
Using Osmotic Services Composition for Dynamic
Load Balancing of Smart City Applications

Arthur Souza∗, Zhenyu Wen†, Nélio Cacho∗, Alexander Romanovsky†, Philip James†, Rajiv Ranjan†
∗Federal University of Rio Grande do Norte, Natal, Brazil
†Newcastle University, Newcastle upon Tyne, UK

arthurecassio@ppgsc.ufrn.br, neliocacho@dimap.ufrn.br
alexander.romanovsky, zhenyu.wen, philip.james, raj.ranjan (@newcastle.ac.uk)

Abstract—Edge computing takes computation away from the
Cloud closer to the physical world. Therefore, it reduces the
cost of communication bandwidth between IoT devices and the
Cloud. However, Edge computing imposes certain limitations in
computation power because due to poor hardware capacity of the
devices. This restriction may significantly affect the performance
of the deployed applications, especially Smart City applications.
This limitations also could be aggravated by unpredictable
human behaviors wich will easily make the Edge computation
node overloaded. Osmotic computing is a new IoT application
programming paradigm that provides an opportunity to balance
the workload between Edge and Cloud therefore to overcome
the load imbalance problem of Smart City applications. To this
end, we propose an Osmotic Execution Framework that leverages
state-of-the-art microservices techniques to deploy and execute
a Smart City application in a distributed environment including
Edge and Cloud. Finally, we evaluate load balancing through
latency time analysis of our framework with a real-world smart
parking application.

Index Terms—services framework, microservices, osmotic com-
puting, scalability

I. INTRODUCTION

Cloud computing plays a key role in Smart Cities, where
massive data is collected and processed to manage assets and
resources efficiently. Most of the efforts in Smart City research
focus on building Internet of Things (IoT) middleware. San-
tana and his colleagues [1] report that 47 different platforms
are deployed around the world. Some platforms focus on
device management, acquisition and processing of data coming
from IoT devices [2], [3]. Others offer various software
components that facilitate the execution of applications in
Smart Cities environments [4]–[6]. All platforms consist of
three main concepts: Internet of Things (IoT), Big Data and
Cloud Computing [1]. IoT links physical devices, sensors and
vehicles through a universal network to enable the exchange of
data between these things. Big Data is generated from massive
sensors or IoT devices in the cities. Finally, Cloud computing
provides infrastructure to process the collected IoT Big Data.
However, this Cloud + IoT framework is not very economical
for the Smart City environment, because shipping all Big Data
to the Cloud will waste huge bandwidth and energy (battery).

Edge computing is the computational capacity present in
the devices that make up the network between data-producing
devices and Cloud computing. This new computing paradigm

allows processing of data close to IoT devices; it therefore re-
duces latency and saves bandwidth by performing aggregation
techniques [7], [8] over Edge computation nodes.

On the other hand, in modern urban environments, Edge
nodes are easily overloaded because of unpredictable human
behaviors [9]. Smart Parking Application, for example, con-
sists of IoT devices, Edge nodes and Cloud. The IoT devices
(sensors) send vacancies in car parks in real-time. The Edge
node and Cloud provide the computing resources to find the
best solution for a user’s request. The details will be described
in the next section. In this case, when an event happens such
as a superstar concert, an Edge node may need to handle
thousands or tens of thousands of requests simultaneously.
Thus, it is easy to overload the Edge node, due to the limited
computing power of the Edge.

Osmotic computing [10] is a new IoT application program-
ming paradigm that provides an opportunity to execute multi-
service applications between the Edge and Cloud. In fact
Osmotic computing takes advantage of Edge computing to
make possible dynamic workload balance between the Edge
Network and Cloud. A new paradigm, Edge computing is
supported by the increasing computational capacity of mobile
devices deployed in the IoT networks [11]–[13].

In this paper, we aim to leverage the idea of Osmotic
computing to build a dynamic load balancing framework for
Smart City applications. This framework utilizes the advantage
of containerization that allows developers to easily migrate
or schedule the running of microservices over different com-
puting resources on demand. To be precise, we develop a
live migration method that dynamically moves microservices
across Edge and Cloud to efficiently utilize computing re-
sources while ensuring load balancing. The main contributions
of this paper are listed as follows.

1) Osmotic Execution Framework – OEF: unlike SOA
based applications (commonly used in middleware plat-
forms for Smart Cities) that are notably composed of
a set of structural elements (components or services
of data storage, security, communication, analysis, etc),
applications composed by microservices must ensure
that each microservice is autonomous and decoupled
from other microservices. In this context, we propose
and develop an architecture, named Osmotic Execution000-0-0000-0000-0/00/$00.00 ©2018 IEEE

Framework (OEF), to leverage osmotic computing in
Smart City environments.

