
SBVR2Alloy: an SBVR to Alloy compiler
1st Nurulhuda A. Manaf

Department of Computer Science
University of Surrey

Guildford, United Kingdom
n.amanaf@surrey.ac.uk

2nd Andreas Antoniades
Department of Computer Science

University of Surrey
Guildford, United Kingdom
a.antoniades@surrey.ac.uk

3rd Sotiris Moschoyiannis
Department of Computer Science

University of Surrey
Guildford, United Kingdom

s.moschoyiannis@surrey.ac.uk

Abstract—We present a compilation tool SBVR2Alloy which
is used to automatically generate as well as validate service
choreographies specified in structured natural language. The
proposed approach builds on a model transformation between
Semantics of Business Vocabulary and Rules (SBVR), an OMG
standard for specifying business models in structured English,
and the Alloy Analyzer which is a SAT based constraint solver. In
this way, declarative specifications can be enacted via a standard
constraint solver and verified for realisability and conformance.

Index Terms—service choreography, constraints, behavioural
modelling, model transformation, verification, realisability, com-
plex interactions

I. INTRODUCTION

A promising approach to expressing complex business re-
quirements in a declarative manner is the OMG standard
Semantics of Business Vocabulary and Business Rules (SBVR)
[1]. As defined by [2], ”SBVR provides a way to capture
specifications in natural language and represent them in
formal logic so they can be machine-processed”. Thus, users
can validate the underlying service choreography by directly
reading the structured natural language used in SBVR models.
The idea is that this can then be parsed and executed by a
machine.

In this paper we describe an automated tool that translates
declarative specifications, given as SBVR models, into Al-
loy. The SBVR2Alloy compilation tool builds on the model
transformation described in detail in [3]. The benefit is that
Alloy can automatically generate the service choreography,
corresponding to the input SBVR model. In addition to veri-
fying conformance to message ordering constraints, the Alloy
Analyzer [4] can be used to perform realisability checks and
assert static constraints on the generated choreography.

Alloy [5] is a language for describing structures. An Alloy
model is a collection of constraints that describes a set of
structures; e.g., all possible executions that satisfy a collection
of message ordering constraints prescribed (implicitly) in a
service choreography. The Alloy Analyzer [4] is an automated
solver that takes the constraints of a model and finds structures
that satisfy them.

The main contribution of this paper is a reference imple-
mentation of an SBVR parser and its operationalisation into

The first author is supported by the Malaysian Government and the National
Defence University of Malaysia (NDUM)

(a) Terms (b) Fact Types

(c) Rules

Fig. 1: SBVR pillars: Terms, Fact Types, Rules

the Alloy Analyzer. This means that SBVR models can be
compiled into Alloy syntax and effectively be verified.

The paper is structured as follows. Section II briefly intro-
duces SBVR and Alloy. Section III outlines key aspects of
realising the implementation of SBVR2Alloy while Section
IV demonstrates the tool in the context of a running case
study. Related work is discussed in Section V and Section
VI concludes the paper.

II. SBVR AND CONSTRAINT SOLVING

We provide a brief introduction to SBVR and the Alloy
constraint solver, and then proceed to outline how an SBVR
model is built.

A. SBVR Structured English

SBVR is an artefact of the Business Rules approach [6] and
as such it follows the mantra: ”Rules build on facts, and facts
build on concepts expressed by terms. Terms express business
concepts; facts make assertions about these concepts; rules
constrain and support these facts”. This can be seen in Figure
1.

While SBVR is a meta-model with models natively ex-
pressed as logical formulations, its most common serialisa-
tion is the so-called SBVR Structured English (SBVR-SE).
Terms (e.g, customer), Fact Types (e.g., customer sends
reservation request), and Rules (e.g., It is obligatory that
the customer sends exactly one reservation request) are
combined into SBVR models.

The colouring in the fonts is prescribed in the SBVR spec
document [1].

B. Alloy constraint solver

Alloy’s syntax and semantics are documented in [4] but we
recall some main notions here that help with understanding
the SBVR2Alloy tool presented in this paper. Data domains
are defined using signatures (denoted by sig) and represented
as sets. A signature may extend another signature, as in the
object-oriented paradigm, in which case the domain defined by
the first is a subset of the domain of the extended signature.
Extensions of a signature are mutually disjoint. A signature
can be abstract in which case its domain only contains
elements that belong to its extending signatures.

