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Abstract—Process analysis enables the certification of dis-
tributed business processes using automated process compliance
checks. In such an auditing scenario, analysis correctness is key
but is usually taken for granted. We therefore argue in this paper
for the idea of certified analysis. As is shown by the example
of a static information flow analysis and its accompanying Coq
development, certified analysis of distributed business processes is
feasible and provides machine-checkable correctness certificates
and thus helps in increasing thrustworthiness of automated
process compliance audits.

I. INTRODUCTION

For distributed business processes implemented as service
choreographies or orchestrations, e.g., in languages like WS-
BPEL or BPMN, process compliance is of vital importance
since the enacted business processes usually are subject to the
various regulations and standards of participating organiza-
tions. A large fraction thereof considers process security and
data confidentiality in particular. As an example, the Health
Insurance Portability and Accountability Act (HIPAA) states
that each person who maintains or transmits health infor-
mation shall maintain reasonable and appropriate measures
to ensure the confidentiality of the information and prohibit
unauthorized uses or disclosures of the information. Process
auditing scenarios can substantialy benefit from methods for
automatically analyzing processes with respect to compliance
rules like confidentiality, be it at design time or runtime.

While the need for automated process compliance analy-
sis has been addressed in the business process and service
domain [1], as, e.g., reflected by the notion of certified pro-
cesses [2], analysis correctness plays only a minor role and is
usually shown by pen-and-paper proofs, if at all. In this paper,
we show how to enrich process auditing scenarios using au-
tomated analyses with mechanized correctness guarantees for
the analyses themselves. Using the example of an information
flow analysis, we argue for the idea of certified analysis [3]. A
certified analysis is accompanied by a machine-readable proof,
which can be seen as a certificate guaranteeing correctness.
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Thus, a user is not required to trust in the analysis, but can
validate its specification in terms of the correctness proof.
Furthermore, mechanically proving correctness and generating
the analysis implementation from the proof supports formal
rigor and helps in avoiding implementation errors.

The presented certified information flow analysis looks for
information leaks in a process model at design time. An
information leak happens when sensitive information can be
accessed by an untrusted party. Assuming a process model in
which activities, where sensitive information originates, and
activities, that can be accessed by untrusted parties, are marked
by labels H and L, respectively, we check for information
flows from an activity with label H to an activity with label
L. We focus on the data flow, i.e., the flow of information
along variables, messages, and heap-allocated data objects.

More technically, we provide a static analysis for detecting
data leaks under a multi-level security model with mandatory
access control. We can formulate the problem addressed by
the analysis in other words as: Given a stateful service
implementation in terms of a business process model and
a list of sensitive information sources and untrusted sinks,
check whether there exists a flow of information in the
process’ data flow from a source to a sink. To address the
problem, we propose a unified approach based on points-to
and taint analysis. We provide a Coq development for the
analysis including its correctness proof, proving soundness and
termination. The contributions of this paper are thus:
• We study the concept of certified analysis in the business

process and service domain and demonstrate its feasibility
by way of the example of an information flow analysis
and its machine-readable Coq proof.

• We address a heap-based data model for process data as
prevalent in state-of-the-art process engines.

• We present a formal development for proving the correct-
ness of unified points-to/taint analysis in line with most
recent research [4].

The rest of the paper is structured as follows: In Sect. II, we
sketch the approach of certified analysis based upon abstract
interpretation. In Sect. III, the information flow analysis is
first introduced as a unified points-to/taint analysis. In the
more technical part of the paper (Sect. III-B and III-C), the



analysis’ abstract and concrete semantics are developed and
used for proving its correctness. A prototype implementation
of the analysis as a Camunda Modeler plugin is presented
in Sect. IV. The discussion of related work is contained in
Sect. V and Sect. VI eventually concludes the paper.

II. CERTIFIED PROCESS ANALYSIS

Data flow analysis has shown to be a utility for the analysis
of service implementations, be it for supporting formal ver-
ification [5], [6], for analyzing data- or control-flow related
properties [7], or for optimization and reengineering [8]. In
particular two aspects make it such a useful method: (1) Data
flow analysis provides a general framework which can be
easily adjusted to new domains and analysis problems, (2)
data flow analysis is grounded on well-founded theories like
Kildall’s lattice-theoretic formulation [9] or Cousot’s abstract
interpretation [10]. While the latter aspect offers a way to
formally show an analysis to be correct, until now, only a
small number of data flow analyses in the business process
and service domain have been proven correct, using pencil-
and-paper proofs and just considering termination [5], [7].

