
Glasgow Theses Service
http://theses.gla.ac.uk/

theses@gla.ac.uk

Nabi, Syed Waqar (2009) A coarse-grained dynamically reconfigurable
MAC processor for power-sensitive multi-standard devices. EngD thesis.

http://theses.gla.ac.uk/865/

Copyright and moral rights for this thesis are retained by the author

A copy can be downloaded for personal non-commercial research or
study, without prior permission or charge

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given

A Coarse-Grained Dynamically

Reconfigurable MAC Processor for

Power-Sensitive Multi-Standard Devices

Syed Waqar Nabi B.S.Eng.

Institute for System Level Integration.

A thesis submitted to the Universities of Glasgow, Edinburgh,

Strathclyde, and Heriot-Watt

for the degree of

Doctor of Engineering in System Level Integration.

Copyright c© Syed Waqar Nabi

October 2008

In the name of Allah, the Beneficent, the Merciful.

Read: In the name of thy Lord Who createth, Createth man from

a clot. Read: And thy Lord is the Most Bounteous, Who teacheth

by the pen, Teacheth man that which he knew not. Nay, but verily

man is rebellious That he thinketh himself independent! Lo! unto

thy Lord is the return.

The Quran; Chapter 96, Verses 1–7

i

Abstract

DRMP, a Dynamically Reconfigurable MAC Processor, is an innovative, dy-

namically reconfigurable System-on-Chip architecture. The architecture ex-

ploits substantial overlaps in the functionality of different wireless MAC lay-

ers. Its flexibility is specialized for addressing the requirements of the MAC

layer of wireless standards. It is targeted at consumer, multi-standard, hand-

held devices, and its design is meant to address the balance of flexibility and

power-efficiency that this target market demands. The DRMP reconfigures

packet-by-packet on the fly, allowing execution of concurrent protocol modes

on a single hardware co-processor. An interrupt-driven programming model

has also been presented and shown to implement the protocol state-machine

of the three protocols on a CPU. These features will allow the DRMP to

replace three MAC processors in a hand-held device. The most innovative

component of the DRMP architecture is its Interface and Reconfiguration

Controller. It uses a combination of asynchronous controllers to dynamically

reconfigure the functional units in the architecture and delegate MAC tasks to

them. The architecture has been modeled in Simulink at cycle-approximate

abstraction. Results of simulations involving transmission and reception of

packets have been presented, showing that the platform concurrently han-

dles three protocol streams, reconfigures dynamically, yet meets and exceeds

the protocol timing constraints, all at a moderate frequency. Its heteroge-

neous and coarse-grained functional units, limited connectivity requirements

between these units, and proportionally large time that these resources are

idle, promise a very modest power-consumption, suitable for mobile devices,

while offering flexibility to implement different MAC protocols.

ii

Acknowledgments

I would like to first and foremost acknowledge the excellent support I received

from my academic supervisor, Dr. Wim Vanderbauwhede, and my industrial

supervisors, Dr. Cade Wells and Mr Bob Adamson. Their help and advice

was always sincere, helpful and practical. Their company was a pleasure,

and their persons, an example.

The Institute of System Level Integration in general, the EngD center and

Sian Williams in particular, deserve a special thanks. Also Alexandra (Sandy)

Buchanan who together with Sian Williams helped get things sorted out so

that I could join this course as an international student. Sandy had told me

then that at ISLI I will be well looked after, and indeed I was. I could not

have hoped for a better and more convenient place to do a doctorate than

ISLI.

To my wife Tahseen who joined me all the way from Bangladesh during my

EngD, and my daughter Sadiyah, who then came along and filled our lives

with diapers and happiness, thank you for your patience and support. It

could not have been the same without you.

To my all my family back home, for their support, and for their confidence

in me.

To Scotland, thank you! What a beautiful country you are, and what nice

people you have.

Last, I would like to acknowledge the Ministry of Science and Technology,

Government of Pakistan, and the people of Pakistan, who funded my studies.

iii

Publications during research

1. Nabi, S.W.; Wells, C.C.; Vanderbauwhede, W., “A dynamically recon-

figurable system-on-chip for implementing wireless MACs,” Research

in Microelectronics and Electronics Conference, 2007. PRIME 2007.

Ph.D. , vol., no., pp.37-40, 2-5 July 2007, Bordeaux, France.

2. Nabi, SW; Wells, CC; Vanderbauwhede, W, “Towards a Reconfigurable

SoC for Wireless MACs in Consumer Handheld Devices” First Inter-

national Conference on Computer, Control and Communication, pp.

182-191, 12-13 November 2007, Karachi, Pakistan.1

3. Nabi, Syed Waqar; Wells, Cade C.; Vanderbauwhede, Wim, “A Dy-

namically Reconfigurable Hardware Co-Processor for a Multi-Standard

Wireless MAC Processor,” Adaptive Hardware and Systems, 2008. AHS

’08. NASA/ESA Conference on , vol., no., pp.368-375, 22-25 June

2008, Noordwijk, The Netherlands.

4. Nabi, SW; Wells, C; Vanderbauwhede, W, “Interface and Reconfig-

uration Controller for a Wireless MAC oriented Dynamically Recon-

figurable Hardware Co-Processor” International Conference on Field

Programmable Logic and Applications, 2008 (FPL 2008), September

8-10 2008, Heidelberg, Germany.

5. Nabi, SW; Wells, C; Vanderbauwhede, W, “A Coarse-Grained Dy-

namically Reconfigurable MAC Processor for Power-Sensitive Multi-

Standard Devices” 21st International SOC Conference, September 17-

20 2008, Newport Beach, California, Unites States.

1This publication won an award for best paper in category.

iv

Dedication

Dedicated to my parents.

“Rabbirhamhuma Kama Rabba Yanee Saghira”

O Allah! Bestow on them your Mercy the way they had bestowed

mercy on me in childhood.

v

List of Abbreviations

2G Second-generation wireless telephone technology

3G Third-generation wireless telephone technology

ACK Acknowledgment

AES Advanced Encryption Standard

AMBA Advanced Microcontroller Bus Architecture

API Application Programming Interface

ARQ Automatic Repeat-reQuest

ASIC Application-Specific Integrated Circuit

ASIP Application Specific Instruction Processor

CID Connection Identity

CLB Configurable Logic Block

CPU Central Processing Unit

CRC Cyclic Redundancy Check

CS-RFU Context-Switching RFU

CTS Clear To Send

DES Data Encryption Standard

DLL Data Link Layer

DMA Direct Memory Access

DRMP Dynamically Reconfigurable MAC Processor

DSP Digital Signal Processor

DVFS Dynamic Voltage and Frequency Scaling

EEPROM Electrically Erasable Programmable Read-Only Memory

FDD Frequency-Division Duplex

FIFO First-In First-Out (Memory)

vi

FPGA Field-Programmable Gate Array

Gbps Gigabit Per Second

HDL Hardware Description Language

IC Integrated Circuit

IC Interface Controller

IEEE Institute of Electrical and Electronics Engineers

IP Intellectual Property

IRC Interface and Reconfiguration Controller

ISA Instruction Set Architecture

LLC Logical-Link Control

LUT Lookup Table

MA-RFU Memory-Access RFU

MAC Media Access Layer

Mbps Megabit Per Second

MPDU MAC Protocol Data Unit

MSDU MAC Service Data Unit

OCT Op-Code Table

OFDM Orthogonal Frequency-Division Multiplexing

OSI Open Systems Interconnection

PAL Programmable Array Logic

PCB Printed Circuit Board

PCF Point Coordinated Function

PHY Physical Layer

PSO Power Shut-off

QoS Quality of Service

RC Reconfiguration Controller

RCA Reconfigurable Communications Architecture (Intel)

RFU Reconfigurable Functional Unit

RFUT RFU Table

RHCP Reconfigurable Hardware Co-Processor

RISC Reduced Instruction-Set Computer

RTL Register Transfer Level/Language

RTS Request To Send

vii

SDR Software-Defined Radio

SiP System-in-Package

SoC System-on-Chip

SRAM Static Random Access Memory

TDD Time-Division Duplex

TDM Time-Division Multiplexing

TH Task Handler

TH M Task Handler for MAC Tasks

TH R Task Handler for Reconfiguration

UML Unified Modeling Language

UWB Ultra-Wideband

VC Virtual Component

WLAN Wireless Local Area Networks

WMAN Wireless Metropolitan Area Networks

WPAN Wireless Personal Area Networks

viii

Contents

List of Figures xiii

List of Tables xvii

1 Introduction 1

1.1 Scope . 4

1.2 Target Markets . 5

1.3 Innovation . 6

1.4 Thesis Outline . 7

2 Background 9

2.1 Feasibility . 10

2.2 An Overview of Reconfiguration Technologies 17

2.2.1 Classification of Reconfigurable Architectures 19

2.3 Wireless Standards . 27

2.3.1 The MAC Sub-layer 29

2.3.2 Analysis of Wireless Standards 30

2.4 Related Work . 36

ix

3 System Architecture 44

3.1 Context . 45

3.2 Design Considerations . 46

3.2.1 Assumptions . 46

3.2.2 Requirements and Constraints 47

3.3 Key Architectural Features . 50

3.4 Classifying the DRMP Architecture 51

3.5 System Partitioning . 53

3.6 The Reconfigurable Hardware Co-processor 58

3.6.1 The Interface and Reconfiguration Controller 60

3.6.2 The Reconfigurable Functional Units 68

3.6.3 Memories and Interconnect 74

3.6.4 Arbitration . 80

3.6.5 RFU Trigger Logic and Master-Slave Mechanism . . . 82

3.6.6 Event Handler and Interface Buffers 88

4 Using the DRMP Architecture 93

4.1 Programming Model . 93

4.1.1 The Interrupt-Driven Protocol Control 95

4.1.2 API . 96

4.2 Extended Instruction Set Architecture 101

4.3 The DRMP as a Platform Architecture 102

4.3.1 Platform-Based Design 102

4.3.2 Evolving DRMP into a Platform Architecture 103

4.4 An Example of DRMP Application 106

x

4.4.1 A Conventional Implementation 107

4.4.2 Implementation on DRMP 107

5 Modeling and Simulation 117

5.1 Development Tools . 117

5.2 Abstraction Level . 119

5.3 The Simulink Model . 120

5.4 Simulation Results . 120

5.4.1 Simulation Run with One Protocol Mode 120

5.4.2 Simulation Run with Three Concurrent Protocol Modes 121

5.4.3 Results for the IRC . 125

5.5 Discussion of Results . 128

5.5.1 Time Slack and Reducing Power Consumption 129

5.5.2 Frequency of Operation 130

5.5.3 Single Protocol vs. Three Concurrent Protocols’ Op-

eration . 131

5.5.4 The Interface and Reconfiguration Controller 133

5.5.5 Performance Assumptions (Software and Reconfigura-

tion) . 136

6 Implementation Aspects 138

6.1 Area and Power Estimates . 138

6.1.1 WiFi Estimates . 139

6.1.2 UWB Estimates . 140

6.1.3 WiMAX Estimates . 141

6.1.4 DRMP Estimates . 142

xi

6.2 Power-Efficiency Improvements 145

6.3 Utilization Potential and Limitations 149

6.3.1 Power-Efficiency . 150

6.3.2 Performance . 151

6.3.3 Cost . 152

6.3.4 Programmability and Extensibility 152

6.4 Commercial Wireless MAC solutions 153

7 Conclusions 160

7.1 Future Architectural Exploration 163

7.1.1 System Design or Architectural Exploration 163

7.1.2 Synthesizing the Architecture to Lower Abstraction . . 165

A Snapshots of SIMULINK Model 166

B Detailed Comparison of Wifi, WiMAX and UWB 181

Bibliography 189

xii

List of Figures

1.1 Wireless Subscribers’ Growth 2

2.1 Abstract View of the RHCP 11

2.2 The Binding Time vs Computation Space 17

2.3 Static vs. Dynamic Reconfiguration 20

2.4 Partial, Single and Multi-Context Reconfiguration 21

2.5 The MAC Layer in Relation to Other OSI Layers 30

2.6 Reconfigurable Packet Processing Wireless Nodes 36

2.7 A Dynamically Reconfigurable Processor 38

2.8 General Network Architecture-Receiver 39

2.9 Customized Network Arch. for IEEE 802.11 40

2.10 Datapath Unit of the Chameleon Architecture 41

2.11 QuickSilver’s Adaptive Computing Machine 42

3.1 The DRMP in a Multi-Standard Portable Device 46

3.2 The DRMP SoC . 56

3.3 Abstract View of the RHCP 59

3.4 The Interface and Reconfiguration Controller 61

3.5 Task-handler for Reconfiguration 64

xiii

3.6 Task-handler for MAC Operations 65

3.7 Reconf’n Controller . 68

3.8 RFU Interface . 69

3.9 Packet Memory’s Map . 76

3.10 Connection between the RFUs 79

3.11 Arbiter for the Packet Bus . 81

3.12 Bus Grant Delay Logic . 83

3.13 RFU Trigger Generation . 84

3.14 Slave RFU Trigger Options 86

3.15 Transmission Buffer Control 89

3.16 PHY Interface Wrapper . 90

4.1 Programming Model Alternatives 96

4.2 API for Programming the DRMP 98

4.3 API for Programming the DRMP (cont.) 99

4.4 Using the API . 100

4.5 Platform-Based Design Methodology 104

4.6 Conventional vs. DRMP Implementation 108

4.7 Transmission sequence diagram 110

4.8 Wifi Interrupt Handler - 1 . 115

4.9 Wifi Interrupt Handler - 2 . 116

5.1 Packet Transmission - 1 Mode 122

5.2 Packet Reception - 1 Mode . 123

5.3 Packet Transmission - 3 Modes 124

5.4 Packet Reception - 3 Modes 125

xiv

5.5 TH M Timing Diagram . 127

5.6 TH R Timing Diagram . 128

5.7 TH M Timing Diagram Magnified 129

5.8 Packet Transmission at 200 MHz 132

5.9 Packet Transmission at 50 MHz 133

5.10 1 mode vs. 3 mode transmission 134

5.11 Proportional time spent by a mode 135

5.12 State occupation in the Task-handler 136

6.1 Time Slack in the RHCP . 146

6.2 Sequans SQN1010 WiMAX SoC 155

6.3 Fujitsu MB87M3400 WiMAX SoC 156

6.4 Intel WiMAX Connection 2250 SoC 157

6.5 Intel IXP 1200 Network Processor 157

A.1 Simulation Setup . 167

A.2 Model: DRMP top-level view 168

A.3 Model: Software statechart . 169

A.4 Model: The Reconfigurable Hardware Co-Processor 170

A.5 Model: The Interface and Reconf’n Controller 171

A.6 Model: The Task-handler for MAC 172

A.7 Model: The Reconf’n Controller 173

A.8 Model: The RFU Table . 174

A.9 Model: The RFU Pool . 175

A.10 Model: Inside the Crypto RFU 176

A.11 Model: The stateflow chart of Crypto RFU 177

xv

A.12 Model: The Packer bus arbiter 178

A.13 Model: The Tx-buffer statechart 179

A.14 Model: The Debug subsystem 180

xvi

List of Tables

2.1 Comparison of Some Commercial Wireless Standards 29

3.1 Classifying the DRMP Reconfigurable Architecture 52

3.2 Software / Hardware Interaction Mechanism 57

3.3 The op code table . 62

3.4 The rfu table . 63

3.5 Memory Architecture Options 92

4.1 RFUs expected to be used for WiFi, WiMAX and UWB . . . 111

5.1 Busy Time of Various Entities in DRMP During Transmission 126

5.2 Busy Time of Various Entities in DRMP During Reception . . 127

6.1 Synthesis Results - WiFi MAC 139

6.2 Gate Count for MAC Implementations 142

6.3 Area of MAC Implementations 142

6.4 Power of MAC Implementations 143

6.5 Estimates for the DRMP . 144

6.6 Commercial Solutions for Various Wireless Standards 159

xvii

Chapter 1

Introduction

Recent years have seen a rapidly increasing demand in wireless-capable con-

sumer devices, as can be seen in the near exponential growth in wireless

subscribers in Fig. 1.1 [42]. This trend has been accompanied by an exten-

sive proliferation of multiple standards that are becoming increasingly faster

and more complex. Implementation of wireless capability for mobile devices

not only has to cope with multiple complex standards, it has to do so while

meeting the very strict requirements of the consumer hand-held device mar-

ket.

People expect to have wireless access to their devices and peripherals (Wire-

less Personal Area Network), wireless broadband internet access at home and

in the office (Wireless Local Area Network), and wireless broadband inter-

net throughout the city (Wireless Metropolitan Area Networks). This trend

towards ubiquitous communication requires the implementation of multiple

wireless standards in the same, small, battery-efficient device—hand-held or

laptop.

Wireless consumer devices hence place strict demands on implementation

platforms. The foremost demand, a result of the proliferation of wireless

standards, is to produce devices that can handle multiple wireless standards

(flexibility) and can seamlessly roam between them. They should also have

long battery lives (power efficiency), should provide high-speed data connec-

1

Chapter 1. Introduction

Worldwide Mobile Subscribers

0

500

1000

1500

2000

2500

3000

3500

2000 2001 2002 2003 2004 2005 2006 2007

M
ill

io
ns

Figure 1.1: Growth of worldwide wireless subscriptions [42]

tivity (throughput/performance), and still be cost-effective. Moreover, with

wireless standards evolving so quickly, they also need to be able to bring

devices conforming to the new standards as quickly and as cost-effectively as

possible to remain competitive.

Such implementation platforms with flexibility to implement multiple stan-

dards with short time-to-market at a low price and low power consumption,

are required for both the Media Access (MAC) layer and the Physical (PHY)

layer of the wireless standards. It is now generally recognized that new circuit

design approaches are needed to deal with this required diversity of protocols

on a single hand-held device [52]. Domain-limited, heterogeneous reconfig-

urable architectures offer a solution that enable hitting the right balance of

power-efficiency and flexibility for mobile devices.

According to [3]

“Reconfigurable architectures that are just-flexible-enough to im-

plement all wireless modes offer a good compromise between low

cost, short time-to-market and low power consumption”

2

Chapter 1. Introduction

I have proposed such a reconfigurable hardware platform specialized for wire-

less standards: the Dynamically Reconfigurable MAC Processor (DRMP).

The aim is to develop a platform that can be reconfigured dynamically to

implement all MAC protocols of commonly used wireless standards. When

compared with a general purpose reconfigurable architecture like the Field-

Programmable Gate Array (FPGA), this domain-specific target allows im-

proved power-efficiency by trading off flexibility. In the current version of the

architecture, DRMP handles the packets of three protocols simultaneously

by allowing reconfiguration on a packet-by-packet basis. It was decided to

use Simulink by Mathworks as the development environment for quick archi-

tectural exploration and to co-simulate different parts of the architecture at

different abstraction levels.

The DRMP is a software / hardware partitioned platform in which the micro-

processor uses a Reconfigurable Hardware Co-processor (RHCP) to delegate

the data-flow and some critical control-flow to the hardware. The Central

Processing Unit (CPU) is left to deal primarily with the high-level control-

flow logic associated with running the protocol state-machine. This allows

the CPU to handle fast and complex MAC protocols while clocking at rela-

tively slow speeds, thus consuming less power than it would in a full software

implementation. The architecture on the whole is designed to be dynamically

reconfigurable. It will handle data streams of multiple (up to three) different

protocol standards, by reconfiguring itself on a packet-by-packet basis.

The architecture’s main innovation is in the design of the domain-limited Re-

configurable Hardware Co-Processor. Hardware co-processors are commonly

used to complement a microprocessing unit, but are generally either cus-

tomized, fixed logic, i.e. Application Specific Integrated Circuit (ASIC) , or

general-purpose reconfigurable logic (FPGA). While both improve through-

put, the former lacks flexibility while the latter is not power-efficient enough

for hand-helds.

The Hardware Co-Processor of the DRMP lies between these two extremes.

It targets a domain—the wireless Media-Access layers—and attempts to of-

fer the required flexibility of this domain at a power-efficiency better than

3

Chapter 1. Introduction

general-purpose reconfigurable logic like the FPGA or a full software imple-

mentation. Such a domain-specialized reconfigurable architecture is a feasi-

ble option for those domains that 1.) require power-efficient implementations

and 2.) can expect to have devices produced in larger numbers—thus allow-

ing economies of scale to ensure that a specialized architecture’s design and

fabrication is cost-effective. Solution for the MAC layer of wireless standards,

targeting consumer devices, is such a domain.