In addition, signatures contain fields which are captured
by relations. Axioms in Alloy are called facts and can
be given a name. These must hold at any time. Alloy for-
mulae often use standard connectives from first-order logic,
quantifiers all (universal) and some (existential). In general,
expressions in Alloy are built using set theoretic relational
operators and constants. This means it is an appropriate target
for SBVR which is declarative in nature and has a logical
formulation (see ch. 10 in [1]).

C. Building an SBVR model

We model a well known case study from [7], also studied in
[8] in view of declarative specification of service choreogra-
phies, of a hypothetical ACME Travel scenario and the multi-
party conversation involved in arranging travel. In brief, a
customer sends a reservation request which may include one or
more of airline, accommodation (hotel or apartment), transport
(bus or train or taxi), and tour reservations. Once Acme Travel
(AT) receives the itinerary request it sends reservation requests
to the different providers and awaits for responses. Once all
(un)successful reservations are in, AT sends a notification to
the customer.

In what follows we outline certain aspects of the SBVR
model built for this case study1.

In order to model service chains and choreographies we
need to capture participant services (participants) and the mes-
sages exchanged between them (events). These will be Terms
in the Vocabulary of the SBVR model. For example, Term:
participant, Term: customer, Term: reservation request.

It is often the case that participants and events in a business
activity are grouped together, e.g., the transport reservation
concerns a train reservation or a bus reservation. To preserve
the semantics we use the Sets definition set includes thing
found in the latest SBVR specification document [1]. This
can be defined then in the Fact Type: participant includes
customer.

Next, Fact Types and the SBVR construct Term verb Term
can be used to capture the sending and the receiving of
a message. For example, the export message of customer
in the Fact Type: customer sends reservation request and

1The full blown SBVR model of the case study can be found following
[9].

the import message of AT in the Fact Type: AT receives
reservation request capture the interaction between them.

As mentioned previously SBVR Structured English (SBVR-
SE) [1] has a logical formulation which draws from first order
logic (when ignoring the modalities). The logical connectives
for exclusive disjunction (XOR), conjunction (AND), and
inclusive disjunction (OR) are used on participants, events
(Terms) as well as Fact Types in forming Business Rules
in an SBVR model. For example, the following rule in the
Acme Travel case study expresses the business constraint
that a response to a reservation request is either success-
ful or unsuccessful. Rule: It is obligatory that [...] exactly
one accommodation reservation response includes exactly
one successful accommodation reservation or exactly one
unsuccessful accommodation reservation but not both

The conjunction is used to express that both events take
place, in no particular order. The general form when unordered
events are concerned is the following:
Rule: It is obligatory that [...] exactly one participant sends
exactly one event 1 and exactly one event 2

The inclusive disjunction is used to express choice. For
example, the following rule in the Acme Travel case study
expresses the business constraint that AT may request an
airline reservation or an accommodation reservation or a tour
reservation or a transport reservation.
Rule: It is obligatory that the AT requests for
exactly one airline reservation or exactly one
accommodation reservation or exactly one tour reservation
or exactly one transport reservation

In [10] we introduced a notion of precedence in SBVR
models drawing upon the Date-Time Vocabulary (DTV) [11]
supplement to the SBVR specification. Our approach here
builds on that work but also benefits from the latest SBVR
specification by OMG, namely SBVR 1.3 [1], which includes
a notion of immediate precedence from DTV. In short, these
developments mean that by definition event 1 immediately
precedes event 2 demonstrates that there is no occurrence of
an event after event 1 and before event 2. The immediately
precedes construct can be combined with the logical connec-
tives, as in:
Rule: It is obligatory that exactly one event 1 and exactly one
event 2 immediately precedes exactly one event 3
where and takes precedence over immediately precedes.

In modelling multi-party conversations it is often the case
that an event is associated with different participants as in
the Fact Types customer sends reservation request and AT
receives reservation request discussed earlier. It can be seen
there is no indication to inform which interaction is performed
initially. To overcome this we incorporate a notion of time
understood as in the construct occurrence at time interval
which is consistent with [11]. This means we can have time
declarations:
customer sends reservation request at T1
AT receives reservation request at T2
and T1 immediately precedes T2

Finally we discuss how static, domain-specific constraints

can be expressed in an SBVR model. In the Acme Travel
case study there was a need for specifying certain constraints
on the dates of travel arrangements. Dates can be treated like
participants and events earlier, so there is a Date set declared
as Term: date. Other dates such as start date, check-in date,
also declared as terms, can be specified to be members of the
Date set using the set definition in [1] and the construct is in
which declares belonging, in the corresponding fact types:
Fact Type: start date is in date
Fact Type: end date is in date
Fact Type: check-in date is in date
The following SBVR rules should be self-explanatory.
It is obligatory that exactly one start date of exactly one
reservation request equals exactly one check-in date of
exactly one accommodation reservation. Similarly,
It is obligatory that exactly one start date of exactly one
reservation request equals exactly one outbound date of
exactly one airline reservation.

