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Abstract—Android platform has become a primary target for
malware. In this paper we present SafeDroid, an open source
distributed service to detect malicious apps on Android by
combining static analysis and machine learning techniques. It is
composed by three micro-services, working together, combining
static analysis and machine learning techniques. SafeDroid has
been designed as a user friendly service, providing detailed
feedback in case of malware detection. The detection service is
optimized to be lightweight and easily updated. The feature set on
which the micro-service of detection relies on on has been selected
and optimized in order to focus only on the most distinguishing
characteristics of the Android apps. We present a prototype to
show the effectiveness of the detection mechanism service and the
feasibility of the approach.

I. INTRODUCTION

According to techcrunch.com1, there were 2.6 Billion mo-
bile devices worldwide in 2015 which is expected to rise
to 6.1B by 2020. There are applications available for all
variety of tasks like entertainment, fitness, health-care, utility,
news, magazines, books, movie, music, security, productiv-
ity, education, business, finance etc., with millions of apps
available in different app stores. Some of these app stores
are more strict than others in filtering the apps based on the
security assessment. Users, who are mostly unaware of the
security implications, tend to ignore this fact and download
apps from any source available. This has led to a proliferation
of malicious apps in the form of viruses, trojan horses, worms,
adware, spyware etc., known for stealing users’ data, leaking
personal information, running malicious code and degrading
the overall performance of the device. Such apps sneak through
the app stores due to missing thorough security analysis or they
are distributed directly from the servers.

In January 2016, Google’s official market place Play Store
banished 13 apps as they were making unauthorized downloads
and tried to gain root privileges2. However, several examples of
late discover of malicious apps on the Google Play Store (like
Android.Dropdialer3) have shown that Google’s automated
security service can have several troubles on early detection.
This is why researchers have invested efforts in defining
models and systems to detect malicious applications leaking
critical data or carrying out unintended functions.

1Ingrid Lunden on techrunch.com: 6.1B Smartphone Users Globally By
2020, Overtaking Basic Fixed Phone Subscriptions. http://tcrn.ch/1IbiZNr

2Dan Goodin on arstechnica.com: Malicious apps in Google Play made
unauthorized downloads, sought root. http://goo.gl/2jY18e

3Steven Musil on cnet.com: Malware went undiscovered for weeks on google
play. http://goo.gl/1I2svr/

Malware detection for Android has been conducted with
many different approaches, starting from signature based de-
tection, to artificial intelligence, leveraging static, dynamic
and hybrid analysis [1]. As it will be further clear, all the
approaches have several advantages and weaknesses, but con-
sidering the trade-off between usability and effectiveness, static
analysis (namely the analysis of the executable code of an app)
is still considered to be the most effective approach, mainly
when it’s bounded with the new paradigm of machine learning
(ML) [2], [3], [4], [5]. The most critical step to obtain an
effective and efficient ML-based system is the choice of the
feature set on which the algorithms have to deal with [6]. In
particular, features requiring great overhead to be extracted
would lead to poorly usable systems, while ineffective or
redundant features would lead to systems with unsatisfying
detection rates.

A. Contribution and Outline of the Paper

In this paper we present SafeDroid, an open source
distributed malware detection service for Android platforms
which is lightweight and suitable for deployment with high
speed performances and optimal detection rates. Performance
is an important characteristic because it has a direct impact on
the user experience. Similarly, detection rate determines the
usefulness of the system. Users won’t use a service either if
the detection takes a long time or if the detection performances
are bad (too many false positives or negatives).

SafeDroid is implemented as a set of micro-services work-
ing together, combining static analysis and machine learning
techniques. SafeDroid inspects the device for installed apps
and provides a classification into benign or malicious apps. In
case of malicious app, SafeDroid displays the list of feature
categories that contribute the most for such prediction. The
back end system has been designed as a micro-service which
provides classification, based on the API calls of the examined
application, and reporting. In particular, a list of 743 API
features that describe malicious behavior has been identified,
which is a comparatively very small feature set. This set is
used for training the machine learning classifier over a data
set sourced from prior research.

