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Abstract -- Deployed AI platforms typically ship 
with bulky system architectures which present 
bottlenecks and a high risk of failure. A serverless 
deployment can mitigate these factors and provide 
a cost-effective, automatically scalable (up or 
down) and elastic real-time on-demand AI solution. 
However, deploying high complexity production 
workloads into serverless environments is far from 
trivial, e.g., due to factors such as minimal 
allowance for physical codebase size, low amount of 
runtime memory, lack of GPU support and a 
maximum runtime before termination via timeout. 
In this paper we propose a set of optimization 
techniques and show how these transform a 
codebase which was previously incompatible with a 
serverless deployment into one that can be 
successfully deployed in a serverless environment; 
without compromising capability or performance. 
The techniques are illustrated via worked examples 
that have been deployed live on rail data and real-
time predictions on train movements on the UK rail 
network. The similarities of a serverless 
environment to other resource constrained 
environments (IoT, Mobile) means the techniques 
can be applied to a range of use cases.   

 
Index Terms: Serverless, FaaS, AI, Machine 

Learning, Optimization, AWS Lamda 
 

I. Introduction & Motivation 
 

Serverless architectures have introduced an array of 
benefits to companies as well as developers working 
on real-time, cloud-based software solutions [1]. 
Benefits include a much easier development pipeline 
with codebases abstracted away from architectural 
complexities. Therefore, serverless platforms are 
automatically scalable to demand in real-time, 
resulting in cost savings for all parties involved and 
less strain on the developers.  
 

This research was partly funded by EIT Digital IVZW under the 
Real-Time Flow project, activity 18387--SGA201, and partly by 

the EPSRC IAA project AGELink (EP/R511791/1). 
 

Such benefits drive the shift we are witnessing 
nowadays from traditional architectures to 
‘microservice’ / serverless based solutions. 

In order to deliver these benefits, serverless 
platforms – such as AWS Lambda – come with certain 
constraints on developers with regard to what and how 
it can be done [2]. Limits are placed on physical 
codebase deployment package size (up to 250MB for 
AWS Lambda [3]), maximum amount of RAM 
allocated, as well as maximum lifetime before the 
running code instance is abruptly interrupted. These 
constraints have defined the AWS Lambda Serverless 
environment as a resource constrained platform [4], 
which is usually found to perform low level automated 
tasks such as scheduled data transfer from one 
database to another; or even performing some simple 
post-processing when a new item enters a storage 
medium. In addition, the absence currently of GPU 
support has also turned developers away from using 
serverless platforms for AI production workloads.  

In this study, we present optimisation techniques. 
which once applied to a ‘serverless-incompatible’ AI 
codebase, can prepare a package which is ready for 
serverless deployment. We present a number of 
different techniques, including: 

 
A) ‘Minimizing / Slimming’ python libraries 

/ frameworks and automating the process. 
 

B) Dynamically loading pre-trained 
machine learning models from permanent 
cloud storage into local temporary 
storage, during serverless function 
invocation. 

 
C) A 2-Step Framework Process - Utilizing 

‘Framework A’ for Training and 
‘Framework B’ for Inference – with an 
ONNX formatted model in between each 
framework. 

 
D) Improving the handling of data lookup 

and storage. 
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In previous work, we have been concerned with 
aspects of specification and verification [5] in service-
oriented environments [6], which picked up from work 
on long-running transactions [7] and a RESTful 
architecture [8], [9], [10] for resources in complex 
digital ecosystems [11], [12].    