This is suprising considering the recent advances made in
the verification of static analysis. State-of-the-art approaches
define not only an analysis but rather add a mechanized,
i.e., machine-checkable proof of its correctness. The term
certified analysis [3] has therefore been coined, as a user does
not need to trust in such an analysis but can automatically
validate its conjoined correctness proof. We therefore argue
for the idea of a certified analysis of service implementations.
The advantages are manifold. For instance, the complexity
of modeling languages for distributed business processes like
WS-BPEL and BPMN makes not only the design and imple-
mentation of processes, but also of analyses error-prone. An
approach for proving analysis correctness helps in regaining
confidence. A mechanized correctness proof also augments
process auditing scenarios [2] with an orthogonal check that
the audit itself can be trusted. Automatically generating an
analysis implementation from its correctness proof even re-
lieves the analysis designer from the implementation burden.
We next introduce the concept of certified analysis based upon
abstract interpretation, which serves as basis for the formal
development of the information flow analysis in this paper.

Data flow analysis can be seen as abstract interpreta-
tion [10], where processes are evaluated using abstract values
instead of concrete ones. As an example, instead of performing
arithmetic operations on integers when executing a process,
an analysis may only track whether an integer has abstract
value odd or even . In this way, e.g., addition boils down
to four cases: even + even = even , even + odd = odd ,
odd + even = odd , and odd + odd = even . The domains of
abstract and concrete values are connected by an abstraction
relation, which relates concrete values and their abstract repre-
sentations, e.g., odd approximates {1, 3, 5, . . . }. In addition,
the abstract domain A should form a partially-ordered set,
reflecting precision among abstract values such that for all
a, b ∈ A, a ≤ b iff all concrete values approximated by b

are also approximated by a. Consider, e.g., another abstract
value int representing all integers, then apparently int ≤ odd .
Executing a process’ activities on concrete values can be for-
malized using standard structural operational semantics [11],
which yields the concrete semantics. The effect of execution
on abstract values is defined by the analysis in terms of
a monotone function f : A → A, mimicking, e.g., above’s
addition example, which in this way provides the abstract
semantics. An analysis based upon abstract interpretation then
calculates a fixpoint abstract value, i.e., f(a) = a, for a given
process by continuously applying the abstract semantics to an
initial abstract value until the fixpoint is reached. An analysis
can be shown correct, iff:

∀a ∈ A : a approximates init ∧ f(a) = a

⇒ (∀c′ : init →∗ c′ ⇒ a approximates c′)

meaning that a fixpoint a of the abstract semantics, that
approximates the initial concrete value init , also approximates
the concrete values c′ in all reachable states, initial →∗ c′.
Note that correctness here refers to soundness, i.e., the abstract
value a is guaranteed to (over-)approximate the concrete value.
Analysis termination can though also be shown, using the fact
that the abstract semantics forms a montone function on the
partially-ordered set of abstract values. In particular, sets with
a well-founded order relation guarantee the existence of a fix-
point, which can be calculated with standard algorithms as in
monotone data flow analysis [9] (optionally using accelerators
like widening/narrowing [10]).

The Coq proof assistant1 has been shown of use for proving
analysis correctness [12]. Its inductive types provide a way for
encoding programs and its recursive functions for encoding
concrete and abstract semantics. Proving analysis correctness
in Coq still requires manual work, yet Coq allows for auto-
matic proof validation and even to automatically extract the
analysis implementation from the proof, which justifies the
notion of a certified analysis.

III. CERTIFIED INFORMATION FLOW ANALYSIS

In the following, information flow analysis is first intro-
duced as a feasible candidate for certified analysis in the busi-
ness process and service domain in Sect. III-A. Afterwards, the
Coq development of the information flow analysis is presented
in terms of the analysis’ concrete and abstract semantics in
Sect. III-B. This allows us to discuss the analysis’ soundness
and termination proofs in Sect. III-C.

A. Information Flow Analysis

An information flow analysis [13] checks the propagation
of information. The analysis thereby distinguishes information
of different sensitivity levels. In the basic case, which is also
addressed here, two levels are considered: low (L) representing
information coming from an insensitive source and high (H)
representing information coming from a sensitive source. Note
that we however could easily adjust the analysis to support

1https://coq.inria.fr/



more than these two levels. In order to guarantee the absence
of information leakage, the analysis needs to check that no
information is propagated from a high-level source to a low-
level sink, while any flow of information between equal levels
or from a low-level source to a high-level sink is allowed.

