

COMPUTING
SCIENCE

An Architecture for Negotiation and Enforcement of Resource Usage
Policies

Carlos Molina-Jimenez, Santosh Shrivastava and Stuart Wheater

TECHNICAL REPORT SERIES

No. CS-TR-1381 April 2013

TECHNICAL REPORT SERIES

No. CS-TR-1381 April, 2013

An Architecture for Negotiation and Enforcement of Resource
Usage Policies

C. Molina-Jimenez, S. Shrivastava and S. Wheater

Abstract

Advances in Cloud computing are making it possible for service providers to offer
computational resources such as storage and compute power (infrastructure as a
service, IaaS) to sophisticated enterprise application services (software as a service
SaaS) to remote clients for a fee on a highly dynamic basis. As in any business
transaction, client access to a service is regulated by a legal Service Agreement (SA).
A service agreement needs to be negotiated and agreed between the provider and the
client before the latter can use the service. Then on, both the client and the provider
will need assurances that service interactions are in accordance with the SA, and any
violations are detected and their causes identified. There is thus a need for automated
support for negotiation and enforcement of service agreements. This paper discusses
key design issues for such a system, of which the main one is to ensure that the
policies (termed also clauses) contained in an SA are logically sound and that they
work in harmony with any private policies of the client and the provider. The paper
presents an architecture and a proof of concept implementation.

© 2013 Newcastle University.
Printed and published by Newcastle University,
Computing Science, Claremont Tower, Claremont Road,
Newcastle upon Tyne, NE1 7RU, England.

Bibliographical details

MOLINA-JIMENEZ, C., SHRIVASTAVA, S., WHEATER, S.

An Architecture for Negotiation and Enforcement of Resource Usage Policies
[By] C. Molina-Jimenez, S. Shrivastava, S. Wheater

Newcastle upon Tyne: Newcastle University: Computing Science, 2013.

(Newcastle University, Computing Science, Technical Report Series, No. CS-TR-1381)

Added entries

NEWCASTLE UNIVERSITY
Computing Science. Technical Report Series. CS-TR-1381

Abstract

Advances in Cloud computing are making it possible for service providers to offer computational resources such
as storage and compute power (infrastructure as a service, IaaS) to sophisticated enterprise application services
(software as a service SaaS) to remote clients for a fee on a highly dynamic basis. As in any business transaction,
client access to a service is regulated by a legal Service Agreement (SA). A service agreement needs to be
negotiated and agreed between the provider and the client before the latter can use the service. Then on, both the
client and the provider will need assurances that service interactions are in accordance with the SA, and any
violations are detected and their causes identified. There is thus a need for automated support for negotiation and
enforcement of service agreements. This paper discusses key design issues for such a system, of which the main
one is to ensure that the policies (termed also clauses) contained in an SA are logically sound and that they work
in harmony with any private policies of the client and the provider. The paper presents an architecture and a proof
of concept implementation.

About the authors

Carlos Molina-Jimenez received his PhD in the School of Computing Science at the University of Newcastle upon
Tyne in 2000 for work on anonymous interactions in the Internet. He is currently a Research Associate in the
School of Computing Science at the University of Newcastle upon Tyne where he is a member of the Distributed
Systems Research Group. He is working on the EPSRC funded research project on Information Coordination and
Sharing in Virtual Enterprises where he has been responsible for developing the Architectural Concepts of Virtual
Organisations, Trust Management and Electronic Contracting.

Professor Santosh Shrivastava was appointed Professor of Computing Science, University of Newcastle upon
Tyne in 1986. He received his Ph.D. in computer science from Cambridge University in 1975. His research
interests are in the areas of computer networking, middleware and fault tolerant distributed computing. The
emphasis of his work has been on the development of concepts, tools and techniques for constructing distributed
fault-tolerant systems that make use of standard, commodity hardware and software components. Current focus of
his work is on middleware for supporting inter-organization services where issues of trust, security, fault tolerance
and ensuring compliance to service contracts are of great importance as are the problems posed by scalability,
service composition, orchestration and performance evaluation in highly dynamic settings. Professor Shrivastava
sits on programme committees of many international conferences/symposi. He is a member of IFIP WG6.11 on
Electronic commerce - communication systems, and sits on the advisory board of Arjuna technologies Ltd.

Dr Stuart Wheater: He graduated with First Class Honours in Computing Science and completed his PhD in 1990
at Newcastle University, UK. He is the Chief Architect and co-founder Arjuna Technologies. As a software
designer and developer, he has played a central role in the design and implementation of several commercial
products. In particular Agility, a Cloud Computing Platform for building Federated Clouds using Service
Agreements mediated Policies. He was also leading figure in the construction of a CORBA based transactional
workflow system (OPENflow) and the industry proven Transaction Service and Message Service from Arjuna. He
also designed and developed the HP-ORB product, to replace a third-party incumbent ORB across HP's product
range. As a researcher, he is interested in transactions, long-lived process support and cloud computing
applications. He is the author and co-author of several publications in leading journals and conferences.