1.1 Scope

There are immense possibilities for research and innovation in the area of

reconfigurable platforms for wireless communications, and it was therefore

essential to find and define a scope that is both technically feasible and

commercially viable in the given time and resource constraints.

The project addresses the packet processing operations that are associated

the Media Access Control sub-layer of the Data Link Layer (DLL) of the

Open Systems Interconnection (OSI) seven-layer reference model [43]. The

operations carried out in this layer are distinctly different from those of the

PHY layer, and warrant investigation into an architecture that is optimized

for MAC operations.

The platform is dynamically reconfigurable amongst three wireless commu-

nication protocols. The multi-mode operation flexibility offsets the overhead

associated with programmability. Intel set its break-even target for reconfig-

urable architectures at three modes [71]. Choosing more than three proto-

cols was considered as introducing unnecessary complexity into the project.

There is however nothing in the architecture’s basic design that limits it to

three protocol modes.

The target is a reconfigurable platform for wireless consumer market, as op-

posed to the wireless infrastructure requirement. In many ways, the two

have very different characteristics and requirements. Consumer devices are

typically more power and cost sensitive, and have shorter life, than infras-

4

Chapter 1. Introduction

tructure devices. According to [67], the infrastructure market is better suited

for general-purpose reconfigurable hardware devices, while in the consumer

market more function-specific reconfigurable architectures may be employed

successfully.

The platform is also meant to be software programmable so that a different

set of three protocols can be implemented without any modifications to the

hardware. The project aims to make the platform as general as possible

so that the majority of prevalent wireless protocol MACs and their future

evolutions could be deployed. However, it was recognized that flexibility

is possible only to a certain limit beyond which the platform will cease to

be competitive by inefficient deployment of protocols. The more general-

purpose any reconfigurable platform is, the less efficient will be its resource

utilization for the deployment of a particular ‘mode’.

1.2 Target Markets

The platform is meant for hand-held / portable devices—devices where power

is an important consideration. For power-insensitive devices, the more at-

tractive option would be to implement the MAC entirely in software, which

offer a flexible and easy to program option.

It is meant to target multi-standard hand-held devices that need to ac-

cess multiple wireless standards at the same time. Such devices are al-

ready present in the market and the trend is towards greater integration

of standards in a single device. Eventually, this platform could be used for

Software-Defined Radios (SDRs); but that is not the main target and so the

considerations associated with SDRs will not be addressed in the project.

For example, an SDR by definition requires the complete protocol stack to

be software programmable. The DRMP, as will be discussed later, may not

necessarily be software programmable only. E.g. it may be that to implement

a certain MAC protocol on the DRMP platform, a derivative design of the

base platform may be needed, which will involve change in the actual silicon.

5

Chapter 1. Introduction

Also, the DRMP can contain FPGA logic, which requires development in a

Hardware-Design Language.

The DRMP is aimed at wireless protocols that can be typically expected in

consumer devices. So WiFi (IEEE Std. 802.11), Ultra-Wideband (UWB)

(IEEE Std. 802.15.3), WiMAX (IEEE Std. 802.16) are the protocols that

will be targeted. Protocols like Zigbee (IEEE Std. 802.15.4) which are not

designed for consumer devices are not considered.

The reason for aiming at consumer devices is that these devices tend to be

produced in very large numbers and in such scenarios the costs of fabri-

cating a new domain-targeted System-on-Chip (SoC) can be justified. The

economies of scale will ensure that the per-IC cost is feasible for cost-sensitive

consumer devices.

1.3 Innovation

The DRMP is designed based on well-established SoC design concepts. The

novelty in the DRMP lies at the system level; it is a completely unique archi-

tecture, designed from scratch, and aiming a particular domain. Following,

its key innovative aspects are highlighted:

• Aimed specifically at implementing the MAC layer of wireless stan-

dards, for consumer hand-held devices, and exploits the common func-

tionalities among different MAC layers is able to replace up to three

MAC processors on a device, by enabling dynamic, packet-by-packet

reconfiguration, and thus handling concurrent data streams of three

different protocols.

• Software controlled hardware co-processor, where the software runs the

protocol control only. The CPU never needs to directly access payload

data, which is handled entirely by the hardware. In a conventional

implementation where the hardware accelerator functions were slave

peripherals of the CPU, this would not be the case.

6

Chapter 1. Introduction

• A unique interrupt-driven software implementation of protocol control

of multiple standards concurrently on a single CPU.

• The hardware co-processor is dynamically reconfigurable on packet-

by-packet basis for 3 MAC protocols. Heterogeneous reconfiguration

mechanism for the RFUs.

• Clear partition of tasks between CPU and hardware, and coarse-grained

function-specific units result in a neat API allowing convenient software

programmability to implement different protocols.

These features will be discussed in detail later in the thesis. The Interface

and Reconfiguration Controller, in particular amongst them, is the most

innovative part of the architecture. This controller interfaces with the micro-

processor, accepting requests from three different protocol modes, and then

manages their execution on the available RFUs. The dynamic reconfigura-

tion of the RFUs is also controlled through a secondary controller inside this

main controller. In essence, it is the Interface and Reconfiguration Controller

that manages protocol modes executing concurrently on a single device with

shared resources, and the packet-by-packet reconfiguration. Its design is pre-

sented in section 3.6.1.

1.4 Thesis Outline

The thesis is organized in seven chapters, the first being the introduction to

the thesis. Chapter 2 starts with the project’s feasibility, and is followed by

background review of relevant subjects like reconfiguration technologies and

the MAC layer of wireless standards. Discussion of related work follows.

Chapter 3 presents the architectural details of the DRMP, after having first

discussed the requirements and constraints that guided the design. Chapter 4

discusses the use of DRMP architecture, explaining its programming model,

its extension as a platform architecture, and concluding with an example

7

Chapter 1. Introduction

of DRMP application. Next the modeling of the DRMP in Simulink and

simulation results are presented, and the results discussed, in chapter 5.

Chapter 6 discusses the implementation aspects of the DRMP architecture.

Area and power estimates for the DRMP are given, techniques for power-

efficiency improvements are discussed, DRMP’s utilization potential pre-

sented, and the chapter is concluded a presentation of and comparison with

some commercial wireless solutions. The last brief chapter presents the con-

clusions and future work. Appendices give snapshots of the Simulink model

and a tabulated and detailed comparison of the three MAC protocols con-

sidered for the prototype.

8

Chapter 2

Background

Multi-standard devices are a common consumer product today. Most third-

generation (3G) handsets support second-generation (2G) protocols for cov-

erage in areas that are not covered by 3G antennas. They typically also have

Bluetooth and infrared support. WiFi access is also becoming common.

Wireless technology typically addresses a particular usage scenario and there

are different protocol standards to address each scenario. But even within a

single usage model, one wireless protocol is not expected to dominate [94].

Solutions that can handle multiple protocols and switch between them have

become attractive.

In this context, reconfigurable hardware has been identified as suitable, but

the focus generally has been on the Physical layer of the protocol stack. How-

ever, if there is to be a reconfigurable platform for wireless communications,

the complete protocol stack has to be implemented on a flexible architecture.

The PHY and MAC layers are very different in the type of functions they

perform. The PHY layer is the more computationally intensive part of the

protocol stack. It concerns the device’s interaction with the network through

physical and electrical interfaces. It is a datapath-logic dominated layer

responsible for operations like modulation, filtering, error correction etc. The

MAC layer on the other hand is dominated by control operations. It is

therefore to be expected that the same architecture will not be suitable to

9

Chapter 2. Background

implement both the PHY and the MAC layer. For example, Tuan et al.

[89] have found lookup-table (LUT) structures typically found in FPGAs are

more suitable for the data-path dominated PHY layer while Programmable

Array Logic (PAL) architecture is more suitable for the control dominated

MAC layer, and proposes a hybrid structure for implementing the complete

protocol stack. Baschirotto et al. [4] note that the MAC-layer requires a

totally different architecture as compared to the digital baseband.

For the MAC layer, the flexibility requirement and its control-logic dominated

structure means that it generally is implemented by software. Intel’s Recon-

figurable Communications Architecture (RCA) is an example [14]. However a

software only implementation cannot offer both high performance and power-

efficiency. Panic et al. [65] estimate that a processor will need to run at 1

GHz to keep up with the real-time requirements of a WiFi MAC. This is a

drain on precious battery power. The situation will only get worse as higher

bandwidth protocols appear. The same job can be done on hardware or

hardware / software solution by clocking at much lower frequencies. FPGAs

are considered suitable for scenarios that require both flexibility and perfor-

mance, but they also incur a relatively heavy power and size penalty due to

the provision of high flexibility. Further, they take a long time to reconfig-

ure, typically in the order of milliseconds. An architecture with flexibility

limited to a particular domain offers a suitable trade-off between flexibility

and power-efficiency. Fig. 2.1 shows the trade-offs offered by various ar-

chitectures. A domain-limited reconfigurable architecture would lie on the

boundary between reconfigurable logic and dedicated hardware in this plane.

It is the kind of architecture increasingly being considered for devices which

need limited flexibility yet cannot afford the energy footprint of devices of-

fering general purpose flexibility like microprocessors or FPGAs.

2.1 Feasibility

This section briefly discusses the feasibility of designing a domain-specialized

reconfigurable architecture for the Wireless MAC layer. It is important to

10

Chapter 2. Background

Flexibility

Dedicated
Hardware
(ASIC)

Reconfigurable Logic

ASIPs, DSPs

Embedded Processors

Energy-effeciency
MOPS/mW

0.1

1

10

100

1000

Figure 2.1: Energy efficiency versus flexibility trade off in various architec-
tures [5]

establish both the technical and commercial feasibility of the project.

Wireless Technology is one of the most important technologies for now as

well as for the immediate future. Although wireless technology has been

used for a very long time, its only relatively recently that it has seen such

tremendous demand in the consumer world and correspondingly active and

rigorous research activity.

The demands on the industry have also increased with consumer expecta-

tions. Seamless roaming among different wireless standards is expected to

be the future of wireless technology for consumers. For example a typical

consumer hand-held wireless device will be able to switch from, say, WiFi

to WiMAX as the user moves from a WiFi hotspot to a WiMAX coverage

area. In the next to next generation wireless handsets, it is envisioned that

the user equipment and the wireless base station will dynamically switch the

wireless protocol they use (both the MAC and PHY) to make optimal use of

the volatile and unpredictable wireless environment - this will be the age of

Cognitive Radios [99]. In lieu of these trends, enabling technologies for the

following are of immense value to the consumer wireless electronics industry:

• Handling of multiple communication protocols.

11

Chapter 2. Background

• Switching amongst multiple protocols dynamically.

• Flexibility to implement new protocols or evolution of current proto-

cols.

• Making platforms energy, area and cost efficient.

• Enabling quick deployment by providing convenient high-level pro-

grammability and thus enabling companies to stay competitive with

short time-to-market.

The key enabling technology is the ability to make efficient multi-standard,

and future-proofed wireless hand-held devices based on software reconfig-

urable hardware platforms. This will not only allow seamless roaming, but

will also allow quick deployment of new protocols as they emerge. A platform

that can do this will be of immense value to the cut-throat wireless industry

where in order to remain competitive, it is essential to bring out products in

extremely short periods of time and still fulfill the consumers’ high expecta-

tions. Designing a platform that is efficient and flexible and can implement

the MAC operations of typical wireless protocols for consumer hand-held

devices thus has obvious commercial benefits, and can be designed using

reconfigurable hardware. As noted in [37]:

“As the time-to-market becomes shorter and various versions

of the same protocol are issued for covering new market needs

and trends, the MAC chips must be designed in order to be eas-

ily adapted to new protocol requirements. This desirable feature

of MAC processors increases the cost and power consumption of

the system, since the chip resources are not used efficiently, while

a static design could not always meet the new protocol require-

ments. Therefore the designer has to trade-off between efficiency

and flexibility for determining the final chip architecture.

A solution to this problem is to replace the dedicated hard-

ware by programmable logic that can be adapted to the protocol

12

Chapter 2. Background

requirements (and its newer versions) in a flexible and reliable

way. The reconfigurable hardware is easily adapted to new pro-

tocol requirements and may offer solutions optimized for speed,

area or power consumption according to system needs. The ma-

jor advantage of a reconfigurable solution is that the same logic

resources can be used for implementing different functions, de-

pending on the specific protocol functionality and this can be

done ‘on-the-fly’ by exploiting dynamic reconfiguration.”

Reduced time-to-market is also a very important goal achievable by using

reconfigurable hardware. According to [52], new designs have an yearly peak

sale cycle. If a vendor misses the window (out in August for peak sales in

November/December) then it will have to aim for next year by which time

the device may be obsolete. Vendors hence need to be able to bring out

complying devices very soon after a new protocol emerges.

Iliopoulos et al. [37] also mention two main disadvantages of using reconfig-

urable hardware: first, that it costs more than dedicated hardware for imple-

menting the same set of functions, and second, the long reconfiguration time.

The first problem can be solved by re-using the same reconfigurable hard-

ware resources for different protocols, thus increasing the functional density

of the device, as Iliopoulos et al. [37] also propose. DRMP solves the second

problem by using function-specific, coarse-grained reconfigurable functional

units that require very little configuration data to switch their state. These

aspects of the DRMP architecture will become clearer as the architecture

and a demonstrative simulation are discussed in later chapters.

It is interesting to note that most of the research on reconfigurable architec-

tures in the context of wireless communications has been carried out for the

computationally-intensive Physical layer. The MAC layer has generally been

implemented fully in software, and so programmability in the MAC layer

was generally a given. The PHY layer, because of its higher computational

requirements, needed platforms, programmable or otherwise, specialized for

the functionality of the PHY layer. So e.g. we have devices by picoChip,

13

Chapter 2. Background

like the PC102 [66], which is composed of an array of DSPs, and is opti-

mized for the Wireless PHY layer. Also, the Chameleon [76] architecture

and Quicksilver’s Adaptive Computing Machine [54] are examples of recon-

figurable architectures specialized for the functionality of the PHY layer.

Such specialized architectures for the MAC layer are not available. However,

in order to have dynamic switching between protocols, all of the protocol

stack has to be dynamically reconfigurable. Conventionally, the MAC has

been deputed completely to software. But the wireless MAC has very strict

real-time requirements and that means running the microprocessor at rel-

atively high frequencies with resulting large power consumption, rendering

them unsuitable for hand-held devices. Reconfigurable hardware has there-

fore potential application in the MAC layer as well. In fact Pionteck et al.

[67] consider the MAC layer the more suitable layer for using reconfigurable

logic.

FPGAs can be used for a flexible implementation of the MAC layer. They

are highly flexible, and they are also more energy-efficient than an equivalent

software implementation. However, for implementing MAC in wireless de-

vices, they do not make a feasible option. FPGAs tend to map inefficiently

to any problem with the typically less than 10% of chip area utilized for logic

[15], the remaining being devoted to routing resources. The interconnect re-

ources consume about 75-85% of the total power [13]. These overheads are

a result of FPGA’s provision of immense flexibility that requires full connec-

tivity between its configurable logic blocks. Such overheads are not feasible

in the context of power-sensitive hand-held devices. Also, only data-flow

dominated operations can be efficiently implemented on reconfigurable hard-

ware [67]. The MAC layer has considerable control logic, and it cannot fully

exploit the parallelism offered by FPGAs.

ASICs are not feasible in this scenario because they are by definition inflexible

and application-specific. Any upgrade to the protocol will require a new

ASIC with the associated development costs and risks. Structured-ASICs can

relieve the development costs, risks and time somewhat, but a new fabrication

process will nevertheless be needed whenever a new protocol comes along.

14

Chapter 2. Background

The problem with both software and FPGAs is that they are much more

flexible than would be required for a domain-limited reconfigurable MAC

platform and hence their associated overheads are not justifiable especially

in context of very power-conscious hand-held devices. Rabaey [74] notes

that, while sharing hardware between different protocol modes is essential

in a multi-standard device, general-purpose programmable components tend

to be three orders of magnitude less energy-efficient than custom implemen-

tation for the same function. A middle-path between general-purpose pro-

grammability and full-custom implementation clearly offers the best route.

It has been concluded therefore that a domain-specific reconfigurable archi-

tecture aimed specifically at the packet-processing operations of a wireless

MAC is a technically viable and as well as commercially attractive option.

Other researchers have supported this conclusion. Pionteck et al. [67] note

that changing specifications of the MAC layers results in that reconfiguration

is required for this layer, yet because power consumption and area overhead

are important, more function-specific reconfigurable architectures should be

used for the consumer market (as opposed to more general-purpose reconfig-

urable architectures for the infrastructure market).

Matching algorithms to architecture to achieve an optimum balance was pre-

dicted in [56]:

“ Advanced communication systems will be implemented as

reconfigurable, heterogeneous multiprocessor platforms. This hy-

pothesis is based on the fundamental trade-off between com-

putational efficiency (MOPS/mW)1 and flexibility. While pro-

grammable devices (.... -processors or DSPs) have the highest

degree of flexibility, they have at least a two to three orders of

magnitude smaller computationally efficiency than the intrinsic

computationally efficiency (ICE) of fixed architectures. Hence,

since power is the limiting factor, the SOCs of the future will

1Million operations per second per milliwatt.

15

Chapter 2. Background

carefully match algorithm with architecture to achieve an opti-

mum. (“Just as much flexibility as needed”). These SOCs will,

therefore, become application specific platforms. ”

16

Chapter 2. Background

2.2 An Overview of Reconfiguration Technolo-

gies

Digital electronics design engineers used to use either a microprocessor or

fixed logic for their embedded systems designs. With the prevalence of FP-

GAs, reconfigurable computing has emerged as another important design

paradigm (Fig 2.2) and an important building block for System-on-Chips.

As a concept, reconfigurable computing has been used for decades. For ex-

ample, even general purpose computers use a similar concept by reusing the

same functional blocks for different functions. But reconfigurable computing

that has been the intense focus of research in recent times has to do with the

actual hardware customization (rather than re-use of the same hardware) as

required by the application.

Binding Time?

Pre-Fabrication
(Hardware)

Post-Fabrication
(Software)

ASIC

Time

Computation in?

Reconfigurable

Processors

Space

Figure 2.2: ASICs, Microprocessors and Reconfigurable Hardware Related
in the Binding Time vs. Computation Space [18]

ASICs allow a spatial distribution of tasks. On one hand, ASICs offer a low

power, area-efficient implementation of a task at (given enough items are

produced) a low cost. They also allow algorithms to execute very quickly

and are the natural choice for time-critical as well as power-conscious appli-

cations. The most obvious disadvantage of ASICs is that they are just that

- application specific. So the smallest change in the functional requirement

may require a new design with the huge associated costs and risks.

17

Chapter 2. Background

The prevalence of System-on-Chip design concepts has mitigated these costs

and risks to some extent by promoting extensive re-use. SoC technology

is the ability to place multiple functions or systems on a single chip. The

SoC design technology involves extensive re-use of pre-designed and verified

components, both hardware and software, which results in reduced develop-

ment time, costs and risks, when compared with conventional ASIC design

flow. However, unless reconfigurable fabric is included (which would make it

a System-On-a-Reconfigurable-Chip), an SoC is inflexible like an ASIC.

The inherent inflexibility combined with high development effort and costs

of ASICs and SoCs are rendering them unsuitable for many of today’s appli-

cations which require flexibility, cost-efficiency and a short time-to-market.

General-purpose processors on the other hand are entirely configurable and

hence flexible. But due to their sequential nature they are inherently less

efficient than ASICs. They also consume much more power and area than

ASICs for the same task since a huge amount of logic in a microprocessor is

‘support’ logic that is not performing the main task.

Reconfigurable computing provides the best of both worlds, so to speak.

It provides the performance benefits of hardware while still being flexible

like software by being reconfigurable post-fabrication. The synergy between

dynamic programmability and computational power makes reconfigurable

hardware a very attractive option to deploy computation-intensive tasks in

application fields that are constantly changing [10]. Fig 2.2 which has been

adapted from [18] compares these three different design paradigms.

It is important to make a distinction between configurable and reconfigurable

computing, which have been used by some authors interchangeably [8]. Re-

configurable systems imply a system that is configurable repeatedly while its

running, or while its stopped for a short while. It is possible that a system is

configurable because the hardware can be configured at compile-time or once

after manufacturing, but it will not be reconfigurable.