The novelty of SafeDroid architecture is that the classifica-
tion is done by a remote micro-service using only the DEX file
retrieved from the APK file: the client app saves bandwidth
since it only sends the important data, strictly necessary to
perform the app evaluation and, thus, significantly reducing
the amount of data to be sent. Furthermore, compared to other
similar solutions, SafeDroid uses a relatively lower dimen-
sional feature vector to feed the machine learning classifier,



while still providing with high detection rates and very few
mis-classifications.

In the paper we describe the implementation of the de-
tection service and the evaluation of its performance against
three different machine learning classifiers over a data set of
real application. We conclude that the Random Forest classifier
performs the best with an accuracy of 99.51% and a false
positive rate of 0.017.

Outline of the Paper The paper is organized as follows:
Section II introduces and analyses the most relevant literature,
identifying related weaknesses (which constitute the main mo-
tivation for designing a new malware detection micro-service).
Section III illustrates the main components of SafeDroid,
while Section IV provides further details by motivating design
choices. The results of the evaluation experiments of the
system are reported in Section V, while Section VI summarizes
the paper and provides some further research directions.

II. RELATED WORK

We can group the available literature on malware detection
considering three main different approaches, according to the
different approaches followed in order for the detection to
be performed, namely static, dynamic, or hybrid. With static
analysis the applications are evaluated by analyzing their exe-
cutable code, while with dynamic analysis their classification is
performed considering their behaviour, effectively by running
them. The hybrid approach, clearly, tries to combine the two
analysis methodologies to produce more accurate and precise
evaluations.

A. Detection Based on Static Features

Shabtai et al. [7] classifies apps according to a category
of utility using the static features extracted from the APK file
(the whole package of an application, composed by images,
metadata and executable code). The idea is to compare the
different feature selection and machine learning algorithms to
solve this classification problem and extend it to the domain
of malware detection. This early work gave a first insight into
the feasibility of this approach to solve security problems.

RiskRanker [8] focuses on detecting zero day Android
malware by signature recognition techniques. The authors
collected around 105,000 apps from different app stores over
a period of 2 months. The prototype is able to identify 718
malicious apps in 29 malware families. This included 322
zero-day malwares. The approach has several limitations, like
the reliance on known signatures for the first order analysis,
assumption that the attackers use Android libraries for encryp-
tion, decryption tasks instead of implementing their own.

L. Batyuk et al. [3] propose a service that statically analyses
applications by identifying third party libraries and using
rich pattern matching for security warnings. They provide
mitigation measures by refactoring binary application packages
based on user preferences. The authors present an experimental
prototype of the system, but argue that the deployment is
only possible by using a third-party hosting server and, then,
uploading the APKs to the analysis server for assessment and
mitigation, making the approach not very practical.

H. Kang et al. [9] complements the existing static analy-
sis techniques by considering the developer certificate serial
numbers of the applications. The authors argue that malware
detection can be more effective if the serial number of the app
certificate is compared with a predefined blacklist of malicious
certificate serial numbers. A data set comprising of about
51,000 benign and 4500 malicious applications has been used
for the experiments with a noticeable detection rate of 98%.

J. Saxe et al. [5] base the malware detection on deep neural
networks using two dimensional binary program features. The
network is directly trained on binary files without any filtering
or unpacking. They were able to achieve a 95% detection rate
at 0.1% false positive rate.

L. Apvrille and A. Apvrille [2] use a combination of
different classification algorithms like SVM, Hidden Markov
Models, Logistic Regression etc. The classification module
automatically combines various algorithms to produce the best
results. The authors tracked 289 features from the static analy-
sis of the APK file which included file properties, Dalvik code
properties, resource properties and third party kit properties.
The main novelty lies in the classification engine (Alligator),
which is a free and open-source tool for classifying data.

Y. Aafer et al. [10] proposed DroidAPIMiner, a tool
based on the approach that defines a feature vector from the
critical API calls, their package level information and their
parameters. A data set comprising of about 16K benign and 4K
malicious applications is sourced from McAfee and Android
Malware Genome project. The authors were able to achieve
99% accuracy and a a false positive rate of 2.2% using k-
nearest-neighbor classifier.