Suggested keywords

SERVICE ORIENTED COMPUTING
SERVICE AGREEMENT NEGOTIATION
UPDATING
TERMINATION AND ENFORCEMENT
POLICY CONSISTENCY

An Architecture for Negotiation and Enforcement of Resource Usage Policies

Carlos Molina–Jimenez
School of Computing Science

Newcastle University, UK
Carlos.Molina@ncl.ac.uk

Santosh Shrivastava
School of Computing Science

Newcastle University, UK
Santosh.Shrivastava@ncl.ac.uk

Stuart Wheater
Arjuna Technologies, UK

Stuart.Wheater@arjuna.com

Abstract—Advances in Cloud computing are making it
possible for service providers to offer computational resources
such as storage and compute power (infrastructure as a service,
IaaS) to sophisticated enterprise application services (software
as a service SaaS) to remote clients for a fee on a highly
dynamic basis. As in any business transaction, client access
to a service is regulated by a legal Service Agreement (SA). A
service agreement needs to be negotiated and agreed between
the provider and the client before the latter can use the service.
Then on, both the client and the provider will need assurances
that service interactions are in accordance with the SA, and any
violations are detected and their causes identified. There is thus
a need for automated support for negotiation and enforcement
of service agreements. This paper discusses key design issues
for such a system, of which the main one is to ensure that
the policies (termed also clauses) contained in an SA are
logically sound and that they work in harmony with any private
policies of the client and the provider. The paper presents an
architecture and a proof of concept implementation.

Keywords-service oriented computing; service agreement
negotiation, updating, termination and enforcement; policy
consistency.

I. INTRODUCTION

We consider a cloud computing environment that enables
service providers to provision, in a rapid manner, on-demand
network access to shared pool of compute resources (that can
range from storage, compute power to applications and ser-
vices) to consumers for a fee. As in any business transaction,
consumer (client) access to a service will be underpinned by
a contract, that we will refer to here as a Service Agreement
(SA). A service agreement needs to be negotiated and agreed
between the provider and the client before the latter can use
the service. Then on, both the client and the provider will
need assurances that service interactions are in accordance
with the SA, and any violations are detected and their causes
identified. There is thus a need for automated support for
negotiation and enforcement of service agreements.

Electronic representation of the relevant parts of an SA is
a pre-requisite for any such automation. Here we are most
interested in service description part of an SA that specifies
resource usage in terms of service delivery (dealing with
quality of service) and consumption (dealing with usage
pattern). For example, the SA might stipulate that a client
is permitted to submit 100 requests per second and that the
provider is obliged to respond within three seconds. Ideally,

it should be possible to encode an SA as a set of executable
business policies that can be evaluated by either party for
controlling service interactions.

or
ga

ni
za

tio
na

l
bo

un
da

ry

gateway	 gateway	

SA’	 +	 LP	 SA’	 +	 LP	

d)

policy manager policy manager

client	 service	

or
ga

ni
za

tio
na

l
bo

un
da

ry

gateway	

SA	 LP	

gateway	

SA	 LP	

b)

policy manager policy manager

client	 service	

or
ga

ni
za

tio
na

l
bo

un
da

ry

gateway	

LP	

gateway	

SA	

or
ga

ni
za

tio
na

l
bo

un
da

ry

gateway	

LP	

c)

policy manager policy manager policy manager

client	 service	

gateway	

SA	 LP	

or
ga

ni
za

tio
na

l
bo

un
da

ry

a)

policy manager

client	 service	

Figure 1. Deployment alternatives.

Fig. 1–a) shows a simple scheme where the provider uses
a Policy Manager (PM) module (loaded with an executable
version of the SA) for controlling access to the service by the
client. The gateway acts as a policy enforcement point that
either allows or prohibits access to the service as directed
by the PM which is in essence a policy decision point. For
example, let us consider the following policies from a simple
SA about a service provided on a pre-paid basis:

1) Clients can open an account by purchasing a single
unit of prepaid time at the price of 10 euros.

2) A unit of prepaid time is considered consumed when
the client consumes 100 minutes of connection time.

3) An open account can be topped up by the client by
purchasing additional units of prepaid time.

4) Accounts with no prepaid time left will be declared
closed by the service.

a) The service is entitled to evict calls in progress
that run out of prepaid time.

Typically, a provider will have a set of local (private)
business policies (LP) for customising an SA for different
classes of clients. For example, the provider could be a bit

lenient whilst dealing with valued customers (’gold clients’)
who exceed the prepaid time limit. Here is a sample clause
of such a policy:

1) Calls from gold clients that overrun their prepaid
credits are granted up to ten minutes of discretionary
time that can be used only by the call in progress.

2) Ignore the cost incurred by the use of discretionary
time after evicting a call.

In Fig. 1–a) we show that the PM uses both the SA and
LP for controlling the gateway. The PM is the key compo-
nent needed for automating negotiation and enforcement of
service agreements and is the subject of discussion of this
paper. Below we discuss the main requirements of a PM, and
in the rest of the paper we describe the approach we have
adopted and present a proof of concept implementation.

To begin with, we observe that policy managers and gate-
ways can be deployed in several configuration alternatives,
and not just as shown in Fig. 1–a). In Fig. 1–a), the decision
whether the client’s service access is compliant with respect
to the SA is taken by the PM of the provider; however,
there may be situations where the client’s organization
independently wants to perform such a compliance check, in
which case, the symmetric deployment scheme of Fig. 1–b)
is relevant. The client’s organization might have its own local
policies that put additional constraints on who/when service
access is permitted (e.g., a local policy might be that only
a senior manager is permitted access). Another deployment
possibility is depicted in Fig. 1–c): here an independent third
party is responsible for checking SA compliance, whereas
the parties only check for their local policy compliance. The
configuration depicted in Fig. 1–b) opens up the possibility
of the two PMs being able to interact and negotiate to install
a new SA on the fly. For example, a customer of a service
might wish to upgrade to become a premier customer, in
which case a new SA will come in force. This possibility
is hinted at in Fig. 1–d) where SA

′
is under negotiation.

