
 1

Serving Machine Learning Workloads in Resource Constrained Environments:
a Serverless Deployment Example

Angelos Christidis

a.christidis@surrey.ac.uk
Dept. of Computer Science

University of Surrey
GU2 7XH, UK

Roy Davies
roy.davies@emu-analytics.com

Emu Analytics
London

WC1N 2LG, UK

Sotiris Moschoyiannis
s.moschoyiannis@surrey.ac.uk

Dept. of Computer Science
University of Surrey

GU2 7XH, UK

Abstract -- Deployed AI platforms typically ship
with bulky system architectures which present
bottlenecks and a high risk of failure. A serverless
deployment can mitigate these factors and provide
a cost-effective, automatically scalable (up or
down) and elastic real-time on-demand AI solution.
However, deploying high complexity production
workloads into serverless environments is far from
trivial, e.g., due to factors such as minimal
allowance for physical codebase size, low amount of
runtime memory, lack of GPU support and a
maximum runtime before termination via timeout.
In this paper we propose a set of optimization
techniques and show how these transform a
codebase which was previously incompatible with a
serverless deployment into one that can be
successfully deployed in a serverless environment;
without compromising capability or performance.
The techniques are illustrated via worked examples
that have been deployed live on rail data and real-
time predictions on train movements on the UK rail
network. The similarities of a serverless
environment to other resource constrained
environments (IoT, Mobile) means the techniques
can be applied to a range of use cases.

Index Terms: Serverless, FaaS, AI, Machine

Learning, Optimization, AWS Lamda

I. Introduction & Motivation

Serverless architectures have introduced an array of
benefits to companies as well as developers working
on real-time, cloud-based software solutions [1].
Benefits include a much easier development pipeline
with codebases abstracted away from architectural
complexities. Therefore, serverless platforms are
automatically scalable to demand in real-time,
resulting in cost savings for all parties involved and
less strain on the developers.

This research was partly funded by EIT Digital IVZW under the
Real-Time Flow project, activity 18387--SGA201, and partly by

the EPSRC IAA project AGELink (EP/R511791/1).

Such benefits drive the shift we are witnessing
nowadays from traditional architectures to
‘microservice’ / serverless based solutions.

In order to deliver these benefits, serverless
platforms – such as AWS Lambda – come with certain
constraints on developers with regard to what and how
it can be done [2]. Limits are placed on physical
codebase deployment package size (up to 250MB for
AWS Lambda [3]), maximum amount of RAM
allocated, as well as maximum lifetime before the
running code instance is abruptly interrupted. These
constraints have defined the AWS Lambda Serverless
environment as a resource constrained platform [4],
which is usually found to perform low level automated
tasks such as scheduled data transfer from one
database to another; or even performing some simple
post-processing when a new item enters a storage
medium. In addition, the absence currently of GPU
support has also turned developers away from using
serverless platforms for AI production workloads.

In this study, we present optimisation techniques.
which once applied to a ‘serverless-incompatible’ AI
codebase, can prepare a package which is ready for
serverless deployment. We present a number of
different techniques, including:

A) ‘Minimizing / Slimming’ python libraries

/ frameworks and automating the process.

B) Dynamically loading pre-trained
machine learning models from permanent
cloud storage into local temporary
storage, during serverless function
invocation.

C) A 2-Step Framework Process - Utilizing

‘Framework A’ for Training and
‘Framework B’ for Inference – with an
ONNX formatted model in between each
framework.

D) Improving the handling of data lookup

and storage.

 2

In previous work, we have been concerned with
aspects of specification and verification [5] in service-
oriented environments [6], which picked up from work
on long-running transactions [7] and a RESTful
architecture [8], [9], [10] for resources in complex
digital ecosystems [11], [12].

The main motivation for looking at AI in resource
constrained environments and carrying out the study
reported in this paper was the development of a real-
time predictive AI system as part of the Real-Time
Flow (RTF) research project at the University of
Surrey. With partners Emu Analytics, Ferrovial and
Amey. RTF focuses on novel techniques for
monitoring and predicting the flows of people and
goods across transport networks in an urban
environment. The system currently developed deploys
a suite of AI models for predicting train delays across
the UK rail network. Use cases vary in the sense that
sometimes, predictions are at a large scale (e.g.,
concerning simultaneous train movements across the
whole of the UK rail network), while at other times
they concern a single train. In addition to this scaling
up and down aspect, there are days/times where
predictions might not be requested at all, while at other
days/times prediction requests would come in every
second. Finally, the solution should be as cost-
effective as possible for all project partners involved.
The use cases of our techniques in the RTF Project are
described further in the evaluation section (Section
IV).