The main motivation for looking at AI in resource 
constrained environments and carrying out the study 
reported in this paper was the development of a real-
time predictive AI system as part of the Real-Time 
Flow (RTF) research project at the University of 
Surrey. With partners Emu Analytics, Ferrovial and 
Amey. RTF focuses on novel techniques for 
monitoring and predicting the flows of people and 
goods across transport networks in an urban 
environment. The system currently developed deploys 
a suite of AI models for predicting train delays across 
the UK rail network. Use cases vary in the sense that 
sometimes, predictions are at a large scale (e.g., 
concerning simultaneous train movements across the 
whole of the UK rail network), while at other times 
they concern a single train. In addition to this scaling 
up and down aspect, there are days/times where 
predictions might not be requested at all, while at other 
days/times prediction requests would come in every 
second. Finally, the solution should be as cost-
effective as possible for all project partners involved. 
The use cases of our techniques in the RTF Project are 
described further in the evaluation section (Section 
IV). 

The above factors drove the investigation towards a 
serverless development strategy. Given the pairing of 
traditional serverless constraints with our complex 
RTF codebase however, this would not work ‘out-of-
the-box’. This gradually led us to the techniques 
derived in the research reported in this paper.  

We propose and detail a set of techniques that allow 
the serverless serving of AI models with their 
associated codebases, that would otherwise be 
incompatible with a resource constrained serverless 
deployment. In our case, this includes machine 
learning and deep reinforcement learning systems, that 
would not originally support serverless deployment; 
due to factors such as size and runtime. Treatment 
focuses on the key techniques that allow one to 
transform and successfully deploy such a system, 
using AWS Lambda functions in the context of the 
RTF project. There are more test cases and some other 
minor optimisations can also be performed. 

The remainder of this paper is structured as follows. 
Section II reports on related work. Section III presents 
the key techniques (A-D mentioned earlier) which 
comprise the main contribution of the paper. Section 
IV reports on evaluation and Section V contains some 
concluding remarks.  

 

II. Related Work 
 

Whilst there have been previous attempts at 
deploying AI workloads to AWS Lambda [13], the 
work is performed within the ‘comfort’ zone of the 
platform. We have not seen examples where 
constraints of serverless workloads are breached; and 
the incompatibility factor that is associated. 
Implementations - such as the one in [13] - fail to reach 
a codebase complexity that would be incompatible 
with serverless deployment. Rising codebase 
complexity could be related to reasons such as large 
shipped AI model size, or even high-volume library 
usage - which contributes to massive codebase size. 
For instance, there is a trend in developer behavior to 
roll back to a traditional server-based system once a 
codebase becomes too complex for serverless 
deployment. 

Research reported in [14], [15] has analysed the 
ideal architecture for a microservices / serverless 
environment and when the associated constraints on 
deployment package size, limited RAM allocation, 
restricted lifetime before termination of running code 
would fire, causing a degradation of the performance 
of an implementation. However, no implementation 
strategy has been given on how one can go about 
overcoming these constraints. For these reasons, we 
thought it appropriate to base our research on solutions 
which aim to fill the gaps mentioned above, thus 
proving that complex workloads can be adapted to 
handle serverless deployment. 

Additionally, we pair research on modern NoSQL 
data storage mediums [16], [17] with our techniques 
for optimising AI workloads – since such workloads 
are usually associated with heterogenous datasets. At 
the same time, we build on top of this through 
partitioning and indexing techniques which make use 
of data representation transformation.  
 
 
III. Implementing Optimization Techniques as 

Solutions to Serverless Constraints 
 

A. ‘Minimizing / Slimming’ python libraries & 
frameworks and automating the process 

 
As noted in [13], we observe that similar to other 

restricted execution environments, a serverless 
architecture will always be constrained by the total 
physical space (in MB) occupied by the codebase in 
question. Especially when dealing with an AI or Deep 
Learning codebase, we find that complex libraries and 
requirements do not work in our favor. These libraries 
quickly consume the minimal package size allowance; 
thus, immediately blocking the possibility of code 
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execution / deployment in a restricted serverless 
environment.  

The first optimisation technique of our multi-step 
process is to ‘minify’ the libraries involved. Since 
python libraries typically ship with a plethora of 
functionality - pytorch for example [18], it is only 
natural that they are associated with a huge file size. 
Since serverless functions are split in such a way 
whereby each handles a small task, it is easy to see 
how we can begin to isolate sections of a python 
library into each individual function’s environment as 
needed. If a serverless function is making use of 1% of 
a library, we can perform a few operations to discard 
the other 99% of the library in a robust manner – thus 
saving massively on file size which decreases the final 
deployment package size.  