2) Osmotic Case Study: we evaluate the feasibility of
osmotic computing through a smart parking application.
The proposed application consists of a set of osmotic
microservices which can be automatically migrated be-
tween Edge and Cloud to optimize the computing re-
sources utilization while ensuring load balancing.

The rest of this paper is organized as follows: Section II
highlights the research problem of this paper. Section III
analyses the state of the art, while Section IV presents the
details of the Osmotic Execution Framework. Section V shows
the internal architecture of Osmotic Containers to execute
microservices, follow by Section VI that showed the im-
plementation of smart parking osmotic application. At last,
Section VII discusses the experimental evaluation design and
results. Finally, the paper ends with a brief conclusion in
Section VIII.

II. MOTIVATION: SMART PARKING APPLICATION

Within the scenario of vehicular traffic management in
urban centers, the provision and efficient occupation of park-
ing spaces is a common problem to be solved. Intelligent
parking applications are developed for such problems [14],
[15]. The main purpose of this application is to alert drivers
to the available parking spaces near his/her location. Figure 1
depicts a conceptual implementation of this application using
a microservice architecture. The smart parking application
comprises three microservices: (i) parking management, (ii)
user data management and (iii) selection of vacancies.

Parking management is responsible for the sensor interfaces
therefore monitoring the usage of car parks. This microservice
is self-contained and deployed on the Edge, continuously col-
lecting data from sensors. User data management is deployed
to the Cloud, so user preference data is accessible to all city
parking lots. The selection of vacancies microservice is the
most important one. It continuously runs an algorithm for
responding to users’ requests to select vacancies from the
available parking lots according to their preferences.

This microservice runs on the Edge or Cloud depending on
trade-off between efficiently utilizing the computing resources
and low latency. For example, the Edge node must keep
running 24/7 to collect sensor data. Hence, we can run the
selection of vacancies microservice on the Edge to efficiently
utilize the remaining computing resources. However, during
periods of heavy vehicle traffic, and large numbers of vehicles
searching for parking spaces (e.g. a big event), the selection of
vacancies microservice should run in the Cloud to utilize the
infinity computing resources to consume the surging requests.
In order to dynamically balance the workload in the selection
of vacancies microservice, we need an osmotic policy for this
microservice that automatically decides when or in what con-
dition to migrate the microservice to the suitable infrastructure.

III. RELATED WORK

Several works [1]–[5] have already defined middleware
platforms for smart cities. In contrast, our paper seeks to define
an architecture that integrates the concepts of osmotic compo-
sition into a Smart City context in order to enable us to solve
the load imbalance issue. Others studies have explored the
use of multipurpose microservices, which focus on scalability
or the use of microservices in the Cloud. However, few have
addressed the use of microservices in smart cities [16]–[18].
This paper advocates the use of OEF to efficiently utilize
computing resources while ensuring load balancing. In this
sense, the study presented here brings a new perspective on
the use of microservices, exploring the context of smart cities
as well as osmotic computing.

Visti presented a generic framework [16] named MiCADO
(Microservices-based Cloud Application-level Dynamic Or-
chestrator) to perform automatic management of Cloud in-
frastructure used by commercial web applications. Among the
challenges addressed is the ability to run multiple microser-
vices in a Cloud, as well as considering efficient resource
utilization for running these microservices. In contrast, Khanda
[19] proposed a solution that allows running microservices
only on the Edge. The design of OEF builds upon those works.
To the best of our knowledge, this paper is the first work that
leverages osmotic computing to deploy microservices over the
Cloud and Edge for efficient resource utilization.

Going forward in the construction of infrastructure for
Smart Cities, DIMMER [17] is a platform for IoT built in
microservices to provide functionalities for smart cities. In this
way, DIMMER platform architecture is presented based on
the services or functions of smart cities including Resources
Catalog, Message Broker and City services like Energy Data,
GIS Service.

In contrast, our proposed architecture utilizes both Edge and
Cloud computing resources to provide services (or functions)
of smart cities. Moreover, our work is the first attempt to
implement the idea of osmotic computing in Smart City
applications. Another difference of our work is to implement
an osmotic application as a case study; and the developed
system overcomes the trade-off between efficient resource
utilization and low latency.