18

Chapter 2. Background

2.2.1 Classification of Reconfigurable Architectures

Although FPGAs are the commercially dominant reconfigurable platform,

it would be a mistake to restrict the study of reconfiguration to FPGAs.

Numerous architectures have been proposed and developed over the years.

This field is vast in its scope with many degrees of freedom. It was therefore

important to fully understand and appreciate the various types of dynami-

cally reconfigurable architectures. Appreciation of these lines of classification

and the respective pros and cons helped in making the correct architectural

choices. Different authors have classified reconfigurable architectures in dif-

ferent ways. See [8], [12], [30], [80] and [75]. I have made use of these

classifications to come up with a list of ‘classifiers’ that are considered as

important in making design decisions for the platform that is being devel-

oped. They are discussed here briefly and interested readers can look up

these references for more detailed information of this exciting subject.

2.2.1.1 Binding Time—Static vs. Dynamic Reconfigurability

Binding time specifies the point at which an architecture becomes ‘bound’ to

a specific implementation. It is a useful yardstick along which the complete

family of digital hardware from ASICs to microprocessors [18] can be classi-

fied. In case of a microprocessor, the binding time is just before execution

of an instruction. The architecture (i.e. the microprocessor) is not bound

to a particular implementation until an instruction is fetched and decoded.

ASICs are bound to an implementation when its masks have been fabricated.

For reconfigurable computing, the binding time can be at various stages

between these two extremes. For an FPGA for e.g., the binding time is

typically when the device is started up, although effectively—unless it is

multi-context—it is bound to a certain configuration at compile-time. This

is also called static reconfiguration and is typically associated with traditional

FPGAs. It is also possible to halt the functionality of an FPGA-type device

and then reconfigure it dynamically for a new task (without re-compilation

i.e.), and in this case it can be said that the binding time is dynamic on

19

Chapter 2. Background

a per-task basis. It is also possible to bind the reconfigurable architecture

run-time on a cycle-by-cycle basis which is a more extreme case of dynamic

reconfiguration, e.g. Quicksilver’s Adaptive Computing Machine (ACM) [71,

53]. Fig 2.3 (adapted from [8]) illustrates the distinction between static and

dynamic reconfiguration.

Design
Configurations

Configure
Logic

Execute

Design
Configurations

Configure
Logic

Execute

Design
Configurations

Configure
Logic

Execute

Design
Configurations

Configure
Logic

Execute

Figure 2.3: The Distinction between Static (top) and Dynamic Reconfigura-
tion [8]

2.2.1.2 Configuration Arrangement

Reconfiguration can be achieved by different mechanisms. The following

classification has been derived from [12].

• Simple choice: Selection between one of several blocks. (See sec-

tion 2.2.1.4)

• Definition Through Arrangement: The functionality of the system is

defined by the interconnection of blocks. (E.g. [91])

• Definition through Alteration: In this case the blocks are themselves

programmable or paremetrizable in addition to the flexible intercon-

nect.

20

Chapter 2. Background

2.2.1.3 Partial Reconfiguration

This refers to reconfiguring a device partially while the functionality of the

rest of the device stays the same (Fig 2.4). The partial reconfiguration may

be done while the rest of the device continues its execution. Many FPGAs

families for example are not partially reconfigurable. Even if a small portion

of the device needs to be changed, the whole device needs to be reconfigured.

There are however FPGA and reconfigurable architectures that allow partial

reconfiguration. Any device that is dynamically reconfigurable is also par-

tially reconfigurable, since dynamic reconfiguration implies that a part of the

reconfigurable fabric continues to function while another part reconfigures.

Logic & Routing

Incoming Complete Configuration

Incoming Partial Configuration

Incoming Multiple Configurations

Logic & Routing

Logic & Routing Logic & Routing

Logic & RoutingLogic & Routing

Single Context

Partially Reconfigurable

Multiple Contexts

Figure 2.4: Partial, Single and Multi-Context Reconfiguration [15]

21

Chapter 2. Background

2.2.1.4 Single-Context vs. Multi-Context Reconfigurable Archi-

tectures

This is a very important differentiating factor for reconfigurable architec-

tures. A single-context reconfigurable architecture will have, at any time,

only one context ‘loaded’ onto the architecture. If some different function-

ality is required of the architecture, the architecture has to be reconfigured

which typically means loading a new bit-stream into the platform’s switch-

ing Static Random Access Memories (SRAMs) and LUTs. Most commercial

FPGAs fall into this category.

A multi-context platform on the other hand has multiple contexts ‘loaded’

onto the platform at configuration time (Fig 2.4). It can also be considered

as “loading multiple memory bits for each programming bit location” [15].

One of the contexts is active while the others are dormant although still re-

siding on the platform. A dormant context can become active by a simple

switching event, and the device is reconfigured. There is no need to load a

new bit-stream and this means extremely fast-switching is possible - on cycle-

by-cycle basis if required - reducing the reconfiguration time to the order of

nanoseconds from the milliseconds typically associated with single-context

reconfiguration. There is however the overhead of storing the multiple con-

texts on the platform. It is possible to do “background loading” [15] where

one context is active while another is in the process of being programmed for

later activation. A commercial product that uses this technique is CS2000

RCP series from Chameleon Inc. Other examples are in [79]. A concept

similar to having multiple contexts is to have a reconfiguration cache on the

chip [79].

2.2.1.5 Global vs. Local Run-Time Reconfigurability

Another differentiating aspect of reconfigurable devices is whether they are

reconfigured locally or globally. Locally here means that a sub-set of the re-

configurable fabric is assigned to a particular application and another subset

is assigned to another application - several configurations can exist simulta-

22

Chapter 2. Background

neously. Global reconfiguration implies that the whole architecture is con-

figured towards the accomplishment of the same task or application. This

‘one configuration at a time’ is suitable for applications that have several

operational modes or that are naturally divisible into sequential phases [75].

2.2.1.6 Homogeneous vs. Heterogeneous Architectures

Most commercial reconfigurable platforms like FPGAs are homogeneous.

That is, a reconfigurable element is identically reproduced throughout the

architecture, making it homogeneous. A homogeneous architecture in terms

of the functional elements also implies a homogeneous interconnect archi-

tecture. FPGAs are typically homogeneous architectures. Heterogeneous

architectures on the other hand contain reconfigurable elements that may

or may not be reproduced identically throughout the platform. They may

be of different sizes and that implies an irregular interconnect structure.

The concept of homogeneous and heterogeneous architectures is quite closely

linked with the categorization of architectures as general-purpose or domain-

specific. Domain-specific platform generally have heterogeneous blocks.

2.2.1.7 Granularity of Architectures

Granularity is described as the smallest functional unit that is reconfigurable

by the mapping tools. Fine-grained architectures are more flexible but will

have area overheads for interconnect (i.e. will have low functional density)

and larger delays. Coarse-grained architectures can lead to relatively effi-

cient implementations if the intended functionality matches well with the

architecture of the functional units. They minimize the overheads that are

caused by routing and configuration channels that affect more fine-grained

architectures like FPGAs [10].

However, they are less adaptable than finer-grained architectures. The gran-

ularity is also linked with how general-propose or domain-specific an architec-

ture is. In general it can be said that the more general-purpose and flexible

23

Chapter 2. Background

we want an architecture to be, the more fine-grained we will have to make

it. FPGAs are an example of fine-grained architectures, programmable at

bit-level, and highly flexible.

On the other hand, we have architectures like picoChip’s PC102 [66]. It is a

programmable processor optimized for the high capacity wireless digital sig-

nal processing applications. It consists of an array of RISC processors, which

makes it a very coarse-grained processor, but also makes it optimized for a

specific kind of application. Same goes for architectures like the Chameleon

[76] and Quicksilver’s Adaptive Computing Machine [54], which are coarse-

grained architectures specialized for particular application domains. Stretch

offer their S6000 family of software configurable processors [84]. They con-

tain a VLIW processor core and a configurable Instruction Set Extension

Fabric that is very coarse-grained, performing thousands of operations as a

single instruction.

2.2.1.8 Coupling with Host Architecture

A reconfigurable platform’s coupling to a host controlling processor can vary

from very tightly coupled to loosely coupled. On one end of the extreme is

reconfigurable functional elements in a processor that form a part of the pro-

cessor’s execution pipeline, i.e. tight on-chip coupling [31]. On the other end

is a stand-alone platform that is remotely controlled by a processor over a net-

work. Between these two extremes lies the case of a reconfigurable platform

acting as a co-processor or a hardware accelerator to the main processor.

2.2.1.9 Control

This refers to the control of reconfiguration on the platform. Carter [12] has

discussed the various possibilities:

• Central, external and intelligent: New configurations are deployed by

an external controller, e.g. the host processor in an SoC.

24

Chapter 2. Background

• Central, internal and intelligent: The reconfigurable architecture re-

configures itself through its own controller that responds to external

stimuli.

• Distributed and intelligent: Each part can decide its own rearrange-

ment, and that of others as well.

• Distributed and unintelligent: The part are modified in response to

external stimuli according to some predefined rules.

2.2.1.10 General-Purpose vs. Domain-Specific

This is a pretty much self-explanatory classification. A general-purpose plat-

form will not be optimized for a particular domain and hence will map ineffi-

ciently to the application deployed on it. It has the advantage of being very

flexible at the cost of this inefficiency. A domain-specific platform makes the

inverse trade-off. It improves its efficiency at the cost of flexibility (Fig. 2.1).

This is an important trade-off and is a critical design consideration for a

platform. It also effects other design consideration that have been discussed

in this section e.g. granularity and homogeneity.

2.2.1.11 Interconnect

With the continued reduction in gate area and energy-consumption, the in-

terconnect has begun to play a proportionally dominant role in the energy

requirements of an SoC. The reason is that the energy for on-chip communi-

cation does not scale down with device scaling [6]. The same effect is even

more pronounced in reconfigurable architectures which tend to have complex

and area-consuming interconnects because of the need to accommodate flex-

ible routing maps. In FPGAs for example, the interconnect typically takes

more than 60% of the silicon. It is therefore a critical design issue for reconfig-

urable architectures and an active area of research. The main consideration

for reconfigurable platforms’ interconnects is that they should be flexible and

hence able to handle different patterns of interconnects at compile-time or

25

Chapter 2. Background

run-time depending on which kind of reconfiguration they are aiming for.

FPGAs typically employ an island structure with connect-boxes and switch-

boxes. This allows any element to connect to any other and allows relatively

straightforward delay estimates.

An alternative interconnect architecture is a reconfigurable mesh model [7].

In a 4x4 mesh, the reconfigurable elements are connected to their four neigh-

bors (North, South, East and West). The functional elements can process

data coming in at one end and pass it out another, but they can also choose

to simply pass it on without any processing and thus act like a router. The

connectivity is limited as compared to FPGAs but results in huge reductions

in interconnect overheads. An all-together different paradigm has been sug-

gested for the use in SoCs and also in reconfigurable architectures. That is of

using a ‘connection-less’ packet-based network on the chip for communication

between entities, i.e., a Network-on-Chip (NoC). An example is the Gannet

architecture [91] which views the reconfigurable architecture as a Data-flow

architecture with ‘services’ connected by an NoC working together to provide

a specific functionality.

26

Chapter 2. Background

2.3 Wireless Standards

The technology for wireless data communications has been progressing con-

stantly from research to standardization and implementation, guided by

Shannon’s law and Moore’s Law. Wireless standards have evolved very

swiftly over the past years. The consumer expectations is driving the need

for efficient protocols capable of handling broadband speeds for multi-media

streaming and other demanding applications. All domains of wireless com-

munications - i.e. Personal Area Networks (WPANs), Local Area Networks

(WLANs) as well as Metropolitan and Wide Area Networks (WANs) have

seen tremendous activity and advancements. Standardization has led to mass

production of wireless consumer devices at affordable prices so much so that

they are now an integral part of life in the developed countries.

In the domain of Personal Area Networks, the dominant standard is Blue-

tooth which has been standardized by IEEE as 802.15.1. The current stan-

dard has speeds of up to 2 Mbps. However, IEEE developed a new standard,

the IEEE Std 802.15.3 [32], which was called ‘High Rate WPAN’ and was

meant to provide speeds of up to 20 Mbps using Ultra-Wideband technology

(UWB). It was meant to support real-time multimedia streaming thus open-

ing new demanding markets to Bluetooth which has typically been associated

with low bandwidth services like voice, control, and low-speed data. However,

as a result of failure to reach an agreement on the standardization of this pro-

tocol amongst the stake holders, the IEEE Std. 802.15.3 task group was shut

down without conclusion. For the purpose of this research, i.e. looking at a

representative set of MAC protocols typically used in consumer devices, and

investigating functional similarities and differences, continued investigation

of the MAC protocol of IEEE Std. 802.15.3 was deemed appropriate.

Wireless Local Area Networks is prevailed by the IEEE Std 802.11 [33],

branded as Wireless Fidelity or WiFi. Work on the first standard started

in 1990 and since then a number of PHY layers have been standardized to

meet the increasing bandwidth demands of the consumer electronics industry.

Six physical layers are currently defined. WiFi was widely criticized for its

27

Chapter 2. Background

security loopholes and later amendments have tried to address this issue. A

very recent development is the introduction of a new MAC layer (earlier, all

PHY layers used the same MAC layer) that provides Quality of Service (QoS)

support for multimedia applications. The corresponding standard 802.11e

was approved in 2005. Another task group (N) is working on a high-speed

physical layer based in Orthogonal Frequency-Division Multiplexing (OFDM)

technology. It is expected to provide speeds of up to 100 Mbps [35].

A protocol that is expected to become as pervasive is WiFi, and directly

compete with 3G standards, is the WiMAX, standardized as IEEE Std

802.16 [34] . It is a standard for broadband wireless access in Metropolitan

Area Networks. The first standard was approved in 2001 and since then

has been followed by many amendments. The latest standard is IEEE Std

802.16e-2005 which follows on from the IEEE Std 802.16-2004. This latest

standard is a big leap from previous ones in that it allows mobile broadband

wireless access - it is the Mobile WiMAX. This brings it in direct competition

with 3G and High-Speed Downlink Packet Access (HSDPA), and it is said

this will unleash the true potential of WiMAX. A protocol very similar to the

Mobile WiMAX, WiBro is already up and running in South Korea since June

2006 [64]. Mobile WiMAX has been deployed for the first time in Pakistan

by Motorola [96]. Intel has put its weight behind WiMAX and is embedding

WiMAX into its laptops like it does for WiFi. WiMAX is undoubtedly a

protocol that is going to become widespread but exactly to what extent is a

matter of debate.

Although there are numerous other protocols, these three protocols, WiFi,

WiMAX and UWB, have been discussed since they are or promise to become

pervasive and after considerable survey they have been chosen to be used to

design the 3-mode reconfigurable MAC processor. Table 2.1 [24] gives a

comparative analysis of available wireless standards.

Fourty et al. [24] discuss these wireless standards with special emphasis on

comparison between WiFi and WiMAX.

28

Chapter 2. Background

Commercial
Name

Standard Theoretical
Data Rates

Max Range Frequency
(GHz)

RFID ISO
14443

106 Kbps 3 m Several

Bluetooth IEEE
802.15.1

Mbps 100 m 2.4

UWB IEEE
802.15.3

Up to 50 Mbps 10 m 2.4

Zigbee IEEE
802.15.4

20 and 250
Kbps

10 and 75 m 2.4 and 0.9

WiFi IEEE
802.11

Various, from
11 to 320 Mbps

From 30 to
100 m

0.9, 2.4 and
5.5

WiMAX IEEE
802.16

70 Mbps 50 km 2.5 3.5 5.8

3GSM UMTS 21 Mbsp (with
HSDPA)

Varied to
suit. Upto
200 km

Various
bands be-
tween 1.7 and
2.2

Table 2.1: Comparison of Some Commercial Wireless Standards

2.3.1 The MAC Sub-layer

Wireless communication protocols are mostly defined for the lower two layers

of the 7 layer OSI reference model for communication protocols (Figure 2.5);

that is, the Data Link Layer and the Physical Layer. A sub-set of the Data-

Link layer is the MAC layer, i.e. the Media Access Layer.

The prime purpose of this layer is to ensure fair access to a shared medium.

It also takes on some other roles like handling redundancy and encryption. In

the context of wireless protocols, the MAC layer has yet additional responsi-

bilities. There is an extra requirement for providing security from eavesdrop-

pers (privacy) and illegal access to resources (authentication). Also, due to

higher chances of data corruption/distortion during transmission, and also

the unpredictability of wireless environment, flexible methods for handling

errors (e.g. fragmentation) are needed. All these requirements make the

typical Wireless MAC a fairly complex entity.

All wireless MAC protocol address similar issues, hence there is a lot one can

29

Chapter 2. Background

MAC

LLC

Physical layer

Network Layer

Data Link Layer

Figure 2.5: The MAC Layer in Relation to Other OSI Layers

find common in their functionalities. Even so, in the wireless domain there

are hugely different usage models and application domains (PANs, MANs,

LANs) and these naturally effect the way a particular wireless MAC will

operate.

2.3.2 Analysis of Wireless Standards

A domain-specific architecture design has to be preceded by a careful analysis

of the application under consideration to extract the key features that will

guide the design of the architecture.

2.3.2.1 Functional Similarities

Although the three wireless protocols under consideration address three dif-

ferent usage scenarios, they share common features, firstly because they are

all essentially addressing the issue of multiple access to a shared wireless me-

dia, and secondly, because they have all been standardized under the IEEE

30

Chapter 2. Background

802 family.

In some cases, the overlap is exact, such that a functional unit for one pro-

tocol MAC can be used as-is for another. An example would be the Header

Integrity Check for WiFi and UWB which in both cases uses the same 16-

bit Cyclic Redundancy Check (CRC). In some cases, the functional unit for

one protocol may be reusable for another after changing some parameters to

reconfigure it. The extent of reconfiguration required would vary from one

unit to another.

The following functions are common to at least two and in many cases all

three protocol MACs. Appendix B tabulates this comparison.

1. Header Error Check: is done for all three MACs. For WiFi and UWB,

it is the exact same 16-bit CRC. For WiMAX its an 8-bit sequence.

2. Frame Check Sequence: is 32-bit CRC for all three. For WiMAX its

optional.

3. Fragmentation is carried out by all three protocols.

4. Contention Access (CSMA/CA) is used in some way in all three pro-

tocols. For WiFi it is the primary access mechanism. For UWB, it

is also one of two access mechanisms, though the backoff algorithm

is somewhat different from WiFi. For WiMAX, it is used to request

Bandwidth.

5. Polling Access is used in WiFi, in its Point Coordinated Function (PCF)

mode, and in WiMAX, in real-time and non-real-time poll mode.

6. Time-Division Multiplexing (TDM) Access is used in WiMAX and in

the ‘Contention-free period’ of UWB.

7. Ad-Hoc Networks are supported by WiFi and UWB but not in WiMAX.

31

Chapter 2. Background

8. Superframes: are present in UWB (each ‘superframe’ has a contention

access and then a contention-free period) and also in WiFi when its in

the optional PCF mode.

9. Addresses used by all three are the 802-style MAC addresses. However,

WiMAX also has multiple ‘Connection IDs’ per station and uses them

as the primary access mechanism. UWB replaces the 6 byte MAC

address with a 1-byte Device-ID at joining.

10. Acknowledgments (ACKs) are sent in all three protocols though for

WiMAX their role is limited. WiFi requires ACKs for almost all packets

and UWB also uses ACKs and has different ACK schemes.

11. Piggybacking of ACKs is possible both in WiFi (in PCF mode) and for

WiMAX Automatic Repeat Request (ARQ) feedbacks.

12. Use of Inter-frame Spaces for differentiating services is used in both

WiFi and UWB and their usage is also quite similar.

13. Synchronization is done by all MACs but in different ways. WiFi and

UWB are similar in that they both use beacon frames to synchronize

themselves.

14. Power Modes are present in WiFi and UWB. WiFi has an ‘active’ mode

and a ‘Power-Save’. UWB has an ‘active’ and a ‘hibernate’ mode.

15. Scanning is done by all MACs before joining. Wifi has option for both

active and passive scanning while the other two have only passive scan-

ning option.

16. Authentication is carried out by all three protocols but in slightly differ-

ent manners. All three use public-key cryptography for authentication.

It is likely that there will be some overlap here but it needs some more

study.