Example 1: In Fig. 1, a BPMN process model is shown
which represents the fictive risk assessment of a health in-
surance company. In the process, a sensitive medical score
(message score) for the insurant is automatically used as
rating, if the policy shall not exceed a certain limit, or the
rating is manually created. The resulting assessment in variable
rating is then sent to a possibly untrusted external contractor
for further processing. Assuming the sensitivity label H for
the incoming message score and label L for rating, there is
a path on which information is propagated from a high-level
source to a low-level sink and thus a possible information leak
in the process. Though, considering label L for variable reply
instead, anonymization converts the high-level into low-level
information, so that information leakage is prevented.

In this paper, we focus on the propagation of information
along the data flow in a given process model, as sketched
in Ex. 1, and abstract from other side channels like implicit
information flow, e.g., the leakage of information about vari-
able rating through the branching condition in the exam-
ple process. Under these requirements, the information flow
analysis problem can be reformulated in terms of static taint
checking [4], [14]. Traditionally, taint checking is used to
increase software security by identifying unchecked inputs
which allow to insert malicious data into an application, like
in SQL injection attacks. Similar to information flow analysis,
a taint analysis looks for data flow from untrusted sources,
labeled H , to security critical sinks, labeled L. In addition,
a taint analysis is also aware of sanitized data, i.e., input
from untrusted sources which though has been freed from
malicious data. Note that sanitized data is also important
when analyzing for information leakage, if, e.g., personal
information is anonymized as in Ex. 1.

Static taint checking usually relies on information about
which data objects a variable may point to as provided by
points-to analysis [15]. Note that we here assume a heap-based
data model, similar to languages like Java and JavaScript,
and typically used in recent process engines, e.g., Camunda2.
Consequently, points-to information is key as information
flow apparently depends on the flow of data along variables,
messages, and heap-allocated objects. Until currently, taint
checking has been a client of points-to analysis. For our anal-
ysis, points-to and taint information is in contrast computed
simultaneously, in line with recent research [4].

The following definition states the information flow analysis
using a set of constraints according to a process’ activities:

Definition 1: For a given process model, each variable or
message x is assigned the set of potentially assigned objects,

2https://camunda.com/

denoted by [[x]] ⊆ Objects , using the constraints:

Object creation k : Allocate(x) : oLk ∈ [[x]], ok fresh
Sensitive object k : Source(x) : oHk ∈ [[x]], ok fresh

Assignment x = y : [[y]] ⊆ [[x]]

Sanitizer x = Sanitize(y) :
oLk ∈ [[y]]

oLk ∈ [[x]]

oHk ∈ [[y]]

oLk ∈ [[x]]

Field read x = y.f :
oLk ∈ [[y]]

[[ok.f ]] ⊆ [[x]]

oHk ∈ [[y]]

[[ok.f ]] ⊆ [[x]]

Field write x.f = y :
oLk ∈ [[x]]

[[x]] ⊆ [[ok.f ]]

oHk ∈ [[x]]

[[x]] ⊆ [[ok.f ]]

The constraints in Def. 1 are used to assign each variable
and message the set of potentially assigned data objects. Along
the lines of classical ANDERSEN-style subset-based points-
to analysis [15], objects oLk , o

H
k ∈ Objects are abstract and

distinguished with respect to their static allocation site k. Note
that inbound message activities are treated as allocation sites
of objects submitted via respective incoming messages and
objects created at sensitive sites (Source) are distinguished
from objects created at ordinary sites (Allocate) using object
labels H and L. The constraints model the process’ data
flow by modeling the effect of executing an activity on the
sets of assigned objects. For instance, an assignment x = y is
reflected by the subset constraint [[y]] ⊆ [[x]], safely modeling
the flow of objects from assignment source to assignment
target by the rule that each object assigned to y may as well
be assigned to x. Solving the thus-defined constraint system
for a process then results in a safe approximation of assigned
objects. Using this information, we can decide for each process
variable and message individually whether or not there is
information leakage:

Definition 2: There exists a potential information leak for
a given low-level variable or message x iff ∃oHi ∈ [[x]].