Mobile Edge Computing (MEC) [20] has primarily been
driven by the advance of 5G networks to support user-
provisioned services within the network. MEC is also driven
by similar requirements of latency-sensitive service provi-
sioning, and the ability to offer application management and
service orchestration at the network Edge. Recent research
conducted in the realm of MEC occurred in the context
of mobile computing where smart phones act as both IoT
devices and gateways. However, most of the existing MEC
approaches focus on infrastructure-level QoS constraints such
as minimization of energy or resource utilization, while giving
very little attention to meeting the more complex and inter-
dependent QoS requirements across microservices that need to
be choreographed and orchestrated in a coordinated manner to

Figure. 1. (1) Osmotic Movement of Microservices across Cloud and Edge; (2) Parking Management Application

realize an IoT application.
Jiang et al [21] proposed E2MR, an algorithm focused

on load balancing in a network for application execution
in intelligent cities. The authors explore the energy-efficient
networking problem with multiple constraints for smart city
applications. The E2MR algorithm acts directly at the packet
level to schedule the workloads to different devices. However,
we explore load balancing between the services of an osmotic
application to improve the scalability of smart city applica-
tions.

Our previous work [22] proposed a design idea of Osmotic
Message-oriented middleware (MOM) which seamlessly in-
tegrated Cloud-based MOM into Edge computing. In other
words, it aims to dynamically moving or provisioning message
brokers from the Cloud or the Edge based on current demands.
Although two papers share the some design concept i.e., Os-
motic computing, this paper is the first system implementation
of Osmotic computing that dynamically deploys and executes
a chained microservices across Edge and Cloud.

IV. OSMOTIC EXECUTION FRAMEWORK

The highly dynamic nature and diversity of the Smart City
environment brings a challenge of constructing a Smart City
application, because the human behaviors are unpredictable
and the infrastructures are provided by several stakeholders
[23]. In other words, we need a platform that: (i) provides
a flexible architecture to adopt new technologies, and (ii)
supports new functional and non-functional requirements to
suit the diversity of the multiple and constantly evolving city
environments where they are deployed [18].

Osmostic computing leverages microservices to communi-
cate and manage the network of distributed services in the
osmotic network, and to ensure the security of the application.
Inspired by this, we propose an Osmotic Execution Framework
(see Figure 2) that combines elements of middleware plat-
forms and osmotic computation to provide the main elements
necessary to execute an osmotic application in a Smart City
environment.

Figure. 2. Architectural View of the Osmotic Execution Framework

The architecture shown in Figure 2 represents a concep-
tual infrastructure necessary to execute osmotic microservices
(MS) in a Smart City environment. The Cloud infrastructure
provides the computing resources for deploying the Smart
City platform and the osmotic microservices. A Smart City
application consists of a set of services. For example, [17],
[18], [24] explore the composition of multiple services or

microservices in smart cities. In this paper, our osmotic
application includes the following services:

1) Services Catalog: stores a catalog with the endpoints
and their respective microservices. Moreover, it orga-
nizes the implantation and/or removal of the microser-
vices. The cataloged microservices must have a state
that indicates the availability and the parameters related
to the performance of the microservice in order to allow
Load Balancer to perform its actions (scale up/down).

2) Monitor: performs monitoring of composite services
of the osmotic applications, allowing the creation of
alert messages to indicate the need to scale up or down
the application. It works in conjunction with Services
Catalog and Load Balancer, promoting the orchestration
of the microservices.

3) API Router/Load Balancer: is responsible for receiv-
ing all requests directed to the application, routing
between the various endpoints registered in the Services
Catalog. It also allows the monitoring of the response
time for each request from the microservice API.

4) Message: deals with the communication between the
various services of the middleware platform and the
microservices of the osmotic application. For example,
the Monitor sends an alert to the Service Catalog that
indicates the need for scaling up the application. The
Service Catalog initiates the creation and/or migration
of a microservice.

5) Security: organizes the security of the microservices,
offering authentication, authorization, proxies of APIs.
It also stores the credentials for the access control in the
Cloud and on the Edge.

6) Data Store: offers a service for storing data in the
Cloud. It plays an important role of service migration
and scheduling. It will be detailed in Section V.

In order to describe a preliminary implementation of the
proposed architecture, the next sections describe some key
components implemented like a prototype for this paper.

V. CONTAINER STRUCTURE FOR OEF

The challenge of executing an osmotic microservice is that
the same microservice must be able to be migrated in real-time
between Cloud and Edge while ensuring consistent status. For
instance, if we move a microservice from Edge to Cloud, this
relocated microservice must keep a status consistent with that
it had when it checked out from Edge. Allied to this challenge
we have to ensure the compatibility of the containers with the
components of the middleware platforms.