17. Encryption is a complex subject and a detailed investigation is outside

the scope of this thesis. However, a brief review reveals substantial over-

lap. Wifi uses RSA’s RC4 encryption but the newer recommendation

32

Chapter 2. Background

uses Advanced Encryption Standard (AES). WiMAX uses Triple Data

Encryption Standard (3DES) for passing keys, but also accommodates

AES. DES is used for data encryption and X.509 digital certificates and

RSA for authentication. UWB also uses X.509 certificates as well as

AES. In summary, some or all the following are used in different ways

at different stages in the three MAC’s:

(a) RSA’s RC4 encryption

(b) Data Encryption Standard

(c) Advanced Encryption Standard

(d) X.509 digital certificate for authentication

18. Sequencing is done by all three protocols to keep track of MAC Protocol

Data Units (MPDUs) and their fragments. They all use modulo-x style

counters.

19. Dynamic channel selection / ranging / power control is done in dif-

ferent ways by both UWB and WiMAX. Wifi apparently has no such

flexibility.

20. Service Primitives used by all three are very similar specially in the

data-delivery domain (as opposed to management domain). The service

primitives are essentially composed of:

(a) requests

(b) indications

(c) status indications

2.3.2.2 Functional Differences

While there are similarities in how different Wireless MACs function, it is im-

portant not to overemphasize the similarities. In the domain of management

operations, each protocol is quite unique. Also, the different state-machines

33

Chapter 2. Background

operating in the protocols are also going to be different. The key finding was

that the control-flow for different protocols tends to be quite different, even

for operations that were similar at a higher abstraction. This consideration

had an important effect in how the architecture was partitioned as will be

explained in the section that deals with the architectural details. The dif-

ferences are tabulated in Appendix B in detail, and are briefly discussed as

follows:

1. Packaging of multiple MAC Service Data Units (MSDUs) in a single

MPDU is done only in WiMAX.

2. Available Burst Profiles are contained in maps in WiMAX only.

3. Automatic Repeat Request is a unique operation performed in WiMAX

and involves a separate state-machine.

4. Full duplex operation using either Frequency-division duplexing (FDD)

or Time-division duplexing (TDD) is done in WiMAX only

5. Use of Connection IDs (CIDs) to differentiate services, and having mul-

tiple such CIDs per station is unique to WiMAX.

6. Use of Service flows, each associated with a particular QoS, also unique

to WiMAX.

7. A complete and separate protocol for key exchange is also unique to

WiMAX.

8. Header Suppression is only done in WiMAX by the Convergence Sub-

layer, another unique aspect of WiMAX.

9. A Classifier is required in WiMAX only, to determine which packet

should go to which CID.

10. A Request-to-send/Clear-to-send handshake option is only present in

WiFi.

34

Chapter 2. Background

11. WiMAX requires a more sophisticated uplink scheduling than either of

WiFi or UWB.

2.3.2.3 Comments on the Wireless Analysis

The analysis of the the three wireless MACs that were considered for this

project did indicate sufficient overlap to justify effort in designing a domain-

specific architecture. The functionality concerned with the actual transmis-

sion and reception of the delivery of packets for example is very similar for

the three MACs, and it was reasonable to expect to be able to design a flex-

ible yet domain-limited architecture that specializes in these functions. But

the obvious differences in area of control and management, and even in some

datapath operations, indicated that the final architecture will have to incor-

porate general-purpose flexibility if it is to be useful for different Wireless

MACs. Thus the analysis for the wireless MACs gave a very good indication

of the sort of elements the final architecture should have, and led towards

a hardware / software SoC architecture, with some tasks accelerated in the

hardware, and others considered more suitable for software implementation.

35

Chapter 2. Background

2.4 Related Work

I did not come across a substantial body of research towards domain-spe-

cialized architectures for MAC layer implementation. Nevertheless there was

some interesting work that highlighted the similarity amongst various MAC

protocols, and the potential for re-using resources for different MACs. I have

not come across any research however that suggests the kind of heteroge-

neous, dynamically reconfigurable architecture is proposed.

Controller

Remotely upload
PPFs and pass

parameters Instatiate/terminate
PPFs

Data from/to
IP layer

Data from/to
radio

PPF

C
o

lle
ct

o
r

PPF

PPF

APPE

PPF

Capturing mechanism

PPF

PPF C
la

ss
if

ie
r

Image codec

Cache Mem

MMU
bus int

Optional CPU
module

Encryption

CPU
Link

control
processor

I/O network
subsystem

Reconfigurable
packet

processing

Reconfigurable
radio interface

Radio

H
o

st
 in

te
rf

ac
e

PC
 c

ar
d

 s
lo

t

Sp
ee

ch
 c

o
d

ec
Pe

ri
p

h
er

al
 b

u
s

Speaker

Figure 2.6: Reconfigurable Packet Processing Wireless Nodes [49]

Lettieri et al. [49] talk about reconfigurable packet-processing wireless nodes.

The reconfiguration of the node to achieve an application-specific functional-

ity is done by dynamically instantiating packet processing functions (PPFs)

at the terminal and connected in a pipe-line fashion. Fig 2.6 shows the block

diagram taken from [49].

Teng et al. [88] discuss the similarity of various MACs at the algorithmic

level. My work is somewhat different in that it looks more at identifying

architectural blocks in the implementation that could be re-used for differ-

ent protocols. However, knowledge about similarity at the algorithmic level

should lead directly to similarity in the implementation architecture as well,

which is why this paper by C.M. Teng of National Taiwan University was of

interest. This paper argues that a universal MAC algorithm can be config-

36

Chapter 2. Background

ured to operate as different protocols by different parameter setting, and that

MAC protocols essentially differ in the way they avoid or handle collisions.

Z. Xiao of Sierra Wireless Cluster discusses a state-machine based design

of an adaptive Wireless MAC Layer [97]. Reconfiguration by software for

Software-Defined Radios is targeted. This approach has some similarity with

the approach taken with the DRMP, but the DRMP is different because

it is oriented towards defining an architecture that configures dynamically

to support packet by packet reconfiguration for different MACs. Both the

dynamic reconfiguration and parallel processing aspects are absent in this

paper.

M. Iliopoulos of the University of Patras discusses an Optimised Reconfig-

urable MAC Processor Architecture by partitioning the Instruction- Set Ar-

chitecture (ISA) of a Microprocessor into Static and Dynamic Instructions

(Fig 2.7) [37]. MAC software is analyzed to gauge instruction usage, but the

difference from an Application-Specific Instruction Set Processor (ASIP) is

that this microprocessor architecture loads instruction sets dynamically. This

concept is being used for the DRMP architecture as well but the approach is

to achieve improved efficiency by using an asynchronous reconfigurable co-

processor. Change in the micro-architecture of the processor is not necessar-

ily needed (although it is discussed in section 4.2), and the DRMP hardware

will not be part of the synchronous pipeline of the processor. The approach

gives the flexibility of using asynchronous, coarse-grained functional units

which may have a very high-latency of operation. Also, parallel processing

of different contexts on the same device is envisioned for the DRMP. This is

not possible with a pure software based approach unless very fast processors

with multi-threading are used. Another possibility would be to use multiple

processors on a single chip, as is the case with picoChip’s programmable de-

vices, e.g. the PC102 processor [66]. These contain an array of DSP’s that

may be used to run multiple contexts on a single platform.

Another paper by the same author describes a methodology to implement

medium access protocol based on a microprocessor core and a general param-

eterized architecture containing configurable hardware blocks [36]. The con-

37

Chapter 2. Background

Figure 2.7: A Dynamically Reconfigurable Processor Architecture for MAC
Implementation [37]

figurable blocks can be customized according to the protocol needs and this

results in reduced effort to develop a communication system. The concept

of coarse-grained and heterogeneous configurable functional units that can

be configured to work for a different protocol by changing a few parameters

was very interesting and is something in common with the DRMP architec-

ture. But the similarity ends here since this paper discusses ‘customizing’

during design time while the DRMP architecture reconfigures dynamically

on a packet by packet basis. Nevertheless, this paper was valuable source.

Fig 2.8 shows the general parameterized network receiver, while Fig 2.9 shows

38

Chapter 2. Background

Bit-Serial
Operat ions

Paral lel
Operat ions

���� �����

Buffers

Control
registers
and State
Machines

D M A
(optional)

Bit-Serial
Operat ions

Paral lel
Operat ions

���� �����

Buffers

�	
���

�
�
�
�
��
�
�
��
�
�
���

	

�
�
�
�
�
�
��
�
��
	

��
�
�

Figure 4. General Architecture Block Diagram

According to this figure, the received serial data are
passed through the bit-serial and parallel operations before
they are stored into buffers and processed by the upper
network layers. The whole process is controlled by the
state machines block which transacts with the above func-
tions and the events coming from the network. Similarly, in
the transmit direction, the data coming from the buffers are
transformed through parallel and bit-serial operations into a
bitstream, which is transmitted over the network.

3. The General Network Architecture

The blocks described in the previous section are com-
bined into a general architecture that is based on the flow
of Figure 4 and is capable of supporting Medium Access
processing of most of the packet based networks. This ar-
chitecture contains parametric blocks that can be tailored to
MAC protocol needs and are interconnected through flexi-
ble interfaces.

There are two main blocks in this architecture, the Re-
ceiver section which contains all the receive related func-
tions (Figure 5), and the Transmitter section that contains
all the transmit related functions (Figure 6). The control
section contains all the control registers that are pro-
grammed/read by the microprocessor through a separate
control interface. The control interface can be a custom
microprocessor interface, or a standard bus. The data
movement from/to the memory is accomplished through a
dedicated path, either transparently without processor in-
tervention by using a DMA engine, or with processor
read/writes where the DMA engine can be omitted. Each of
the transmit/receive section contains the blocks described
in section 2 in a flexible and parameterizable way.

The bit-serial functions block contains an array of bit-
serial functions that are interconnected in such a way that
each of them can work cascaded or in parallel with the oth-
ers through configurable interconnections. In the receive

Figure 5. General Network Architecture-Receiver

RECEIVER Sec t ion

Events

Bit serial Functions

Receive State
Machines Section

Func
1n

Func
12

Func
11

����� �������	

C
on

tro
l

Control

Func
2n

Func
22

Func
21

Func
mn

Func
m2

Func
m1

�� ������

�	
	�	
�

�	�����
��������

P
ar

al
le

l
D

at
a

Control

C
on

tro
l

Func
11

Func
m1

P
ar

al
le

l
D

at
a

Func
12

Func
m2

Func
1n

Func
mn

FIFO

P
ar

al
le

l
D

at
a

DMA engine

Events
Section

����

�	
	

State Machine 1
State Machine 2

State Machine n

Receive Control Registers Section

�� ��
���	��

Events

0-7695-0668-2/00 $10.00�������������

Figure 2.8: Customizable General Network Architecture-Receiver [36]

a customized architecture for 802.11 MAC implementation.

As early as in 1998, University of California, Los Angeles, was exploring wire-

less terminals having reconfigurable architectures to which new functionality

can be downloaded from Network Servers [49]. Tuan et al. [89] propose a

PAL + LUT hybrid architecture for reconfigurable protocol processing.

The architectures presented till now were more academic in nature. There are

some existing flexible architecture that address the wireless domain, and that

share features with the DRMP. E.g. the Quicksilver [71, 53] and Chameleon

[76] platforms. These are in some ways similar to the DRMP. However,

the foremost difference between these architectures and the DRMP is that

these platforms are for digital signal processing [44], associated with the

PHY layers, while the DRMP addresses the MAC layer which has altogether

different design considerations.

39

Chapter 2. Background

4. Application of GNA to the IEEE 802.11
MAC implementation

For the implementation of a MAC processor for the
IEEE 802.11 protocol [4], the general network architecture
should be customized as follows:

The bit serial functions required by the IEEE 802.11 are
two CRC-32 engines, one for transmit direction and one for
receive direction, which calculate the CRC on transmitted
or received serial data. These bit operations do not alter the
serial data that are fed to the shift register device.

The parallel functions in the IEEE 802.11 MAC are
used to XOR the raw data with random numbers in both the
transmit and receive sections for (optional) encryp-

tion/decryption, and to compare the packet address with
predefined station address value (in the receive side) for
recognizing a unicast, broadcast or multicast packet.

The events section recognizes events on Start of Frame,
End of Frame (in the receiver), Start of Transmission, End
of Transmission and Clear Channel Assessment (in the
transmitter). Also the events processing block recognizes
events on TSF register (which is a protocol defined register
for synchronizing network events), DMA control register
etc.

The control registers section contains registers for state
machines, DMA programming, encryption/decryption pro-
gramming, reading network status, synchronizing network
events (TSF timer) etc. The FIFOs in the transmit and re-
ceive directions are 128-bytes long in order to offer appro-

Figure 8. The Customized Network Architecture for IEEE
802.11 MAC implementation

TRANSMITTER Sec t ion

Bit serial Functions

Transmit State
Machines Sect ion

�� ������

�	
	�	
�

�������� ����	
���

X O R

�������

DMA Engine Control
State Machine

Contro l

Events

RECEIVER Sec t ion

Start of
Frame Event

End of Frame
Event

Events
Sect ion

Clear
Channel

Assessment
Event

Start of
Transmission

Event

End of
Transmission

Event

Bit serial Functions

Receive State
Machines Sect ion

�
�	 ���
�	��

CRC-32

Control Registers Section
TSF Timer

� ��
���	��

�� ������

�	
	�	
�

�������� ����	
���

Pa
ra

lle
l D

at
a

N
et

w
or

k

Events

X O R

Address
decode

Parallel Data

128-byte
FIFO

Pa
ra

lle
l

D
at

a

DMA engine

Receive State
Machine

Pseudo-Random
Number Generator

State Machine

Automatic Control
Frame transmission

state machine

C
on

tro
l

�
�
�
��
�
�

�
�
��
�

�������

R a n d o m N u m b e r

DMA Engine Control
State Machine

Contro l

Events

Pseudo-Random
Number Generator

State Machine

Transmit State
Machine

C
on

tro
l

Contro l

C
on

tro
l

�
�	 ���
�	��

CRC-32

Parallel Data

128-byte
FIFO

DMA engine
Pa

ra
lle

l
D

at
a

Pa
ra

lle
l

D
at

a

R a n d o m N u m b e r

C
on

tro
l

�	
	

�����

�	
	

�����

0-7695-0668-2/00 $10.00�������������

Figure 2.9: Customized Network Architecture for IEEE 802.11 MAC Imple-
mentation [36]

There are other important differences too. Chameleon targets base stations,

and power is not an important consideration. Its ‘Datapath Unit’ is general-

purpose (See Fig. 2.10). The DRMP is a power-conscious device; its flex-

ibility is limited to the MAC layer. It has heterogeneous, function-specific

Reconfigurable Functional Units (RFUs).

40

Chapter 2. Background

Register

Register

Instruction

Routing
Mux

Routing
Mux

Barrel
Shifter

Register
&

Mask

Register
&

Mask

OP

Figure 2.10: Datapath Unit of the Chameleon Architecture [76]

The Quicksilver Adaptive Computing Machine aims to address the needs

of Software-Defined Radios, and focuses on signal processing tasks [53]. It

reconfigures dynamically, adapting tens or hundreds of thousands of times

per second [54], which is much quicker than the packet-by-packet reconfig-

uration of the DRMP. ASIC-class performance is claimed with low power

consumption and low-cost. These goals are possible with the DRMP as

well. It is a heterogeneous architecture with four types of nodes (Arithmetic,

Bit-Manipulation, Finite state machine and Scalar) arranged in a fractal ar-

chitecture (See Fig. 2.11). The DRMP has heterogeneous functional units

too, but they are more coarse-grained, and more function-specific, and there

is no fixed number of their types nor a limitation on the functions they can

implement.

The key difference between the DRMP and Quicksilver’s Adaptive Com-

puting Machine is in the target application; the Quicksilver architecture is

designed for datapath intensive signal processing tasks, with its nodes op-

timized as such. The DRMP on the other hand targets the control-logic

dominated MAC layer.

Intel’s Reconfigurable Communications Architecture [14] also makes an in-

teresting comparison. It is a heterogeneous collection of coarse-grained pro-

cessing elements that are optimized for particular functions, are sufficiently

41

Chapter 2. BackgroundWhitepaper: The Next Big Leap in Reconfigurable Systems Page 4

Copyright © 2003, QuickSilver Technology, Inc. All rights reserved. 4/28/2004

Once word-oriented algorithms have been
evaluated, consider their bit-orientated
counterparts, such as Wideband Code Division
Multiple Access (W-CDMA) – used for wideband
digital radio communications of Internet,
multimedia, video, and other capacity-demanding
applications – and sub-variants such as
CDMA2000, IS-95A, and so forth.

Other algorithms to consider comprise various
mixes of word-oriented and bit-oriented
components, such as MPEG, and voice and music
compression. The ACM architecture is able to
cover this very large problem space and all the
points in between.

A Heterogeneous and Fractal
Architecture
Our evaluations revealed that algorithms are
heterogeneous in nature, which means that, within a
group of complex algorithms, their constituent
elements are substantially different. In turn, this
indicates that the homogeneous architectures
associated with traditional FPGA-based RC
approaches – which have the same lookup table
replicated tens of thousands of times – are not
appropriate for most algorithmic tasks. Even newly
advanced FPGAs that have numbers of more
complex elements like 18 x 18 multipliers don’t
satisfy the requirements of adaptive computing.

The solution also had to incorporate the need to
achieve the ASIC “gold standard” of high
performance and low power consumption within
the adaptable architecture even if it required rapid,
real-time hardware adaptations from unexpected
algorithmic inputs.

The solution is to create a fractal architecture that
fully addresses the heterogeneous nature of the
algorithms (see Figure 2). Start with five types of
nodes: arithmetic, bit-manipulation, finite state
machine, scalar, and configurable input/output used
to connect to the outside world.

64-Node Cluster

16-Node Cluster

Node Types

4-Node Cluster

Matrix Interconnect
Network (MIN)

Bit-manipulationArithmetic Finite state machine Scalar

Figure 2: A fractal architecture

Each node consists of computational gates and its
own local memory cache (approximately 75% of a
node is in the form of memory). Additionally, each
node includes configuration memory, but unlike
FPGAs with their serial configuration bit-stream, an
ACM has from a 32 to 128-bit bus to carry the data
used to adapt the device.

It’s important to realize that each node performs
tasks at the level of complete algorithmic elements.
For example, a single arithmetic node can be used
to implement different variable-width linear
arithmetic functions such as a FIR filter, a Discrete
Cosine Transform (DCT), a Fast Fourier Transform
(FFT), and so forth. Such a node can also be used to
implement variable width non-linear arithmetic
functions such as ((1/sine A) x (1/x)) to the 13th

power.

Similarly, a bit-manipulation node can be used to
implement different variable-width bit-
manipulation functions, such as a Linear Feedback
Shift Register (LRSR), Walsh code generator,
GOLD code generator, TCP/IP packet
discriminator, and other complex functions.

A finite state machine node can be used to
implement any class of Finite State Machine
(FSM). In the case of a really large or complex
FSM, the machine can be spread across multiple
FSM nodes, or different portions of the state
machine can be time-sliced across a single node.

Figure 2.11: Fractal Architecture of the QuickSilver’s Adaptive Computing
Machine [53]

configurable to support multiple protocols, and will have tools that allow

high-level programmers to reconfigure the processing elements for new stan-

dards that will reduce time to market. It is obvious that there are consid-

erable similarities in the key aspects of the DRMP and the RCA. However,

again the focus is on baseband operations, and they have recommended a sin-

gle processing element in the form of a microcontroller (ARC core mentioned)

for the complete MAC implementation. DRMP is solely for implementing

the MAC layer and has functional units of smaller granularity that perform

sub-functions inside the MAC context.

There are several publications discussing innovative ways of implementing

single MAC protocols. They were helpful in providing clues about partition-

ing between hardware and software, and also about the type of functional

units that are needed by hardware accelerators for various MAC protocols.

Panic et al. [65] and Sung [85] discuss such single protocol, system-on-

chip implementations of WiFi and WiMAX respectively. Samadi et al. [77]

present another hardware / software partitioned implementation of Wifi, as

do Kim et al. [45]. Hardware accelerated implementations of UWB (IEEE

42

Chapter 2. Background

Std. 802.15.3) are discussed in [28] and [62]. Further comparison of the

DRMP architecture with some commercial MAC solutions has been pre-

sented later in section 6.4.

