular activity or type of
activity. Over several days or weeks, the algorithm will build
up an overview of the typical activities, habits, and behaviours
of the monitored subject. During these times the number of
transmissions to provide band updates will gradually decrease
as the ratios between activities stabilise or converge (this is
demonstrated in Section VI). The number of transmissions
beyond the initial convergence period will be minimal, provid-
ing a long wearable system lifetime and reducing the storage
requirements if local storage of historical band information is
required. If there is a significant change in the relative ratios
of monitored activities after this point, an update transmission
will be triggered based on the band ratios changing by more
than the pre-defined threshold. In some applications (such as

the behaviour change detection discussed here), the fact that
a transmission occured at all is equally as important as the
actual content of the transmission.

As BN is intended as a general-purpose transmission reduc-
tion technique, it does not require that the monitored states
are of a specific type. For the class of applications here,
for example, the states could be based on activities such as
sitting and walking, higher-level activities such as cleaning
and cooking, triggered events based on cupboard door and
appliance sensors, or the room occupied at each time instant.
This flexibility means that a particular application and data
gathering system must be specified in order for meaningful
evaluation to be performed. The next section describes the
application considered here.

V. APPLICATION EXAMPLE AND ACTIVITY SIMULATOR
A. Application

Activity classifications for the subject being monitored are
assumed to be provided, in the case study evaluated here, by
a wearable single-node Body Sensor Network (BSN) system
capable of classifying and reporting activity in real-time (such
as the systems described by Khan er al. [13] or Gyllensten
and Bonomi [8]). The purpose of activity monitoring in this
application is to detect behavioural change in the monitored
subject that may indicate they are unwell or have suffered
a decrease in mobility. In the application here, the decrease
in mobility is assumed to be represented by spending more
time in bed and no longer leaving the house to perform
activities such as gardening. Madan et al. [11] demonstrated
a correlation between illness and time spent in the home for
university students. It can be seen that a system such as the
one proposed here would be very useful deployed alongside
other (perhaps more traditional) assistive technologies.

B. A simple activity simulator

In order to evaluate the effectiveness of BN for behavioural
change detection, a simple activity simulator was imple-
mented. This simulator allows for a variety of activities and
events (described for this application in Section V-C) and
performs the following process for each simulated day:

1) Select a waking and sleeping time based on the appli-
cation specification.

2) Reserve time periods for application-defined events
(such as meals).

3) Select application-defined activities to occur between
each event. For the purpose of the simple simulator
here, it was assumed that a single activity would occur
between each pair of events.

4) Generate appropriate postural classifications through the
day based on the generated routine (at a rate of one
classification per minute). Where an activity is specified
as being made up of multiple possible postures, the
ratio between the possible postures was randomly chosen
without bias.

In addition to defining the possible events and activities, the
application also defines the possible times at which they may
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Table 1
DEFAULT PARAMETERS FOR ROUTINE GENERATION. (NOTE 1) RANDOM
INTERVAL FOLLOWING WAKING USING A GAUSSIAN DISTRIBUTION WITH
MEAN 60 MINS AND S.D. 30 MINS. (NOTE 2) IMMEDIATELY PRECEDES
DINNER TIME.

Start (Gaussian) Duration
Event Mean SD Min  Max
Wake up 6:30am 15 mins - -
Breakfast (Note 1) 20 45
Lunch 12:00pm 15 mins 20 45
Make dinner (Note 2) 30 60
Dinner 6:00pm 30 30 60
Sleep 11:00pm 30 mins - -

occur. For example, a particular activity may have a start
time with a Gaussian distribution around a given mean and
standard deviation. While the above process results in a rela-
tively simplistic view of activity, it serves to demonstrate the
summarisation and behavioural change detection capabilities
of BN.

For the purpose of simulating a change in behaviour, two
routines specifications are defined, named R1 and R2. The
simulator generates several weeks of R1, assumed to be the
“normal” routine for the subject, followed by several weeks
of R2. Ideally, this would cause BN to generate a behavioural
update transmission soon after the change.

C. Application-based simulation parameters

For the purpose of the application here, the events con-
sidered were meals—breakfast, lunch, and dinner (with addi-
tional time reserved for making dinner)—and the activities
were morning routine (washing, brushing teeth, etc), read-
ing, watching TV, and working in the garden. The activity
classifications during each event and activity were limited to
lying (for sleeping), standing (for the morning routine and
making dinner), walking (for gardening and making dinner),
sitting (for eating, reading, and watching TV), and kneeling
(for gardening).