Figure. 3. Container Structure for OEF

In order to overcome these challenges, we propose a
container infrastructure to support the execution of osmotic
microservices for Smart City environments as shown in Figure
3. This infrastructure comprises the following elements:

1) API/Proxy: responsible for aggregating the calls to the
microservice APIs, as well as providing a proxy that
acts as a firewall to filter only correctly authenticated
requests for access to the microservice.

2) Local Database: stores the data of the microservice
within the strict scope of the container. The data to be
stored reflect the direct performance of the microservice
processing. Formally the architecture in microservices
defines that each microservice is autonomous and de-
coupled, which implies a dedicated database for each
microservice. In the Smart City environment due to the
large amount of data being manipulated, the premise
of using only a local database can create an obstacle
to scalability. Due to this requirement, it is necessary
to define a synchronization service between the local
database and the Cloud storage service.

3) Database Synchronizer: synchronizes the local mi-
croservice database with the Cloud data storage service
provided by the middleware platform.it acts like a cache
of data from the microservice has easy and direct access
without any dependency of network.

4) Monitor Agent: responds by monitoring the container
and collects usage metrics for the infrastructure such as
CPU usage, memory, request latency time, etc. It acts
together with the Monitor service of the middleware
platform.

5) Microservice: represents the microservice itself that will
be executed on the container, being the main element of
a container.

It is important to emphasize that some works [16], [25]
already evidenced the use of containers for construction of
microservices. Those proposals commonly use the elements
API, Microservice and Local Database but the Database
Synchronizer and Monitor Agent services are unpublished
and specific elements for the execution of osmotic services
in the Smart City environment. For example, each time the
microservice is instantiated, the Database Synchronizer (DS)
component should make a download of the data from the Data
Storage Service hosted on the Cloud.

During the life cycle of the container while the microser-
vice is running, DS acts on data synchronization between
the local database and the Data Store Service. To enable
better performance and reduce the network traffic load, the
communication between the DS and the Data Store Service
must use publish/subscribe communication through the Cloud
Message Service. In addition, the Monitor Agent (MA) service
must perform real-time monitoring of important metrics in the
scheduling and migration of microservices.

Ideally the migration of the microservices, that is, of the
containers should occur in an automated way transporting the
microservice from the Cloud to the Edge or from the Edge to

Algorithm 1: : Osmotic control of load balancing
Input: Latency → L; Threshold→ S;

1 OSControl(L, S)
2 // Deploy the proposed application

3 App ← Deploy()
4 while App is running do
5 // Get the latency of SV

6 // If the latency is greater than threshold

7 L ← getLatency()
8 if L > S then
9 // Move SV to the Cloud

10 Deploy(SV , Cloud)
11 end
12 else
13 // If SV is already deployed in the Cloud

14 if Check(SV , Cloud) then
15 // Move SV to the Edge

16 Deploy(SV , Edge)
17 end
18 end
19 end

the Cloud. The decision on the migration of microservices
is controlled by Algorithm 1 that summarizes the control
workflow of load balancing (OSControl). OSControl performs
load balancing that aims to automatically balance the workload
of job selection service. To this end, OSControl continuously
evaluates the parameters: latency time (L) value and maximum
latency time limit (i.e. Threshold (S)). Those parameters are
defined by the application’s QoS attributes and the control
occurs for as long as the application is running (line 4).
Once the application is running, OSControl compares whether
the latency obtained for the Selection Vacancies microservice
is greater than the defined threshold (line 8). If the latency
exceeds the threshold, the service will be migrated from Edge
to Cloud (line 10). If the latency is not greater than the
threshold, whether the service is deployed to the Cloud (line
14) is checked in order to reverse the migration. If yes, SV will
be migrated back to the Edge. In the current OEF architecture
the OSControl is plugged into the monitoring component. Our
previous paper [26] discusses the details of the monitoring
component.

Migration indeed involves a flow of well-established steps.
So, data synchronization and the redirection of requisitions
are extremely important. Data synchronization is possible
through the interaction between the Data Store Service and
the Database Synchronyzer. The redirection of requests is
implemented in the API Route/Load Balance. To clarify the
concepts, Figure 4 shows one scenario of migration from Edge
to Cloud.