The above factors drove the investigation towards a
serverless development strategy. Given the pairing of
traditional serverless constraints with our complex
RTF codebase however, this would not work ‘out-of-
the-box’. This gradually led us to the techniques
derived in the research reported in this paper.

We propose and detail a set of techniques that allow
the serverless serving of AI models with their
associated codebases, that would otherwise be
incompatible with a resource constrained serverless
deployment. In our case, this includes machine
learning and deep reinforcement learning systems, that
would not originally support serverless deployment;
due to factors such as size and runtime. Treatment
focuses on the key techniques that allow one to
transform and successfully deploy such a system,
using AWS Lambda functions in the context of the
RTF project. There are more test cases and some other
minor optimisations can also be performed.

The remainder of this paper is structured as follows.
Section II reports on related work. Section III presents
the key techniques (A-D mentioned earlier) which
comprise the main contribution of the paper. Section
IV reports on evaluation and Section V contains some
concluding remarks.

II. Related Work

Whilst there have been previous attempts at
deploying AI workloads to AWS Lambda [13], the
work is performed within the ‘comfort’ zone of the
platform. We have not seen examples where
constraints of serverless workloads are breached; and
the incompatibility factor that is associated.
Implementations - such as the one in [13] - fail to reach
a codebase complexity that would be incompatible
with serverless deployment. Rising codebase
complexity could be related to reasons such as large
shipped AI model size, or even high-volume library
usage - which contributes to massive codebase size.
For instance, there is a trend in developer behavior to
roll back to a traditional server-based system once a
codebase becomes too complex for serverless
deployment.

Research reported in [14], [15] has analysed the
ideal architecture for a microservices / serverless
environment and when the associated constraints on
deployment package size, limited RAM allocation,
restricted lifetime before termination of running code
would fire, causing a degradation of the performance
of an implementation. However, no implementation
strategy has been given on how one can go about
overcoming these constraints. For these reasons, we
thought it appropriate to base our research on solutions
which aim to fill the gaps mentioned above, thus
proving that complex workloads can be adapted to
handle serverless deployment.

Additionally, we pair research on modern NoSQL
data storage mediums [16], [17] with our techniques
for optimising AI workloads – since such workloads
are usually associated with heterogenous datasets. At
the same time, we build on top of this through
partitioning and indexing techniques which make use
of data representation transformation.

III. Implementing Optimization Techniques as

Solutions to Serverless Constraints

A. ‘Minimizing / Slimming’ python libraries &
frameworks and automating the process

As noted in [13], we observe that similar to other

restricted execution environments, a serverless
architecture will always be constrained by the total
physical space (in MB) occupied by the codebase in
question. Especially when dealing with an AI or Deep
Learning codebase, we find that complex libraries and
requirements do not work in our favor. These libraries
quickly consume the minimal package size allowance;
thus, immediately blocking the possibility of code

 3

execution / deployment in a restricted serverless
environment.

The first optimisation technique of our multi-step
process is to ‘minify’ the libraries involved. Since
python libraries typically ship with a plethora of
functionality - pytorch for example [18], it is only
natural that they are associated with a huge file size.
Since serverless functions are split in such a way
whereby each handles a small task, it is easy to see
how we can begin to isolate sections of a python
library into each individual function’s environment as
needed. If a serverless function is making use of 1% of
a library, we can perform a few operations to discard
the other 99% of the library in a robust manner – thus
saving massively on file size which decreases the final
deployment package size.

The key word is robustly – blindly deleting library
files would be catastrophic, since many times even the
smallest file could be referenced somewhere and used
by our code. We must make sure to constantly test our
code during the minimization process. More
importantly, upon pushing an update to our code, this
entire process must be performed again from scratch -
starting once again with the full library package and
working our way down to a minified version.