D. Arp et al. [11] propose a tool called DREBIN that ex-
tracts features by performing broad static analysis on the APK.
Properties like suspicious API calls, requested permissions,
hardware components, intents, used permissions etc. are taken
into account for generating a rich feature set. Linear Support
Vector Machine (SVM) is used as learning and classification
algorithm. A data set comprising of around 120,000 applica-
tions has been used for training and detection. The authors
record a detection rate of 94% and false positive rate of 1%
for this analysis.

To conclude the overview of the static analysis approaches,
we can group the features considered to perform malware
detection in the following four categories.

a) Requested permissions: This category considers the
list of the permissions requested by an app to access secu-
rity critical services at the installation time. This is one of
the Android security mechanism, since the user is informed
and explicitly needs to grant access to these services before
they could be used by the app. For example, READ SMS,
SEND SMS, READ CONTACTS, WRITE CONTACTS etc.
It has been found that the malicious apps tend to ask for certain
set of permissions more frequently than the benign apps [12].
An app requesting access to location information, network
communication and personal information is more likely to be
sending user location to remote server and thus misusing it.

b) Hardware components: This category, similar to the
permissions, considers which hardware components the apps
need provide its functioning. A combination of certain features



could indicate malicious behavior [10]. For example, an app
accessing camera and network connection could send photos
to the remote server without user’s consent.

c) API calls: This category considers API calls as fea-
tures requested by an app. For instance, an app can make calls
to specific APIs to access services, for example, getDeviceId(),
getSubscriberId(), sendTextMessage(). Some of these APIs are
more critical than others because of the security and privacy
implications of the services they access. The calls to the critical
APIs are administered by specific permissions but apps could
call APIs without the required permission. This could indicate
a malicious behavior suggesting that the app might have tried
to use root exploits to call a specific API. Also, a set of critical
API calls could define a malicious behavior [10], [11]. For
example, an app calling sendTextMessage() API could send
SMS to some premium numbers without user’s consent.

d) App components: This category considers the four
following components of an app: broadcast receivers, content
providers, activities and services. These components are the
interfaces that the system uses to interact with the app. Certain
malware families could use the same component names for
malicious activities [11]. This information may help to detect
such apps.

B. Detection Based on Dynamic Analysis

DroidRanger (Y. Zhou et al. [12]) uses permission based on
filtering and heuristic detection methods to identify malicious
apps in the official and non official Android market places. The
idea is to filter the apps based on the permissions declared
in the manifest file. Only suspicious permissions were used
for filtering, such as sending or receiving of SMS. After,
the filtered apps are matched with the malware footprints
generated from behavioral analysis. It is important to note
that behavioral footprints are generated manually by analyzing
malware features. The heuristics based detection focuses on
identifying apps that exhibit suspicious behavior by dynam-
ically loading code. Dynamic execution monitor is used to
inspect the code triggered APIs calls. The system detected 211
malicious apps in the chosen data set, 32 of them in the official
market place.

W. Enck et al. [13] proposes TaintDroid, an information
flow tracking system for real time user privacy monitoring on
smart phones. The system is designed as an extension to the
Android OS that tracks the flow of private information through
third party apps. The traffic generated from all the installed
apps is monitored and scanned for possible data leakage. The
goal is to detect if user sensitive data leaves the system through
any of these apps. The system makes use of language based
security and privacy principles like labeling program variables
and files for the purpose of identifying possible leakage of sen-
sitive data. Information regarding transmitted data, application
and destination are logged for further analysis. TaintDroid is
tested on only 30 apps but is able to provide good results with
no false positives.

C. Detection Based on Hybrid Analysis

T. Blasing et al. [14] take into consideration both static and
dynamic analysis of applications. The static analysis is based

on using pattern matching techniques for known malware be-
haviour. Dynamic analysis module aims on intercepting system
calls to understand the behavior of applications. A Loadable
Kernel Module (LKM) has been installed in the kernel space
to log system calls, while the application underwent random
operations triggered by the end user. The authors tested the
system with 150 applications downloaded from the app store
and a self written Android malware app.