Example 2: Consider the example process in Fig. 1 and
label H for the object submitted via message score and
L for variable rating, respectively. The application of the
constraints in Def. 1 results in the following derivation:

1
oL1 ∈ [[request]]

4
[[o1.risk ]] ⊆ [[rating]]

1
oL1 ∈ [[request]]

3
[[score]] ⊆ [[o1.risk ]]

2
oH2 ∈ [[score]]

oH2 ∈ [[o1.risk ]]

oH2 ∈ [[rating]]

For improving comprehensibility, we have therein labeled
constraint applications with the corresponding process activ-
ities. As can be seen, our analysis concludes that there is a
information leak for variable rating as the object contained
in the set [[rating ]] is labeled with sensitivity label H .

B. Abstract and Concrete Semantics
A formal basis for the analysis is developed next. The

development is done in Coq, which allows for a machine-
readable correctness proof. The Coq sources are available on-
line3 and extend prior work of Adam Chlipala4 (Coq names for
definitions and theorems are given in brackets, [like this]).

3https://gitlab.com/t.heinze/soca2018.git
4http://adam.chlipala.net/itp/coq/src
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Fig. 1. BPMN service implementation model used as running example.

As outlined in Sect. II, abstract interpretation provides a
well-grounded theory for static data flow analysis which will
be used for formalizing the information flow analysis. In
terms of abstract interpretation, a data flow analysis executes
a process, though not on concrete values but rather on abstract
values. Execution on concrete values determines the concrete
semantics and execution on abstract values the abstract se-
mantics. In order to establish analysis correctness, we need to
show that the abstract semantics is a valid approximation of the
concrete semantics and its continuous application on a given
process eventually results in a fixpoint solution. For defining
the concrete and abstract semantics, the usual approach of
structural operational semantics is used, that is, small-step
semantics [11], [12]. Note that, in contrast to Sect. III-A, a
field-insensitive analysis [15] is considered here, to keep the
formal development of the analysis and proof relatively simple.

Small-step semantics uses states and a reduction relation to
describe the effect of a process activity’s execution. For its
definition in Coq, another process representation is needed.
Instead of using a process model in a language like BPMN or
WS-PEL, we therefore use a more structured representation
which consists of compound activities, determining a process’
control flow and supporting the usual structures, i.e., sequence,
choice, loop and fork/join, and basic activities modifying
process data. Along the lines of [16], we thus define:

Definition 3 ([compound activity]): A process is defined
inductively as:
• The empty activity Empty is a process
• A basic activity Activity a is a process, where a is:

– an allocation site Allocate(x) or Source(x)
– a field read x = y.f or field write x.f = y

– a sanitizer x = Sanitize(y)
– an assignment x = y

• If a and b are processes, then their sequential execution
Sequence(a, b) is also a process

• If a and b are processes, then their alternative execution
Choice(a, b) is also a process

• If a and b are processes, then their parallel execution
Fork(a, b) is also a process

• If a is a process, then its repeated execution Loop(a, b)
is also a process

Example 3: Considering the BPMN process model from
Ex. 1, the following process representation is used in Coq:

Sequence(
Activity Allocate(request),
Sequence(

Activity Source(score),
Sequence(

Activity request.risk=score,
Sequence(
Choice(

Activity rating=request.risk,
Activity Allocate(rating)),

Sequence(
Activity reply=Sanitize(rating),
Empty)))))

Furthermore, variables and messages are uniquely mapped
to the natural numbers and objects are modelled as pairs (p, q)
of their allocation site p ∈ N and sensitivity label q ∈ {L,H}.
Based on this representation, concrete states can be defined:

Definition 4 ([state]): A concrete state c is a triple
(vars, heap, l), with functions heap : N→ (N× {L,H}) and
vars : N → (N × {L,H}), assigning objects to object fields,
and variables and messages, respectively, and a counter l ∈ N
used to distinguish the process’ dynamic allocation sites.

For better comprehension, we separate the definition of
the concrete semantics for compound activities and basic
activities. Concrete semantics for the former ones is defined in
Fig. 2. The rules are rather unsurprising and follow the usual
approach [11], [12]. Each rule a, s→ a′, s′ transforms a state
s and an activity a into the modified state s′ and the residual
activity a′. Note that, however, the rules have been adapted to
Def. 3, such that choices and loops are nondeterministic and
fork/join parallelism is supported. In addition, overloading is
used for referring to basic activities.