We assume that the microservice (i.e. job selection service)
that is running on the Edge exceeds the threshold of latency
time as defined by Quality of Service level attribute (Step 1).
This event is perceived by the Monitor Service, which sends
a message to the Service Catalog (Step 2) in order to initiate

Figure. 4. Steps to Migrate from Edge to Cloud

the deployment of the microservice in the Cloud (Step 3).
Once the Cloud container is running and the microservice has
synchronized the database with the Data Store service (Step 4
and 5) the Service Catalog notifies the Route API to route the
requests to the Cloud microservice rather than to the Edge (6).
Finally, the Service Catalog can start removing the container
from the Edge. It is important to note that removing the
container from the Edge can only occur when the container’s
Database Synchronizer signals that all content in the Local
Database is properly synchronized with the Data Store Service.

VI. IMPLEMENTATION

An evaluation was carried out to validate and evaluate the
Osmotic Execution Framework (see Sections IV and V), as
well as to investigate how osmotic computation can influence
the load balance. Thus, an initial version of a microservice-
based Smart Parking application (as discussed in Section II)
was developed and deployed an Osmotic Execution Frame-
work instance across Edge and Cloud nodes. Subsequently,
a set of load tests were performed to verify the behavior of
microservices running on both Edge and Cloud in Section VII.

A. Smart Parking as Osmotic Application

The Smart Parking application (as depicted in Section 1)
searches for real-time mapping of parking spaces available in
a city. A driver accesses the Smart Parking application to know
the best places available according to his personal preferences.
The main use case follows the flow: 1 – the driver travels
by a road, 2 – The Smart Parking application is notified of
the position of the driver, 3 – the selection vacancies service
searches for possible available positions, Smart Parking alerts
the driver the available vacancies. With this scenario, three
microservices specified in Section II have been implemented,
namely: User Management, Selection Vacancies and Parking
Management.

User Management (UM) is the service that is deployed
in the Cloud. It is responsible for storing user data as well
as for providing system communication with the user. User
interaction can occur via an application deployed on his/her
smart phone. Selection Vacancies (SV) continuously receives
UM job requisitions. The incoming requisitions are processed
through a selection algorithm that continuously queries the

Parking Management microservice to check the status of the
vacancies. Once the vacancies are defined the SV notifies
the UM. Parking Management (PM) continuously monitors
vacancy status. UM, SV and UM are microservices deployed
on the Osmotic Execution Framework running on the Edge
and Cloud. In particular, PM is deployed on the Edge and
communicates with the IoT sensors that identify the occupa-
tion or the release of a vacancy. Theoretically, PM must be
replicated between the various parking lots as many times as
necessary.

Inter-service communication occurs through a REST API to
access its functionality. For experimental evaluation, specific
API calls were implemented for each service, namely: for the
UM a call to query the user data; for the PM, a call to check the
vacancies and their states; and, for the SV a call that returns a
vacancy available to a user when it accesses a parking lot. All
microservices were developed in Java, running on an Apache
Tomcat server (http://tomcat.apache.org/) as web server. For
the UM and PM microservice that require persistence of
contextual data of their entities, the Local Database was
implemented using MongoDB (https://www.mongodb.com/).
The smart parking application with the three microservices
was deployed in containers. The containers were built for
execution on the Docker platform1 and follow the structure
defined in Section V.

The use of Containers Docker allows the use of two possible
deployment cases, namely: a container for each element of
architecture microservice execution (Web Server, Database,
Database Synchronizer) or several containers for each element.
In the first case (F1) the same container is installed with all the
components used by the microservice. In the second case (F2),
each component is installed in its own container, that is, the
Web Server will run on one container and the Local Database
will be in another, etc. F2 is the most commonly used by users
of the Docker platform since it does not require the construc-
tion of specific images, instead using standard images already
available in the Docker HUB catalog of images. This work
makes use of F1 since it represents a more simplified scenario
for osmotic microservice observation since the management
of multiple containers for each microservice can add more
complexity in the microservice composition. It is important to
note that the use of the same container architecture (i.e both
Cloud and Edge microservices are implanted on the Docker)
allows the SV environment of execution to be made more
uniform. Keeping this in mind, Table I shows all microservices
implemented for experimentation. In the Cloud environment,
the UM micro service was instantiated by using just one
container with Tomcat and MongoDB. Similarly, the PM
microservice is instantiated with a similar Docker Image.
Finally, the SV microservice requires two Tomcat Docker
Images. The reason we used two different images for SV is
the operation system required for Raspberry Pi is different to
Cloud VM. Unlike the Docker images, the version of Tomcat
used was the same on both the Edge and the Cloud. The SV

1https://www.docker.com/what-docker

TABLE I
SMART PARKING SERVICES DEPLOYED AT DOCKER

Environment Microservice Containers
Cloud User Management Tomcat + MongoDB
Cloud Selection Vacancies Tomcat
RaspberryPi Selection Vacancies Tomcat
RaspberryPi Parking Management Tomcat + MongoBD

does not require a local database because it does not store
state entities, it only performs processing.