In summary, the PM should be modular in structure and
capable of being deployed in various configurations.

The machine interpretable language used for encoding SA
and LP should be expressive and usable. By usability we
mean that a technical person who understands SAs and LPs
written in a natural language should be able to translate them
into executable versions with relative ease. By expressive-
ness we mean that the language should be widely applicable.
Finally, we require that the encoded versions of SAs and
LPs be amenable to formal analysis, meaning there should
be tools available for validating the logical consistency of an
SA and LP taken individually and together. This is important
as the intended meaning of clauses expressed in a natural
language can be remarkably hard to capture and represent
in a rigorous and concise manner for computer processing.

Our PM is based on the concept of contract compliance
checking that we have developed earlier, and described

in [1]. The concepts discussed in [1] also underpin the
rule based contract specification language called EROP (for
Events, Rights, Obligations and Prohibitions) and a contract
compliance checking service (CCC) for contracts/service
agreements written in EROP [1], [2]. The CCC essentially
acts as the PM. The CCC is modular, as it has been devel-
oped for use as a third party service, so it can be deployed
in any of the settings shown in Fig. 1. Using a number
of examples, we show that the EROP language provides a
uniform way of encoding SA and LP, satisfying the require-
ment of expressiveness and usability. The CCC is amenable
to model checking, thereby providing a way for validation;
we have indeed developed a high–level model checking
tool for this purpose [3]. We have incorporated the CCC
within the cloud management platform called Agility [4].
Agility is intended to assist two or more independently
administered parties in sharing their IT resources in peer–
to–peer or consumer–provider interaction. Agility provides
basic support for negotiation. In Future Work section of the
paper we describe how our work can be extended to support
automated negotiation between PMs.

II. COMPLIANCE CHECKING

Clauses included in SAs and LP (Fig.1) stipulate the
rights (something that a party is allowed to do) , obligations
(something that a party is expected to do) and prohibitions
(something that a party is not expected to do unless it is
prepared to be penalised) of the parties. The clauses also
stipulate when, in what order and by whom the operations
are to be executed. Business partners exercise their rights,
obligations and prohibitions by executing their correspond-
ing business operations. As operations are executed, rights,
obligations and prohibitions are granted to and revoked from
business partners. At a given moment, each business partner
can have several rights, obligations and prohibitions, in
force. This idea is at the heart of the functionality of the CCC
that we have implemented [2]: the CCC is an observer of
execution of operations that determines and declares whether
the operation is or is not contract compliant.

With each participant (role player), we associate a ROP
set: the set of Rights, Obligations and Prohibitions currently
in force. We use the set B = {bo1, . . . , bon} to specify
all the primitive business operations stipulated in a SA or
LP. The CCC declares the execution of boi to be contract
compliant if it satisfies the following three requirements and
declares it non–contract–compliant if it does not:

• C1) boi ∈ B;
• C2) it matches the ROP set of its role player (meaning,

the role player has a right/obligation/prohibition to
execute that operation);

• C3) it satisfies the constraints stipulated in the contrac-
tual clauses.

The significance of the ROP sets in our model is that
they allow to abstract the behaviour of the CCC as that

2

of a conventional reactive system [5] with m + 1 states
S = {s0, . . . , sm} where each state si represents the current
state of the ROP sets. As a reactive system, the CCC remains
in a given state si awaiting the arrival of events, when
a contract–compliant event arrives, the CCC executes an
action and progresses to state sj . No state changes occur
or actions are executed when the event is non-contract–
compliant. The main action executed consists in updating
the ROP sets: rights, obligations and prohibitions from state
si are disabled and those that determine state sj are enabled.
The salient feature of this state–centric model is that it
is intellectually manageable as there are well understood
formal methods and software tools that can help reason about
the correctness of both the model and its implementation.
For instance, the CCC can be directly implemented as a
conventional Event Condition Action (ECA) system.

In Fig. 2 we show how the CCC can be used as a
PM to determine if the operations executed by a client are
compliant with the policies specified in a client–provider
SA. Only a single policy is shown in the figure. The event ei

represents the execution of an operation such as call. Upon
evaluating the event against the ECA rules, the PM declares
either ei is SA compliant or ei is not SA compliant.

converted to

p1:	 The	 client	 has	 the	 right	 	 to	 place	 10	 calls	 each	 	
week	 on	 Mon-‐Fri	 days,	 against	 the	 provider.	

ECA	 rules	
ei

PM

SA

ei is SA compliant

ei is non SA compliant

Figure 2. Abstract view of a policy manager.

Our current implementation of the CCC is based on JBoss
Drools [6]. The rules that encode the SA clauses can be
written either in EROP or Jboss drool language. Supportive
functions such as event queues and time management, and
examination of event logs are implemented as Java classes.

III. EXPRESSIVENESS AND USABILITY

To support our claims about the expressiveness and usabil-
ity of the EROP notation, we will show how it can be used
to encode typical and realistic examples of both SAs and
LP. It should become apparent that modelling current rights,
obligations and prohibitions explicitly—the core concept of
EROP— makes our notation clear and intuitive.

We show examples of policies that regulate the execu-
tion of operations related to resource consumption (CPU,
storage, etc.). In addition, to emphasis usability, we include
examples of policies that regulate the execution of high level
business operations such as submission of purchase orders
and payments. In the latter, the execution of operations
can be abstracted as the occurrence of events that indicates

the initiator and responder of the operation, time stamp,
and other parameters. However, in resource consumption
policies, the execution of operations alone cannot determine
the observance of a right, obligation or prohibition, equally
important is the impact (e.g., amount of storage space
consumed) of the operation. This information can be mapped
to the occurrence of events, as well, for example, a storage
monitor can be deployed to produce an event when a storage
quota is exhausted.