The process involves monitoring read/write
operations to library files during main code execution.
We begin by initializing read/write monitors on library
directories using OS ready monitoring tools. The next
step involves running the production ready code while
these monitors are active. Monitor outputs will
produce lists of files that are ‘used’ by the code during
its execution. We define ‘used’ to be a set of files that
have been accessed either by a read or write operation
by the source code.

We then proceed to safely discard any unused files;
safely in the sense that the code is re-tested after every
deletion to ensure it still executes successfully without
throwing any errors. In the case where a ‘sensitive’ file
is deleted (i.e. a file that was necessary and causes
exceptions/errors by being removed), a reference to
this file is noted and the deletion process begins again
after restoring an original, unmodified copy of the
library – this time without discarding the discovered
sensitive file.

Note that in order to ensure a robust codebase, this
process should be set to run on every update pushed to
a production workload. Upon source code change, the
steps denoted in Algorithm 1 (see Figure 1) should be
re-run as a ‘fresh pass’ – since updates could reflect a
change in library usage requirements.

We denote the retrieval process of any essential
library file (𝑥) which contributes to the ‘slimmed’
library package as:

𝑥Î	{𝑅𝑓,𝑊𝑓, 𝑆𝑓}	\	{𝑇𝑓}

where:

• 𝑅𝑓 contains any files accessed by a read
operation of the main code,

• 𝑊𝑓 contains any files accessed by a write
operation of the main code,

• 𝑆𝑓 contains any ‘sensitive’ files that may
cause the main code to fail execution.

• 𝑇𝑓 contains pre-packaged library test files.

Finally, in some cases, we observe that the codebase is
more complex – i.e. it does not just load a model but
also performs some other tasks, such as - creating
multidimensional tensors or sending data to other
devices.

Figure 1 - Pseudocode for Minimization Automation

 4

Here, we may have less of a ‘deletion margin’ since
our code will be using many more files from the
involved python library. In this case, we may remove
any symbolic links from pre-compiled binaries -
greatly reducing total payload size without impacting
performance or code execution. Our use case on the
RTF Project has seen arbitrary executables be reduced
from 400MB all the way down to 80MB. This helps in
overcomeing deployment package restrictions.

B. Dynamically loading pre-trained machine

learning models from cloud storage into local
temporary storage

Depending on the problem at hand, the pre-trained

AI models (e.g., machine learning models for
prediction, such as those used in the RTF use case:
RNNs, CNNs, LSTM, LCS [19] (XCS, UCS [20]
XCSI [21], etc.) that are associated with a specific use
case may exceed a couple hundred MB themselves
[22]. In an environment where total deployment
package size is restricted to just 250MB, it is
impossible to dedicate a large chunk of this to just
models. In the cases of small models - less than 10MB
for example - it is sufficient to ship the models inside
the deployment package locally. The latter is a practice
which we have seen in serverless use cases depicted in
[23] but for scalability purposes, it is quite evident that
a different methodology for packaging models is
required.

This is why we turn to a solution which involves
dynamically loading large models at runtime. In the
case of AWS Lambda, we study how we can use the
‘/tmp’ or ‘temporary’ directory given to us with each
instance of an encapsulated serverless function [3].

All AWS Lambda serverless functions have a non-
persistent ‘/tmp’ directory that allows for up to 512MB
of storage [3]. Typically, this directory is used for
items created by the code which must undergo some
processing before being returned to the user. For
example, imagine the code generates an image – which
should be colored grayscale before being returned. In
order to perform this post generation processing, the
image must first be stored somewhere so that the code
can then go on to re-load the image and perform the
processing (gray-scaling). This use case serves as a
textbook example as to when a developer would utilize
the ‘/tmp’ directory:

• Generation of the image followed by
saving it to the ‘/tmp’ non-persistent,
temporary directory

• The image is loaded from the ‘/tmp’
directory

• Processing is performed on the image

• Image is returned following function
execution

• Non-persistent ‘/tmp’ means all traces are
removed on function lifetime end

Instead of using this directory for artefacts generated

by our code, we present a new use case which loads a
pre-packaged (ML/DL or otherwise) model from a
remote location into this local ‘/tmp’ directory. The
steps for loading a model dynamically via cloud
storage (AWS S3 for example in our reference
implementation) instead of from a local deployment
package include:

• Compress the ML model (.zip)
• Store in persistent cloud storage (e.g.,

AWS S3); same geographical region as
function environment

• On function invocation, before any code is
run, bring over the model

• Uncompress the model and store it into the
local /tmp directory

• Load the model into the allocated RAM
and query it as needed

One may reasonably assume that these steps could

add latency to the invocation of the serverless
functions. This is not the case however as we can
choose to store models in storage which lies in the
same geographical region as that which serves our
serverless functions. The chart in Figure 2 shows a
series of 5 tests which aimed to measure the time taken
to perform the above steps within an encapsulated
serverless environment on models of three different
footprints (10MB, 100MB and ~250MB).