The key word is robustly – blindly deleting library 
files would be catastrophic, since many times even the 
smallest file could be referenced somewhere and used 
by our code. We must make sure to constantly test our 
code during the minimization process. More 
importantly, upon pushing an update to our code, this 
entire process must be performed again from scratch - 
starting once again with the full library package and 
working our way down to a minified version.  

The process involves monitoring read/write 
operations to library files during main code execution. 
We begin by initializing read/write monitors on library 
directories using OS ready monitoring tools. The next 
step involves running the production ready code while 
these monitors are active. Monitor outputs will 
produce lists of files that are ‘used’ by the code during 
its execution. We define ‘used’ to be a set of files that 
have been accessed either by a read or write operation 
by the source code.  

We then proceed to safely discard any unused files; 
safely in the sense that the code is re-tested after every 
deletion to ensure it still executes successfully without 
throwing any errors. In the case where a ‘sensitive’ file 
is deleted (i.e. a file that was necessary and causes 
exceptions/errors by being removed), a reference to 
this file is noted and the deletion process begins again 
after restoring an original, unmodified copy of the 
library – this time without discarding the discovered 
sensitive file. 

Note that in order to ensure a robust codebase, this 
process should be set to run on every update pushed to 
a production workload. Upon source code change, the 
steps denoted in Algorithm 1 (see Figure 1) should be 
re-run as a ‘fresh pass’ – since updates could reflect a 
change in library usage requirements.  

We denote the retrieval process of any essential 
library file (𝑥) which contributes to the ‘slimmed’ 
library package as: 

 
 

𝑥Î	{𝑅𝑓,𝑊𝑓, 𝑆𝑓}	\	{𝑇𝑓} 
 
where: 

• 𝑅𝑓 contains any files accessed by a read 
operation of the main code, 

• 𝑊𝑓 contains any files accessed by a write 
operation of the main code, 

• 𝑆𝑓 contains any ‘sensitive’ files that may 
cause the main code to fail execution. 

• 𝑇𝑓 contains pre-packaged library test files. 
 
Finally, in some cases, we observe that the codebase is 
more complex – i.e. it does not just load a model but 
also performs some other tasks, such as - creating 
multidimensional tensors or sending data to other 
devices. 
 

 
Figure 1 - Pseudocode for Minimization Automation 
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Here, we may have less of a ‘deletion margin’ since 
our code will be using many more files from the 
involved python library. In this case, we may remove 
any symbolic links from pre-compiled binaries - 
greatly reducing total payload size without impacting 
performance or code execution. Our use case on the 
RTF Project has seen arbitrary executables be reduced 
from 400MB all the way down to 80MB. This helps in 
overcomeing deployment package restrictions. 

 
B. Dynamically loading pre-trained machine 

learning models from cloud storage into local 
temporary storage 

 
Depending on the problem at hand, the pre-trained 

AI models (e.g., machine learning models for 
prediction, such as those used in the RTF use case: 
RNNs, CNNs, LSTM, LCS [19] (XCS, UCS [20] 
XCSI [21], etc.) that are associated with a specific use 
case may exceed a couple hundred MB themselves 
[22]. In an environment where total deployment 
package size is restricted to just 250MB, it is 
impossible to dedicate a large chunk of this to just 
models. In the cases of small models - less than 10MB 
for example - it is sufficient to ship the models inside 
the deployment package locally. The latter is a practice 
which we have seen in serverless use cases depicted in 
[23] but for scalability purposes, it is quite evident that 
a different methodology for packaging models is 
required. 

This is why we turn to a solution which involves 
dynamically loading large models at runtime. In the 
case of AWS Lambda, we study how we can use the 
‘/tmp’ or ‘temporary’ directory given to us with each 
instance of an encapsulated serverless function [3]. 