We show the policies written in English and next we
show their corresponding ECA rules in EROP notation. The
rules are in pseudo-code; they abstract away several details,
yet they include enough parameters to help appreciate the
expressiveness of EROP. In the rules, lines that begin with #
are commentaries. R, p and e stand for rule, policy and event,
respectively. R1− > p2 means rule 1 is related to policy 2.
The operator in verifies if the event is currently in the party’s
rights, obligations (obligs) or prohibitions. For example,
exeJob in math.obligs will return true if the operation exeJob
is currently in math’s obligations, otherwise it returns false.
The operators + and− grant and remove, respectively rights,
obligations and prohibitions; thus math.right+ = evictJob
grants the right to execute operation evictJob to a party (role
player) called math. The outcome of the evaluation of the
event (e) is shown as PCo (Policy Compliant) This outcome
should be regarded as a message sent by the PM to its
gateway to instruct it to permit the operation under question.
The assumption is that the gateway takes the absence of the
PCo message as an instruction to deny the operation, but
these are implementation details that we do not discuss here
due to space constraints.

A. Condor example

The following policies are representative of Condor— a
load managing system that allows a party (e.g, a university
department) to share its idle resources [7]. Imagine they are
deployed by the Math department’s administrator willing to
share his PC cluster with users from external departments.
Each PC in the cluster works within these policies.

Math’s local policies
1) This PC is willing to execute jobs submitted by exter-

nal users Mon–Sat from 8 pm to 9 am.
2) Jobs that exceed this time frame will be evicted imme-

diately and without further notice.
3) External users are prohibited to submit jobs to this PC

if its current average CPU usage is above 10%.
4) External users are prohibited from instantiating the

the execution of more than three copies of a job,
simultaneously.

5) This PC runs Linux and has 4 Gbytes of RAM and
850 GB of disk available for temporal files.

To enforce its LP, Math can express them as EROP rules
as shown by the next two examples and load them into its

3

policy manager, for example, like in Fig. 1–a) and c).
#R1->p1: accept job
when e==exeJob && exeJob in math.obligs
&& e.user==external && e.ts==[Mon--Sat; 20--09 hrs]
&& Load<10%
then PCo; math.rights+=evictJob;
end
#R2->p2 evict jobs violating time frame
when e==evictJob; e.timeFrameViolation==TRUE
&& e.user==external && evictJob in math.rights
then PCo; math.rights-=evictJob
end

The second line of R1 verifies if the event is exeJob
(a request to execute a job) and that exeJob is currently
in Math’s obligations. The third and fourth lines verify
conditions. The fift line produces a PCo message and grants
Math’s the right to evict, if necessary, the job. R2 triggers to
evict jobs violating the time frame, as stipulated by policy
2.

Imagine now that the Math and Biology administrators
agree on the following SA.

Math–Biology SA policies
1) Biology users have the right to execute jobs from 8

pm to 9 am.
2) Owners of jobs that threat to extend their execution

beyond 9 pm will be notified by 8:30 and asked to
remove their jobs.

3) If the owner takes no action by 8:45 am, his job will
be evicted and queued into a dedicated cluster where
its is likely to experience long delays.

4) Biology users are prohibited to submit jobs to a PC if
its current CPU usage is above 10%.

5) Math is obliged to provide Linux and Windows ma-
chines with 4 Gbytes of RAM and 160 GB of disk
available for temporal files.

These SA policies can also be expressed in EROP and
enforced by a policy manager, for example like in Fig. 1–
a), b) or c). Here is the example for policy 1. Notice that
the conditions in the third line restrict the submission time
but not the day; this conflicts with the third line of Math’s
R1 which accepts submissions only on Mon–Sat.
#R1->p1: submit job
when e==exeJob && exeJob in math.obligs
&& e.user==external && e.ts==[20--09 hrs]
&& Load<10%
then PCo; math.rights+=evictJob;
end

B. Buyer–Seller example

The following policies are extracts from a SA between a
buyer (inspired by [8]).

Buyer–Seller SA policies
1) The buyer has the right to submit purchase orders

(PO) to the seller, that shall include itemName, the
desired delivery time (dt) and the payment (pay).

2) Buyer has the right to cancel his PO before dt.

3) A successful cancellation obliges the seller to reim-
burse 90% pay to the buyer.

4) The seller shall claim full payment when he delivers
by dt and the buyer has not cancelled the PO.

The ECA rules in EROP are shown next. Fig. 1–a, b and
c show three possible alternatives to deploy them.
#R1->p1,p2,p4: accepts PO, grants buyer right to
#cancelPO and impose oblig to deliver on seller.
when e==PO && e.orig==buyer && PO in buyer.rights
then PCo, buyer.rights+=CancelPO;

seller.obligs+=(deliver,dt)
end
#R2->p3:cancelPO imposes oblig. on seller to refund 90%
when e==CancelPO && e.orig==buyer &&
CancelPO in buyer.rights && e.ts<dt
then PCo, buyer.rights-=CancelPO, seller.obigs+=90%refund
end

The fourth line of R1 declares the event PO policy
compliant and grants the buyer the right to cancel the PO
and the obligation to deliver by dt to the seller. The right to
submit another PO is not removed from the seller. The third
line of R2 checks if the buyers has the right to cancel a PO
and the time stamp in the event. The fourth line produces
an PCo message, removes the buyer’s right to cancel and
imposes the obligates the seller to refund 90%.