The input to our SBVR2Alloy compiler is a plain text version
of the SBVR model with minimal markup (in the form of
comments) to denote whether each line should be interpreted
as a Term, a Fact Type or a Rule. To be more precise, we also
need to know whether a Term is a participant or an event or
a static constraint or a time declaration.

III. PREPROCESSING - REALISING THE MODEL
TRANSFORMATION

Before the implementation of the tool could commence, we
had to formally define the transformation between SBVR and
Alloy models. The Alloy model is obtained by considering
the abstract syntax of SBVR and associated constraints to
generate the exact solution in Alloy that corresponds to the
input SBVR model. Due to space limitations we cover only
key aspects here. The interested reader is referred to [3], where
the transformation is described in detail.

We describe the exact steps taken for the transformation
between the SBVR and Alloy models. The translation is a
two stage process, with each stage involving multiple steps
which need to be combined for generating Alloy code.

A. First Stage

The first stage encompasses direct Alloy code generation
by reading in the input SBVR file. The first step of this stage
involves parsing the SBVR ‘Term:’ and ‘Fact Type’ keywords
and generating the corresponding Alloy structures, namely the
participant and event signatures. A visualisation of how terms
are associated with each other can be seen in Fig. 2.

Participants and events can include:
• abstraction, e.g., event includes transport reservation
• inheritance, e.g., transport reservation includes

bus reservation
transport reservation includes train reservation
and the rules:
It is obligatory that exactly one transport that includes
the bus receives exactly one transport reservation that
includes exactly one bus reservation at exactly one t2

verb

at

condition

of

is in

includes | immediately
precedes

includes

Participant

Event

Constraint

Time

Fig. 2: Association between terms in SBVR and Alloy

It is obligatory that exactly one transport that includes
the train receives exactly one transport reservation
that includes exactly one train reservation at exactly
one t2

Both cases need to be noted as the generation of Alloy facts,
which is performed in the Second Stage, heavily relies upon
them.

The timing information regarding participants and associ-
ated events is also important; throughout this stage when a
participant ‘Fact Type’ includes the ‘at’ keyword, the time as-
sociation must be saved in memory to generate corresponding
time declarations in Alloy.

After participant and event signatures are generated, the
static constraints which are also defined using the ‘Term’
keyword in SBVR, must be generated for Alloy. This involves
defining the cardinality of the constraint and which set it
belongs to. For example, Fact Type: start date is in date
translates to:

1 one sig start_date in date{}

The final step in the first stage of the translation involves
generating the time declarations stored in memory during the
signature generation step. We have used the ‘ time’ postfix
to define the time declarations associated with events. Using
our case study as an example, the Alloy time declaration for
transport reservation is defined as:

1 abstract sig transport_reservation_time extends time{}

2 one sig t1_transport_reservation extends

transport_reservation_time {by: one AT,

immediately_precedes: t2_transport_reservation}

3 one sig t2_transport_reservation extends

transport_reservation_time {by: one transport}

Note that in order to comply with Alloy, an event that takes
place at time t1 must always precede an event that takes
place at t2. In addition, we have followed the same approach
to dealing with multiple word verbs as we did for terms,

e.g., ‘immediately precedes’ in the SBVR model is interpreted
as immediately_precedes (line 3 in the above code
snippet) in the Alloy model.

B. Second Stage

This stage completes the translation process and involves
more complex steps that rely on the Alloy code we have
generated in the First Stage.

First we append the Alloy facts for each participant
and event by consulting both the SBVR rules, defined using
‘Rule’, and the verbs in the signatures we have generated. Any
inheritance information also needs to be utilised to generate
the facts. An example also mentioned in Sec. III-A is transport
reservation which can be handled either by a train or by a bus.
This is reflected in the fact :

–fact

(transport_reservation = bus_reservation and no

train_reservation) or (transport_reservation =

train_reservation and no bus_reservation)

Next the predicate for constraints associated with time
must be generated. This step involves generating an order-
ing of the events based on the initial event, in our case
reservation request and all associated events.