Figure 2 - Time to Load & Extract Varying Model Sizes from
Cloud Storage to Local '/tmp' Directory of a Serverless AWS

Lambda Function

0 5 10 15 20 25
Time Taken in Milliseconds (ms)

250MB+ 100MB 10MB

 5

C. 2-Step Framework Process - Utilizing
‘Framework A’ for Training and ‘Framework B’
for Inference

The next optimization involves the utilization of

different machine learning frameworks at different
stages of the AI software development lifecycle
(SDLC) [24]. Typically, developers of AI systems will
prefer to use a complex library for the training stage of
the SDLC. Such an example is pytorch [18], which
offers great dynamic graphing capabilities as well as
other training performance boosters [18] which work
in a developer’s favour. Following the training stage
however and entering the production inference /
prediction / deployment stage of the SDLC, such
functionalities are generally not required. The model
is already defined and trained. The framework simply
needs to load the model and predict an output given
some vector inputs.

Given this reduction of requirements, we start to see
another opportunity for reducing the overhead of the
predictive framework. In this case however, as
opposed to Optimization A - which involved slimming
the originally used ML framework (‘Framework A’) –
we move away from ‘Framework A’ and completely
swap it out for ‘Framework B’.

The chart shown in Figure 3 provides a high-level
overview of this process.

Figure 3 - High-Level Overview of 2-Step Framework Utilization

Process

An important factor to consider is the selection
strategy of the second machine learning framework.
During this selection we must take into consideration
the restrictions of the deployment platform – in the
serverless case, this includes size constraints, memory
constraints and a CPU only environment. Remember
that there is no GPU attached to AWS Lambda. As this

closely mirrors mobile device environments, a good
selection is the ‘caffe2’ library which is ‘optimized for
mobile integrations, flexibility… and running models
on lower powered devices’ as postulated in [25].
Through this, we therefore introduce a great reduction
to the prediction framework footprint in relation to the
main restriction aspects that ship with such
environments during the inference stage.

Another consideration is the format which models
are stored in during their distribution between the two
different frameworks. This is another crucial step as
altering model formats could always have an impact
on performance. Rather than converting between
versions solely interpreted by each framework
separately, we turn to the ‘universal’ format language
of neural networks – ONNX [26] [27]. The ONNX
format allows for framework interoperability – as
models can be stored directly into ONNX after training
by framework A; and loaded directly from ONNX for
inference by framework B.

Additionally, by utilizing the Open Neural Network
Exchange format (ONNX) which is an open format
supported by most – if not all – ML/ Deep Learning
frameworks, we minimize the possibility of
performance degradation as described previously.

In summary, the process here involves: a) using a
complex framework for training (whose usage would
not suffice in a restricted environment for inference),
b) exporting the trained model to an open format, c)
using a much simpler and resource optimized
framework for loading and computation of the open
format model during inference.

D. (AWS Ecosystem specific) - Improving data

lookup speeds for dealing with maximum function
lifetime restrictions

Another optimization which we considered for our

use case on the RTF Project is to work with the data
itself which is used to serve predictions. The system
serving predictions on this project (train delay
predictions) would first need to lookup relevant data
from a database of over 250M rows – in order to
dynamically construct the multi-dimensional input
vectors which are passed to the predictive models.

This step originally introduced bottlenecks in our
production environment. We found that functions tend
to ‘hang’ and induce latency when waiting for the SQL
data lookup to complete. Furthermore, another pitfall
here is the maximum lifetime allowance of an AWS
Lambda serverless function. Although this has
recently been extended to 15 minutes [3], it is not ideal
for the data lookup stage to churn so much of this
lifetime. Lifetime aside, performance pitfalls and
execution delays all compromise the ‘real-time’ and
‘on-demand’ aspect that such services should offer.