Imagine that the buyer operates under the following LP.

Buyer’s private policies
1) The issuer of the PO must have a budget assigned to

it by a designated budgetOfficer.
2) A PO is allowed only if the balance in the issuer’s

budget exceeds the payment amount in the PO.
3) The issuer’s budget will be charged upon the submis-

sion of the PO.
4) If the item is not delivered for whatever reason, the

issuer’s budget will be refunded.
These LP can be expressed in EROP as shown below

and deployed, for example in the client’s policy manager of
Fig. 1–b) or c).
#R1->p1,p2,p3: right to submit PO (POsub)
when e==POsub && e.orig==buyer && POsub in buyer.rights
&& e.pay<=BudgetBalance

then PCo, ChargeBudget; buyer.rights+=refund
if BudgetBalance<=0 then buyer.rights-=POsub

end
#R2->p4: right to be refunded is delivery fails
when e==DlvFail && e.orig==seller && refund in buyer.rights
then PCo, refundBudget; buyer.rights-=refund
end

We do not discuss the seller’s LP, but they can be treated
in a similar manner.

IV. AMENABILITY TO FORMAL ANALYSIS

A policy is usually i) written in a natural language (e.g.,
in English) ii) converted into computer–amenable notation
(e.g., ECA rule) and iii) deployed into an existing policy
base. The maintenance of the logical consistency of the
policy base is crucial and challenging. Careless addition,
withdraw and edition of policies might result in syntactic

4

and more subtle logical errors like redundancy, subsumption,
incompleteness, unreachability, circularity and conflicts [9].
To prevent these problems, it is advisable to evaluate the
logical impact of adding, editing or removing a policy, on
a policy base, before altering it. With large policy bases
(hundreds of policies) , this is only possible, when policies
are expressed in notations that are amenable to logical
examination with automatic tools.

A close examination of the policies of the Condor example
will reveal that there are several conflicts between Math’s
LP and Math–Biology SA policies. There is a conflict about
submission days (policies 1 and 1): SA allows submission
of jobs on Sun whereas Math’s LP prohibits that. Secondly,
there is a conflict about the time window: The second SA
policy specifies notification and re–allocation allowances,
whereas Math’s second policy specifies immediate eviction.
Third, the omission of a clause in the SA to constraint the
number of copies that can be instantiated conflicts with the
constrain (no more than 3 copies) stipulated by Math’s fourth
policy. Finally, there is a conflict between policies number
5: SA specifies both Linux and Window machines, whereas
the Math’s LP offer only Linux.

As a second example, take an SA policy from Amazon
Cloud drive [10] (a prepaid disk storage service) that stipu-
lates that Amazon will renew the client’s plan automatically
at the end of the prepaid period unless the client sends a
cancellation message before the renewal date. This policy
could conflict with the LP of a company stipulating that
Employees need authorization from their managers to renew
their Cloud drive accounts. Conflicts like this are subtle and
hard to detect without the assistance of mechanical tools.
Thus numerous policy languages with their respective ver-
ification tools have been suggested that range from special
purpose tools (see for example [11], [12]) implemented from
scratch to existing general purpose logical verifiers such as
conventional model checkers. In our research, we have taken
the second alternative. In particular, we have explored the
suitability of Spin [13] in the verification and testing of
policies and have produced encouraging results [9], [14]. We
have used Spin with both standard Promela and an extended
version of Promela [3] to verify the logical consistency
of SA policies before conversion into EROP rules [9]. In
addition, we have used Spin as test case generator to validate
the execution of EROP rules against errors introduced at
conversion from English to EROP rules and by the execution
environment [14]. As pointed out in[15], model–checking of
large systems (say contracts with 50 or more clauses) can
quickly result in state explosion; we argue that this issue can
be prevented by means of abstraction techniques

It is worth emphasising that we are interested here in
offline detection of logical errors. That is, the goal is to
identify the situations (occurrences of an event or event
patterns) that will, or are likely to drive the policy base
out of consistency at run–time. Once the error, precisely

the potential threat, has been identified several measures
can be taken by the policy administrator to address the
issue. For instance, trivial syntactic errors are immediately
corrected after detection. Redundancy can be ignored in
applications where it impacts efficiency but without logical
implications. Likewise, the administrator might decide to
introduce preventive measures against potential conflicts that
are likely to happen frequently or have catastrophic impacts;
alternatively, he or she might decide to live with the threat
of a conflict and take corrective measures only when it
actually materializes. Metapolicies (policies about policies)
is a widely used technique to deal with conflicts. In the
simplest case, a metapolicy can specify precedence between
two or more potentially conflicting policies.

V. PROOF OF CONCEPT IMPLEMENTATION

As a proof of concept that demonstrates how the PM
operates, we have implemented the client’s application, the
service interface, the gateway and its integration to the PM as
shown in Fig. 3. Notice that if we exclude the provider’s LP
from the policy manager, this implementation corresponds
to the right side of Fig. 1–a).

Our implementation is RESTful based, thus communica-
tion between the components is realised as RESTful request
and replies.

gateway	
service	
interface	

req/rep
app	

PM	 client

ca
llR

q

ac
c|

re
j

policy2drools	
conversion	

up
da

te

 d
ro

ol
s

provider

Req/Rep

manual

RESTful RESTful R
E

S
Tf

ul

clients’	 	
acct	 DB	

JDBC queries

SA	

Figure 3. Proof of concept implementation.