Y. Zhauniarovich et al. [15] found out that recent Android
malware is able to evade the best static analysis tools, due
to popular dynamic code update techniques and reflection
presence. The authors proposed the use of dynamic analysis
techniques along with the existing static analysis to reveal the
hidden or updated behavior of the applications. A system called
STADYNA has been implemented capturing the advantages of
both analyses. The evaluation data set was quite small for the
experiment and dynamic analysis steps could not be automated
and, thus, have been conducted by manual trigger.

Lindorfer et al. [4] proposed MARVIN to provide a com-
prehensible and practical malware analysis system to empower
the existing technologies, which are dealing with problems
like obfuscation and dynamic code loading. The system is
based on a hybrid approach, consisting of static and dynamic
analysis, leveraging machine learning to provide scores for
unknown android apps. The data set consisted of 135,000
Android apps, out of which 15,000 samples were malware.
MARVIN reported an accuracy score of 98.24% with less than
0.04% false positives.

D. Limitations of Existing Approaches

Some of the relevant works do not have sufficient data
to train and test the model [13], [1]. Other works [10] only
discuss the static analysis approaches and the accuracy of the
created model, but fail to deploy the system in real world
settings. This is particularly important because deployment and
integration is a major task in mobile solutions. The apps can
be installed from a variety of market places and third party
servers. It is therefore important to look at the architecture for
real deployment. We overcome these limitations by designing a
system feasible for deployment and providing a high prediction
accuracy on a data set of 24000 applications.

Usage of machine learning classifiers with static analysis
can produce high dimensional feature sets (e.g.: with thousands
of features) , as in [11], [4]. A high dimensional feature set
usually generates more complex models, which typically suffer
from over-fitting. SafeDroid is based on a model trained on a
much smaller feature set.

Some of the approaches for static analysis use feature sets
consisting of different types of features extracted, like re-
quested permissions, used permissions, hardware components,
intents, API calls etc. [11], [2], [4]. Since some of these
features have a strong correlation under different categories,
these methods miss the interrelationship analysis of the feature
selection step. For example, a malicious app sending premium
SMS would call API sendTextMessage(), request permission
SEND SMS and make use of it. These three features in the
feature set are strongly bind and should be considered only
once for training the model. Our solution overcomes this



limitation by taking into account only the most relevant API
calls.

Most of related work do not take into account dynamic
code loading, native code execution and use of reflection,
namely those techniques that allow an app to request and
access APIs that are not included in the executable code, but
provided only at runtime by other applications. In [10], [11],
API calls related to this functionality are taken into consider-
ation without any method parameters or the loaded code. In
these cases, static analysis performed at byte-code level would
not provide concrete information about the behavior of the app.
However, dynamic analysis can introduce high latency and also
requires real use of the application. Moreover, it is a reactive
detection, a method which needs to observe the malicious
behaviour on time. We propose SafeDroid as a mechanism
to detect malicious apps before their execution and without
the need of introducing further latency.

III. SAFEDROID ARCHITECTURE

In this Section we introduce the architecture and some
implementation details of SafeDroid. The goal is to develop a
service suitable for deployment in a real world scenario, able
to obtain a good balance between performance and accuracy.

The micro-services on which SafeDroid is built upon, use
static analysis in order to limit the classification time, which
can be high when using dynamic analysis. Moreover, they
need to access the executable code used by an application
after its installation. While it would be possible to obtain
the APK file of a given application directly from the servers
of a marketplace, we do not consider this as a valid option.
Accessing the APK directly from an app marketplace, in fact,
does not assure accessing the same executable code provided
to a given device: we can easily imagine a smart malware
distributor able to distinguish between a vulnerable device and
a honeypot server and, thus, able to provide different versions
of the same application to different clients. SafeDroid has been
designed to access the application binary code directly from the
device after its installation. Moreover, instead of analyzing the
whole APK archive of the app, it only considers the executable
part of it, namely the DEX file. This operation allows to
save network bandwidth and greatly reduce the communication
latency: for example, two known applications (not disclosed)
with APK files of 92KB and 1.5MB have the relative DEX
files of only 37KB and 810KB, respectively. Finally, since the
malicious applications constantly evolve, SafeDroid has been
designed in a modular way, so that the detection micro-service
can be updated without impacting on the user experience.