All AWS Lambda serverless functions have a non-
persistent ‘/tmp’ directory that allows for up to 512MB 
of storage [3]. Typically, this directory is used for 
items created by the code which must undergo some 
processing before being returned to the user. For 
example, imagine the code generates an image – which 
should be colored grayscale before being returned. In 
order to perform this post generation processing, the 
image must first be stored somewhere so that the code 
can then go on to re-load the image and perform the 
processing (gray-scaling). This use case serves as a 
textbook example as to when a developer would utilize 
the ‘/tmp’ directory: 
 

• Generation of the image followed by 
saving it to the ‘/tmp’ non-persistent, 
temporary directory 

• The image is loaded from the ‘/tmp’ 
directory 

• Processing is performed on the image 

• Image is returned following function 
execution 

• Non-persistent ‘/tmp’ means all traces are 
removed on function lifetime end 

 
Instead of using this directory for artefacts generated 

by our code, we present a new use case which loads a 
pre-packaged (ML/DL or otherwise) model from a 
remote location into this local ‘/tmp’ directory. The 
steps for loading a model dynamically via cloud 
storage (AWS S3 for example in our reference 
implementation) instead of from a local deployment 
package include: 

 
• Compress the ML model (.zip) 
• Store in persistent cloud storage (e.g., 

AWS S3); same geographical region as 
function environment 

• On function invocation, before any code is 
run, bring over the model 

• Uncompress the model and store it into the 
local /tmp directory 

• Load the model into the allocated RAM 
and query it as needed 

 
 
One may reasonably assume that these steps could 

add latency to the invocation of the serverless 
functions. This is not the case however as we can 
choose to store models in storage which lies in the 
same geographical region as that which serves our 
serverless functions. The chart in Figure 2 shows a 
series of 5 tests which aimed to measure the time taken 
to perform the above steps within an encapsulated 
serverless environment on models of three different 
footprints (10MB, 100MB and ~250MB). 
 

 
Figure 2 - Time to Load & Extract Varying Model Sizes from 
Cloud Storage to Local '/tmp' Directory of a Serverless AWS 

Lambda Function 
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C. 2-Step Framework Process - Utilizing 
‘Framework A’ for Training and ‘Framework B’ 
for Inference 

 
The next optimization involves the utilization of 

different machine learning frameworks at different 
stages of the AI software development lifecycle 
(SDLC) [24]. Typically, developers of AI systems will 
prefer to use a complex library for the training stage of 
the SDLC. Such an example is pytorch [18], which 
offers great dynamic graphing capabilities as well as 
other training performance boosters [18] which work 
in a developer’s favour. Following the training stage 
however and entering the production inference / 
prediction / deployment stage of the SDLC, such 
functionalities are generally not required. The model 
is already defined and trained. The framework simply 
needs to load the model and predict an output given 
some vector inputs. 

Given this reduction of requirements, we start to see 
another opportunity for reducing the overhead of the 
predictive framework. In this case however, as 
opposed to Optimization A - which involved slimming 
the originally used ML framework (‘Framework A’) – 
we move away from ‘Framework A’ and completely 
swap it out for ‘Framework B’.  

The chart shown in Figure 3 provides a high-level 
overview of this process. 

 

 
Figure 3 - High-Level Overview of 2-Step Framework Utilization 

Process 

An important factor to consider is the selection 
strategy of the second machine learning framework. 
During this selection we must take into consideration 
the restrictions of the deployment platform – in the 
serverless case, this includes size constraints, memory 
constraints and a CPU only environment. Remember 
that there is no GPU attached to AWS Lambda. As this 

closely mirrors mobile device environments, a good 
selection is the ‘caffe2’ library which is ‘optimized for 
mobile integrations, flexibility… and running models 
on lower powered devices’ as postulated in [25]. 
Through this, we therefore introduce a great reduction 
to the prediction framework footprint in relation to the 
main restriction aspects that ship with such 
environments during the inference stage. 