I did not come across any SoC architecture like the DRMP that specifically

addresses the wireless MAC layer for hand-held devices, promising flexibility

to dynamically switch between multiple protocol MACs on the same plat-

form, yet maintaining a power-efficiency acceptable for mobile devices.

43

Chapter 3

System Architecture

In this chapter the DRMP architecture design is explored in depth. The

requirements and design considerations that guided the design effort are dis-

cussed. Briefly, the development approach will be presented, before delving

in the details of the architecture.

This DRMP project is primarily a system-level design project. Throughout

its development I encountered decision points where I was faced with a num-

ber of architectural choices. Taking a heuristic approach, I tried to make the

optimal one based on the requirements I had defined earlier in the project,

which resulted in certain considerations and constraints. In this chapter, I

will try to bring out this aspect of the research as well; where possible, I

will indicate what options I had for a particular architectural choice, and the

reasons for taking the route I did. The architecture choices that lead to the

DRMP’s architecture as it stands now, is the key innovative output of this

dissertation.

This chapter begins by discussing the context in which the DRMP is rele-

vant. We look at the design considerations and then after presenting the key

architectural features of the DRMP, it is classified along the types discussed

in chapter 2. The system partitioning of the DRMP into hardware and soft-

ware comes next, followed by a detailed section on the architecture of the

Hardware Co-Processor.

44

Chapter 3. System Architecture

3.1 Context

All wireless MACs essentially provide secure access to a shared medium. One

would expect them to carry out similar tasks. This observation forms the ra-

tionale for the development of a domain-specific platform that exploits these

overlaps by using function oriented Reconfigurable Functional Units (RFUs).

I have analyzed three wireless standards relevant in a consumer hand-held

device context; WiFi(IEEE Std 802.11), WiMAX(IEEE Std 802.16), and

the High-speed WPAN(IEEE Std 802.15.3). Investigation into the structure

and the functionality of these wireless standards indicates that there is indeed

substantial overlap amongst these protocols. This observation was confirmed

by precedent research ([18], [89], [15]). A flexible, reconfigurable platform

has been designed, that is optimized for wireless MAC implementations by

exploiting the overlaps.

The key design consideration for the platform was a suitable trade-off between

flexibility and energy efficiency (Fig. 2.1). For the prototype, the platform

is designed to be flexible enough to implement three different MACs1. This

implementation is expected to be more power-efficient than an equivalent

implementation of the three MACs on either a microprocessor or an FPGA.

The architecture can switch dynamically between the protocols. Since it is

quite conceivable that a wireless hand-held device will be handling multiple

data streams of different protocols simultaneously, the platform is designed

to be able to switch on a packet-by-packet basis.

To put the architecture in context, it can be envisioned as a part of portable

device’s circuit as an IP on another higher-level SoC, a chip on a System-in-

Package (SiP) or, a packaged chip on a Printed Circuit Board (PCB). Fig. 3.1

shows e.g. how the DRMP could be used in a multi-standard SoC.

1It should be noted that, while this prototype is for implementing three MAC proto-
cols, the design of the architecture is not inherently limited to three protocols, and can
easily scale to more concurrent protocols. The control is completely decentralized, and
the key change required would be in the addition of controllers and buffers for any ad-
ditional protocols. The potential bottleneck is the interconnect, which may be resolved
through increasing the frequency of communication, or considering an altogether different
interconnect topology that allows concurrency in communication.

45

Chapter 3. System Architecture

WiFi
Radio

WiMAX
Radio

B’tooth
Radio

Reconfigurable
PHY

Application
(SW)

Reconfigurable
MAC

Higher-layer
Protocol

Processing
(SW)

Other SoC Peripherals

SoC for a Multi-Standard Portable Device

Figure 3.1: The DRMP in a Multi-Standard Portable Device

3.2 Design Considerations

In Chapter 1, the scope of the research was defined. The DRMP is meant

to be used in consumer hand-held devices that are both multi-standard and

power-sensitive. To start the design process for an architecture, some as-

sumptions were made, and the requirements and constraints were defined.

Together they served as a guide for the research effort and the architectural

choices.

3.2.1 Assumptions

• The platform will switch dynamically between three different wireless

protocols as required. It will only implement the MAC layer function-

ality.

• The implementation of the PHY layer implementation, whether in re-

configurable or fixed logic, is independent of the MAC implementation.

The PHY implementation may be on a dynamically reconfigurable ar-

chitecture too, or there may be a separate fixed logic implementation

46

Chapter 3. System Architecture

for each protocol2 (See fig 3.1).

• It is assumed that the target device may be transmitting or receiving

concurrently via up to three different wireless standards. E.g. the user

may use a WLAN protocol to access the internet, while concurrently

using a WPAN protocol to access peripheral devices.

• No assumptions have been made about the operating system running

on the host application processor or about its performance.

• It is assumed that the host application processor will allow Direct Mem-

ory Access (DMA) access to MAC platform for frame transfers.

• Although the platform is intended to implement the complete MAC

layer, the research focuses on a subset that demonstrates its viability.

• The DRMP is expected to replace the MAC implementations of three

different wireless MACs in a device. Where there was a separate device

for each protocol MAC, there will now be one device, the DRMP, that

handles the data of three MACs simultaneously, and interfaces to the

corresponding three PHY layers.

3.2.2 Requirements and Constraints

The requirements and constraints for the architecture were considered keep-

ing in mind the scope of its intended application. These requirements were

broad and abstract, but they impacted the design decisions that eventually

led to the DRMP architecture as it stands now.

• Power: Due to the nature of the target market, the power-efficiency is

a key optimizing parameter for the DRMP architecture design effort.

However, since the device is meant to be flexible enough to implement

2In context of protocols belonging to the IEEE 802 family, which have been the focus
of this research, the MAC-PHY interaction is explicitly specified by the standard.

47

Chapter 3. System Architecture

different MAC layers, so certainly there is a trade-off. The objective

is to provide a lower-powered alternative to a CPU or FPGA based

flexible solution, such that it can be used in a power-sensitive consumer

hand-held device.

This power constraint also implies a certain limit on the overheads

allowed for the provision of flexibility. These overheads should be con-

siderably less than those of general-purpose flexible architectures like

FPGAs or CPUs.

• Flexibility and Programmability: The requirements for flexibility

can be better appreciated in three separate categories: Design-time

flexibility (or platform derivation), Compile-time flexibility (or pro-

grammability) and Dynamic flexibility (or dynamic reconfiguration).

Design-time flexibility is needed because the DRMP is not meant to

provide general-purpose flexibility for all possible MAC implementa-

tions. Hence there should be a mechanism to quickly make changes in

the architecture to adapt it to new protocols with novel functionality

that need hardware acceleration.

The platform should have a clear Application Programming Interface

(API) that allows programmers to use the available hardware resources

for MAC implementation. The hardware architecture should be trans-

parent. It should be convenient to use so that new protocols can be

quickly deployed. The strict time-to-market constraints of the con-

sumer wireless market dictates this requirement for quick and conve-

nient programmability.

The platform should be able to dynamically reconfigure quickly enough

to handle interleaved packets of three different protocols without com-

promising the real-time constraints. The requirement was introduced

to allow concurrent use of multiple wireless protocols in consumer hand-

held devices.

There should not be any redundant flexibility in the device so that the

overheads are kept to a minimum.

48

Chapter 3. System Architecture

• Performance: The platform is meant to be a domain-specific one and

so it only needs to be able to deal with the real-time requirements of

the MAC protocols. That is, it should be able to process the packets

fast enough to make them available to the upper and lower layers when

they are required, as dictated by the protocol. Processing the packets

any quicker is not going to add any value to the platform.

• Area and Cost: Although area has a relationship with the power-

efficiency, it is considered separately from power considerations. Power

optimization techniques can result in considerable efficiency even with

a large silicon area. The area of the device is thus constrained primarily

by the cost. The architecture is targeted for use in consumer devices,

and the area and the resulting cost should be appropriately suitable.

• Integration: The platform should provide clear and standardized in-

terfaces to all externals like the PHY layers or the upper layers. It

should transparently fit in the protocol stack of a multi-standard hand-

held device. There should not be any assumptions on the architecture

of the Application SoC itself.

• Standards Compliance: The platform is meant to comply entirely

with the published standards that it implements. However, because

of the complexity of the standards, it is unrealistic to design a fully

standard-compliant platform within a single doctorate project. There-

fore liberties were taken in this area but not to the extent that the

experimental results are rendered meaningless.

49

Chapter 3. System Architecture

3.3 Key Architectural Features

The DRMP is a System-on-Chip platform that implements the MAC func-

tionality of wireless standards. The target devices are consumer portables

and hand-helds where it is important to keep power consumption to accept-

able levels3.

The architecture design has been driven by the constraints derived in view of

the target application, as discussed in Section 3.2. The resulting architecture

has the following key features:

System

• MAC functionality partitioned between an extended RISC and a

reconfigurable hardware co-processor.

• The CPU implements protocol state-machine and hardware per-

forms datapath operations.

Software

• The CPU never needs to directly access payload data, which is

handled entirely by the hardware.4

• One mode can use the CPU for control operations while another

mode concurrently uses the hardware co-processor for datapath

operations.

Hardware

• Dynamically reconfigurable on packet-by-packet basis for 3 MAC

protocols.

• Heterogeneous reconfiguration mechanisms.

• Reconfiguration and MAC operations can run concurrently.

3‘Acceptable’ power consumption is context-specific, and is expected to change with
time as battery efficiencies for portable devices grow. See section 6.1

4This would not be the case if e.g. it was a conventional implementation where the
hardware accelerator functions were conventional slave peripherals of the CPU.

50

Chapter 3. System Architecture

• Heterogeneous functional units.

• Coarse-grained functional units.

Contributions

• Flexibility to implement different protocols and future evolutions.

• Reduction in interconnect (compared to FPGA).

• Less reconfiguration data required (compared to FPGA).

• Power-efficiency suitable for hand-held devices.

• Scalable; uniform RFU interface and interconnect allows for easy

integration of new, heterogeneous RFUs.

• Programmable; clear partition of tasks between CPU and hard-

ware, and coarse-grained function-specific units result in a neat

API allowing convenient software programmability to implement

different protocols.

In this section the design features are discussed in some detail. Where appro-

priate, it will be indicated how the architectural decisions were made in view

of the requirements and constraints, and what other options were considered.

3.4 Classifying the DRMP Architecture

In context of the classifiers that were developed in Section 2.2, the DRMP

was classified in view of the identified constraints. Table 3.1 describes how

the the DRMP architecture is classified in the reconfigurable architecture

space.

It is interesting to note that according the the classification given by [44],

the DRMP can also be termed an Application Specific Instruction Processor

(ASIP).

51

Chapter 3. System Architecture

Table 3.1: Classifying the DRMP Reconfigurable Architecture
Classifier DRMP’s Classifica-

tion
Rationale

Binding Time Run-time To allow DRMP to dynamically
switch from one protocol to the other

Configuration
Arrangement

Heterogeneous See section 3.6.2 on RFUs for ratio-
nale

Partial Recon-
figuration

Yes To allow some parts to be recon-
figured for one protocol mode while
other blocks carry on functioning for
a different protocol mode

Single /
Multiple-
Context

Some blocks Multiple-
context

See section 3.6.2 on RFUs for ratio-
nale

Global / Lo-
cal Reconfigu-
ration

Local Reconfiguration To allow concurrent processing of 2-3
wireless protocols on the same device

Homogeneous
/ Heteroge-
neous

Heterogeneous The domain-specialized architecture
will have heterogeneous, parameteri-
zable components aimed at function-
alities specific to the MAC layer

Granularity Coarse-grained Aiming for a domain allows coarser
grained reconfigurable components.
Results in better energy and area ef-
ficiency.

Coupling With
Host Processor

Coupled as a co-
processor

Allows quick communication with
host processor, while still allowing the
hardware to carry out some high la-
tency datapath tasks and some con-
trol tasks autonomously. Becker et al.
[5] recommend close coupling to avoid
bandwidth limitations.

Control Intelligent, both exter-
nal and internal

Start-up configuration will be exter-
nal, while dynamic reconfiguration
will be intelligent and internal to al-
low handling of multiple protocols as
required.

Interconnect Single-bus Interconnect See section 3.6.3 for details.

52

Chapter 3. System Architecture

3.5 System Partitioning

Mapping a particular functionality to a mixture of hardware and software is a

well-established technique to improve performance and/or power-efficiency of

embedded systems. MAC chips typically use powerful Reduced Instruction

Set Computing (RISC) processor cores that are integrated with hardware

modules to support the complex operations and strict timing operations of

the MAC protocol [37]. Baschirotto et al. [4] note that only data-flow dom-

inated tasks can be efficiently implemented in reconfigurable hardware, and

large fraction of tasks in the MAC layer are control-flow dominated. Hence

many solutions for the MAC-layer consist of a combination of CPU with

dedicated hardware accelerators. The processor is used for control-flow dom-

inated tasks while the hardware accelerators implement dataflow tasks like

encryption and error detection.

In concept, the DRMP architecture is based on a similar partitioning logic.

Data-flow intensive functions like encryption, redundancy implementation,

and high-speed interaction with the PHY layer, have been partitioned to

hardware units. The hardware implementation of such critical functions is

possible with a lower frequency and hence power-consumption than if they

were implemented by a CPU. Alternatively, with a given frequency, hardware

implementations can give higher throughput. There are however fundamental

differences between an architecture like the DRMP and a conventional MAC

implementation.

The key difference is that the hardware co-processor in the DRMP is meant

to accommodate not one but multiple protocols. So it has to be flexible. Yet,

because the target is power-sensitive devices, the hardware cannot be based

on FPGA-type general-purpose flexible hardware. The hardware-coprocessor

thus is a domain-limited flexible architecture (details in section 3.6). Hence

in the DRMP, those functionalities are partitioned to a domain-limited hard-

ware, which have enough common-ground amongst various MAC protocols

to enable their implementation on function-oriented RFUs5. This is an alto-

5There is an exception in case of control flow that is quite unique to each protocol, yet

53

Chapter 3. System Architecture

gether different consideration from traditional, single standard MAC imple-

mentation platforms where the hardware co-processor is either fixed ASIC or

general-purpose flexible like an FPGA. The flexibility and power-efficiency

requirements for the DRMP combined render both these options unsuitable

for the DRMP.

The role of the Reconfigurable Hardware Co-Processor (RHCP) is essentially

to off-load tasks from the CPU such that the CPU can be clocked at low

frequencies to minimize power consumption.

The primary control flow of the MAC is still handled by software. This

allocation was deemed the best option because of these reasons:

1. Protocol management and control operations that are not time-critical

are naturally better suited for a software implementation. Baschirotto

et al. [4] concludes that a combination of a RISC processor for control-

flow oriented tasks and reconfigurable hardware blocks for data-flow

oriented tasks results in a suitable platform for the MAC-layer.

2. The control flow of the protocol of different MAC standards is quite

different, even if they are performing similar functions at an abstract

level6. To implement them in a flexible hardware architecture, one

would have to use a general-purpose architecture like an FPGA which

is inefficient in any case but more so for control-logic [67]. So im-

plementing the high-level control-logic in software was considered the

most practical option.

3. While modeling the MAC flow of a WiFi MAC, it was observed that al-

though there are control operations in any MAC functionality, they typ-

ically take place once for a packet, as opposed to operations that might

be done for each bit or byte. This means that a software implementa-

the timing constraints demand hardware implementation. This is discussed in section 4.3.
6Section 2.3 where I discussed and compared the three wireless MAC protocols elab-

orates on this point. Also refer to Appendix B for a detailed comparison of the three
standards.

54

Chapter 3. System Architecture

tion of control-logic is possible without the need for high-performance

microprocessors.

These considerations made the case for implementing the management and

high-level control operations in software. Such a partition gives the required

flexibility, while still making due consideration for the power consumption.

The remaining functionality primarily includes the time-critical packet pro-

cessing operations associated with transmission and reception. Here the max-

imum overlap was found amongst the standards, and also the requirement

for faster performance; hence, the implementation on reconfigurable hard-

ware. In addition, some control logic is also partitioned to the hardware

co-processor for one of two reasons:

1. It is interacting with the PHY layer and thus needs to run very quickly.

Implementing it in software would have required a high-performance

CPU. For example the transmission and reception state-machines that

interact with the PHY layer.

2. It is responding to an event which has a strict time constraint, for

example sending immediate acknowledgments. Reacting to them in

software would require exclusive access to a fast CPU.

Fig 3.2 shows the system view of this architecture along with system parti-

tioning. Later in this chapter, the details of the architectural components

will be presented.

Hardware / Software Interface

How the software and hardware interact in the DRMP is summarized in

Table 3.2. As can be seen from the table, both hardware and software can

initiate a service request from the other party. It emphasizes the point that

the hardware is not merely acting as slave accelerator to the software, but is

55

Chapter 3. System Architecture

PHY Interface Host Interface

Memory
Interface

 Bus Int’face &
Host DMA Access

CPU

 Reconfigurable
Hardware Co-

Processor (RHCP)

 Program +
Reconfig’n Memory

Control

Bus
Interface Signals

PHY Interface Signals for

3 protocols

DRMP System Architecture

MAC Management Control, MAC High-level
Protocol Control, and Start-up Configuration
Control

MAC-PHY Interface, Transmission and Reception
Control, Encryption, Redundancy,
Fragmentation, Packaging, ARQ, Immediate ACK,
Dynamic Reconfiguration Control

Implemented in Hardware

Implemented in CPU

Figure 3.2: The DRMP SoC with Hardware/Software partitioning

capable of initiating operations and requesting services from software, when

it is responding to upstream events.

This type of partitioning, where the hardware is not merely reacting to service

requests from software but also initiating operations, gives the opportunity

to makes the maximum use of the hardware co-processor, in an autonomous

manner. In the prototype e.g., when a packet is received by a particular

mode, its is stored and its redundancy checked without the software being

aware of it. A proposed ACK-generating hardware functional units mean

that even acknowledgment frames can be sent without involving the CPU.

56

Chapter 3. System Architecture

This leads to reduced load on the microprocessor, which would make it more

power-efficient. Such a partitioning also makes it easier to meet strict time

constraints e.g. in the case of Immediate acknowledgment policy of IEEE

Std. 802.15.3. The partition and its implications thus are in-line with the

requirements specification and constraints discussed earlier.

Software ⇒
Hardware

The Software will have access to device driver functions that
map to MAC functionalities partitioned to the Hardware.
The API is discussed in detail in section 4.1.
When such a device driver function is invoked by the Soft-
ware, the device driver will form a super-op-code (See sec-
tion 3.6) and store it into a memory-mapped register that
has been set aside exclusively for the standard that invoked
the function. There will be three such registers that corre-
spond to the three protocols that are deployed on the DRMP.
The Software will then interrupt the Hardware by writing
into another memory-mapped register a value which indi-
cates which of the three protocol modes has requested ser-
vice. The Hardware Co-processor will then respond to the
Software command by carrying out the required service.

Hardware ⇒
Software

A typical interrupt-driven mechanism will be used. The in-
terrupt line will be used to interrupt the microprocessor when
replying to a service request earlier made. The hardware is
not purely reactive however and will initiate interaction with
the Software as well through an interrupt, e.g. in response to
an Rx event from a PHY layer.
A single interrupt line has been assumed, as is common with
ARM processor cores. The software will respond to the in-
terrupt by reading a memory-mapped hardware register that
has been written by the hardware to indicate the source of
the interrupt. It will then service the interrupt accordingly.

Table 3.2: Software / Hardware Interaction Mechanism

57

Chapter 3. System Architecture

3.6 The Reconfigurable Hardware Co-processor

The Reconfigurable Hardware Co-Processor (RHCP) provides service to up

to three protocol modes concurrently. It implements power-intensive and/or

time-critical tasks. The protocol control of the three protocol modes runs in

the CPU in an interrupt-driven manner (as explained in chapter 4). Each

mode can request service from the RHCP through the use of appropriate API

functions. The RHCP is capable of accepting multiple requests from different

protocol modes, reconfiguring its functional units on the fly as required.

Fig. 3.3 shows the RHCP’s block diagram. Its key design features follow,

after which these features will be discussed in more detail.

Main Features

• The RHCP interacts with the CPU through an Interface and Recon-

figuration Controller (IRC) which delegates tasks to flexible functional

units.

• To optimize power-efficiency, the RHCP has coarse-grained, heteroge-

neous, function-specific Reconfigurable Functional Units (RFUs).

• These RFUs have a standardized interface.