The times for sleeping, waking, and meals within each day
are determined as described in Table I. The available activities
between breakfast and lunch and between lunch and dinner
are reading, watching TV, and working in the garden. The
available activities after dinner are reading and watching TV.
Figure 1 shows an example of a single day generated using this
method. The changes when switching to R2 are that the subject
begins to wake several hours later than usual (the mean shifts
to 9:30am), sleeps slightly earlier than usual (the mean shifts
to 10:00pm), and no longer works in the garden—perhaps
indicating that they are unwell or have suffered a decrease
in mobility.
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Figure 2. Example of band percentages during simulated activities over

several weeks. A behavioural change occurs after 84 days. It can be seen
that two transmissions are triggered during the “settling time” following the
change.

VI. RESULTS FROM SIMULATION-BASED EVALUATION

Figure 2 shows an example of 98 days of activity simulated
via the method described in Section V-B, with 12 weeks of
R1 followed by 2 weeks of R2 (as described in Section V-B).
BN was configured with a half-life of 2 days' and a change
threshold of 10%?2. It can be seen that the change in behaviour
between the two routines causes a band update transmission
to occur on the day following the change, and that day-to-day
variations otherwise cause no tranmissions to occur.

The ideal behaviour for the system would be to min-
imise transmissions and only transmit following a behavioural
change. Thus the metric used for evaluation in this work (based
on the output of the simulator) is in two parts:

¢ The number of transmissions prior to the change should

be as close to zero as possible.

o The change-triggered transmission should occur as soon

after the change as possible.

To determine the optimal parameters for BN in the applica-
tion here, the half-life and threshold parameters were varied
(1-7 days and 5-20% respectively) and the metrics described
previously were logged for each combination. Figures 3 and 4
summarise the results based on 100 iterations of each combina-
tion of parameters. Based on the results shown, it appears that
the optimal parameters are a halflife of 2 days and a threshold
of 10%. These gave an average of 14.2 tranmissions prior to
the change (a reduction of 8518 compared to continuous
transmission) and detected the change an average of 1.1 days
after it occured. For thresholds of 10% to 20%, increasing
the halflife beyond 2 days does not provide any significant
improvement in terms of tranmissions prior to the change, but
does increase the time taken to detect the change. The same

!Halflife is the time after which a given sample will be weighted with half
the importance of a new sample.

2A transmission will be triggered if the size of any band changes by more
than 10%.
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to behavioural change occurring (84 day period).
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Figure 4. Impact of BN parameters on time taken to detect behavioural
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a threshold of 20% failed to detect the change within the two week period
allowed.
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iterations..

behaviour can be seen when increasing the threshold above
10%—no significant impact on tranmissions, but an increase
in time taken to detect the change. Using the discovered
parameters of halflife=2 days and threshold=10%, Figure 5
shows the average number of tranmissions per day across 500
iterations of the simulation. It can clearly be seen that there
is an initial series of transmissions as the behaviour pattern
is discovered, dropping off until the behaviour change occurs.
The algorithm causes an average of 0.03 transmissions per day
(a 48000 reduction in transmissions compared to continuous
monitoring, roughly equivalent to one transmission per month)
following an initial settling period. The transmission rate drops
below 1 transmission per day after only three days.

VII. CONCLUSIONS

This paper demonstrated the use of the Bare Neccessities
(BN) algorithm to reduce transmission requirements compared
to continuous monitoring for long-term behavour monitoring.
The need for human supervision of the incoming data is also
reduced—only “interesting” data is reported. The example is
given of monitoring an elderly person at home in order to
detect behavioural change that might indicate that assistance
is required. The application is based around a wearable device
that can provide postural information based on, for example,
acclerometer data. The algorithm, though, is generic to a
variety of activity monitoring applications and data sources.
The optimal BN parameters were found to be a halflife
of 2 days and a change threshold of 10%, resulting in an
average of 14.2 transmissions in the 84 days prior to a
simulated behaviour change occuring and transmission of an
update an average of 1.1 days after the change occured. The
number of transmissions made is equivalent to approximately
1 transmission per month following the initial settling period
during which the subject’s routine is characterised (dropping
below 1 tranmission per day within 3 days). Future work is
aimed at a deeper understanding of current biomechanical and
physiological behaviour change metrics as well as deployment
of the proposed algorithm on a wearable platform and associ-
ated evaluation.
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