Another consideration is the format which models 
are stored in during their distribution between the two 
different frameworks. This is another crucial step as 
altering model formats could always have an impact 
on performance. Rather than converting between 
versions solely interpreted by each framework 
separately, we turn to the ‘universal’ format language 
of neural networks – ONNX [26] [27]. The ONNX 
format allows for framework interoperability – as 
models can be stored directly into ONNX after training 
by framework A; and loaded directly from ONNX for 
inference by framework B. 

Additionally, by utilizing the Open Neural Network 
Exchange format (ONNX) which is an open format 
supported by most – if not all – ML/ Deep Learning 
frameworks, we minimize the possibility of 
performance degradation as described previously.  

In summary, the process here involves: a) using a 
complex framework for training (whose usage would 
not suffice in a restricted environment for inference), 
b) exporting the trained model to an open format, c) 
using a much simpler and resource optimized 
framework for loading and computation of the open 
format model during inference. 
 
D. (AWS Ecosystem specific) - Improving data 

lookup speeds for dealing with maximum function 
lifetime restrictions 

 
Another optimization which we considered for our 

use case on the RTF Project is to work with the data 
itself which is used to serve predictions. The system 
serving predictions on this project (train delay 
predictions) would first need to lookup relevant data 
from a database of over 250M rows – in order to 
dynamically construct the multi-dimensional input 
vectors which are passed to the predictive models. 

This step originally introduced bottlenecks in our 
production environment. We found that functions tend 
to ‘hang’ and induce latency when waiting for the SQL 
data lookup to complete. Furthermore, another pitfall 
here is the maximum lifetime allowance of an AWS 
Lambda serverless function. Although this has 
recently been extended to 15 minutes [3], it is not ideal 
for the data lookup stage to churn so much of this 
lifetime. Lifetime aside, performance pitfalls and 
execution delays all compromise the ‘real-time’ and 
‘on-demand’ aspect that such services should offer. 
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This led the investigation in the direction of storing 
the data in a modern NoSQL format, utilizing the 
AWS DynamoDB platform [28] – thus decreasing the 
data lookup time by several orders of magnitude. It is 
once again important to note however that failure to 
effectively use this technique could result in no change 
or even worse performance when compared to the 
traditional methods. 

Effective NoSQL usage revolves around smart 
partitioning and sorting of the NoSQL database. We 
must make sure to choose a partition key which will 
ensure that read/write loads are spread evenly across 
partitions. This will prevent throttling, bottlenecks and 
hot/cold partitions during up-scale. In the case of the 
RTF data, it made sense to use ‘train_id’ as the 
partitioning field. Partitioning around this column as 
the key is ideal since this key is ‘unique enough’. Each 
train is always assigned its own unique ID for data 
entries; but a single train can still have multiple row 
entries in the database (in which case we will see a 
repetition of the ID/partitioning field). 

The most effective optimization however comes 
with using another field from each entry as a sorting 
key for each partition of the NoSQL database. An 
example entry (with other columns removed for 
simplicity) follows: 

 
 
 
train_id timestamp 
AAA123 2019/01/01 11:35:55 AM 
BBB123 2019/01/01 12:20:00 AM 
AAA123 2019/01/01 11:55:55 AM 

 
 
Each entry includes a timestamp column, which in 

its plain format does not offer any data storage 
advantage. Converting these timestamps to UNIX time 
[29] however allows for their utilization as a sort key. 
UNIX/Epoch time is described as ‘the number of 
seconds that have elapsed since January 1, 1970 
(midnight UTC/GMT)’. Essentially, this is a simple 
mathematical formula which is used to derive a simple 
‘number’ format field from the complex timestamp 
field. Using the UNIX form, we observe naturally fully 
sorted partitions; as more recent times carry a bigger 
UNIX/Epoch time value.  