 6

This led the investigation in the direction of storing
the data in a modern NoSQL format, utilizing the
AWS DynamoDB platform [28] – thus decreasing the
data lookup time by several orders of magnitude. It is
once again important to note however that failure to
effectively use this technique could result in no change
or even worse performance when compared to the
traditional methods.

Effective NoSQL usage revolves around smart
partitioning and sorting of the NoSQL database. We
must make sure to choose a partition key which will
ensure that read/write loads are spread evenly across
partitions. This will prevent throttling, bottlenecks and
hot/cold partitions during up-scale. In the case of the
RTF data, it made sense to use ‘train_id’ as the
partitioning field. Partitioning around this column as
the key is ideal since this key is ‘unique enough’. Each
train is always assigned its own unique ID for data
entries; but a single train can still have multiple row
entries in the database (in which case we will see a
repetition of the ID/partitioning field).

The most effective optimization however comes
with using another field from each entry as a sorting
key for each partition of the NoSQL database. An
example entry (with other columns removed for
simplicity) follows:

train_id timestamp
AAA123 2019/01/01 11:35:55 AM
BBB123 2019/01/01 12:20:00 AM
AAA123 2019/01/01 11:55:55 AM

Each entry includes a timestamp column, which in

its plain format does not offer any data storage
advantage. Converting these timestamps to UNIX time
[29] however allows for their utilization as a sort key.
UNIX/Epoch time is described as ‘the number of
seconds that have elapsed since January 1, 1970
(midnight UTC/GMT)’. Essentially, this is a simple
mathematical formula which is used to derive a simple
‘number’ format field from the complex timestamp
field. Using the UNIX form, we observe naturally fully
sorted partitions; as more recent times carry a bigger
UNIX/Epoch time value.

Converting the above example to UNIX time yields
the following results:

train_id timestamp
AAA123 1546342555
AAA123 1546343755
BBB123 1546345200

This factor introduced the biggest performance
boost in our data lookup methodologies – we are able
to perform lookups through the 250M+ row database
in under ½ a second consistently. In turn, this keeps
our serverless functions well away from the ‘timeout
risk’ – i.e., in cases where the maximum lifetime
would otherwise have been approached/passed. It is
not difficult to see how this methodology could be
applied to other chronological and IoT device-based
data (sensor data for example) [30].

IV. Evaluation

We have demonstrated and shown worked examples

of the 4 main optimization techniques developed for
working with complex AI workloads in a restricted
environment. We used example use-cases from the
Real Time Flow (RTF) project to illustrate the key
ideas behind the techniques. In RTF, one of the
objectives was to predict the delay on a trainline at any
given time.

Using the aforementioned techniques and
optimizations, the lifecycle of the predictor system
involves a) loading the appropriate predictive model –
from a pool of multiple models, b) querying relative
data from a NoSQL database of 250M+ rows, c) pre-
processing the query data, d) preparing the multi-
dimensional input vectors for the predictive model,
and e) running and returning the prediction from the
model. For testing purposes, the serverless system has
been attached to an API Gateway on both ends - for
invocation and for returning predictions back to the
user.

Figure 4 - Response Times of Full Prediction Request in

Milliseconds (ms)

The above chart showcases a series of 10 requests

sent to the deployed system via RESTful HTTP
requests [31]. We observe a consistent response time,
evidently with no negative impact on performance
from any of the optimization techniques.

0

20

40

60

80

Re
sp

on
se

 T
im

e
(m

s)

 7

A. Library/Framework Slimming

The ‘minimization’ technique proves to be a key
step in transforming a codebase incompatible with a
serverless deployment into one which is. In our testing
and deployed system, we have slimmed the pytorch
library from 467MB down to 98.6MB using this
technique. With this result, we are technically able to
deploy (as we are under the 250MB limit) without
applying any other optimizations.

As stated previously however, since the deletion
margin varies greatly by the actions performed by the
code on a case by case basis, the other recommended
methodologies should also be taken into consideration.
The automation strategy presented makes it easy to run
this technique automatically with an ever-changing
and on-going development codebase.