For example, the following Alloy snippet produced by our
transformation shows ordering but also the exclusive disjunc-
tion (XOR) and the use of time.

4 abstract sig accomresponse extends

event{immediatelyprecedes: one notification, at: one T1_ACR,

at1: one T2_ACR}

–fact

{((accomresponse = succaccomres and no unsuccaccomres) or

(accomresponse = unsuccaccomres and no succaccomres))

and immediatelyprecedes = AT.sends and immediatelyprecedes =

customer.receives}

...

9 one sig notification extends event{at: one T1_N, at1: one

T2_N}

Line 9 above defines a signature for the event
notification which is declared as a term in the
SBVR model and implicated in the following rules:
It is obligatory that the AT sends exactly one notification at
exactly one t1
It is obligatory that the customer receives exactly one
notification at exactly one t2
It is obligatory that exactly one
accommodation reservation response that includes exactly
one successful accommodation reservation or exactly one
unsuccessful accommodation reservation but not both
immediately precedes exactly one notification

The first two rules declare time explicitly, where t1 im-
mediately precedes t2. This is captured in the at fields of

the corresponding event signature (here notification). In
this case it declares the fact that AT sending the notification
happens before the customer receiving it.

The third rule defines precedence between
accomresponse and notification events and
is captured using the immediatelyprecedes field
of the preceding event’s signature. In Alloy, this is
accomresponse, which in itself includes a XOR on
successful accommodation reservation and
unsuccessful accommodation reservation. The
accompanying fact ensures that only one or the other of these
events occurs at any one execution.

After appending all the information in the Alloy signatures,
the next step is to generate the service choreography by
executing the output Alloy model (the .als file) in the Alloy
Analyzer tool. Again this step includes the Alloy signature of
the initial event and defines the interactions between associated
events.

Finally, concrete requests are identified and translated to
Alloy using a combination of the generated Alloy signatures,
the SBVR rules and request-specific rules, which can be also
defined in the SBVR model.

C. Implementation Details

After reviewing the two stages of the translation methodol-
ogy we have defined, we concluded that the tool would follow
a state machine paradigm. State machines are thoroughly used
in the literature to define models that can behave in different
ways depending on their state [12]. This approach is applicable
as generating Alloy code for participant signatures differs from
that of event signatures. Using the template we defined, the
tool parses the SBVR file and changes its state depending on
prefixed comments in the code.

For example when the tool reaches the ‘–Participants Set’
comment it changes its state to participant (‘p’) and handles all
participant related processes for translation, the same applies
for events, constraints and rules. A total of 12 states were
identified to encompass the two stages of translation.

The tool was realised using Java and a simple GUI was
created using the Java Swing classes. This enabled us to
provide a platform independent tool for translating SBVR to
Alloy.

D. Challenges

The difficulty of translating semantic languages became
apparent in the early stages of our analysis and design. A
concrete example is the usage of the ‘Term’ keyword in SBVR,
which it is used to define participants, events and constraints
(both static such as those on dates discussed earlier, and
dynamic such as those relating to message ordering). These
concepts carry a distinct meaning in a multi-party conversation
and consequently their handling in Alloy is not uniform.

Common use of SBVR models involves using comments
to add structure and increase usability as well as readability.
Creating a universal SBVR to Alloy compiler would involve
taking into account an infinite number of comments. Instead,

we have created a template for building SBVR models that
should be followed when using our SBVR2Alloy tool. This
template serves to identify the different sections in the SBVR
model for a more structured approach to translation.

We have found that Alloy is more restrictive than SBVR in
a number of ways. For example, SBVR allows for terms com-
prising multiple words whereas Alloy only allows for single
word terms. To overcome this we replaced the white spaces
between words in multi-word terms with underscores, e.g.,
the term ‘transport reservation response’ in the SBVR model
is translated to ‘transport reservation response’ in Alloy.