In Fig. 3, the concrete semantics for basic activities is
defined. As can be seen, each creation of an object implies
an update of a state’s vars function, such that the respective
variable or message is assigned an object identified by its
dynamic allocation site l + 1 in the modified state. Objects
created at activities Allocate are thereby labeled with L
and objects created at activities Source are labeled with
H . An assignment implies the assignment of the object of
the assignment’s source to the assignment’s target in the
modified state. The rule for activity Sanitize is similar, but
additionally changes the respective object’s label to L. A field
read implies the update of a state’s vars function, such that the
respective variable or message is assigned the object addressed



a, (vars, heap, l)→ (vars′, heap′, l′)

Activity a, (vars, heap, l)→ Empty, (vars′, heap′, l′)

a1, (vars, heap, l)→ a2, (vars
′, heap′, l′)

Sequence(a1, a), (vars, heap, l)→ Sequence(a2, a), (vars
′, heap′, l′)

Choice(Empty, a), (vars, heap, l)→ a, (vars, heap, l)

Choice( a1, a2), (vars, heap, l)→ a1, (vars, heap, l)

Choice(a1, a2), (vars, heap, l)→ a2, (vars, heap, l)

Loop(a), (vars, heap, l)→ Sequence(a, Loop(a)), (vars, heap, l)

Loop(a), (vars, heap, l)→ Empty, (vars, heap, l)

a1, (vars, heap, l)→ a2, (vars
′, heap′, l′)

Fork(a1, a), (vars, heap, l)→ Fork(a2, a), (vars
′, heap′, l′)

a1, (vars, heap, l)→ a2, (vars
′, heap′, l′)

Fork(a, a1), (vars, heap, l)→ Fork(a, a2), (vars
′, heap′, l′)

Fork(Empty, Empty), (vars, heap, l)→ Empty, (vars, heap, l)

Fig. 2. Structural concrete semantics ([step]).

k : Allocate(x), (vars, heap, l)→ (vars[x← (l + 1, L)], heap, l + 1)

k : Source(x), (vars, heap, l)→ (vars[x← (l + 1, H)], heap, l + 1)

x = y, (vars, heap, l)→ (vars[x← vars(y)], heap, l)

(p, q) = vars(y)

x = Sanitize(y), (vars, heap, l)→ (vars[x← (p, L)], heap, l)

heap(vars(y)) = (p, q) p 6= 0

x = y.f, (vars, heap, l)→ (vars[x← heap(p)], heap, l)

heap(vars(y)) = (0, q)

x = y.f, (vars, heap, l)→ (vars, heap, l)

vars(x) = (p, q) p 6= 0

x.f = y, (vars, heap, l)→ (vars, heap[p← vars(y)], l)

vars(x) = (0, q)

x.f = y, (vars, heap, l)→ (vars, heap, l)

Fig. 3. Structural concrete semantics continued ([exec]).

by the read’s receiver object’s allocation site p in the modified
state, if different from zero. Note that we associate objects in
the heap based on their allocation sites only and ignore labels,
which is a necessary condition for soundness. Eventually, the
rule for a field write updates the heap function of a state in that
the receiver object’s allocation site p is assigned the write’s
source object in the modified state’s heap, if unequal zero.

For the abstract semantics, modeling our information flow
analysis as introduced in Sect. III-A, abstract states are used.
In contrast to a concrete state, which assigns the runtime object
to a variable, message, or field, an abstract state assigns a set
of objects identified by their static allocation site:

Definition 5 ([abstract state]): An abstract state a is
a pair (avars, aheap), with functions aheap : N → P(N ×
{L,H}) and avars : N → P(N × {L,H}), assigning sets of
objects to fields and, messages and variables, respectively.

The abstract semantics is defined in Fig. 4. As our analysis
is flow-insensitive, there are no rules for compound activities.

k : Allocate(x) :: ls, (avars, aheap)

→ ls, (avars[x← avars(x) ∪ {(k, L)}], aheap)

k : Source(x) :: ls, (avars, aheap)

→ ls, (avars[x← avars(x) ∪ {(k,H)}], aheap)

x = y :: ls, (avars, aheap)

→ ls, (avars[x← avars(x) ∪ avars(y)], aheap)

x = Sanitize(y) :: ls, (avars, aheap)

→ ls, (avars[x← avars(x) ∪ (p, L) | (p, q) ∈ avars(y)], aheap)

x = y.f :: ls, (avars, aheap)

→ ls, (avars[x← avars(x) ∪
⋃

(p,q)∈avars(y)

aheap(p)], aheap)

x.f = y :: ls, (avars, aheap)

→ ls, (avars, aheap[p← aheap(p) ∪ avars(y) | (p, q) ∈ avars(x)])

Fig. 4. Abstract semantics ([abstract exec]).