• They are dynamically and individually reconfigurable.

• They are connected by a single packet bus that also connects them to

the packet-memory and the IRC.

• Communication between the RFUs is primarily through the memory,

although the architecture supports direct peer-to-peer communication

between RFUs as well.

• A separate memory holds configuration data for the RFUs and has its

own access buses.

58

Chapter 3. System Architecture

Bus Req/Grnt

Bus Signals

Bus
 Signals

RFU Pool

RFU1

RFU2

RFUn Bus Signals

Interface &
Reconf’n
Controller

(IRC)

Buffer
Mode A

Buffer
Mode B

Buffer
Mode C

Event Handler

Interface to PHY

Interface to Microprocessing Unit (MPU)

Pa
ck

et
 B

us
 A

rb
ite

r
R

ec
on

f’n
 B

us
 A

rb
ite

r

Pa
ck

et
 M

em
or

y
R

ec
on

f’n
 M

em
or

y

Interrupt Control Input
MPU’s Direct Access
to Packet Memory

Packet Bus

Reconf’n Bus

Bus
 Signals

Upstream Arbiter

Trigger
Control Other

Control

Figure 3.3: The Reconfigurable Hardware Co-processor

• Both the reconfiguration and the packet buses can be mastered by any

RFU or the IRC, and hence access to them is arbitered.

• An Event handler interprets Rx events and formats service requests for

the IRC.

• Buffers at the boundary between the MAC layer and the PHY layer

59

Chapter 3. System Architecture

translate between: 32 bit data words of the architecture and data width

required by the PHY (e.g. byte-wide in case of WiFi); and architecture

frequency and protocol frequency.

3.6.1 The Interface and Reconfiguration Controller

The Interface and Reconfiguration Controller (IRC) of the RHCP is a key

innovation of the architecture. An Interface Controller (IC) interprets CPU

commands to the RHCP, and delegates them to RFUs. A complementary

Reconfiguration Controller (RC) controls reconfiguration of the RFUs dy-

namically. The IRC controls packet to packet configuration switch in the

RHCP, and delegates tasks to the RFUs.

3.6.1.1 Structure of the IRC

The IRC is a combination of interacting controllers. At its top level (Fig. 3.4),

it has an Interface Controller and a Reconfiguration Controller. The IC

has two interface modules: one that receives the service requests from the

CPU, and the other that interrupts the MPU. The control task of the IC is

delegated to three Task Handlers (TH), one for each of the three protocol

modes that are running concurrently. Each of these task handlers is composed

of a task-handler for reconfiguration (TH R), and a task-handler for MAC

operations (TH M). These seven controllers work concurrently and, through

a combination look-up tables and mutex registers, implicit control of shared

resources is maintained. There is no single master controller.

The Look-up Tables: The IRC maintains two tables, one static and the

other dynamic, to interpret and respond to service requests. The first, static

table is the op code table (Table 3.3). For each op-code, it has a field for

the RFU and its configuration state which that op-code corresponds to. The

other, dynamic table is the rfu table (Table 3.4) that maintains the status

of the RFUs. This table has a number of fields for each RFU indicating

whether the RFU is in use, the current configuration state of the RFU, and

60

Chapter 3. System Architecture

In
Interface

Generate
Interrupt

Task Handler A

Reconf’n MAC

Task Handler B

Reconf’n MAC

Task Handler C

Reconf’n MAC

Interface
C ontroller

R
ec

on
fi

gu
ra

tio
n

C
on

tr
ol

le
r

Op-Code
table

RFU-
table

Arbiter

Arbiter

Handshake Signals

MPU Interface

Bus
Requests

Bus Grants/
‘Done’ from RFUs

Packet
Bus

Reconf’n
Bus

Figure 3.4: The Interface and Reconfiguration Controller

the status of any queued requests for that RFU. The output from the tables

is compatible with the 32-bit hardware architecture.

The op code table can be hardwired at fabrication time, but in the interest

of future-proofing the architecture, it would be best implemented in Flash /

Electrically Erasable Programmable Read-Only Memory (EEPROM) so the

it can be updated by a designer at compile time.

The rfu table on the other hand is a dynamic table and needs to be in

a Random-access memory (RAM). It is quite possible to implement it as

a memory-resident data structure in the packet memory. I have chosen to

model it as a separate physical memory in the prototype. The reason is that

the main data memory (i.e. the packet memory and the associated packet -

bus is already a contentious resource7, with the IRC and the RFUs vying for

access, and having to wait while another protocol mode uses them. Having a

7Refer to section 5.5 where the interconnect bottleneck is discussed.

61

Chapter 3. System Architecture

separate physical memory for the rfu table (in close proximity to the IRC)

allows one protocol mode to look up the tables and carry on operations in

its task handler, while another protocol mode may concurrently be using

the packet memory to carry out its tasks.

Table 3.3: The op code table

Field Size
(bits)

Number of Pos-
sible Values

Description

op code (Key) 8 256 Tells IRC which service is re-
quested.

nargs 4 16 The number of arguments
that need to be passed to the
relevant RFU to execute the
op code

rfu id 8 256 Identity of the RFU that cor-
responds to this op code.

reconf state 4 16 The configuration state in
which the RFU should be to
execute this op code.

config vector 2 4K The relative address for load-
ing configuration data. Not
used in prototype.

3.6.1.2 Functionality of the IRC

A request for service from the software triggers a series of RFUs to execute

their task, but not before they are reconfigured for that particular task.

An op-code corresponds to a request for service from an RFU in a particular

reconfiguration state. One software request may consist of multiple op-codes,

and hence the request may be termed a super -op-code. A super-op-code

request initiates a sequence of operations in the IRC. Its interface module

receives the request and passes it on to one of the three task handlers. The

TH R cycles through the op-codes in the super-op-code, looking up the op -

code table and rfu table for each op-code. It invokes the RC if an RFU is

in the wrong state. The RC then triggers the RFU and reconfigures it to the

required configuration. As soon as the TH R has cleared the first op-code of

62

Chapter 3. System Architecture

Table 3.4: The rfu table
Field Size

(bits)
Number of Pos-
sible Values

Description

rfu id (Key) 8 256 Identity of RFU. Key for the
table.

c state 4 16 The current state of the RFU.
A value of 0 indicates RFU
has not been initialized.

nstates 4 16 Number of different valid con-
figuration states for the RFU.

in use 1 2 Indicates whether RFU is free
or in use.

Qreq1 2 4 Indicates which first protocol
mode has a request queued
for this RFU. 0 indicates no
pending requests. (Two re-
quests can be queued, served
on a first-come first-served ba-
sis in the prototype).

PrQreq1 2 4 Indicates the priority of re-
quest 1. Not used in the pro-
totype. See description for
Qreq1.

Qreq2 2 4 Indicates which second proto-
col mode has a request queued
for this RFU.

PrQreq2 2 4 Indicates the priority of re-
quest 2. Not used in the pro-
totype.

the super-op-code, it triggers the corresponding TH M. The TH M then reads

the op-code and the associated arguments, interprets the op-code command

using the op-code table, passes arguments to the RFUs and triggers them.

Fig. 3.5 is a Unified Modeling Language (UML) statechart diagram of a

Task-handler for Reconfiguration, and Fig. 3.6 is a UML statechart diagram

of a Task-handler for MAC. It can be seen that they go through a sequence

63

Chapter 3. System Architecture

of states that correspond to using a particular resource or waiting for a

resource to become free. The TH R, after having checked and—if required—

configured the first RFU needed to service the request from MPU, triggers

its corresponding TH M to indicate it can start.

WAIT4_OCT

GO / Read Service Request Op-code

WAIT4_RFUT

[OCT is Free] / Read OCT

[RFUT is Free] / Read RFUT

SLEEP
[RFU in use by other mode] / Queue in RFUT

USE_RFUT1
WAKE

WAIT4_RC

USE_RC_WAIT

[RC is free]

Trigger RC to
reconfigure RFU;
wait for confirmation

Update RFU
Table 'in_use';
Check its state

WAIT4_RFUT2

RC_DONE

USE_RFUT2

[RFUT is Free]

[More op-codes in Service Request]

Wait for
Op-code table
to be free

Wait for
RFU table
to be free

Wait for Reconf'n
Controller to
become available

 TRANSITION KEY

[Guard condition] / Transition Action
 Event / Transition Action

 ACRONYMS

RFU --> Reconfigurable Functional Unit
RFUT --> RFU Table
OCT --> Op-code Table
RC --> Reconfiguration Controller
TH_M --> Task Handler for MAC
TH_R --> Task Handler for Reconfiguration

GO: Event from
' In Interface'
indicating a
service request

IDLE

[RFU already in required config. state]

/ Read Next Op-Code

Figure 3.5: Statechart of Task-handler for Reconfiguration

64

Chapter 3. System Architecture

WAIT4_OCT

GO TH_M / Read Service Request Op-code

WAIT4_RFUT

[OCT is Free] / Read OCT

[RFUT is Free] / Read RFUT

SLEEP2
[RFU in use by other mode] / Queue in RFUT

SLEEP1
[RFU in use by same mode's TH_R]

TICK

USE_RFUT1
WAKE

WAIT4_PBUS

USE_PBUS
Use Packet Bus
to pass Arguments
to RFU

Update RFU
Table 'in_use'

WAIT4_RFUDONE

WAIT4_RFUT2

[RFU indicates its done]

USE_RFUT2

[RFUT is Free]

/ Send WAKE if required

[More op-codes in Service Request] / Read Next Op-code

Wait while RFU
completes its
assigned Task

Wait for
Op-code table
to be free

Wait for
RFU table
to be free

Wait for Packet
bus to become
available

GO TH_M: Event
from TH_R indicating
first RFU is ready

IDLE

 TRANSITION KEY

[Guard condition] / Transition Action
 Event / Transition Action

 ACRONYMS

RFU --> Reconfigurable Functional Unit
RFUT --> RFU Table
OCT --> Op-code Table
PBUS --> Packet Bus
TH_M --> Task Handler for MAC
TH_R --> Task Handler for Reconfiguration

Figure 3.6: Statechart of Task-handler for MAC Operations

We will look into the operation of the TH M in a little more detail, since it

explains how shared resources are used amongst the three protocols. The

65

Chapter 3. System Architecture

TH R follows a very similar sequence and a more detailed explanation of its

operation would be redundant.

The TH M, when triggered, goes through a sequence of operations as shown

in Fig. 3.6 and discussed below:

1. Triggering the TH M indicates to it that a new op-code is ready for

execution. It starts by reading the op-code from the memory-mapped

register.

2. It checks if the op-code-table is free by reading the appropriate mutex

register, waits until it is, sets the mutex variable, and looks up the entry

for the op-code in the table. It then releases the mutex

3. This lookup operation tells the TH M which RFU corresponds to the

op-code, how many arguments have to be passed to the RFU.

4. The TH M then checks if the rfu-table is free by looking up the ap-

propriate mutex register, waits until it is, sets the mutex variable, and

looks up the entry for the RFU that corresponds to the rfu-id. It

then releases the mutex

5. The in-use field from the lookup operation tells the TH M if the RFU

is free or not.

If the RFU is not free, then the TH M updates the Qreq1 field (or Qreq2

if Qreq1 is not empty) by writing the Id of the protocol mode. Then

TH M proceeds to the SLEEP state where it stays until the other TH M

using that RFU is done, and it when reads the Qreq1 field, sends a

WAKE signal to this TH M in the SLEEP state..

If the RFU is free, (or after having received the WAKE signal), the TH M

again accesses the rfu-table and asserts the in-use field.

6. Now the TH M requests master-control of the packet-bus by assert-

ing a request signal to the packet-bus-arbiter. If another protocol

mode has control of the packet-bus, then the TH M has to wait until it

becomes free.

66

Chapter 3. System Architecture

7. Once the TH M has control of the bus, it passes arguments to the RFU.

It does this by asserting its address on the packet-address-bus, which

generates a trigger for the RFU, and the argument on the data-bus.

8. The TH M passes arguments in this fashion until all arguments have

been passed.

9. The TH M triggers the RFU once more after the last argument has been

passed. This indicates to the RFU that it should now execute the task.

Since both the TH M and the RFU know exactly how many arguments

to pass/receive, the same trigger can be used to signal argument-ready

as well as start-execution.

A more generalized implementation is also possible whereby a knowl-

edge about the number of arguments is not assumed on RFU’s part, and

on the first trigger, the TH M lets the RFU know how many arguments

to expect.

10. Now the TH M waits while the RFU executes the task assigned to it. A

DONE signal from the RFU indicates that the task execution is complete.

11. The TH M again gains access to the rfu-table, and negates the in-

use field, indicating the RFU is no longer in its use. It then checks

the QreqN fields to see if a request for the RFU has been queued by

either of the other two modes in the duration that the RFU was in its

own use. If a request is indicated, the TH M sends a WAKE signal to the

appropriate mode’s TH M.

12. If there are other op-codes left in the super-op-code request, then the

TH M services them, otherwise it goes back to IDLE state.

Fig. 3.7 is a UML statechart diagram of the Reconfiguration Controller.

There is just one instance of this controller in the IRC because only one

RFU can be configured at a time. It is a simple controller that triggers an

RFU to switch to the new configuration, and waits for a confirmation from

the RFU that it has reconfigured. If the RFU is a Context-Switch RFU, then

67

Chapter 3. System Architecture

the reconfiguration is done just by the act of switching to a new context. If

it is a Memory-Access RFU—an RFU that reads configuration data from

memory on a mode-switch— then the RFU reads configuration data and lets

the RC know when it is done. The reconfiguration mechanism of an RFU is

transparent to the RC.

WAIT4_OCT

REC_REQ

TRIGGER_RCNFG_WAIT

[OCT is free] / Use OCT

WAIT4_RFUT

RFU_RDONE

UPDATE_RFUT

[RFUT is free]

/ RC_DONE

Trigger RFU
reconfiguration;
wait until its done

Update RFUT
to indicate
RFU's new state

 TRANSITION KEY

[Guard condition] / Transition Action
 Event / Transition Action

 ACRONYMS

REC_REQ --> Event from TH requesting Reconfiguration
RFUT --> RFU Table
OCT --> Op-code Table
RFU_RDONE --> Event from RFU: reconf'n completed
RC_DONE --> Event to TH: reconf'n completed

Figure 3.7: Statechart of Reconfiguration Controller

3.6.2 The Reconfigurable Functional Units

The DRMP has a pool of RFUs (Fig. 3.3). They have a uniform interface and

are responsible for carrying out the tasks requested by the CPU. The RFUs

are heterogeneous and dynamically as well as individually reconfigurable.

The functionality of the different specialized RFUs is derived from the study

of different wireless standards to see the type of operations typically carried

out.

That the RFUs are heterogeneous, coarse-grained, and function-specific—

catering to a particular domain—is what sets the DRMP apart from other

68

Chapter 3. System Architecture

RFU

Primary Trigger

Secondary Trigger

RC_enable

RC_cnfgst

Reconfiguration_data_bus

Packet_data_in_bus

Packet_data_out_bus

Packet_bus (data, address and control)

Reconfiguration_bus (address and control)

DONE

RDONE
optional

optional

Slave_trigger
optional

Figure 3.8: Interface Signals for an RFU

reconfigurable architectures like FPGAs or e.g. the Chameleon architecture

[76]. Homogeneous RFUs would be simpler to interconnect and reconfigure,

and it is also easier to map a functionality to a homogeneous architecture.

However, due to the diversity of operations that are carried out in the MAC

layers of different protocols, a single uniform functional block that could im-

plement all of them would need to be highly flexible, and would thus have re-

duced power-efficiency. Since the target is power-sensitive hand-held devices,

a better efficiency is aimed for by using a heterogeneous set of functional units

that consist of different types of logic.

3.6.2.1 Interface of RFUs

The RFUs are heterogeneous and the logic inside the RFUs will correspond

to the task they have been specialized for. There is no restriction on the size

or functionality of the RFUs and only the interface and access mechanism

has been standardized. Fig. 3.8 shows the interface for the RFUs, and as

indicated, some signals are optional.

The primary trigger is generated by a dedicated RFU trigger logic (See

section 3.6.5) that decodes the packet address bus and generates a trigger

for an RFU when the corresponding address is asserted.

69

Chapter 3. System Architecture

There is an optional secondary trigger that comes into play when RFUs

directly access one another in a master-slave fashion (see section 3.6.5).

The RC en (Reconfiguration enable) and RC cnfgst (Reconfiguration state)

signals are used by the Reconfiguration Controller to configure the RFUs.

(See section 3.6.2.2)

The Memory-Access RFUs have the reconfiguration data bus as input to

read configuration data, and can assert the reconfiguration address bus.

All RFUs can write on the packet address bus and the packet data in -

bus. Since RFUs can both write to, and be written to, on the packet bus,

both the packet data out bus and the packet data in bus (latched) are

inputs to the RFUs. (See section 3.6.3).

Although there is a separate packet data out bus and packet data in -

bus in the prototype model, they can implemented as single multiplexed bi-

directional packet bus, which would result in reduced interconnect overhead.

All RFUS have a DONE signal to indicate that they have finished the task

assigned to them, and an RDONE signal to indicate that they have reconfigured

(See section 3.6.2.1).

3.6.2.2 Reconfiguration of RFUs

The RFUs in the DRMP are function-specific, and the degree of flexibility

required by an RFU will vary. This would depend on the extent of similarity

of functionality between the different protocol standards that use that RFU.

Some RFUs may be quite general-purpose having LUTS. Some RFUs may

be slightly flexible by changing some parameters, and some RFUs could be

configured simply by changing a control signal.

In general, the RFUs are meant to be function-specific with limited flexibility,

and this leads to power-efficient reconfiguration because they need relatively

less configuration data when compared with general purpose configurable

logic blocks based on look-up tables.

While there is a central Reconfiguration Controller (part of the IRC)

70

Chapter 3. System Architecture

that gives the commands to the RFUs to configure to a certain mode, the

RFUs carry out their own configuration and signal the IRC when they are

done by asserting the RDONE signal. The actual reconfiguration mechanism

can be one of two, and is transparent to the Reconfiguration Controller.

The RFUs can be reconfigured either by a context-switching mechanism

(Context-Switching RFUs or CS-RFUs) or by loading configuration data

from a memory, i.e Memory-Access RFUs (MA-RFUs).

The memory access mechanism allows RFUs to access configuration data

autonomously through the dedicated reconfiguration bus and reconfig-

uration memory. This will result in the overhead of control logic needed by

an RFU to generate signals for the reconfiguration bus. The RFUs will

store configuration vectors in local registers that will be loaded at startup. It

is also possible to pass these configuration vectors as arguments by the IRC.

This overhead of control logic in each RFU for configuration memory ac-

cess can be minimized through means of an intermediate Memory manager

module. E.g. it could abstract the interface of the associative reconfigura-

tion memory and present a simple stack interface to the RFU. The memory-

manager could be configured at startup, and during operation, the RFUs

could simply pop reconfiguration data from the memory.

RFUs implementing the context-switching reconfiguration mechanism will be

configured simply by switching the control signal RC cnfgst. The RFU will

still respond by asserting the RDONE signal, albeit much quicker (in 1-2 clock

cycles) than an MA-RFU would. Note though that to the IRC’s reconfiguration

controller, the reconfiguration mechanism will remain transparent. It will still

reconfigure the RFU through a combination of RC cnfgst and RC en signals,

and wait for the RDONE signal from the RFU.

By default, RFUs will be assumed to be MA-RFU, unless one or more of the

following apply, in which case they would be implemented as a CS-RFU:

• Small RFUS for which the reconfiguration memory access overhead

may become relatively large.

71

Chapter 3. System Architecture

• Time-critical RFUs for which little time is available to reconfigure.

• For RFUs where there is little reconfiguration data, it may be more

power-efficient to store the data as on-chip contexts at start-up, rather

than initiate a memory access mechanism just for the sake of transfer-

ring e.g. a few bytes of configuration data.

3.6.2.3 RFU Partitioning

The DRMP architecture leaves the door open for incorporating a variety

of functionality, flexibility and granularity of RFUs. The choice of RFUs

is in itself an interesting investigation, and will depend on the domain tar-

geted, as well as the requirements of flexibility vs. power efficiency8. In

general, the RFUs in the DRMP are meant to be function-specific, flexible,

and coarse-grained. While the architecture on the whole is reconfigurable,

the RFUs may be better termed as parameterizable since they are expected

to be heterogeneous and function-specific, with small variations allowed to

make them work for different protocol standards. Rabaey [72] also proposes

parameterizable functional units, though not in a MAC-layer context.