With these issues in mind, SafeDroid has been designed
and implemented as a distributed service with three key
components (Fig. 1): an Android app, a Classification and
Reporting Service (CRS), and a Feature Extraction Service
(FES).

The first component is a malware detection app for the
Android platform, responsible for the interaction with the user.
The app retrieves the list of installed applications of the device
and allows the user to choose which application to scan. In
the Android OS, indeed, the APK archive of every installed
app can be accessed with a standard permission, without the
device being rooted. By means of the “Runtime” Java class,

Fig. 1. SafeDroid Architecture: Component Services and Communication

the detector app can extract the DEX file from the APK of
the chosen application. The DEX file, which stands for Dalvik
Executable, contains the executable code of application. Our
app, then, sends the DEX file together with the app name
and the MD5 hash of the APK, to the second SafeDroid
component, the CRS micro-service. Once the CRS sends back
the result of the analysis, in case of malware, the app also
includes the reason why the app has been classified as malware.

The CRS micro-service is responsible for the analysis, the
classification and interacting with the client app. The CRS
is written in Java (based on the Spark Web framework) and
acts as an API end-point for the classification and reporting
functions. Once it receives the DEX file, it requests the Feature
Extraction Service (FES, the third component of SafeDroid,
described in the following section) to analyse the file and to
return a binary feature vector. This feature vector is then evalu-
ated to assign the class label, namely malicious or benign. The
CRS module contains a machine learning classifier (Section
IV), based on the Random Forest algorithm implementation in
Weka framework [16]. The design of SafeDroid as a distributed
service allows to detach the evaluation of the feature vector
from the client app in order to easily manage new feature sets.
In this way, when we want to adopt a new set of features, we
can generate and adopt a new classifier within the CRS service,
trained and updated with the current state of malware, without
requiring the client app to be up-to-date. The feature set and
classifier can also be regularly upgraded, without affecting the
user experience, being confined within the CRS service.

As discussed in Section IV, the classifier outputs which
features contributed the most to output the malicious label,
since it contains a list of ranked features generated by Attribute
evaluation method. In particular, features are categorized under
several labels depending upon the security and privacy concern
associated with them. We have defined six feature categories:
suspicious network activity, suspicious ads related activity,
retrieves personal and/or device information, suspicious utility
method calls and miscellaneous method calls. In order to report
the findings, the top 20 classified API calls are retrieved and
their most common features are sent back to the end user.

The FES micro-service (implemented in Python) gets the
DEX file from CRS and statically analyzes it using a modified
version of the open source tool called Androwarn [17], as
detailed in Section IV. Androwarn is an open source tool writ-
ten in Python for reverse engineering Android APK files and
statically analyzing Dalvik bytecode. It provides functionality



for searching packages, method names, method signatures,
opcodes etc. in the DEX files. With the outcome of the static
analysis, the FES module produces a binary feature vector
depicting the APIs present in —and eventually accessed by—
the DEX file, which is then forwarded to the CRS micro-
service.

IV. SAFEDROID MALWARE DETECTION METHODOLOGY

In this Section we provide further details regarding the
detection mechanisms implemented in SafeDroid. As described
in Section III, the CRS micro-service relies on machine
learning algorithms to classify the applications. To build the
classifiers, we adopted an approach similar to [9], in which
the classification model is trained with malware samples
collected from common malware repository websites such as
VirusShare, Contagio Mobile and malware.lu. The employed
malware samples were collected during the period of January
to August 2013, while the benign apps were downloaded from
the official Google Play Store during the same period. It is
important to note that these apps are assumed to be benign.
We have considered a total of 25000 apps, out of which 4554
(18%) are malware and 20446 (82%) are benign. The number
of malware apps is far less than the benign apps, a thing that
justifies our data set proportion.

A. Choice of the Feature Set

The machine learning model uses data in the form of fea-
ture vectors, namely in a structured format able to represent the
samples. The examined data will be later transported between
the micro-services to determine whether an app is malicious
or not. it is also important to provide the correct labels in
order to build the model (the training phase of the classifier),
alongside the feature vectors. In our case, we wanted to adopt
a representative feature set of the malicious activity of the app
while, at the same time, having a low number of dimensions,
in order not to fall victims of over-fitting and complex models
problem. We decided to rely on a binary feature vector, where
the occurrence of 0 or 1 determines whether a specific feature
is present or not in the app file.