Instead, the process is transformed into a list of the process’
basic activities. The reduction relation s, a :: ls→ ls′, s′ then
relates a state s and the head a of the list to the modified
state s′ and the list’s tail ls. Creation of an object implies
again the update of a state’s avars function, but this time, the
static allocation site k is added to the set of assigned objects
of the respective variable or message (also cf. constraints in
Def. 1). In the same way, an assignment updates a state’s
avars function by merging the sets of objects assigned to the
assignment’s source and target. The rule for activity Sanitize

is similar, though again changing the labels of objects to L. A
field read implies the update of a state’s avars function, such
that the variable’s or message’s set is merged with the union
of all sets, which are assigned in the heap to an allocation
site p of an object that is included in the set of objects for the
read’s receiver y. Eventually, the rule for a field write updates a
state’s aheap function by merging the set of the write’s source
y with the set of each object, which is assigned in the heap
to an allocation site p of an object for the write’s receiver x.

C. Soundness and Termination

For showing correctness of the analysis, its soundness
and termination has to be proven. As explained in Sect. II,
soundness is shown by relating concrete and abstract semantics
and proving that the resulting abstract values approximate the
concrete values, i.e., every possible concrete value is covered
by the abstract values. To this end, we first develop a relation
between concrete and abstract states and establish how abstract
semantics safely approximates the concrete semantics. We then
can show that the presented information flow analysis is sound,
i.e., for every variable or message which is not assigned a
sensitive object in any reachable abstract state, there is no
sensitive object assigned in any reachable concrete state.

Relating concrete and abstract states is done based on access
paths, which represent lists of field accesses starting at a
variable or message and ending at an object:



Definition 6 ([followPath], [abstract followPath]): An
access path is an inductively defined as follows:

(vars, heap, l) ` v :: vars(v)

(vars, heap, l) ` n :: (p, q) p 6= 0

(vars, heap, l) ` m :: (p, q) :: heap(p)

(avars, aheap) (p, q) ∈ avars(v)

(avars, aheap) ` v :: (p, q)

(avars, aheap) ` m :: (p, q) (p′, q′) ∈ aheap(p)

(avars, aheap) ` m :: (p, q) :: (p′, q′)

In other words, an access path describes for a concrete or
an abstract state the possibility to access a certain object via
variable or message v. Using this notion allows for defining
the abstraction relation relating abstract and concrete states:

Definition 7 ([compatible]): State a = (avars, aheap)
approximates concrete state c = (vars, heap, l) iff
• heap(0) = (0,L)
• ∀p > l : heap(p) = (0,L)
• ∀m, p : s ` (p, q) :: m⇒ p ≤ l

• ∀v1, v2,m1,m2, q1, q2, p 6= 0:
c ` v1 :: m1 :: (p, q1) ∧ c ` v2 :: m2 :: (p, q2)
⇒ ∃m′1,m′2, q′1, q′2, p′ :

a ` v1 :: m′1 :: (p′, q′1) ∧ a ` v2 :: m′2 :: (p′, q′2)

• ∀v,m, p 6= 0: c ` v :: m :: (p,H )
⇒ ∃m′, p′ : a ` v :: m′ :: (p′,H )

An abstract state a is thus an approximation for a concrete
state c, if, besides some side conditions, there holds: (1) for
two objects (p, q1), (p, q2), which share a common dynamic
allocation site p and are accessible via access paths under
c, there exist similar objects (p′, q′1), (p

′, q′2), which share a
common static allocation site p′ and are accessible via access
paths under a, and (2) for a sensitive object (p,H), which is
accessible via an access path under c starting at v, there exists
an object (p′, H), which is accessible via an access path under
a also starting at v. Note that the latter condition is necessary
for the soundness of the information flow analysis, while
the former condition guarantees soundness of the underlying
points-to analysis. Using the abstraction relation allows for
proving the safety of the abstract semantics, that is, every
concrete state s′ reachable from another concrete state s that
is approximated by abstract state a, is approximated by an
abstract state a′ reachable by a. Reachability is thereby defined
as usual using the star operator on the reduction relation of
the abstract or concrete semantics [12]:

Theorem 1 ([allocation site model conservative]):
The abstract semantics in Fig. 4 is a safe approximation for
the concrete semantics in Fig. 2 and 3, i.e., for all concrete
states c, c′ and for all abstract states a, s.t., c →∗ c′ and a
approximates c, exists another abstract state a′, s.t., a →∗ a′
and a′ approximates c′.