The client’s application is a HTML form that the client
fills in with relevant personal information (name, account
number, etc.) and submits to access the service. Client’s
request leaves the client as RESTful GET requests (req)
to be intercepted by the gateway. The gateway extracts the
client’s personal information from the requests (precisely,
from the query parameters), uses them to compose a GET
request, sends it (callRq) to the PM for evaluation and waits
for a reply. The PM extracts the personal information from
the callReq and uses it for composing the event (event ei in
Fig. 2) that the drool engine needs to trigger the ECA rules
that perform the evaluation of the callReq.

When the gateway receives a rej reply from the PM, it
inserts a rej parameter in a RESTful reply and sends it (rep)
to the client’s app. More interestingly, when the gateway
receives an acc from the PM, the gateway, composes a

5

RESTful request (Req) with the URL of the resource re-
quested and forwards it to the service interface. Eventually,
the service interface replies with a Rep to the gateway,
who extracts the parameters of interest (for instance, the
requested resource or a reference to it) to compose rep and
sends it to the client’s app.

We use the following SA in our experiment:

Client–Provider SA
p1 The client can purchase call cards from the

provider.
p2 A card entitles the client to place 10 calls (re-

quests) against the provider, at any time.
p3 A card is considered consumed when its 10th call

terminates.
We admit that this SA is far from being complete; for

instance, it does not specifies constraints on the length of
the calls. Yet it is good enough to illustrate this discussion.
Moreover, in this preliminary implementation, we converted
the SA policies manually from English into standard drools
instead of EROP rules.

We deployed two clients called (Romeo and Juliette), thus
the PM is responsible for operating the gateway to permit or
deny call requests related to Romeo–Provider and Juliette–
Provider SAs. As shown in the figure, we use a conventional
JDBC database to store the clients’ accounts (clients’ acct)
which contain two parameters: client’s name and its number
of prepaid calls (PrepaidCalls).

p1 can be regarded as the signing of the agreements
between the two parties. In a full implementation, the
purchase of the call card would be taken by the provider as
an indication to automatically update the PM (update drools)
with policies p2 and p3 so that it can operate the gateway.
In this experiment we update the PM manually, that is, we
manually typed the following drools into a drools drl file.
We inserted the numbers 01:, 02:, etc. in the code to help
the discussion.

01: rule "Accept callRq"
02: when
03: $e: drools.Event(type=="callRq",

cli: originator)
04: eval(clientPC.getPrepaidCalls(cli)>0)
05: then
06: $e.setStatus("acc");
07: clientPC.updatePrepaidCalls(cli);
08: end
09: rule "Reject callRq"
10: when
11: $e: drools.Event(type=="callRq",

cli: originator)
12: eval(clientPC.getPrepaidCalls(cli)<=0)
13: then
14: $e.setStatus("rej");
15: end

The code contains two rules: Accept callRq and Reject
callRq. Accept callRq triggers when a call request is to

be accepted, whereas Reject callRq triggers when a call
request is to be rejected. Both rules react to the event
drools.Event (lines 03 and 11, respectively). As defined
in our Java classes, the event contains several fields; three
of them are of interest here: Firstly, type identifies the type
of event, for example, callRq; secondly, originator contains
the name of the client that originated the event, for example,
Romeo, Juliette; thirdly, status is used by the rules to store
their decisions to accept or reject (acc or rej) the request
expressed in the event under analysis. Upon receiving an
event of type callRq (line 03) originated by a client (cli),
rule Accept callRq evaluates its condition (a JDBC query in
line 04) which verifies whether the client has prepaid calls
in his or her account. If the condition is satisfied, the rule
writes (line 06) acc in the status field of the event and access
the JDBC database (line 07) to update (decrement by one)
the number of calls consumed by the client.

Rule Reject callRq work similarly, except that it triggers
when the client has no prepaid calls (line 12) in his account
and writes (line 14) rej in the status field of the event.

The status of drools.Event is extracted by ancillary Java
classes of the PM (a Servlet in current implementation) to
compose the RESTful reply that the gateway is waiting for.
The reply contains either acc or rej to instruct the gateway
to accept or reject the client’s request, respectively.

VI. FUTURE WORK

In Section I, we mentioned that the PM of two parties can
interact with each other to negotiate the creation, updating
and termination of SAs (Fig. 1–d)). We are currently in the
process of integrating the monitoring facilities of the CCC
with the negotiation facilities of Agility. Agility is a Cloud
Management product developed by Arjuna Technologies
Limited [4] to assist two or more independently adminis-
tered parties in sharing their IT resources. It automates the
creation, negotiation, updating and termination of SAs.

An abstract view of the negotiation components of
agility’s is shown in Fig. 4. The agility servers (ASC and
ASP) are the core components of Agility and are responsi-
ble for establishing, storing, updating and terminating SAs
negotiated through the negotiation protocol.

SA	 template1	

SA	 templaten	

portal	

ASC

client

agreed	 SA	

PM1	 PM2	

nego3a3on	
protocol	

edit and propose SA

SA	 template1	

SA	 templaten	

portal	

ASp

provider

PM3	 PM4	

nego3a3on	
protocol	

edit and propose SA

agreed	 SA	

Figure 4. Agility’s negotiation architecture.

To understand how the negotiation protocol works, imag-
ine that the initiator and responder are, respectively, the

6

client and provider. 1) The initiator wishing to create or
update an SA uses its portal to edit an SA template. 2) The
initiator consults its policy modules (PM1 and PM2) for
approval of the SA proposal. 3) If the SA proposal is locally
approved the initiator sends it to the responder). 4) The
responder consults its local policies modules (PM3, PM4)
for approval. 5) If the SA proposal is approved, the responder
sends an acceptance message to the initiator; otherwise, it
sends a rejection message.