VII. EVALUATION

We used Apache JMeter (https://jmeter.apache.org/) to gen-
erate HTTP requests to test and validate the Osmotic Execution
Framework capability. The JMeter test cases are presented
in Table I. The tests consisted of performing 10, 100, and
500 simultaneous requests to the microservices running on
the Osmotic Execution Framework at a fixed interval of 5
minutes. Notably, when we test the Raspberry Pi (https:
//www.raspberrypi.org/) 1 Model B with 1000 requests, the
device was overloaded and stopped responding. Therefore, we
set the maximal number of the requests to be 500.

The containers with the microservices of the Smart Parking
Application were deployed in an Openstack (https://www.
openstack.org/) Cloud of the Metrópole Digital Institute (https:
//www.imd.ufrn.br/portal/), and in a Raspberry Pi on the Edge.
The Cloud used a virtual machine that runs a Linux system
with Ubuntu (https://www.ubuntu.com/), version 14.03, on
virtual hardware with a configuration of 2 vCPU, 4 GB
of memory and 20 GB of disk. Docker platform version
1.10 was installed on the virtual machine. The UM service
deployment was based on the MongoDB 3.2 image https:
//hub.docker.com/ /mongo/ obtained via Docker HUB. This
image included a version of the Java virtual machine, version 8
and the Tomcat server version 7. We used a specific image for
Tomcat 7 (https://hub.docker.com/r/dordoka/rpi-tomcat/) and
included a MongoDB 3.2 for the Edge environment. The Edge
environment was simulated by the RaspberryPi 1 Model B
that runs a Raspbian system in a configuration of: 1 CPU
core (700 Mhz clock), 512 MB of RAM and a 4GB SD
memory. For Selection Vacancies Service was used two images
of Tomcat 7 on Cloud: (https://hub.docker.com/ /tomcat/),
on Edge: (https://hub.docker.com/r/dordoka/rpi-tomcat/). The
other elements (Database Synchronizer, API Proxy, and the
Monitor Agent) of the Osmotic Execution Framework have
been implemented in Java. All the communication between the
components was developed through the use of API in REST
style.

A. Latency Time Results

Latency is one of the most important metrics that affects
user satisfaction [18]. In this section, we focus on the exper-
imental analysis of the latency of the microservices. Other
metrics such as CPU usage, memory usage, the amount of
network traffic will be briefly reported in the discussion
subsection.

In this experiment, we made the following three observa-
tions: 1 – observe the behavior of microservices, especially
osmotics microservice (Selection Vacancies), 2 – validate the
proposed architecture in the construction of osmotic appli-
cations for Smart City, and 3 – obtain the latency caused
by migrating a microservice from Edge to Cloud. All the
experimental results in the following are the average of ten
executions.

Figure. 5. Dispersion of medium Latency Time for Microservices on Cloud

For the Cloud environment (see Figure 5) the two microser-
vices evaluated presented very similar behavior regarding 10
and 100 requests. For the test of 10 requests for the UM and
for the SV the average latency is 33 and 32.5 milliseconds,
respectively. The results for the 100 requests are 21.5 (UM)
and 28.5 (SV) milliseconds. The reason that the latency of 10
requests is higher than that of 100 requests is because both
UM and SV are not saturated when the request number is
10. Thereafter, the latency of SV increases significantly when
the number of requests increases. This is because, when SV
process a request, it needs to interact with both SV and PM.
Therefore, the latency of processing a request by SV is much
longer than processing a request by UM.

As for the Edge environment, the results obtained for the
PM are: 133 ms (10 req.), 883.5 ms (100 req.), 4786 ms
(500 req.). The latency increases with the increasing number
of requests. For SV, latency significantly goes up when the
number of requests increases from 10 to 100. This is because
the Edge has limited computing resources and will take more
time to process the requests, compared to the case in the Cloud.
After that, when the number of requests increases, the latency
increases slowly. This behavior could be explained due to the
device reached your own full capacity of processing, resulting
in dropping some requests.

Lastly, the load pressure tests were applied to the SV
microservices. In this experiment, we want to simulate the
case where the number of requests exceeds the threshold, our
system will automatically migrate SV into the Cloud. To this
end, we first start SV on Edge. When the latency reaches
6 seconds, the API Route will redirect new requests to the
Cloud. In previous experiments, we observe that when the
latency reaches 7.3 seconds the Edge node will not able to

Figure. 6. Dispersion of Medium Latency Time for Microservices on Edge

process all requests. Thus, we set the threshold as 6 seconds.
Figure 7 shows the expected behavior and proves that the use
of osmotic services can ensure the low latency of the smart
parking application through the new dynamic load balancing
method.