B. Dynamic model loading from cloud storage;

instead of shipping models locally in the
deployment package

Through the multiple tests shown in Figure 1, this

method has proven to be robust and should always be
used when serving any type of model in a serverless
environment. Since there are no trade-offs and
performance is consistent, using the ‘/tmp’ directory is
a great way to abstract model size and footprint away
from the serverless deployment package – in turn
allowing for the development of a more complex
source code base. Space that would have otherwise
been taken up by models can now even be used for the
packaging of additional frameworks.

C. Dual Framework Development with ONNX in
between; Complex Framework for training &
development, Simple Framework for
deployment and inference.

In the case where the predictive system source code

is extremely simple and does not even perform some
pre-processing – solely prediction – we have
demonstrated how a mobile framework can be
deployed to serve predictions. A key step during this
procedure is to utilize the ONNX format as the
‘middle-man’ when passing models through different
frameworks. This ensures robustness and has no
effects on predictive performance during the inference
stage; as we have seen in our test/re-test situations. The
granularity and complexity of development is
maintained - by utilizing powerful frameworks during
the training stage.

D. Working on Improving the Handling of Data
Lookup/Storage Methodologies.

This step is very specific to use cases which handle

chronological data. In the serverless world however,
there is definitely a plethora of connected devices and
systems [2], [32] which make use of such timestamped
data – IoT sensors is an example. Given a system
which handles data in a manner similar to what we
have shown, predictions could be served in real time
even when some complex pre-processing is in place.
In the RTF project use cases, we have seen that data
querying and processing times take 500-600x less
when compared to traditional data handling / storage
techniques.

Real Time Flow (RTF) Project Case Study

As part of the RTF project, the previously described

Serverless AI architecture, principles and optimization
techniques are being actively utilized to deliver the
benefits highlighted in Section I. The Real-Time visual
analytics software used to create the user interface for
the RTF project is Emu Analytics’ Flo.wÔ solution.

Flo.wÔ is an innovative, cloud based geo-spatial
analytics and visualization platform that is designed to
ingest, analyze and visualize high volume, fast moving
data of the type typically delivered from telemetry,
IOT sensors and networks. In the RTF Project it is
ingesting, analyzing and visualizing the movements
and metrics of the whole UK rail network in real-time.
In the same interface it provides the ability to traverse
backwards in time over historic information and
patterns. Other time-series data including population
movements (derived from mobile phone movements)
is also ingested into the platform alongside several
other contextual datasets, including railway
infrastructure (lines, stations, level crossings, etc.).

Figure 5 - Emu Analytics Flo.wÔ Application visualising

population movements alongside Real-Time UK train
movements and metrics for the RTF Project

 8

The predictive AI system, using techniques
described in this paper (developed by the University of
Surrey), is ideally suited for highly effective and
efficient integration into platforms such as Flo.wÔ.
The architectural complexities and overheads of
running an AI workload are abstracted away from the
visualization platform with a simple parameterized
call being all that is required to request predictions.
The suite of developed AI models ensure that
predictions can be requested at the relevant point
within the Flo.wÔ platform (i.e., within the analytical
processing pipeline or on user-initiated clicks) at both
the scope and volume required (i.e., single station or
multiple stations).

The optimization techniques employed within the
serverless architecture ensure that the response times
for delivering the predictions are compatible with the
requirements of the Flo.wÔ platform to be hyper-
performant in delivering real-time, actionable insights
to the end user. Finally, the Serverless approach
ensures that the predictive AI solution can scale up and
down as required by different use cases and
deployments at an optimized cost-effectiveness that is
based on demand and not on physical infrastructure.

V. Conclusion & Future Work

Overcoming the constraints typically surrounding a
resource constrained environment is a time-consuming
and risky task. Attention must be constantly noted to
performance in relation to all the trade-offs being
made to accommodate the restrictive environment. In
this study we have shown techniques which can be
used to accommodate a complex AI workload into a
resource-constrained serverless environment. Due to
the similarity of such an environment with mobile/IoT
devices, it is easy to see how the learnings can be
transferred over to other use cases.

In addition, we have proven that the techniques can
work together in harmony to deliver an industry level
deployed serverless solution. This has been
demonstrated by the integration into Emu Analytics
Flo.wÔ geo-spatial analytics platform. The benefits of
shipping serverless over traditional architectures
include massive cost savings, robust scalability both
ways as well as an easier development pipeline [1],
[33].