Another challenge we faced in the translation process had
to do with the use of the same verb in different relationships
involving the same term. SBVR can reuse the same verb for
a relationship between two terms, whereas Alloy allows for
a verb to be used only once for each term. For example, the
definition for the transport reservation in our case study uses
the verb ‘has’ twice as seen below:

Fact Type: event includes transport reservation
Fact Type: transport reservation has departure date
Fact Type: transport reservation has arrival date

For the corresponding Alloy signature to be valid, we have
added numbers to the end of each field capturing the ‘has’
verb, resulting in the following signature:

1 abstract sig transport_reservation extends event{has: one

departure date, has1: one arrival date}

Addressing the inheritance of events amongst nested (in-
cludes) participants increased the complexity of the code as it
resulted in an additional dimension in the data structure and
one more parsing of related constructs in the SBVR model.
However, the Alloy language requires this type of indirection
(or inheritance in SBVR) in order to distinguish between
inclusive (OR) and exclusive disjunction.

IV. SBVR2ALLOY: ILLUSTRATION BY EXAMPLE

We demonstrate the core functionality of the SBVR2Alloy
compilation tool.

A. Alloy code generation

The input to SBVR2Alloy is a plain text version of the SBVR
model. The output is the Alloy file (.als) that can be parsed
by the Alloy Analyzer tool [4]. The input plain text file is
uploaded from the local drive and is then shown in the pane
on the left of the SBVR2Alloy GUI, shown in Figure 3.

The input can be transformed to Alloy code now by pressing
the ‘Convert’ button on the top right. The result is shown in
Figure 4.

The Alloy code can be exported locally as .als file which can
then be opened with the Alloy Analyzer, as shown in Figure
5.

In this way the declarative specification of the multi-party
conversation, including constraints on the message ordering,

Fig. 3: SBVR model input uploaded as a text file

Fig. 4: Alloy code (right) produced for the SBVR model (left)

which was given as an SBVR model is now manifested in the
resulting Alloy code. This means the Alloy Analyzer can be
readily used to find structures that satisfy these constraints,
effectively generating the underlying service choreography.

B. Generating service choreographies in Alloy

A predicate is employed in Alloy to find an instance of the
global constraints. An instance is a situation in which both
the facts in the model and the predicates hold. The following
code snippet illustrates the predicate pred initialevent.

14 pred initialevent[r:reservationrequest, a:

accomreservation, l:airlinereservation, t:tourreservation,

s:transreservation] {(r.immediatelyprecedes = l or

r.immediatelyprecedes1 = a or r.immediatelyprecedes2 = t

or r.immediatelyprecedes3 = s)}

15 run initialevent

Figure 6 illustrates the corresponding instance of the chore-
ography (global constraints) generated by Alloy.

The predicate pred initialevent applied above declares
the reservation request as the initial event. Thus, the
diagram should be read starting from this event, i.e.,
reservationrequest. The incoming arrows from
participants customer and AT, annotated by sends
and receives respectively, capture the interaction. Note
that we have not included time here, to not clutter the
diagram but it can be included. The outgoing arrows
of reservationrequest depict what happens next;
airlinereservation, apartmentreservation,

Fig. 5: Resulting Alloy code in the Alloy Analyzer

Fig. 6: Graphical representation of the generated choreography

tourreservation and trainreservation occur
immediately after reservationrequest in no particular order,
i.e., they are unordered.

C. Verification: Realisability and Static Constraints

The Alloy Analyzer can now be used to perform verification
on the generated choreography. In particular, it can readily
verify whether a specific request can be realised by the given
service choreography.

Assume that a user requests either an airline reservation
only (t.requestsfor = a), or an accommodation reservation
restricted to hotel (t.requestsfor1 = h) and a transport reser-
vation restricted to a bus (t.requestsfor3 = b), and no tour
reservation. This request can be formulated as a predicate in
Alloy. This is shown in the following code snippet.

1 pred concreterequest [t:AT, h:hotelreservation,

a:airlinereservation, b:busreservation]

{(t.requestsfor1 = h and t.requestsfor3 = b and

t.requestsfor = a and no t.requestsfor2)

or (t.requestsfor = a and no t.requestsfor1 and no

t.requestsfor2 and no t.requestsfor3)}

2 run concreterequest

Figure 7 depicts one possible execution; AT’s requests for
bus, hotel and airline reservations have been realised.

The successful responses for each reservation have been sent
by each provider (bus provider and hotel provider, and airline
provider in the other case). These are immediately preceded
by the reservation requests from AT. They in turn immediately
precede the notification to the customer. Please note that the
tour reservation is not part of the choreography as it was not
selected.

Fig. 7: One possible realisation of concreterequest

Global constraints in an Alloy model are verified by ap-
plying assertions. The following snippet shows the assertions
necessary for verifying the static constraints that were declared
in the SBVR rules in Section II-C. In further explanation, the
statements in line 12 check whether the start (end) date of the
reservation request is equal to the outbound (inbound) date of
the airline reservation and the check-in (check-out) date of the
accommodation reservation.