Figure. 7. Dispersion of Medium Latency Time for Microservices in Migra-
tion Scenario

Figure. 8. Percentage of CPU use for all microservices

B. Discussion

The above results demonstrate the effectiveness of using
the Osmotic Execution Framework for deploying an Osmotic
Application in the Smart City environment. It also shows that

Osmotic Computation can dynamically balance the workload
of the microservices that are deployed on Edge and Cloud. Due
to the limited computing resources on Edge, the CPU usage
increase significantly with the increasing number of requests
as shown in Figure 8. However, this workload only slightly
increase the CPU usage of the Cloud node.

In future work, one possible analysis to be carried out is to
estimate the ratio of how many copies of microservices at the
Edge should be deployed in order to reduce the impact of this
on the performance of the application. The results obtained
for variation of memory and network traffic are similar to
those observed for CPU. That is, the variation is greater in the
microservices implanted in the border. It is worth noting that
the variation in the consumption of memory is smaller when
compared to the one of the use of the CPU while the number
of bytes traveled in the tests of 500 requests is much higher
than in the tests of 10 and 100. This indicates that in this type
of scenario the quality of the network has a high impact on
the performance of the microservices.

VIII. CONCLUSION

This paper describes an Osmotic execution framework that
partitions microservices to a distributed environment including
Edge and Cloud. The core contribution of this paper is that
we propose a novel microservice migration method to balance
the workload of the microservices. Importantly, our framework
can automatically mitigate the workload of microservices
deployed on the Edge when their computing resources are
limited. We evaluate our framework with a real Smart City
application, namely, smart parking. This optimistic application
shows that we can efficiently utilize the computing resources
from the Edge while ensuring low latency.

IX. ACKNOWLEDGMENT

This work is supported by the SmartMetropolis
Project2, Flood-PREPARED (RES/0541/7295),
LANDSLIP(RES/0541/7295) and EPSRC/UK STRATA
projects. Nélio Cacho is supported in part by CAPES-Brazil
(88881.119424/2016-01).

REFERENCES

[1] E. F. Z. Santana, A. P. Chaves, M. A. Gerosa, F. Kon, and D. S. Milojicic,
“Software platforms for smart cities: Concepts, requirements, challenges,
and a unified reference architecture,” ACM Computing Surveys (CSUR),
vol. 50, no. 6, p. 78, 2017.

[2] J. Soldatos, N. Kefalakis, M. Hauswirth, M. Serrano, J.-P. Calbimonte,
M. Riahi, K. Aberer, P. P. Jayaraman, A. Zaslavsky, I. P. Žarko, et al.,
“Openiot: Open source internet-of-things in the cloud,” in Interoper-
ability and open-source solutions for the internet of things, pp. 13–25,
Springer, 2015.

[3] B. Cheng, S. Longo, F. Cirillo, M. Bauer, and E. Kovacs, “Building a big
data platform for smart cities: Experience and lessons from santander,”
in Big Data (BigData Congress), 2015 IEEE International Congress on,
pp. 592–599, IEEE, 2015.

[4] W. Apolinarski, U. Iqbal, and J. X. Parreira, “The gambas middle-
ware and sdk for smart city applications,” in Pervasive Computing
and Communications Workshops (PERCOM Workshops), 2014 IEEE
International Conference on, pp. 117–122, IEEE, 2014.

2http://smartmetropolis.imd.ufrn.br

[5] T. Zahariadis, A. Papadakis, F. Alvarez, J. Gonzalez, F. Lopez, F. Facca,
and Y. Al-Hazmi, “Fiware lab: managing resources and services in a
cloud federation supporting future internet applications,” in Utility and
Cloud Computing (UCC), 2014 IEEE/ACM 7th International Conference
on, pp. 792–799, IEEE, 2014.

[6] Z. Wen, R. Yang, P. Garraghan, T. Lin, J. Xu, and M. Rovatsos, “Fog
orchestration for internet of things services,” IEEE Internet Computing,
vol. 21, no. 2, pp. 16–24, 2017.

[7] G. Cormode, M. Garofalakis, P. J. Haas, C. Jermaine, et al., “Synopses
for massive data: Samples, histograms, wavelets, sketches,” Foundations
and Trends® in Databases, vol. 4, no. 1–3, pp. 1–294, 2011.