As Cloud Providers work to update serverless
platforms, the next steps include research into how
such deployments could be made even easier through
the likes of functionalities such as AWS Lambda
Layers [34]. Additionally, another possibility includes
investigating the development of compression
algorithms [35] to reduce the footprint of predictive
models even further.

With the introduction of newly released specialist
AI-accelerator hardware [36], an implementation
which includes such specialized hardware could
improve the performance of the underlying system
even further. In such a case, it would be ideal to then
investigate how such a microservice architecture can
apply to the training stage of the SDLC as well. We
are seeing an ever increasing demand for faster
training times [37], so with such work applied to the
training stage, a serverless batch training solution may
be possible.

References

[1] G. C. Fox, V. Ishakian, V. Muthusamy, and A.
Slominski, ‘Status of Serverless Computing and
Function-as-a-Service(FaaS) in Industry and
Research’, arXiv:1708.08028 [cs], 2017.
[2] I. Baldini et al., ‘Serverless Computing: Current
Trends and Open Problems’, arXiv:1706.03178 [cs],
Jun. 2017.
[3]docs.aws.amazon.com/lambda/latest/dg/limits.htm
l Last accessed: 10 October 2019
[4] A. Jangda, D. Pinckney, Y. Brun, and A. Guha,
‘Formal Foundations of Serverless Computing’,
arXiv:1902.05870 [cs], Feb. 2019.
[5] S. Moschoyiannis, L. Maglaras, N. A Manaf,
‘Trace-based Verification of Rule-Based Service
Choreographies’, IEEE Int'l Conf. on Service
Oriented Computing and Applications (IEEE SOCA
2018), 2018
[6] M. P. Papazoglou, P. Traverso, S. Dustdar, et al,
‘Service-Oriented Computing Roadmap’ Dagshtul
Seminar Proc. 05462, Service-Oriented Computing
(SOC) pp. 1-29, 2006
[7] A. Razavi. S. Moschoyiannis, P. Krause ‘A
Coordination Model for Distributed Transactions in
Digital Ecosystems’, IEEE Int’l Conf. on Digital

Figure 6 - University of Surrey Serverless AI/ML
Architecture and Model delivering on-demand predicted

train service delays into the Flo.wÔ platform

 9

Ecosystems and Technologies (IEEE DEST 2007),
2007.
[8] A Razavi, A. Marinos, S. Moschoyiannis, P.
Krause, ‘RESTful Transactions supported by the
Isolation Theorems’, Int’l Conf. on Web Engineering
(ICWE 2009), LNCS 5648, pp. 394-409, Springer,
2009.
[9] A. Marinos, S. Moschoyiannis, P. Krause,
‘Towards a RESTful Infrastructure for Digital
Ecosystems’, ACM Conf. on Management of
Emergent Digital Ecosystems (MEDES 2009), ACM
SIGAPP, pp.340-344, 2009.
[10] A. Kobusinska and C.-H. Hsu, ‘Towards
increasing reliability of clouds environments with
RESTful web services’, Future Generation of
Computer Systems, vol. 87, pp. 502–513, 2018.
[11] P. Krause, A. Razavi, S. Moschoyiannis, and A.
Marinos, ‘Stability and Complexity in Digital
Ecosystems’, IEEE Int'l Conf. on Digital Ecosystems
and Technologies (IEEE DEST 2009), 2009
[12] S. Moschoyiannis, N. Elia, A. Penn et al, ‘A
web-based tool for identifying strategic intervention
points in complex systems’, Games for the Synthesis
of Complex Systems (CASSTING'16 @ ETAPS
2016), EPTCS 220, pp.39-52, 2016.
[13] V. Ishakian, V. Muthusamy, and A. Slominski,
‘Serving Deep Learning Models in a Serverless
Platform’, 2018, pp. 257–262.
[14] G. McGrath and P. R. Brenner, ‘Serverless
Computing: Design, Implementation, and
Performance’, in 2017 IEEE 37th International
Conference on Distributed Computing Systems
Workshops (ICDCSW), 2017, pp. 405–410.
[15] D. Crankshaw et al., ‘The Missing Piece in
Complex Analytics: Low Latency, Scalable Model
Management and Serving with Velox’,
arXiv:1409.3809 [cs], Sep. 2014.
[16] J. Bhogal and I. Choksi, ‘Handling Big Data
Using NoSQL’, in 2015 IEEE 29th International
Conference on Advanced Information Networking and
Applications Workshops, 2015, pp. 393–398.
[17] Y. Li and S. Manoharan, ‘A performance
comparison of SQL and NoSQL databases’, in 2013
IEEE Pacific Rim Conference on Communications,
Computers and Signal Processing (PACRIM), 2013,
pp. 15–19.
[18] A. Paszke et al., ‘Automatic differentiation in
PyTorch’, 2017.
[19] R. J. Urbanowicz and S. W. Wilson, ‘Intro to
Learning Classifier Systems’, Springer, Berlin, 2017
[20] S. Moschoyiannis and V. Shcherbinin, ‘Fine
tuning run parameter values in rule-based machine
learning’, 13th RuleML Challenge @ RuleML+RR
2019, CEUR-WS, vol 2438, 2019
[21] M. R. Karlsen and S. Moschoyiannis, ‘Learning
condition-action rules for personalised journey