For the detection mechanism of SafeDroid, we opted for
features based on the API calls, as introduced in Section II,
since they are capable of capturing app behavior very well. For
example, API calls like getDeviceId(), getSubscriberId(), send-
TextMessage() allow access to the sensitive data or resources
of the smartphone: malicious apps try to extract this kind of
information without user consent and misuse it. As discussed
in [10], [11], the usage of this set of API calls make an app
suspicious and thus could be helpful in determining if it should
be flagged as malicious or benign. Moreover, other types of
features, like requested permissions and hardware components,
have a strong correlation to these APIs. Moreover, the API
calls can be easily extracted statically from the DEX class
file without much computation overhead. This is an important
aspect, since the usability of every client solution lies in the
fact that it should be fast.

To obtain the desired set of features, an approach inspired
by DroidAPIMiner [10] was used. To figure out the relevant
APIs that could determine whether an app behaves in a
malicious way or not, we can identify the most commonly

used API calls from the malware apps. This can be done by
searching for all the API calls in the dissembled code (DEX)
file of an app. However, this approach provides a very large
number of API calls, since in general an app is composed of
several dedicated and third party packages and, thus, accesses
to a large number of API calls in each of the packages. Also,
commonly categorized malware APIs calls are not necessarily
malicious in nature. Moreover, the computation to collect the
API list for each app and to count the frequency of each
API call can be very huge. Thus, our approach makes the
computation less expensive and the feature set more relevant,
reducing the API call to consider.

Instead of considering all the API calls, we focused mainly
on the API calls that are used in the malicious apps more
frequently, narrowing down the range of analysis. To filter
those critical packages, we used our data set to categorise
the packages that are used by malicious apps more often than
the ones used by benign apps. For each app, the difference
in the count of usage of packages in malicious apps with
the benign apps was calculated. The packages which have a
percentage difference more than a specified threshold (35%)
were considered as the most suitable to distinguish between
malicious and benign apps. In particular, we were able to
cluster the malicious app in four main categories, namely
(1) Telephony and SMS services, (2) Dynamic code loader
services (generally used to evade static analysis checks and
download and execute code after installation), (3) Network
resources services (potentially used to manipulate the re-
sponses from the network connections) and (4) System services
(used to collect information about the system and the running
platform). The total number of packages in our data set counted
2700 packages for the malicious and 3360 for the benign apps.
From this, we were able to focus only on 108 packages, ending
up having a the set of 743 API calls, constituting our feature
vector.

Finally, for each app in our data set, we extracted the binary
feature vector and appended a bit representing the class label
of the app in its feature vector (malicious or benign).

B. Feature Set Refinement

Feature selection (dimensionality reduction) is a step to
improve the accuracy of the estimator and the performance on
high dimensional data set. A subset of the original features
has several benefits, since it can reduce the redundancy of
the model. Firstly, it can reduce over-fitting: since the dimen-
sionality of the data is reduced, there is less noise and hence
less opportunities to make decisions based on that. Reducing
the number of features produces a less complex model and
consequently more general, also because the duplicate features
or features which do not affect classification are removed.
However, the feature refinement has to be done considering
that it affects accuracy while trying to achieve the best trade-
off between the model accuracy and its complexity. The
assured benefit is the reduced evaluation time, since less pa-
rameters lead to faster training and classification time, mainly
when the size of the application package is high. It is worth to
note that machine learning techniques like Random Forest do
not benefit much from feature reduction, compared to others
like K-nearest neighbor and Support Vector Machines, since



do not suffer over-fitting and can handle well high dimensional
data [18].

With this in mind, we have used Correlation Attribute
Evaluation (CAE) method for feature selection. This method
ranks all the features according to their Pearson’s coefficient
[16]. In this way, we were able to choose to use the 300 top
ranked features from our initial 743 features to evaluate the
performance of classifiers (see Section V).