12 assert flightaccomvalidate {all a:airlinereservation,

r:reservationrequest, c:accomreservation|

(r.startdate = a.outbounddate and r.enddate = c.checkoutdate

and a.outbounddate = c.checkindate) and r.startdate !=

r.enddate}

check flightaccomvalidate

13 assert transvalidate {all disjoint d,d1,d2,d":one Date,

r:reservationrequest, t:tourreservation, p:transreservation,

a:accomreservation |

traveldate[d,d1,d2,d",r,t,p,a] implies ((p.departuredate =

p.arrivaldate) or (p.departuredate = d and p.arrivaldate =

d1)

or (p.departuredate = d and p.arrivaldate = d2) or

(p.departuredate = d and p.arrivaldate = d") or (

p.departuredate = d1 and p.arrivaldate = d2)

or (p.departuredate = d1 and p.arrivaldate = d") or

(p.departuredate = d2 and p.arrivaldate = d"))}

check transvalidate

Line 13 is the assertion to validate that the specified dates
for the transport reservation are within the start and end date
of the reservation request.

If an assertion is not valid, Alloy with produce a counterex-
ample which can be shown in a graph like before. In this case,
the assertion is valid.

V. RELATED WORK

Efforts geared towards specifying service choreographies
include W3C’s Web Services Choreography Description Lan-
guage (WS-CDL) [13] and the inclusion of choreography
diagrams in the most recent specification of BPMN. Like UML
design models it provides user-friendly graphical notations
but these often exhibit various divergent semantics. UML
collaboration diagrams [14] and UML 2 sequence diagrams
[15], [16] have also been proposed, but drawing the diagrams
typically requires integration with a UML tool.

Work on formal semantics in this area has focused more on
the imperative (or procedural) approach [14], [17], [18], [19],
[20], [21], [16], [22] and has been geared towards an inter-
leaving semantics which sometimes unnecessarily restricts the
possible behaviours, e.g., see PROPANE in [20], or forces the
modeller into making premature decisions, e.g., see separated
collaboration diagrams [14]. A true concurrency semantics is
proposed in [16].

In comparison, work on a declarative approach to
interaction-based service choreographies is limited, e.g., [10],
[23], [24], [25]. The focus seems to be more on reasoning
about the consistency of the rule set, which of course is an
important aspect of verification, and less on explicitly captur-
ing the orderings in terms of observable message exchanges.
The work on DecSerFlow [8] includes a graphical interface for
user interaction but this is proprietary notation. In contrast, our
approach uses SBVR for this purpose, which was developed
with the business user in mind and is a standard maintained
by OMG.

In [26] a first-order deontic-alethic logic (FODAL) is pro-
vided to express business constraints defined in SBVR and
perform a consistency check on the rule set, including alethic
and deontic rules. In our approach we restricted to deontic
rules - that is, obligation - as we are targeting service chore-
ographies and obligation is adequate. The deontic modality
also covers prohibition. This can be addressed in our approach
by considering the negation of the corresponding obligation
instead.

The case study used to illustrate our approach in this paper
is adapted from [7] and [8]. The amends to it concern an
extended scenario and involve more complex interactions. This
can be seen by comparing with the activities considered in [7]
and [8]. In contrast to [8], we consider that all interactions are
executed successfully. Compensating behaviour is beyond the
scope of the current paper. We refer the interested reader to

work in [27], [28] on web transactions and the work in [16]
on providing transactional guarantees to service interactions
in the absence of a central coordinator.

The Alloy Analyzer [4] has been used in a range of
application domains. Of relevance here perhaps is the work
[29] where Alloy is used for composing behavioural models
from individual UML 2 sequence diagrams. [30] generate OCL
(Object Constraint Language) via SBVR structured English
and then transform these constraints into Alloy. [31] also
applies Alloy to an e-commerce system modelled using UML
use-case diagrams and activity diagrams.

SBVR is gaining ground in systems specification and mod-
elling due to its declarative nature. The work in [32] translates
UML / OCL into SBVR to bridge the gap between developers
and business users. [33] translates SBVR into a process BPMN
and decision model which is used to validate SBVR rules.
In [34] SBVR is used to generate a relational database and
transform SBVR business rules to SQL queries that can be
executed against the data set. This widens the spectrum in
which to consider user interaction, moving from process-
driven to user-driven development of information systems.