Notice that each policy module contains one or more
local policies and that decision to accept or reject a SA
proposal is based on an implementation specific algorithm,
expressed perhaps as a metapolicy on the policies in the
policy modules.

Implementation issues aside, the challenge of this endeav-
our is the alignment of the LP of the parties and SA policies
under negotiation. It seems that the techniques that we used
in the analysis of the logical consistency of the SA policies
can be applied in the analysis of LP. In the same way, these
techniques can be used to reason about potential logical
conflicts between the policies of the SA under negotiation
(or already agreed upon) and the LP of the parties; namely
conflicts between SA and client’s LP and conflicts between
SA and provider’s LP.

We are aware that some conflicts are hard to detect offline.
Yet we believe that some (or most) potential conflictive
situations can be predicted by means of offline analysis.
We speculate that Linear Temporal Logic (LTL) formulae
can be used to reason about the temporal constraints—
crucial information to predict run–time conflicts— on the
clauses. For example, the requirement that there should be
no simultaneous permission and prohibition to submit a job
for execution, can be written in LTL as:
[](not(IS_permit(execute) && IS_prohibit(execute)))

This LTL reads that, always it is not possible to be
permitted and prohibited to execute, and can be used for
example to uncover conflicting situations where SA policies
permit something that LP prohibit.

We feel that, this is a research direction worth exploring;
good insights into this issue can be found in [16].

VII. RELATED WORK

Research on contract regulated inter–enterprise interac-
tions between parties subject to local and shared policies
was pioneered by Minsky [17]. The notion of current right,
obligations and prohibitions was introduced in [18]. A
compact summary about the issues involved in contract man-
agement is provided in [19]. The author includes a list of 13
features that contract languages should provide. Within this
context, we believe that our approach is particularly strong in
capturing the dynamic of rights, obligations and prohibitions
and contrary to duty obligations (contingency clauses) as our
notation does this explicitly. Another salient feature is that

it enables formal reasoning using existing general purpose
tools like model–checkers both at design and implementation
(testing) time. Intuitive mapping from notation used at
verification time to actual implementation (not mentioned
in [19]) is another salient feature of our approach. The need
for automatic mechanisms for renegotiation (anticipated
and exceptional updates) of legal agreements is recognised
in [20], however, they focus on the protocol for the digital
signatures and overlook the potential logical impact on the
policies. Negotiation, deployment and monitoring of SAs is
discussed in [21] but without accounting for logical conflicts.
In [22] the authors discusses a policy management system
called MyPolMan that can be used by administrators of Grid
environments for editing (creating and updating) and dis-
seminating policies (XML files). Though it is not explicitly
discussed, the authors assume that the policy decision point
is provided with a single XML document with logically
consistent policies that satisfies both the policies of the Grid
community and the administrator’s local policies. They do
not account for potential inconsistencies in the policies or
clashes between Grid and local policies. A mechanism for
granting access to Grid resources with the help of gateways
controlled by policy decision points is discussed in [23].
Policy management here is centralised— in contrast, we deal
with a multipolicy domain. A conceptual discussion on the
use of metapolicies as a means of resolving policy conflicts
that emerge in applications that involve several policy do-
mains can be found in [24]. Though the focus is on security
policies, her observations are applicable to other fields. This
discussion is extended in [25] where it is suggested that
metapolicies can be used to specify invariants, that is, to
guard policies that cannot be overwritten by other policies,
even in the event of conflicts. Policy conflicts are discussed
in–depth in [26]. Special purpose tools for reasoning about
policies (conflicts for instance) are suggested in [27], [11],
[16], [28]. In contrast, in [9], [14] we suggest the use of
existing model–checkers.

VIII. CONCLUSION

We have argued that service agreements (contracts) used
in cloud computing are complex documents with a dynamic
life–cycle that includes negotiation, conversion of policies
(clauses) from English to executable code, deployment,
enforcement, updates and normal or early termination. As
a contribution, we discussed an architecture that includes
automatic tools to help the designer at different stages. We
raised the question about the desirable features that SA
managing systems should provide. We focused our attention
to the notation used to encode policies. We argued that
it should be expressive enough to cover practical policies,
clear, intuitive and implementable. We pointed out that the
maintenance of the logical consistency of policies is not
trivial and suggested that SA notations should be amenable
to logical analysis with automatic tools to uncover potential

7

problems. We discussed a proof of concept implementation
based on RESTful and Jboss drools.

ACKNOWLEDGMENT

The first author was funded by EPSRC grant KTS-
EP/H500332/1.

REFERENCES

[1] C. Molina-Jimenez, S. Shrivastava, and M. Strano, “A model
for checking contractual compliance of business interactions,”
IEEE Trans. on Service Computing, vol. PP, no. 99, 2011.

[2] M. Strano, C. Molina-Jimenez, and S. Shrivastava, “Im-
plementing a rule–based contract compliance checker,” in
Proc. 9th IFIP Conf. on e-Business, e-Services, and e-Society
(I3E’2009). Nancy, France: Springer, 2009, pp. 96–111.

[3] A. Abdelsadiq, C. Molina-Jimenez, and S. Shrivastava, “A
high–level model–checking tool for verifying service agree-
ments,” in Proc. 6th IEEE Int’l Symposium on Service–
Oriented System Engineering (SOSE’2011), 2011.