C. Model Training and Evaluation

Once the features are extracted, the machine learning
classifier can be trained and evaluate its performance. Since
SafeDroid prototype has been implemented in Java and we
need to use the generated model for classification in the proto-
type, we ended up using the Weka framework [16]. The feature
vector from the last step is fed into the Weka interface and the
models for three different classifiers are trained and evaluated.
We compared the performance of Random forest, Liner support
vector machines and K-nearest neighbor classifiers. The results
are averaged over 10 folds of cross validation. The model
is, indeed, trained again with the reduced feature set and
the results are compared with the complete feature set, as
described in the following section.

D. Classifier generation

In Fig. 2 we report and compare the top 20 applica-
tion packages, most used by the Android applications of
our data set. In particular, Fig. 2(a) shows the top 20 ap-
plication packages included by all the malicious apps: the
package names are plotted against their percentage count in
the malware data set. As we can notice, generic packages like
Ljava/lang/Object, or like Ljava/lang/String, or
Landroid/app/Activity are used quite a lot by all the
apps. This is understandable since these packages are used
for usual app flow tasks. Since the usage of such packages
does not determine any malicious behavior, we clearly skip
the API calls belonging to these packages, as described in Sec-
tion IV-A. We also notice other packages like Landroid/-
telephony/TelephonyManager, or like Landroid/-
content/BroadcastReceiver, or Landroid/net/-
Uri which have high usage frequency and will be associated
to malicious behavior.

Similarly, Fig. 2(b) shows the top 20 packages used
by the benign app set. A quick look into the list re-
veals that the most common packages are Ljava/lang/-
Object, Landroid/app/Activity, Ljava/lang/-
StringBuilder; those are the same most used packages
of malicious apps in our data set.

Fig. 3 reports on the top 20 packages used in malicious
apps more than in benign apps, reporting the difference of
the percentage usage count between the packages in malicious
and benign apps. The chart is plotted between the package
name and the percentage difference of usage in malicious
and benign set. Apart from packages related to core functions
like TelephonyManager, NotificationManager, we
found many packages related to advertisement services which
are more used in malicious apps. As reported in Section IV-A,
there is a total of 108 such packages which are used in
SafeDroid, consisting in a total of 743 APIs.

(a) Top 20 packages with the highest count in malware data set

(b) Top 20 packages with the highest count in benign data set

Fig. 2. Comparison between packages used by benign and malicious
applications of the data set

Exploiting the binary feature vectors generated for all apps,
we generated three different classifiers, with three different ma-
chine learning mechanisms, namely Random Forest, K-Nearest
Neighbor (KNN) and Support Vector Machine (SVM) [18],
[6].

V. EVALUATION

SafeDroid key characteristics, compared to existing propos-
als, are feasibility of deployment, performance and accuracy
in prediction. This is mainly achieved with the micro-service
structure, which helps in the specialization of the single tasks
and with their insulation. In this Section, we will evaluate these
characteristics over the available parameters.



Fig. 3. Top 20 packages with highest difference in usage between malware
and benign data set

A. Feasibility

In order to provide evidence of the feasibility of our ap-
proach, a proof-of-concept SafeDroid app has been developed
with SDK v.23 on Android OS 5.1.1. This Android app is
based on the fact that the app can run shell commands on the
device using an instance of the “Runtime” class and access the
relevant file resource to be sent to the corresponding remote
micro-service. To evaluate the performance of the system, we
logged the time taken by the API to respond to a client’s
request, when all both the FES and CRS were running on
the same machine. On our testing platform, a machine with 8
GB RAM, 128 SSD hard disk, running Spark web framework
on Java 8 on Mac OS X Yosemite, the API responds in 3605
ms. We believe this represents an acceptable response time.
Not considering the uploading time of the DEX file, in our
experiments we evaluated that around 70% of the execution
time is due to the feature extraction phase, 20% to the clas-
sification phase and the remaining time to the communication
overhead between the SafeDroid micro-services.

We remark that the response time depends on many fac-
tors like the size of the DEX file, the number of features,
the network bandwidth etc. Being a proof-of-concept, we
acknowledge a large margin of improvement, mainly because
SafeDroid can highly benefit from its the micro-services based
architecture. Moreover, being our main focus the detection
rate and the classification performance, we do not explore
any computational optimizations, like the fine tuning of the
packages taken into account by the androwarn component of
the FES service or the use of optimized implementation of
the classifiers in the CRS service. However, we are planning
to further refine our proof-of-concept and to release a stable
and optimized prototype of SafeDroid. The source code of our
proof-of-concept distributed service can be found on github4.