We note that Alloy employs a SAT-based back end and
performs bounded exhaustive search during analysis. This
can be limiting when it comes to analysing higher-order
transformations. F-Alloy [35] has been proposed to overcome
such limitations.

VI. CONCLUDING REMARKS

We proposed the use of SBVR for modelling service
choreographies in [10]. This work introduced a notion of
precedence, drawing from the objectification construct in
SBVR 1.2 and the Date-Time Vocabulary (DTV) [11]. The
model transformation behind SBVR2Alloy draws upon the
latest SBVR specification by OMG (SBVR 1.3 [1]) which
includes a construct for expressing immediate precedence.
This is key for verification, e.g., realisability. In addition, in
[10] the focus was more on modelling choreographies rather
than generating choreographies and automating the required
verification task, as done in this paper.

The model transformation from SBVR to Alloy has been
applied to 3 case studies of varying size. The full SBVR model
for the Acme Travel case study used in this paper features
39 rules and can be found in [9]. The model transformation
can be found in [3]. Using a standard specification computer
with 2.8 GHz and 16GB RAM, it takes SBVR2Alloy 58ms
to produce the corresponding Alloy code (.als file). When
employing the SAT4J solver of Alloy, the execution of the
pred initialevent discussed in Section IV-B takes between
23ms and 168ms, depending on what other processes are
running.

Our SBVR2Alloy tool does not implement the full breadth
of the SBVR standard specification [1] but rather a large and
usable subset which can be used to express complex rules, with
a focus on capturing constraints on the orderings of service
invocations. This makes it possible to use the corresponding
Alloy code to perform verification tasks such as realisability

in service choreographies which involve dynamic constraints,
as well as conformance of domain-specific static constraints.
The tool can be extended to include less common features of
SBVR and indeed this is part of the future work planned.

REFERENCES

[1] OMG, Semantics of Business Vocabulary and Business
Rules (SBVR), v1.3, OMG document formal/2015-05-07,
http://www.omg.org/spec/SBVR/1.3/, May 2015.

[2] S. Hendryx, Model-Driven Architecture and the Semantics of Business
Vocabulary and Business Rules (SBVR), 2005.

[3] https://tinyurl.com/ya9p2h5r.
[4] http://alloy.mit.edu/alloy/.
[5] D. Jackson, Software Abstractions - Logic, Language, and Analysis, ser.

Revised Edition. The MIT Press, 2012.
[6] R. G. Ross, The Business Rules Manifesto, Version 2, 2003.
[7] J. Snell, Automating business processes and transactions in Web

Services: An introduction to BPELWS, WS-Coordination, and WS-
Transaction, IBM, 2006.

[8] W. M. P. van der Aalst and M. Pesic, “Decserflow: Towards a Truly
Declarative Service Flow Language,” in Web Services and Formal
Methods (WS-FM) 2006, LNCS 4184, 2006, pp. 1–23.

[9] https://tinyurl.com/y9t8x4cy.
[10] N. A.Manaf, S. Moschoyiannis, and P. Krause, “Service Choreography,

SBVR, and Time,” in Foundations of Coordination Languages and Self-
Adaptive Systems (FOCLASA 2015), 2015, pp. 63–77.

[11] OMG, Date-Time Vocabulary (DTV), Version 1.3, OMG document
formal/dtc/2016-02-20, http://www.omg.org/spec/DTV/1.3/Beta2, 2016.

[12] T. S. Chow, “Testing software design modeled by finite-state machines,”
IEEE Transactions on Software Engineering, vol. SE-4, no. 3, pp. 178–
187, May 1978.

[13] W3C, Web Services Choreography Description Language (WS-CDL),
W3C Working Group, http://www.w3.org/TR/ws-cdl-10-primer/, 2006.

[14] T. Bultan and X. Fu, “Specification of Realizable Service Conversations
using Collaboration Diagrams,” in In Service-Oriented Computing
and Applications, SOCA, 2007, pp. 122–132. [Online]. Available:
http://dx.doi.org/10.1109/SOCA.2007.41

[15] B. Bauer and J. P. Muller, “MDA applied: From Sequence Diagrams to
Service Choreography,” in ICWE 2004, ser. LNCS, no. 3140. Springer,
2004, pp. 132–136.