As for choosing the functionality and granularity of RFUs, two possible ap-

proaches were considered:

1. Identifying the design space, simulating benchmark applications on all

the design points and then judging the outcomes based on specified

metrics of power-efficiency [1]. Though this approach does have a

clear optimization advantage, it is a very time-consuming task—a re-

search avenue of its own. It was not deemed a suitable expenditure of

research effort since it would have shifted focus away from the archi-

tecture modeling at a system level.

2. The other approach, chosen for the DRMP architecture design, is a

heuristic, relatively less formal approach. I looked at overlaps in differ-

ent wireless MACs, and studied other publications discussing Hardware

8In section 4.3, this trade-off is discussed in context of a platform DRMP architecture.

72

Chapter 3. System Architecture

/ Software partitioned MAC implementations [65, 85, 77, 28, 62]. Then

the following steps lead to a suitable choice of RFUs:

(a) Start with the assumption that the more coarse-grained an RFU

the better it is for the power-efficiency. The more fine-grained an

architecture is, the more will be the routing area overhead [29].

(b) In the first iteration, the focus was on functional blocks that would

be needed to implement a WiFi MAC9. Though prior research was

investigated to identify functions that need hardware acceleration,

the granularity was set by the criteria that an RFU will be as

coarse-grained as possible. The limiting factor would be that it

should carry out its complete task in response to a single service

request from the software implemented protocol state machine.

An RFU should not have to stop in the middle of its operation

to wait for an update from the protocol control. The criteria is

important because the RFUs are shared between three concurrent

protocols modes. Holding an RFU without using it, while CPU

carries out protocol control operations, is not a feasible solution.

(c) After this first, WiFi oriented, ‘seed’ partitioning of the RFUs, the

second and then the third protocol are introduced. The guiding

criteria being that an existing RFU is broken down into (two or

more) smaller RFUs in the situation where the only way to reuse

the resources of that RFU is to break it down into smaller RFUs,

one or more of which can be re-used for the other protocols. If a

functionality is encountered that is entirely new, then a new RFU

9WiFi has been chosen as the baseline protocol for the sake of convenience. It is
possible that taking the other protocols as baseline would lead to a better partitioning.
E.g. consider a protocol that is investigated at the end of this partitioning exercise, and
a new RFU is added for a functionality needed by it. If that protocol would have been
considered earlier, it is quite possible that this RFU would have been deemed suitable
for re-use by another protocol considered afterward, perhaps by partitioning it into two
smaller RFUs.

This potential snag in the approach can be overcome by doing a second iteration after
partitioning result of the first round. This second iteration would look at the RFUs added
for the protocols other than the baseline protocol, and investigate if any of these RFUs
can be re-used, as-is or broken down, for another protocol.

73

Chapter 3. System Architecture

is added based on the criteria in step (b).

(d) For future-proofing, flexible, general-purpose RFUs may be added.

This aspect is discussed in section 4.3

Taking this approach will yield a suitable set of RFUs for the DRMP. It is a

top-down approach, starting from coarse-grained RFUs and breaking them

into smaller units only when needed. Since DRMP addresses power-sensitive

devices, such an approach will result in a near-optimal solution in context.

3.6.3 Memories and Interconnect

The RHCP needs data storage for two main purposes: First, to store and

work with packet data, and its intermediate forms. Note that packet data

of three different modes need to be available. Second, to store configuration

data for the RFUs.

A number of possibilities for the memory architecture exist:

1. Single memory for all modes’ configuration and packet data. (1 mem-

ory)

2. Separate physical memory for each mode. (3 memories)

3. Separate physical memory for configuration data and for packet data.

(2 memories)

4. Separate physical memory for each mode’s configuration data and packet

data. (6 memories)

The advantages and disadvantages of these options are discussed in Table 3.5.

I have chosen option 3. This gives two advantages: It allows concurrent

operation on the configuration data and the packet data. Hence one RFU

can configure itself while another RFU carries out operation on the packet

74

Chapter 3. System Architecture

data. It also implies that one can optimize each memory according to its

requirement.

The packet-memory is modeled as a dual-port memory so that one port can

be dedicated to the CPU which needs to access packet data to carry out

its control operation. Hence, while one mode may be accessing packet-data

in the RHCP (e.g. RFU carrying out encryption), another mode may be

reading header data and carrying out control operations through the CPU.

Fig. 3.9 shows a tentative memory-map of the packet-memory. The interface

registers for communicating data and control information between the RHCP

and CPU are mapped to the packet-memory. And while the lookup tables in

the IRC are presently modeled as separate physical memories inside the IRC

(again, to allow one mode to carry out control operations in the IRC which

requires accessing the lookup tables, while another mode to concurrently

access packet data through an RFU), it is also possible to map these tables

to the packet-memory. This will save area and power, and with the time-

slack available (see section 5.4), it may be the more appropriate option. One

address from the packet-memory is mapped to each RFU and is used to

address an RFU to pass arguments or trigger it.

Packet data of various modes is stored in pages to minimize address-house-

keeping; making use of the fact that packet-data in the packet-memory will be

stored and retrieved in predictable patterns. This is true because at any one

time, for one protocol, only one packet will be stored in the packet-memory,

in the process of being transmitted or received. Buffering of packets will be

done in transmit and receive First In, First Out Memories (FIFOs). Due

to protocol constraints, one can easily fix the maximum size the a packet-

data of a protocol can take at any time. Thus one can fix page-sizes for

packet-data in the memory for the worst-case scenario (largest packet size),

with each page corresponding to a certain stage the data is in while it is

being processed, e.g. post-fragmentation, post-encryption etc. The starting

address of packet-data at various stages is hence completely fixed, and the

RHCP’s IRC or the CPU are relieved from any memory-management tasks.

E.g. the starting address of data to be encrypted for protocol A will always

75

Chapter 3. System Architecture

Packet Data of various modes
stored in pages to minimize
address-housekeeping, albeit at
the cost of potential memory-
wastage. An intermediate
memory-manager could both
minimize address house-keeping
as well as keep the memory use
optimal.
Packet data is concurrently
accessible to the CPU through a
second port. The CPU would
however only access the header
data because only control
operations have been paritioned
to it.

One address from the packet-
memory is mapped to each RFU
and is used to address an RFU to
pass arguments or trigger it.

`

CPU Interface Registers
Interface and Reconfiguration

Controller (If tables are memory-
resident)

RFU1
RFU2
RFU3

.

.

.
RFUn

Mode A, Page 1

Mode A, Page 2

. . .

Mode A, Page n

Mode B, Page 1

Mode B, Page 2

. . .

Mode B, Page n

Mode C, Page 1

Mode C, Page 2

. . .

Mode C, Page n

CPU accesses the RHCP for data
and control through memory-
mapped interface registers

Figure 3.9: Packet Memory’s Map

be the same for the entire operation of the device.

Since the page sizes are fixed for the maximum packet size, there is a potential

waste of memory. An intermediate memory-manager module could both

minimize address house-keeping as well as keep the memory use optimal.

76

Chapter 3. System Architecture

Packet data is concurrently accessible to the CPU through a second port.

The CPU would however only access the header data because only control

operations have been partitioned to it.

In terms of interconnect requirements, all RFUs need to be accessible by the

IRC. All RFUs also need read and write access to the packet memory. The

MA-RFUs will also need read access to the config memory to read config-

uration data. Direct, peer-to-peer communication should also be possible

amongst the RFUs, even though the RFUs primarily communicate through

the memory.

It is important to point out here that the RHCP reconfigures packet-to-packet.

This means that at any one time, the RHCP is catering to the MAC functions

of any one mode. Although it is quite straightforward to extend the archi-

tecture’s features to include true concurrent operations of multiple modes in

the hardware co-processor, in view of the time-slack (See section 5.5) and

the requirements for power-efficiency, such an approach was considered an

overkill. Hence it was decided that there was no need to provide for concur-

rent processing of packet data on the RHCP. With this in mind, the most

straightforward communication architecture was a simple bus-based archi-

tecture that provided full-connectivity, shared through time-multiplexing by

multiple modes. As a result though, the interconnect becomes the bottleneck

for the performance/throughput as well, as discussed in section 5.5.

The RFUs are all connected via a single-bus network that also connects

them to the packet memory. They are each assigned an address, and an

address decoder translates write operation to these addresses into triggers

for the RFUs. An interesting aspect of the architecture is that the IRC or

any of the RFUs can become a master of the packet-bus. A bus arbitration

block manages the multiple potential masters for the buses. Hence the same

packet-bus can be used for:

• The IRC writing data to RFU,

• The IRC writing data to the packet memory,

77

Chapter 3. System Architecture

• An RFU writing data to the packet memory or

• An RFU writing data to another RFU.

A separate configuration memory has been designed in the RHCP, and a

separate connection route is available to this memory. This allows one RFU

to carry out its reconfiguration while another carries out its MAC task, as

has been discussed in the operation of the IRC in section 3.6.1. It is worth

pointing out that while the packet memory and bus is 32-bits wide in the

prototype, there is no reason why the reconfiguration memory and bus

be the same. There is not enough information at this point to evaluate

the configuration data throughput requirement, but considering the limited

configuration data required by the function-specific RFUs, it is quite likely

that a 16-bit or even a byte-wide configuration may be sufficient to provide

the required configuration throughput at 200 MHz, the clock frequency at

which the prototype architecture model is simulated. A reduced interconnect

is also in-line with the requirements of optimizing power-efficiency for this

architecture.

In section 5.5, it is discussed how the interconnect is the throughput bottle-

neck, because of which a time-multiplex sharing of RFUs has to be enforced.

While a single-bus network has been shown (see section 5.4) to be enough

for 3 concurrent protocol modes with a bandwidth of 20 Mbps at a moderate

clock frequency of 200 MHz, it may become a bottleneck for faster proto-

cols. Increasing clock frequency may not be a feasible option in view of strict

power constraints of hand-held devices. In such a case, other interconnect

options may also be considered. One could simply increase the bus-width

for higher throughput. A multi-bus network [100] may be used to allow two

or three RFUs to simultaneously function for different protocol modes. A

segmented bus [100] could also achieve similar results, with lower resources

but with some additional control operations involved.

Fig. 3.3 which is a block diagram of the RHCP shows how the IRC, the

memories, and the RFU pool are interconnected. Fig. 3.10 goes inside the

RFU pool to show the interconnect between the RFUs and with the IRC (IRC

78

Chapter 3. System Architecture

RFU_1

RFU_2

RFU_3

RFU_n

Reconf’n
Bus

Arbiter

Packet
Bus

Arbiter

DONE / RDONE signals
To IRC

Address, Data
and Control to

packet_memory

PHY Interface signals

Bus Request / Grant signals
From / to IRC

Address, Data
and Control to

reconf’n_memory

Packet_data_bus

Reconfiguration_data_bus

Control Signals from IRC
Trigger, Reconf’n trigger and state

Packet_bus
signals

From RFUs

Reconf’n_bus
signals

From RFUs

Master / Slave
Trigger

Figure 3.10: Connection between the RFUs

79

Chapter 3. System Architecture

block not shown). Note that neither of these figures represent the expected

topology of the components in silicon, but represent the logical layout of the

components and the interconnect.

All RFUs are fed by the reconfiguration-data-bus and the packet-data-

bus. Control signals from the IRC are also input to all RFUs. These signals

include a trigger for initiating task, and a trigger for initiating reconfigura-

tion, unique for each RFU. A common signal indicates to the relevant RFU

the configuration state it is to switch to.

At the output, each RFU can access the packet-bus and the reconfigura-

tion-bus through arbiters. The arbiters are connected to the IRC through

request / grant signals. Each RFU has a DONE and a RDONE signal going to

the IRC, to indicate the completion of a task or reconfiguration.

It is pertinent to point out that the interconnect network design, while fea-

sible and adequate, is not the result of exhaustive research of interconnect

possibilities and a comparative analysis. Future work could yield better al-

ternatives to the one used in the prototype. E.g. according to [100], a

hierarchical interconnect network delivers the best energy efficiency while

maintaining flexibility for heterogeneous reconfigurable systems.

3.6.4 Arbitration

The presence of three asynchronous task-handlers that can run concurrently,

each having two independent and asynchronous controllers, leads to the pos-

sibility of contention on some shared resources like the look-up tables, the

RFUs and the interconnect. The contention on the tables is handled by using

mutex variables that a task-handler asserts when it is reading a table. The

contention over an RFU is handled by a Sleep/Wake and queuing mechanism,

as discussed in section 3.6.1.

In context of the interconnect, there is no contention on the reconfigu-

ration bus as there is just one Reconfiguration controller and hence there

cannot be multiple over-lapping requests for the reconfiguration bus. The

80

Chapter 3. System Architecture

B
u
s_
M
a
st
e
r_
1

B
u
s_
M
a
st
e
r_
2

B
u
s_
M
a
st
e
r_
3

B
u
s_
M
a
st
e
r_
n

B
u
s_
o
u
t

S
e
le
ct
io
n

M
U
X

M
U
X

B
u
s

A
rb

it
ra

ti
o
n

Lo
g
ic

B
u
s_
R
e
q
u
e
st
_M

o
d
e
_1

B
u
s_
R
e
q
u
e
st
_M

o
d
e
_2

B
u
s_
R
e
q
u
e
st
_M

o
d
e
_3

B
u
s_
G
ra
n
t

D
e
la
y
e
d

B
u
s_
G
ra
n
t

O
v
e
rr
id
e

B
u
s_
G
ra
n
t

B
u
s

G
ra

n
t

Lo
g
ic

G
ra

n
t

O
v
e
rr

id
e

Lo
g
ic

Figure 3.11: Arbiter for the Packet Bus

81

Chapter 3. System Architecture

packet bus however may be requested by any of the three concurrent task -

handlers for an RFU’s use, and hence there is a packet bus arbiter in the

Hardware Co-processor. The structure and functionality can best be under-

stood from its block diagram in Fig. 3.11.

The Bus Arbitration Logic decides which of the bus requests should be served.

In the prototype, mode 1 has the highest priority and mode 3 the lowest, but

this can vary.

The Grant Delay Logic has been introduced because the IRC — which nor-

mally has control of the packet bus and makes the bus request on behalf of

an RFU — needs the bus to trigger the RFU so that it can take control the

bus. The trigger is generated by asserting the address of the RFU on the

packet bus. The Grant Delay Logic delays the updated bus grant signal to

the new RFU until the IRC has triggered that RFU by asserting its address

on the address bus. This logic is shown in Fig. 3.12. The Grant Delay Logic

block detects a change in the input Bus-grant signal (coming from the Bus

Arbitration logic), and then checks if this bus request is from an RFU. If it

is, it waits until that RFU is triggered, before changing the output bus-grant

signal to the new input value. If the request is from the IRC or the bus-grant

signal has been reset, then there is no need to wait and the output is updated

immediately.

The Grant Override Logic is relevant to the master-slave scenario and is

discussed in section 3.6.5.

3.6.5 RFU Trigger Logic and Master-Slave Mechanism

All the RFUs in the RHCP are assigned a unique address (See Fig. 3.9

showing the packet-memory’s map). A trigger-logic module (Fig. 3.13)

decodes this address and generates a trigger if an RFU is addressed on the

packet-bus. In the prototype model, the trigger-logic module looks for

address between a hard-wired range of addresses. It then calculates the ID

of the addressed RFU by calculating the offset of the asserted address from

a known base-address. This works because the RFUs are assigned addresses

82

Chapter 3. System Architecture

IDLE

TRIGGER WAIT

[Change Detected in Input Bus-grant signal]

[Request from an RFU]

/ Bus-grant-out =
Bus-grant-in

[Request from IRC OR
Bus-grant Reset]

[Detect RFU Trigger]

Figure 3.12: Bus Grant Delay Logic

sequentially from a base address in an ascending order of their ID numbers.

In certain situations however, this primary trigger mechanism is not enough.

RFUs typically operate on a block of data (packet/fragment) and then the

IRC hands over control to another RFU. It was observed however that some

RFUs will need to interact with another RFU on every word. Involving the

IRC to switch bus control back and forth between the two RFUs would have

resulted in unnecessary overhead.

Also, although an RFU can directly trigger another RFU by asserting its

address on the packet-address-bus, there arose situations where an RFU

would be reading data from a memory while requiring another RFU to pro-

cess this data10. Since the packet-address-bus is being used by the first

RFU to read the memory, it cannot use the same bus to generate a primary

trigger for another RFU concurrently.

10E.g. in the prototype model, the Transmission RFU, while reading data from the
packet-memory, requires the CRC RFU to read this data too and internally update the
checksum value.

83

Chapter 3. System Architecture

RFU Trigger Logic

RFU_Trigger_1

RFU_Trigger_2

RFU_Trigger_3

RFU_Trigger_n

Write_enable

Packet_address_bus

IDLE

SEND

[Write Enable Asserted]

[Address in RFU Range] / RFU ID = Current Address - RFU Base Address

/ Assert Trigger to RFU

/ Negate Trigger to
RFU

(a) RFU Trigger Block Diagram

(b) RFU Trigger Logic

Figure 3.13: RFU Trigger Generation Module

84

Chapter 3. System Architecture

To overcome this problem, the RHCP implements a master / slave mecha-

nism whereby an RFU can become the master of another RFU, triggering it

directly on a secondary trigger (Fig. 3.8) rather than through asserting the

second RFU’s address on the address bus and generating a primary trigger.

Having identified the need to implement a secondary trigger mechanism, the

following design options were considered:

1. Changing the trigger-logic. Storing the address-table in the trigger-

generator in a RAM, and dynamically updating it as required. The

slave RFU would be allocated the address range that the master RFU

intends to access in the packet-memory to read data. In this way,

whenever the master RFU read data from the packet-memory, the

slave RFU would be triggered simultaneously.

2. Having a secondary address-bus that addresses RFUs only. A separate

trigger-generation logic would be needed to decode the addresses and

generate an RFU trigger. The secondary address-bus will need to be

log2N bits wide, where N is the number of RFUs. Since there are

a limited number of coarse-grained RFUs, this bus should be quite

narrow, and certainly less than byte-wide.

3. Hard-wired peer-to-peer trigger lines between potential master-slave

pairs.

These three options are shown in Fig. 3.14. Note that only the signals relevant

to the generation of trigger for a slave RFU are included in this figure. The

complete interconnect is shown in Fig. 3.10

In the current prototype, I have chosen option 3 (Fig. 3.10). This hard-

wired approach has been taken because—the DRMP being a domain-specific

architecture—only a limited number of master-slave pairs were identified. A

more general-purpose secondary trigger mechanism like the other two option

was considered unnecessary overhead.

85

Chapter 3. System Architecture

Master
RFU

Packet
Memory

Trigger
Control

Slave
RFU

Address

Data

Primary Trigger

Dynamic
Address LUT
Updates From

IRC

Master
RFU

Packet
Memory

Trigger
Control

Slave
RFU

Data

Primary Trigger

RFU_Address

Address

Master
RFU

Packet
Memory

Slave
RFU

Address

Data

Secondary Trigger
(Peer-to-peer)

(a) IRC Updates Lookup-table so that slave
RFU is triggered when Master read from

Memory

(b) Master asserts slave’s address on the
secondary ‘RFU_Address’ bus, and Trigger

Control generates trigger for slave

(c) Master directly triggers slave through a
dedicated, secondary trigger line (Trigger-logic

not relevant hence not shown)

Used in the prototype
DRMP model

Figure 3.14: Different Options Considered to Allow a Master RFU to Con-
currently Access Memory and Trigger a Slave RFU

86

Chapter 3. System Architecture

An issue arises here of handing over the bus control to a slave RFU by a

master RFU. Bus grants are normally handled by the IRC, which can assert

the Id of the relevant RFU on a bus request signal to the bus arbiter. A

mechanism was needed for an RFU to hand over bus access to another RFU.

For this purpose, a Bus Grant Override module has been introduced in the

packet bus arbiter (Fig. 3.11). An RFU can override the current bus-grant

(to itself, by the IRC), and grant it to another RFU. It would mean the slave

access mechanism is still transparent to IRC, and it is elegant because only

the RFU that already has access to the bus can override the grant and give

it to another RFU. Hence there is no chance of a contention.