In other words, the abstract states resulting from the con-
tinuous application of the abstract semantics approximate the
concrete states resulting from the application of the concrete

semantics. This general result is then used to prove the
soundness of the information flow analysis. However, we first
need to define the initial state for both semantics:

Definition 8 ([initState], [abstract initState]): The
initial concrete state is ic = (∅, ∅, 0) and the initial abstract
state is ia = ({N 7→ ∅}, {N 7→ ∅}).

Theorem 2 ([andersen sound]): The analysis is sound, i.e.,
∀v: (∀a = (avars, aheap) : ia →∗ a⇒ @(p,H ) ∈ avars(v))
⇒ (∀c = (vars, heap, l) : ic →∗ c⇒ @(p,H ) ∈ vars(v))).

Establishing termination of the information flow analysis is
done by proving the existence of a fixpoint solution for the
continuous application of the abstract semantics to a given
process. To this end, we first need to define a partial order on
the set of abstract states (cf. Sect. II):

Definition 9 ([approx]): The partial order on the set of
abstract states is: (avars, aheap) ≤ (avars ′, aheap′) iff ∀v :
avars ′(v) ⊆ avars(v) and ∀p : aheap′(p) ⊆ aheap(p).

Using the fact that for a given process, functions avars ,
aheap can be limited to finite sets, i.e., the process’ variables,
messages, fields, and static allocation sites, and thus can also
be the set of valid abstract states, we reuse the well-known
result on the existence of a fixpoint if the set of abstract states
is well-founded and the abstract semantics is monotone [9]:

Theorem 3 ([monotonic]): The abstract semantics in Fig. 4
is monotone with respect to the partial order in Def. 9, i.e.,
for all basic activities a and all abstract states a, b, a′, b′ with
a ≤ b and a :: ls, a → ls, a′ and a :: ls, b → ls, b′ follows
a′ ≤ b′. A fixpoint abstract state can be therefore computed
by continuous application of the abstract semantics.

Eventually, we can state the correctness of the analysis:
Theorem 4: The analysis is correct, i.e., sound and always

terminates with a fixpoint solution.

IV. PROTOTYPE IMPLEMENTATION

Besides the Coq development, we have integrated the anal-
ysis as a Camunda Modeler plugin, which is also available
online5. Camunda Modeler6 is the modeling tool of the com-
mercial Camunda workflow management system. Using our
plugin, a service designer can identify flaws in a modeled
service design with respect to potential information leaks.

A screenshot of the plugin applied to a variant of our
running example from Fig. 1 is shown in Fig. 5. The ex-
ample process has been slightly modified such that there
is now a potential information leak for outgoing message
reply (Activity 6.Anonymization replaced with assignment
reply = rating). Data-manipulating activities are thereby
implemented as simple Groovy scripts, attached to Camunda
service tasks. As can be seen, the analysis identifies the infor-
mation leak and labels the activity, where sensitive information
flows to the untrusted sink (message reply), with a warning.
The plugin provides explanatory information via tooltips.

To this end, the plugin translates a BPMN process into
the process represenation defined in Def. 3 and generates an

5https://gitlab.com/t.heinze/soca2018.git
6https://camunda.com/products/modeler/



Fig. 5. Prototype implementation as a Camunda Modeler plugin.

OCaml program from the Coq development and the process
representation, which is afterwards run. According to its
results, the plugin labels activities with warnings for identified
potential information leaks. Note that the Coq development
is compiled once, when installing the plugin, such that the
analysis can be used instantaneously within Camunda Modeler.

V. RELATED WORK

In this section, we discuss related work to the presented
analysis, where we consider the state of the art of information
flow analysis in the business process and service domain in
Sect. V-A. We also provide an overview of certified static
analysis with a particular focus on Coq in Sect. V-B.

A. Information Flow Analysis for Business Processes

Information flow has been addressed before in the business
process and service domain with varying security models.
Models founded on mandatory access control can thereby
be distinguished from models using discretionary or role-
based access control. We focus on mandatory access control
with lattice-based security models as in [13], where access is
granted using policies based on security classification levels
(cf. Sect. III-A). Within these models, in general, access from a
lower classified entity to a higher classified entity is prohibited.