Converting the above example to UNIX time yields 
the following results: 

 
train_id timestamp 
AAA123 1546342555 
AAA123 1546343755 
BBB123 1546345200 

 

This factor introduced the biggest performance 
boost in our data lookup methodologies – we are able 
to perform lookups through the 250M+ row database 
in under ½ a second consistently. In turn, this keeps 
our serverless functions well away from the ‘timeout 
risk’ – i.e., in cases where the maximum lifetime 
would otherwise have been approached/passed. It is 
not difficult to see how this methodology could be 
applied to other chronological and IoT device-based 
data (sensor data for example) [30]. 

 
IV. Evaluation 

 
We have demonstrated and shown worked examples 

of the 4 main optimization techniques developed for 
working with complex AI workloads in a restricted 
environment. We used example use-cases from the 
Real Time Flow (RTF) project to illustrate the key 
ideas behind the techniques. In RTF, one of the 
objectives was to predict the delay on a trainline at any 
given time.  

Using the aforementioned techniques and 
optimizations, the lifecycle of the predictor system 
involves a) loading the appropriate predictive model – 
from a pool of multiple models, b) querying relative 
data from a NoSQL database of 250M+ rows, c) pre-
processing the query data, d) preparing the multi-
dimensional input vectors for the predictive model, 
and e) running and returning the prediction from the 
model. For testing purposes, the serverless system has 
been attached to an API Gateway on both ends - for 
invocation and for returning predictions back to the 
user. 

 

 
Figure 4 - Response Times of Full Prediction Request in 

Milliseconds (ms) 

 
The above chart showcases a series of 10 requests 

sent to the deployed system via RESTful HTTP 
requests [31]. We observe a consistent response time, 
evidently with no negative impact on performance 
from any of the optimization techniques. 
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A. Library/Framework Slimming 
 

The ‘minimization’ technique proves to be a key 
step in transforming a codebase incompatible with a 
serverless deployment into one which is. In our testing 
and deployed system, we have slimmed the pytorch 
library from 467MB down to 98.6MB using this 
technique. With this result, we are technically able to 
deploy (as we are under the 250MB limit) without 
applying any other optimizations. 

As stated previously however, since the deletion 
margin varies greatly by the actions performed by the 
code on a case by case basis, the other recommended 
methodologies should also be taken into consideration. 
The automation strategy presented makes it easy to run 
this technique automatically with an ever-changing 
and on-going development codebase. 

 
B. Dynamic model loading from cloud storage; 

instead of shipping models locally in the 
deployment package 

 
Through the multiple tests shown in Figure 1, this 

method has proven to be robust and should always be 
used when serving any type of model in a serverless 
environment. Since there are no trade-offs and 
performance is consistent, using the ‘/tmp’ directory is 
a great way to abstract model size and footprint away 
from the serverless deployment package – in turn 
allowing for the development of a more complex 
source code base.  Space that would have otherwise 
been taken up by models can now even be used for the 
packaging of additional frameworks. 

 
 

C. Dual Framework Development with ONNX in 
between; Complex Framework for training & 
development, Simple Framework for 
deployment and inference. 

 
In the case where the predictive system source code 

is extremely simple and does not even perform some 
pre-processing – solely prediction – we have 
demonstrated how a mobile framework can be 
deployed to serve predictions. A key step during this 
procedure is to utilize the ONNX format as the 
‘middle-man’ when passing models through different 
frameworks. This ensures robustness and has no 
effects on predictive performance during the inference 
stage; as we have seen in our test/re-test situations. The 
granularity and complexity of development is 
maintained - by utilizing powerful frameworks during 
the training stage. 

 
 

D. Working on Improving the Handling of Data 
Lookup/Storage Methodologies. 

 
This step is very specific to use cases which handle 

chronological data. In the serverless world however, 
there is definitely a plethora of connected devices and 
systems [2], [32] which make use of such timestamped 
data – IoT sensors is an example. Given a system 
which handles data in a manner similar to what we 
have shown, predictions could be served in real time 
even when some complex pre-processing is in place. 
In the RTF project use cases, we have seen that data 
querying and processing times take 500-600x less 
when compared to traditional data handling / storage 
techniques. 