[4] Arjuna Technologies Limited, “Agility 1.2.0,” 2011. [Online].
Available: www.arjuna.com/contact

[5] D. Harel and A. Pnueli, “On the development of reactive
systems,” Logics and Models of Concurrent Systems, vol.
NATO ASI Series, F13, 1985.

[6] JBoss, “Drools,” http://www.jboss.org/drools/.

[7] T. Tannenbaum, D. Wright, K. Miller, and M. Livny,
“Condor—a distributed job scheduler,” 2001, chapter 15.
[Online]. Available: www.cs.wisc.edu/condor/doc/beowulf-
chapter-rev1.pdf

[8] N. H. Minsky and V. Ungureanu, “Scalable regulation of
inter-enterprise electronic commerce,” in Proc. 2nd Int’l
Workshop on Electronic Commerce. Springer, 2001.

[9] C. Molina-Jimenez and S. Shrivastava, “Model checking
correctness properties of a middleware service for contract
compliance,” in Proc. 4th Int’l Workshop on Middleware
for Service Oriented Computing (MW4SOC’09), Nov. 30,
Urbana–Champaign, USA, 2009, pp. 13–18.

[10] Amazon, “Amazon cloud drive,” 2011. [Online]. Available:
www.amazon.com/clouddrive/learnmore

[11] D. Zhang and D. Nguyen, “Prepare: A tool for knowledge
base verification,” IEEE Transactions on Knowledge and Data
Engineering, vol. 6, no. 6, Dec. 1994.

[12] N. Dunlop, J. Indulska, and K. Raymond, “Dynamic conflict
detection in policy-based management systems,” in Proc.
Sixth Int’l Enterprise Distributed Object Computing Conf.
(EDOC’02), 2002, pp. 15–26.

[13] G. J. Holzmann, Design and Validation of Computer Proto-
cols. Prentice Hall, 1991.

[14] A. Abdelsadiq, C. Molina-Jimenez, and S. Shrivastava, “On
model checker based testing of electronic contracting sys-
tems,” in 12th IEEE Int’l Conf. on Commerce and Enterprise
Computing(CEC’10), 2010, pp. 88–95.

[15] A. Paschke, “Verification, validation and integrity of dis-
tributed and interchanged rule based policies and contracts
in the semantic web,” in 2nd Int’l Semantic Web Policy
Workshop (SWPW’06), 2006.

[16] N. Dunlop, J. Indulska, and K. Raymond, “Methods for
conflict resolution in policy–based management systems,” in
Proc. Seventh Int’l Enterprise Distributed Object Computing
Conf. (EDOC’03), 2003, pp. 98–109.

[17] V. Ungureanu and N. H. Minsky, “Establishing business rules
for inter–enterprise electronic commerce,” in Proc. 14th Int’l
Symposium on Distributed Computing (DISC’00), 2000, pp.
179–193.

[18] H. Ludwig and M. Stolze, “Simple obligation and right model
(SORM)-for the runtime management of electronic service
contracts,” in Proc. 2nd Int’l Workshop on Web Services, e–
Business, and the Semantic Web(WES’03), LNCS vol. 3095,
2003, pp. 62–76.

[19] T. Hvitved, “A survey of formal languages for contracts,”
in Fourth Workshop on Formal Languages and Analysis of
Contract–Oriented Software (FLACOS’10), 2010.

[20] S. Angelov, S. Till, and P. Grefen, “Dynamic and secure B2B
e-contract update management,” in Proc. 6th ACM Conf. on
Electronic commerce(EC’05), 2005, pp. 19–28.

[21] C. Wang, G. Wang, H. Wang, A. Chen, and R. Santiago,
“Quality of service (QoS) contract specification, establish-
ment, and monitoring for service level management,” in Proc.
10th Int’l Enterprise Distributed Object Computing Conf.
Workshops (EDOCW’06), 2006.

[22] J. Feng, L. Cui, G. Wasson, and M. Humphrey, “Policy-
directed data movement in grids,” in Proc. 12th Intl Conf.
on Parallel and Distributed Systems (ICPADS’06), 2006.

[23] G. Wasson and M. Humphrey, “Policy enforcement in vir-
tual organizations,” in Proc. Fourth Int’l Workshop on Grid
Computing (GRID’03), 2003, pp. 125–132.

[24] H. H. Hosmer, “Metapolicies I,” ACM SIGSAC Review,
vol. 10, no. 2–3, Special issue on Issues 91, pp. 18–43,
Spring/Summer 1992.

[25] J. Schütte and T. Wahl, “Interdomain policy conflicts: De-
scription logics-based handling,” IEEE Vehicular Technology
Magazine, vol. 5, no. 3, pp. 68–74, Sep. 2010.

[26] G. K. Giannikis and A. Daskalopulu, “Normative conflicts
in electronic contracts,” Electronic Commerce Research and
Application, vol. 10, no. 2, pp. 247–267, Mar/Apr 2011.

[27] E. C. Lupu and M. Sloman, “Conflicts in policy–based dis-
tributed system management,” IEEE Transactions on Software
Engineering, vol. 25, no. 6, pp. 852–869, Nov/Dec 1999.

[28] S. Fenech, G. J. Pace, and G. Schneider, “CLAN: A tool
for contract analysis and conflict discovery,” in Proc. 7th
Int’l Symposium on Automated Technology for Verification
and Analysis (ATVA’09), LNCS 5799, 2009, pp. 90–96.

8

	TRCover1381
	TRAbstract1381
	TECHNICAL REPORT SERIES
	Abstract

	TRBibliography1381
	1381withoutcovers