[8] R. Ranjan, O. Rana, S. Nepal, M. Yousif, P. James, Z. Wen, S. Barr,
P. Watson, P. P. Jayaraman, D. Georgakopoulos, et al., “The next grand
challenges: Integrating the internet of things and data science,” IEEE
Cloud Computing, vol. 5, no. 3, pp. 12–26, 2018.

[9] H. Wang, J. Gong, Y. Zhuang, H. Shen, and J. Lach, “Healthedge:
Task scheduling for edge computing with health emergency and human
behavior consideration in smart homes,” in Big Data (Big Data), 2017
IEEE International Conference on, pp. 1213–1222, IEEE, 2017.

[10] M. Villari, M. Fazio, S. Dustdar, O. Rana, and R. Ranjan, “Osmotic
computing: A new paradigm for edge/cloud integration,” IEEE Cloud
Computing, vol. 3, no. 6, pp. 76–83, 2016.

[11] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and
challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp. 637–646,
2016.

[12] J. Traub, S. Breß, T. Rabl, A. Katsifodimos, and V. Markl, “Optimized
on-demand data streaming from sensor nodes,” in Proceedings of the
2017 Symposium on Cloud Computing, pp. 586–597, ACM, 2017.

[13] Z. Wen, P. Bhatotia, R. Chen, M. Lee, et al., “Approxiot: Approximate
analytics for edge computing,” in 2018 IEEE 38th International Con-
ference on Distributed Computing Systems (ICDCS), IEEE, 2018.

[14] Z. Ji, I. Ganchev, M. O’Droma, and X. Zhang, “A cloud-based intelligent
car parking services for smart cities,” in General Assembly and Scientific
Symposium (URSI GASS), 2014 XXXIth URSI, pp. 1–4, IEEE, 2014.

[15] W. He, G. Yan, and L. Da Xu, “Developing vehicular data cloud services
in the iot environment,” IEEE Transactions on Industrial Informatics,
vol. 10, no. 2, pp. 1587–1595, 2014.

[16] H. Visti, T. Kiss, G. Terstyanszky, G. Gesmier, and S. Winter, “Micado–
towards a microservice-based cloud application-level dynamic orchestra-
tor,” PeerJ PrePrints, vol. 2016, no. 10, 2016.

[17] A. Krylovskiy, M. Jahn, and E. Patti, “Designing a smart city internet
of things platform with microservice architecture,” in Future Internet
of Things and Cloud (FiCloud), 2015 3rd International Conference on,
pp. 25–30, IEEE, 2015.

[18] A. d. M. Del Esposte, F. Kon, F. M. Costa, and N. Lago, “Interscity: A
scalable microservice-based open source platform for smart cities,”

[19] K. Khanda, D. Salikhov, K. Gusmanov, M. Mazzara, and N. Mavridis,
“Microservice-based iot for smart buildings,” in Advanced Information
Networking and Applications Workshops (WAINA), 2017 31st Interna-
tional Conference on, pp. 302–308, IEEE, 2017.

[20] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile
edge computinga key technology towards 5g,” ETSI white paper, vol. 11,
no. 11, pp. 1–16, 2015.

[21] D. Jiang, P. Zhang, Z. Lv, and H. Song, “Energy-efficient multi-
constraint routing algorithm with load balancing for smart city appli-
cations,” IEEE Internet of Things Journal, vol. 3, no. 6, pp. 1437–1447,
2016.

[22] T. Rausch, S. Dustdar, and R. Ranjan, “Osmotic message-oriented
middleware for the internet of things,” IEEE Cloud Computing, vol. 5,
no. 2, pp. 17–25, 2018.

[23] M. Vögler, J. M. Schleicher, C. Inzinger, S. Dustdar, and R. Ranjan,
“Migrating smart city applications to the cloud,” IEEE Cloud Comput-
ing, vol. 3, no. 2, pp. 72–79, 2016.

[24] M. Fazio, A. Celesti, R. Ranjan, C. Liu, L. Chen, and M. Villari,
“Open issues in scheduling microservices in the cloud,” IEEE Cloud
Computing, vol. 3, no. 5, pp. 81–88, 2016.

[25] D. Jaramillo, D. V. Nguyen, and R. Smart, “Leveraging microservices
architecture by using docker technology,” in SoutheastCon, 2016, pp. 1–
5, IEEE, 2016.

[26] A. Souza, N. Cacho, P. P. Jayaraman, R. Ranjan, A. Romanovsky, and
A. Noor, “Osmotic monitoring of microservices between the edge and
cloud,” in 20th IEEE International Conference on High Performance
Computing and Communications, 2018.