4https://github.com/Dubniak/SafeDroid

Classification Algorithm Accuracy Precision Recall FN rate
Random Forest (trees=10) 99.511% 0.995 0.995 0.005
K-Nearest Neighbor (k=20) 98.74% 0.987 0.987 0.013
SVM (kernel=linear) 97.272% 0.973 0.973 0.027

TABLE I. RESULTS OF CLASSIFICATION USING DIFFERENT
CLASSIFIERS WITH 743 FEATURES

Classification Algorithm Accuracy Precision Recall FN rate
Random Forest (trees=10) 96.95% 0.969 0.97 0.03
K-Nearest Neighbor (k=20) 96.46% 0.965 0.965 0.035
SVM (kernel=linear) 96.04% 0.961 0.96 0.04

TABLE II. RESULTS OF CLASSIFICATION USING DIFFERENT
CLASSIFIERS WITH 300 FEATURES

B. Accuracy prediction of classification micro-service

Once the models are obtained with the training data, each
of them is evaluated according to Accuracy, Precision, Recall
and False Negative rates. The results are presented in the
Table I, where the statistics are averagely weighted on both
the classes of the classification.

The Random Forest classifier with 10 trees gives the
highest accuracy of 99.511% and the false negative rate of
0.005, only slightly better than KNN and SVM. One main
reason why random forest usually performs better than the
other algorithms is that it performs its own feature selection
and builds trees with optimized features [18]. False negative
rate is a good measure for the model, because classifying the
malicious apps as benign can have devastating consequences
for the users.

To verify the effectiveness of our optimized and reduced
set of features, we compared the obtained results with the
classifiers obtained using the 300 top ranked features (ranked
by Attribute Evaluation method, as described in Section IV-B)
in order to measure the impact of feature selection on the
performance of classifiers. The results of the experiment are
presented in the Table II.

The Random Forest classifier used in combination with
CAE feature selection gives the highest accuracy of 96.95%
(Fig. 4) and false positive rate of 0.110 (Fig. 5). Comparing the
results (plotted from Table I and Table II), we observe that the
accuracy of the classifier dropped by a small 2.56% while the
number of features decreased by over 50%, since the feature
vector changes from 743 to 300. Considering the false negative
rate, we observe an even smaller change; it drops to 0.03 from
the initial value of 0.005 for the Random Forest classifier. A
similar observation can be done for the other two classifiers.
These experiments confirm that we can use the refined set of
features while SafeDroid is still able to produce highly accurate
classification results of malicious and benign apps.

VI. CONCLUSION AND FUTURE WORK

With the widespread usage of smart-phones and the ease
of spreading malware, the Android platform has become a
prime target for the attackers. In this paper, we have presented
SafeDroid, an open source distributed malware detection ser-
vice for Android. SafeDroid relies on a simplified analysis of
the DEX file for an app which is used for extracting static
features. The feature selection has been specifically performed



Fig. 4. Accuracy of different classifiers with and without feature selection

Fig. 5. False positive rate of different classifiers with and without feature
selection

in order to have an optimized set of features, composed by
the most distinguishing ones. By means of machine learning
classifiers, we have built a proof-of-concept prototype able
to provide a high accuracy and low false negative rate. The
SafeDroid architecture allows to detach the update of the
classifiers (running as a separate remote service) from the
client app running on the user device, also delivering high
performance, to improve the overall usability.

We are currently working to make the system fully auto-
mated, in order to continually update its classifier, evaluating
the API calls of newly provided applications, in an almost real-
time fashion. Moreover, we will continue to extend the data set
of malware SafeDroid relies on, considering the continually
changing and evolving scenario of malicious software for
Android. Finally, we plan to integrate an additional micro-
service based on dynamic analysis, to be optionally invoked
by the user. This would support the CRS during the detection
phase and restrain the risks of reflection and dynamic code
loading.
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