recommendations’ RuleML+RR 2018, LNCS 11092,
pp. 293-301, Springer, 2018
[22] W. Gao et al., ‘Data Motifs: A Lens Towards
Fully Understanding Big Data and AI Workloads’,
arXiv:1808.08512 [cs], Aug. 2018.
[23] D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin,
J. E. Gonzalez, and I. Stoica, “Clipper: A low-latency
online prediction serving system.” in
NSDI, 2017, pp. 613–627.
[24] M. de Prado, J. Su, R. Dahyot, R. Saeed, L. Keller,
and N. Vallez, ‘AI Pipeline - bringing AI to you. End-
to-end integration of data, algorithms and deployment
tools’, arXiv:1901.05049 [cs, eess, stat], Jan. 2019.
[25] Mar 2018, https://caffe2.ai/docs/mobile-
integration.html
[26] 2019, https://onnx.ai
[27] X. Cai, P. Zhou, S. Ding, G. Chen, and W. Zhang,
‘Sionnx: Automatic Unit Test Generator for ONNX
Conformance’, arXiv:1906.05676 [cs], Jun. 2019.
[28] 2019, https://aws.amazon.com/dynamodb/
[29] L. P. Quoc, ‘Wrox - Beginning Linux
Programming 4th Edition (2008)’.
[30] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and
W. Zhao, ‘A Survey on Internet of Things:
Architecture, Enabling Technologies, Security and
Privacy, and Applications’, IEEE Internet of Things
Journal, vol. 4, no. 5, pp. 1125–1142, Oct. 2017.
[31] 2019,
https://docs.aws.amazon.com/apigateway/api-
reference/making-http-requests/
[32] E. Al-Masri, I. Diabate, R. Jain, M. H. L. Lam,
and S. R. Nathala, ‘A Serverless IoT Architecture for
Smart Waste Management Systems’, in 2018 IEEE
International Conference on Industrial Internet (ICII),
2018, pp. 179–180.
[33] G. Adzic and R. Chatley, ‘Serverless computing:
economic and architectural impact’, 2017, pp. 884–
889.
[34] 2019,
https://docs.aws.amazon.com/lambda/latest/dg/config
uration-layers.html
[35] Y. Cheng, D. Wang, P. Zhou, and T. Zhang, ‘A
Survey of Model Compression and Acceleration for
Deep Neural Networks’, arXiv:1710.09282 [cs], Oct.
2017.
[36] Y. Yu, Y. Li, S. Che, N. K. Jha, and W. Zhang,
‘Software-Defined Design Space Exploration for an
Efficient AI Accelerator Architecture’,
arXiv:1903.07676 [cs], Mar. 2019.
[37] T. B. Johnson and C. Guestrin, ‘Training Deep
Models Faster with Robust, Approximate Importance
Sampling’, in Advances in Neural Information
Processing Systems 31, S. Bengio, H. Wallach, H.
Larochelle, K. Grauman, N. Cesa-Bianchi, and R.
Garnett, Eds. Curran Associates, Inc., 2018, pp. 7265–
7275