 
Real Time Flow (RTF) Project Case Study 

 
As part of the RTF project, the previously described 

Serverless AI architecture, principles and optimization 
techniques are being actively utilized to deliver the 
benefits highlighted in Section I. The Real-Time visual 
analytics software used to create the user interface for 
the RTF project is Emu Analytics’ Flo.wÔ solution.  

Flo.wÔ is an innovative, cloud based geo-spatial 
analytics and visualization platform that is designed to 
ingest, analyze and visualize high volume, fast moving 
data of the type typically delivered from telemetry, 
IOT sensors and networks. In the RTF Project it is 
ingesting, analyzing and visualizing the movements 
and metrics of the whole UK rail network in real-time. 
In the same interface it provides the ability to traverse 
backwards in time over historic information and 
patterns.  Other time-series data including population 
movements (derived from mobile phone movements) 
is also ingested into the platform alongside several 
other contextual datasets, including railway 
infrastructure (lines, stations, level crossings, etc.). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5 - Emu Analytics Flo.wÔ Application visualising 

population movements alongside Real-Time UK train 
movements and metrics for the RTF Project 
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The predictive AI system, using techniques 
described in this paper (developed by the University of 
Surrey), is ideally suited for highly effective and 
efficient integration into platforms such as Flo.wÔ. 
The architectural complexities and overheads of 
running an AI workload are abstracted away from the 
visualization platform with a simple parameterized 
call being all that is required to request predictions. 
The suite of developed AI models ensure that 
predictions can be requested at the relevant point 
within the Flo.wÔ platform (i.e., within the analytical 
processing pipeline or on user-initiated clicks) at both 
the scope and volume required (i.e., single station or 
multiple stations).  

The optimization techniques employed within the 
serverless architecture ensure that the response times 
for delivering the predictions are compatible with the 
requirements of the Flo.wÔ platform to be hyper-
performant in delivering real-time, actionable insights 
to the end user. Finally, the Serverless approach 
ensures that the predictive AI solution can scale up and 
down as required by different use cases and 
deployments at an optimized cost-effectiveness that is 
based on demand and not on physical infrastructure. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

V. Conclusion & Future Work 
 

Overcoming the constraints typically surrounding a 
resource constrained environment is a time-consuming 
and risky task. Attention must be constantly noted to 
performance in relation to all the trade-offs being 
made to accommodate the restrictive environment. In 
this study we have shown techniques which can be 
used to accommodate a complex AI workload into a 
resource-constrained serverless environment. Due to 
the similarity of such an environment with mobile/IoT 
devices, it is easy to see how the learnings can be 
transferred over to other use cases.  

In addition, we have proven that the techniques can 
work together in harmony to deliver an industry level 
deployed serverless solution. This has been 
demonstrated by the integration into Emu Analytics 
Flo.wÔ geo-spatial analytics platform. The benefits of 
shipping serverless over traditional architectures 
include massive cost savings, robust scalability both 
ways as well as an easier development pipeline [1], 
[33]. 

As Cloud Providers work to update serverless 
platforms, the next steps include research into how 
such deployments could be made even easier through 
the likes of functionalities such as AWS Lambda 
Layers [34]. Additionally, another possibility includes 
investigating the development of compression 
algorithms [35] to reduce the footprint of predictive 
models even further. 

With the introduction of newly released specialist 
AI-accelerator hardware [36], an implementation 
which includes such specialized hardware could 
improve the performance of the underlying system 
even further. In such a case, it would be ideal to then 
investigate how such a microservice architecture can 
apply to the training stage of the SDLC as well. We 
are seeing an ever increasing demand for faster 
training times [37], so with such work applied to the 
training stage, a serverless batch training solution may 
be possible. 
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