[16] S. Moschoyiannis and P. J. Krause, “True Concurrency in
Long-running Transactions for Digital Ecosystems,” Fundamenta
Informaticae, vol. 138, no. 4, pp. 483–514, 2015. [Online]. Available:
http://dx.doi.org/10.3233/FI-2015-1222

[17] N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and G. Zavattaro, “Towards
a formal framework for choreography,” in WETICE 2005, ser. IEEE
Computer Society, 2005.

[18] M. Carbone, K. Honda, N. Yoshida, R. Milner, G. Brown, and S. Ross-
Talbot, A Theoretical Basis of Communication-Centred Concurrent
Programming, 2006.

[19] G. Cledou, J. Proenca, and L. Barbosa, “Composing Families of Timed
Automata,” in Fundamentals of Software Engineering (FSEN), ser.
LNCS, 2017, to appear.

[20] X. Fu, T. Bultan, and J. Su, “A Formalism for Specification and Analysis
of Reactive Electronic Services,” Theoretical Computer Science, vol.
328, no. 1-2, pp. 19–37, 2004.

[21] M. Gudemann, P. Poizat, G. Salaun, and L. Ye, “VerChor: A framework
for the design and verification of choreographies,” IEEE Transactions
on Services Computing, vol. 9, no. 4, pp. 647–660, 2016.

[22] J. Su, T. Bultan, X. Fu, and X. Zhao, “Towards a theory of web service
choreographies,” in Web Services and Formal Methods WS-FM, 2007,
pp. 1–16.

[23] M. Autili and M. Tivoli, “Distributed enforcement of service choreogra-
phies,” in Proceedings Int’l Workshop on Foundations of Coordination
Languages and Self-Adaptive Systems (FOCLASA), 2014, pp. 18–35.

[24] J.-M. Jacquet, I. Linden, , and M.-O. Staicu, “On the introduction of
time in distributed blackboard rules,” in Foundations of Coordination
Languages and Self-Adaptive Systems, FOCLASA, 2013, pp. 144–203.

[25] M. Montali, M. Pesic, W. M. P. van der Aalst, F. Chesani, P. Mello,
and S. Storari, “Declarative specification and verification of service
choreographies,” ACM Transactions on the Web, TWEB, vol. 4, no. 1,
pp. 3:1–3:62, 2010.

[26] D. Solomakhin, E. Franconi, and A. Mosca, “Logic-based Reasoning
Support for SBVR,” Fundamenta Informaticae, vol. 124, no. 4, 2013.

[27] M. J. Butler, C. A. R. Hoare, and C. Ferreira, “A Trace Semantics for
Long-Running Transactions,” in Communicating Sequential Processes:
The First 25 Years, 2004, pp. 133–150.

[28] L. Bocchi, C. Laneve, and G. Zavattaro, “A Calculus for Long-Running
Transactions,” in Formal Methods for Open Object-Based Distributed
Systems (FMOODS), 2003, pp. 124–138.

[29] J. K. Bowles, B. Brodbar, and M. Alwanain, “A Logical Approach for
Behavioural Composition of Scenario-based Models,” in 17th Interna-
tional Conference on Formal Engineering Methods (ICFEM), ser. LNCS,
vol. 9407. Springer, 2015, pp. 252–269.

[30] S. Malik and I. S. Bajwa, “A rule based approach for business rule
generation from business process models,” in Rules on the Web -
RuleML, 2012, pp. 92–99.

[31] A. K. Dwivedi, A. Gardizy, and S. K. Rath, “Formalization of e-
Commerce Patterns using State-based and Event-based Approaches,”
in Computing, Communication and Automation (ICCCA2016). IEEE,
2016, pp. 127–132.

[32] J. Cabot, R. Pau, and R. Raventós, “From UML/OCL to SBVR Spec-
ifications: A challenging transformation,” Inf. Syst., vol. 35, no. 4, pp.
417–440, 2010.

[33] K. Kluza and K. Honkisz, “From SBVR to BPMN and DMN models,”
in Artificial Intelligence and Soft Computing, 2016, pp. 453–462.

[34] S. Moschoyiannis, A. Marinos, and P. J. Krause, “Generating SQL
queries from SBVR rules,” in Semantic Web Rules - RuleML, 2010,
pp. 128–143. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-
16289-3 12

[35] L. Gammaitoni and P. Kelsen, “F-Alloy: An Alloy based model trans-
formation language,” in Theory and Practice of Model Transformations
(ICMT 2015), ser. LNCS, no. 9152, 2015, pp. 166–180.