Modeling and analysis of stateful service implementations
with respect to mandatory access control typically relies on
Petri nets as the predominant formalism in this area. The
natural choice is to use high-level nets in order to represent
security levels in the process model. In [17], colored Petri
nets help in the definition of access policies which then can
be analyzed with the standard CPN tooling. An extension of
workflow nets to algebraic nets is used in [18], to reduce an
information flow analysis to a check of the soundness property
with the MAUDE model checker. While the previous both
approaches focussed on the data flow, other side channels are
considered for the more general problem of non-interference
in [19]. This work extends previous work on information flow
analysis [20]–[22], reducing the problem to reachability in
Petri nets. While the prior approaches required a full state

space analysis, the more recent tooling in [19] exploits state
space reduction techniques implemented in the LoLA model
checker. In the same line of research also falls [23].

In spite of the fact that mandatory access control using
lattice-based security models has a strong formal foundation,
there is, with the exception of the pencil-and-paper proof
in [19], a general lack of soundness guarantees for information
flow analysis in the domain. Note that this issue is clearly
addressed by our certified analysis approach. Furthermore, all
the Petri net based techniques rely in one way or another
on state space exploration which can raise scalability issues.
Additionally, we are not aware of any Petri net approach
modeling a heap-like data model as used in modern process
engines like Camunda. While a sophisticated choice of ab-
straction in the used Petri net models may allow for addressing
these problems, such an abstraction often requires manual and
nontrivial effort. Static points-to/taint analysis instead already
includes this abstraction and has a proven feasibility for the
analysis of large software systems [4], [15].

B. Certified Static Data Flow Analysis

Proof assistants and theorem provers, in particular Coq,
play an increasing role in the area of static analysis and
have made their way into the common repertoire of analysis
designers. First approaches to verifying static analyses with
Coq considered the classical monotone data flow analysis
framework, including the groundbreaking work on analyses
supporting optimizations in the CompCert optimizing com-
piler [24]. Mechanized verification of the more general abstract
interpretation has later been studied [25]–[27]. The presenta-
tions in [3], [12] provide introductions into the approach and
are accompanied by basic Coq developments for standard anal-
yses, including, e.g., liveness analysis and interval analysis.
Among the various Coq developments are also formalizations
of points-to analysis [28], the author is however not aware of
any Coq development for a unified points-to/taint analysis as
presented in this paper.

A general problem of mechanized proofs for static analysis
is termination, i.e., the convergence of underlying fixpoint



iterations. The corresponding Coq proofs have to be construc-
tive. In monotone data flow analysis, termination is usually
guaranteed by the construction of well-founded orderings,
which is also used, e.g., in [29] to reason on the existence
of fixpoint solutions (cf. Noetherian recursion). Note that
we follow the same argument to show termination for our
information flow analysis. While well-founded orderings are
also used for Coq developments of abstract interpretation [25],
they can not always be shown in practice. Instead, abstract
interpretation often uses widening accelerators to guarantee
termination of fixpoint iteration, e.g., arbitrarily bounding
the number of iterations [24]. Some approaches even restrict
themselves to only prove partial correctness [26].

Another more recent approach on certified static analysis
using Coq, named a posteriori validation, does not prove
the soundness of static analyzers but rather follows a proof-
carrying code approach. To this end, the result of an existing
and untrusted analysis is checked for each run by a validator
for correctness, which is then verified in Coq instead of the
analysis. As the validator is typically of lesser complexity
compared to the static analysis, the approach helps in reducing
the proof effort, while increasing analysis’ expenses. An
example for a posteriori validation is slicing analysis in [30].

In previous work [31], [32], the author already argued for
the use of the Coq proof assistant in the business process
domain and sketched the idea of a certified information flow
analysis. However, this work has been preliminary and did
not cover aspects like, e.g., termination, sanitizers, and the
structural semantics discussed in this paper.

VI. CONCLUSION

In this paper, we have advocated the use of certified data
flow analysis for the analysis of service implementations spec-
ified in terms of distributed business processes. In this way,
process auditing scenarios using automated process analysis
are enriched by mechanically verifiable certificates for analysis
correctness. By way of the example of an information flow
analysis, we showed the feasibility of the approach, providing
a Coq development of the analysis including its soundness and
termination proof based upon abstract interpretation.

Our information flow analysis is flow-insensitive [15],
which means that the execution order of process activities is
basically ignored, possibly resulting in a too coarse approx-
imation of information flow. Note that flow insensitivity is
a usual measure for lowering analysis effort. For improving
precision, we can though rebase the analysis onto the process
representation of extended workflow graphs [33], [34]. While
the analysis in this way can regain a certain degree of flow
sensitivity, a Coq formalization of extended workflow graph
and its translation is required, which is subject of future work.
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