The master-RFU asserts a reserved override-address on the packet-address-

bus, while asserting the Id of the slave RFU on the packet-data-bus. The

grant-override-logic inside the packet-bus-arbiter detects this address

and overrides the current grant signal to the arbiter mux by asserting a new

select signal corresponding the override request. Once the slave has used

the bus, assertion of override-address by it will be detected by the grant-

override-logic which will hand the bus back from the slave-RFU to RFU

that was originally master of the bus.

Note that although the secondary trigger option is a hard-coded mechanism,

the architecture still has the capability for any RFU to transparently request

service of any other RFU, since all RFUs are addressable through the address

bus. Only simultaneous access to a slave RFU and the memory (or two slave

RFUs) is limited by hard-wired mechanism.

By selecting appropriate interface signals (see Fig. 3.8), an RFU by can be

designed to work as:

• Master only (no input secondary trigger),

• Slave only (no primary input trigger and no output trigger)

• Neither master or slave (no input secondary trigger, no primary input

trigger, and no output trigger)

87

Chapter 3. System Architecture

• Both master or slave (all signals present)

3.6.6 Event Handler and Interface Buffers

The Event-handler is a simple block that interprets Rx events (Fig. 3.3). If

a packet is to be received, it formats a service request. A service request to

the IRC can thus originate from the either the CPU or the Event-handler.

The source of the request is transparent to the IRC.

Buffers are needed at the boundary between the MAC layer and the PHY

layer. The DRMP is to work with three concurrent modes, and it manages

this because the Hardware Co-Processor has a high throughput as it works

on 32-bit data words at frequencies higher than required by the protocol.

The interface with the PHY module has to be at protocol frequency however.

The transmission and reception RFUs cannot work at the frequency required

by the protocol because their use is multiplexed between multiple concurrent

protocols. The problem is solved by introducing translational buffers between

the MAC and PHY for each of the three modes. These buffers translate

between 1) 32 bit data words of the architecture and data width required

by the PHY (e.g. byte-wide transfer in case of WiFi); and 2) architecture

frequency and protocol frequency.

Fig. 3.15 shows the control flow of the transmission buffer controller that syn-

chronizes between the interface with the PHY, and the interface to the DRMP

architecture (see Fig. 3.3 for context). The buffer control is implemented as

two asynchronous interacting state-machines. One side of the buffer inter-

acts with the DRMP at the architecture frequency and data width, quickly

carrying out the data transaction and leaving the DRMP free to cater to an-

other concurrent protocol mode. The other side of the buffer interacts with

the PHY, transferring data at the frequency and data-width required by the

protocol.

The interface signals for the PHY layer need some elaboration. Each protocol

will have its unique signals for interface between the PHY and MAC. Two

88

Chapter 3. System Architecture

IDLE

/ Initialize buffer pointer

SEND

ACK

END

[DRMP indicates SOP] / increment PSC

[DRMP sends data] / Store data in Buffer

[DRMP indicates EOP] / increment PFC
/ACK data to

DRMP

/ACK EOP to
DRMP

IDLE

ACK

BYTE

ACK2

[SPC not equal to PSC] / Tx-Start to PHY

[ACK from PHY]

/ Send Byte to PHY

DECISION

[ACK from PHY]

/ Clear Byte Counter

[Packet Not Complete]

[Bytes left in Word] /
Increment Byte Counter

[ACK from PHY]

END

[Packet Complete] / Tx-End to PHY,Increment SPC

 TRANSITION KEY

[Guard condition] / Transition Action

 ACRONYMS

SOP --> Start of Packet
EOP --> End of Packet
PSC --> Packets Started Counter
SPC --> Sent Packets Counter
PHY --> The Physical Layer
DRMP--> The MAC Processor

(a) DRMP-side Control (b) PHY-side Control

Figure 3.15: Transmission Buffer Control

approaches can be taken to implement this interface in the DRMP, as shown

in Fig. 3.16:

1. A general interface to the PHY layer provided by the DRMP. It will be

up to the SoC designer using the DRMP IP to introduce the appropriate

wrapper to interface the PHY signals with the signals available at PHY

interface of the DRMP.

2. General-purpose reconfigurable logic interface to the PHY, programmed

by hardware designer at fabrication time to comply with the expected

89

Chapter 3. System Architecture

DRMP

PHY
A

PHY
B

PHY
C

Protocol
Wrapper A

Protocol
Wrapper C

Protocol
Wrapper B

Generalised
Interface Signals

Protocol-Specific
Interface Signals

PHY I/F PHY I/F PHY I/F

(a) External Wrapper for PHY Interface
Implemented by SoC Designer in Fixed or

Reconfigurable Logic

Fixed or
Reconfigurable Logic

DRMP

PHY
A

PHY
B

PHY
C

Protocol
Wrapper A

Protocol
Wrapper C

Protocol
Wrapper B

Generalised
Interface Signals

Protocol-Specific
Interface Signals

PHY I/F PHY I/F

(b) Internal Wrapper for PHY Interface in
Reconfigurable Logic

Reconfigurable Logic

PHY I/F

Figure 3.16: Two Possible Options for Implementing PHY-Interface Wrapper
Logic

protocols. This approach will offer flexibility, with no separate physical

wrapper module required. On the flip side, overheads of introducing

general-purpose logic will be incurred.

90

Chapter 3. System Architecture

In the DRMP prototype model, I have used the second approach. This

way, the choice of implementing the wrappers in reconfigurable logic (for

flexibility) or fixed logic (for efficiency) is left to the SoC integrator.

91

Chapter 3. System Architecture

Option Advantages Disadvantages
1. Single
Memory for
all three
modes’ con-
figuration
and packet
data

Reduced interconnect com-
pared to options 2–4.
Reduced area compared to
options 2–4.

Intermodal reconfiguration
data access vs. packet data
access contention.
Intermodal packet data vs.
packet data access contention.
Cannot optimize configura-
tion and data memories sep-
arately.

2. Separate
memory for
each mode.
Combined
configura-
tion and
packet mem-
ory in each
mode (3
memories)

Each memory can be opti-
mized for its corresponding
mode.
Interconnect can be opti-
mized for each mode.
Reduced interconnect and
area compared to option 4.
Avoid contention on packet
or configuration data between
modes.

Overhead of 3 separate phys-
ical memories.
Cannot optimize memory for
configuration data vs. packet
data.
Inside one mode’s operation,
contention on reconfiguration
data vs. packet data remains.
DRMP expected to operate
on one mode at any time
for most of its active time,
so having separate memories
for each mode may not be a
worthwhile overhead.

3. Separate
memory for
configura-
tion data
and packet
data (2
memories)

Can optimize configuration
memory and packet memory
and their respective connec-
tions separately as required.
Will allow one mode to access
configuration and packet data
concurrently.
Reduced interconnect and
area compared to options 2
and 4.

Contention remains between
modes. Two modes can-
not both access configuration
data or packet data at the
same time.
More area and interconnect
compared to option 1.

4. Separate
configura-
tion data
and packet
data mem-
ory for each
mode (6
memories)

Avoid all contention between
modes or inside a mode be-
tween configuration data ac-
cess and packet data access.
Optimize memories and inter-
connect for each mode and
their configuration and packet
data separately

Most resource consuming op-
tion in terms of area and in-
terconnect requirements.

Table 3.5: The pros and cons of various memory arrangement options con-
sidered for the DRMP.

92

Chapter 4

Using the DRMP Architecture

The DRMP is a flexible, programmable architecture. The architecture’s de-

sign has been presented in some detail in Chapter 3. In this chapter, the

focus will be on how a designer would use the DRMP IP for implementing a

choice of protocols on a particular device.

The chapter starts with the important question of Programmability: how

would a programmer go about using the DRMP? What sort of API func-

tions will be available? Next it will briefly discuss two other aspects of the

DRMP that are an important part of its complete definition. First is the

expected use of extended Instruction Set Architectures. It will be discussed

why such an approach needs to be considered for the DRMP. Next it will

discuss the evolution of DRMP as a Platform Architecture, providing choice

to the designer to derive it in an optimum way for their particular applica-

tion. Lastly it will be shown what an implementation with the DRMP looks

like, compared against a conventional implementation without the DRMP.

4.1 Programming Model

An important issue that has emerged in context of reconfigurable architec-

tures is that the performance gain they offer is balanced out by the difficulties

93

Chapter 4. Using the DRMP Architecture

in their programming [10]. Realizing this, considerable effort was devoted in

refining a programming model of the DRMP that is simple to understand

and use, and will enable meeting the strict time-to-market constraints that

wireless system designers face. In this section this model is explained.

Because the DRMP is designed to handle multiple protocol streams in par-

allel, the structure and flow of the software in the DRMP is different from

a conventional, single protocol software / hardware partitioned implementa-

tion. The Reconfigurable Hardware Co-Processor is capable of handling three

parallel packet streams, which implies implementation of the three protocols’

control on a single CPU.

To implement the three protocols’ control in a single CPU, an option would

have been to go along the traditional route where an Operating System (OS)

Kernel (or a customized scheduler) would schedule three processes, corre-

sponding to the three protocols, on a single processor. It was felt however

that a different software implementation approach will be needed to accom-

modate three protocol implementation streams in the software, yet keep it

as light-weight as possible, with minimum overhead.

I have proposed a unique interrupt-driven software structure that allows the

control of the three protocols to be implemented on a single processor with

minimal administrative/scheduling overhead. Each protocol’s high-level con-

trol, partitioned to software, is implemented as an interrupt-handler routine.

Fig. 4.1 shows the structure of the two approaches discussed.

The interrupt-handler for a protocol mode loads the current state of the

protocol state-machine when invoked. It then runs the state-machine to the

next state, where it either requests service from the Hardware Co-processor,

or—if it is a terminal state—returns results to the application processor

(e.g. acknowledge successful transmission, or interrupt to indicate successful

reception).

94

Chapter 4. Using the DRMP Architecture

4.1.1 The Interrupt-Driven Protocol Control

As discussed in the section on partitioning (Section 3.5), part of MAC func-

tionality — primarily its control logic — has been partitioned for software

implementation. The effort has been to minimize the functionality that needs

to be partitioned to the software, to the point where the software is left re-

sponsible primarily for updating the protocol state-machine, while perform-

ing some small datapath operations required for making protocol control

decisions.

As a result of this focus on minimizing software processing, the interrupt-

handler of a protocol mode has very little functionality left to perform. When

invoked, it has the current state of the protocol state-machine available in

a memory-resident data-structure, accessible through a pointer available at

a fixed location. Depending on its current state, it executes the protocol

state-machine to the next state, invokes the RHCP for a service request,

updates state data, and exits. It may be that it is at a terminal state,

having completed a transmission or reception, and instead of making another

service request from the RHCP, the Interrupt-Handler would would make the

appropriate acknowledgment to the Application Processor.

In the prototype model, WiFi transmission and reception have been modeled,

which is discussed in Chapter 5. On each invocation, the Interrupt-handler

has very limited tasks to perform. It has to implement some control logic,

at times make some changes in the header data, and then simply request

a service from the hardware. It can be seen how each invocation would be

completed in a few instructions. This is essential in an architecture like the

DRMP where three protocol modes would be vying for access the the CPU.

If a mode interrupts the CPU while it is already servicing another mode, the

brevity of the interrupt-handler will ensure that — while the second mode

will have to wait for access to the MPU — the real-time protocol constraints

of the second protocol are not violated because of having to wait for ac-

cess the the shared CPU. It is possible to implement a priority mechanism

whereby the interrupt from a higher priority protocol—higher priority per-

95

Chapter 4. Using the DRMP Architecture

RHCP
(Hardware Co-Processor)

MPU

Process Scheduler
(OS Kernel)

Protocol Control A

API

Protocol Control B Protocol Control C

In case of Interrupt, Interrupt
Handler passes control to

Scheduler / OS

(a) Protocol Control of the
three standards

implemented in single
processor as processes

scheduled on the processor
by an OS or custom

scheduler.

MPU

Protocol Control A Protocol Control B Protocol Control CIdle Main

Interrupt_A

Interrupt_B

Interrupt_C

API

RHCP
(Hardware Co-Processor)

(b) Protocol Control of the
three standards

implemented as interrupt
handlers on a single

processor.

In case of Interrupt,
the appropriate

handler is invoked,
which executes the

protocol control

Figure 4.1: Programming Model Alternatives

haps because it is servicing real-time data—would pre-empt another mode’s

interrupt handler.

4.1.2 API

The usability of the DRMP architecture depends a lot on how conveniently

programmable it is. Time-to-market is an overriding concern for developers

targeting the consumer wireless device market.

The architecture of the DRMP lends itself very well to allow convenient, high-

96

Chapter 4. Using the DRMP Architecture

level programmability where the architecture of the Hardware Co-Processor,

its parallelism, and the contention on shared resources is completely hidden

from the programmer. DRMP is a domain-specific architecture and hence

its hardware co-processor provides implementation of a limited set of func-

tions, targeted at MAC implementations. This limitation of flexibility means

that the programmer writing code for the DRMP also has less flexibility to

deal with. E.g. if the hardware co-processor is composed of FPGA logic,

the development effort would have to include Hardware description language

(HDL) coding of accelerator functions. In the DRMP, all the programmer

has to do is to chose a function from an available set, its parameters, and its

arguments.

The programming of DRMP will get more complicated if more general-

purpose reconfigurability is intended. This aspect will be discussed in sec-

tion 4.3.

Fig. 4.2 and Fig. 4.3 presents a pseudo-code of how the API for programming

the DRMP is expected to look, with comments. The function Request -

RHCP Service is used in the prototype model to access hardware services. It

formats a super-op-code request for the RHCP co-processor when invoked.

The super-op-code is then stored in the memory-mapped interface register

appropriate for the relevant protocol mode, and the hardware co-processor

is triggered. The RHCP receives this request, configures RFUs as required,

executes the service request, and interrupts the CPU when it is done. Fig. 4.4

shows how this API may be used by in an interrupt handler to access the

RHCP.

From Fig. 4.2, it can be seen how easy it is for a software programmer

to implement a protocol on the DRMP. The protocol’s higher control is

implemented in much the same way as it would for a traditional full-software

implementation, modifying slightly to fit it in the interrupt-driven protocol

state-machine. Then, simply by calling the Request RHCP Service function

with appropriate arguments, large chunks of functionality are partitioned

to the hardware co-processor. Since the RFUs in the RHCP are function-

specific, the programmer does not even need to write software code for large

97

Chapter 4. Using the DRMP Architecture

+ //==
// Pseudo-C++ API for Programming the DRMP
//==

// DRMP namespace encanpsulates the API objects and functions
namespace DRMP {

//-----------------------------
// The ProtocolState Class
//-----------------------------
// A ProtocolState Class object maintains the
// state of a protocol for use across interrupt-calls
// The contents shown in the following definition are taken
// from the ProtocolState structure definition in Matlab-code
// used in the Simulink model simulating a subset of WiFi
// protocol. A more representative and comprehensive class
// definition may contain more elements. The programmer will
// can inherit and modify as required by the protocol.

class ProtocolState {
 my_state ;// State variable

my_id ;// Protocol ID (1, 2 or 3)
 base_pointer ;// Base address for this

 // protocol in packet memory
 fragmentation_threshold ;// …
 MacHdrLng ;// Size of header
 PGSIZE ;// Size of page in packet memory
 Header_Offset_Fieldn ;// where n is name of header

 // field. Gives offset from
 // packet’s base address for
 // that header field

rx_pdu_count ;// received packet count
 tx_pdu_count ;// transmitted packet count
 psdu_size ;// size of packet to be sent
 fragments_total ;// …
 fragments_counter ;// …
 next_fragment_size ;// …
 last_fragment_size ;// …

 // fixing base address and page size means these
 // pointers are static

msdu_pointer ;// pointer, packet to be sent
 epointer ;// pointer, data to be encrypted
 fpointer ;// pointer, data to be fragemented
};

}// DRMP namespace

Figure 4.2: API for Programming the DRMP

98

Chapter 4. Using the DRMP Architecture

 //==
// Pseudo-C++ API for Programming the DRMP (continued)
//==

// DRMP namespace encanpsulates the API objects and functions
namespace DRMP {

//-----------------------------
// The cDRMP Class
//-----------------------------

// A cDRMP object contains the state of all three
// protocol modes as ProtocolState Variables, and
// the API-function used to request Hardware Service

class cDRMP {
 ProtocolState PSA;
 ProtocolState PSB;
 ProtocolState PSC;

 DRMP (...) : PSA(...), PSB(), PSC() {
 //...
 }

 retval_t Request_RHCP_Service(...)
};

// This function formats a service request
// to the hardware co-processor
cDRMP :: retval_t Request_RHCP_Service(Protocol ID ,

 Command_Code,
 ARGUMENT 1 ,

 ARGUMENT 2 ,
 .
 .

 .
 ARGUMENT n)

{
 Clear_Interface_registers() ;

switch (Command_Code)
{
 case (Command_Code_1):
 switch(Protocol_ID)
 {

case 1: // Write to interface registers
 // the op-odes and the arguments

 case 2: // Same for protocol 2
 case 3: // Same for protocol 3
 }

 case (Command_Code_2);
 // and so on for all command codes
}

}

}// DRMP namespace

Figure 4.3: API for Programming the DRMP (continued)

99

Chapter 4. Using the DRMP Architecture

 //==
// Pseudo-C++ showing API usage
//==

using namespace DRMP;

 // Declare and initialize a DRMP object

 DRMP drmp(...);

 // In the Interrupt-handler, access the DRMP object
 // to update protocol state and call API function to
 // request service from hardware

 drmp.PSA.attribute=...;

 drmp.Request_RHCP_Service (Protocol ID ,

 Command Code ,
 ARGUMENT 1 ,
 ARGUMENT 2 ,
 .
 .
 .
 ARGUMENT n);

Figure 4.4: Using the API

parts of the functionality. E.g. instead of coding the encryption algorithms

in software, the programmer will simply choose one of the many command

codes which refers to the type of encryption needed. The command codes are

provided as part of the API, and correspond to a particular service request for

the hardware co-processor. The programmer will use the chosen command

code as an argument to the Request RHCP Service function, which passes on

the service request to the hardware, and it may be considered as a hardware

function. The encryption algorithm is already present in the hardware in the

form of a function-specific RFU.

The simplicity of the DRMP’s API is linked to the function-specific nature

of the RFUs. The choice of RFUs and their degree of flexibility will eventu-

ally determine the programming effort required. It may be that a particular

derivation of the DRMP has RFUs containing FPGA logic (see section. 4.3),

in which case the designer will have to program the hardware functionality,

or import a third-party (Intellectual Property (IP), so that the synthesized

bit-stream is available for the RFU to load when it needs to reconfigure.

100

Chapter 4. Using the DRMP Architecture

Even then, assuming the RFU interface standardized for the DRMP is main-

tained, the software programmer’s view of the RHCP will remain simple and

straightforward.

In the prototype model, and the investigation for three protocols (as dis-

cussed in Chapter 5), I have found that such general-purpose reconfigurable

RFUs may not be needed, unless future-proofing for unknown protocols is a

requirement too.

4.2 Extended Instruction Set Architecture

As discussed in earlier, the DRMP’s interrupt-driven software model assumes

that very little functionality will be carried out in the CPU on each invo-

cation. This is necessary to ensure each of the three protocol modes has

ready access to the CPU when needed, without having to clock the CPU at

frequencies so high that its power-efficiency degrades beyond being suitable

for hand-held devices.

A clean partition of control and datapath operations between software and

hardware would have fulfilled this requirement quite well.

From the investigation into the three MACs, I encountered an issue. It is not

possible to partition all datapath operation to the RFUSsss. E.g. operations

like masking, comparison, filtering are short datapath operations that do not

need to access the payload data. They are also quite protocol-specific and

hence not similar in different protocols. Implementing them in the RHCP

would require very flexible logic to accommodate the differences in the pro-

tocol. Also, the RFUs are meant to be coarse-grained, and implementing

these small tasks in independent RFUs with their overhead of interface logic

and interconnect would have been an inefficient solution.

Implementing these functions in software, while providing the flexibility,

would have been cycle-intensive, taking up a considerable clock cycles. The

need is to minimize the time a protocol mode uses the CPU so that it is

available to service the other two modes.

101

Chapter 4. Using the DRMP Architecture

The proposed solution is to have a CPU with an extended instruction set

architecture (ISA). The operations that are:

• not suitable for RHCP because they are not large enough for a coarse-

grained RFU, or not similar enough in different protocols, and

• not suitable for software implementation on the native architecture

because they will take too many instructions,

will have a dedicated instruction in the CPU’s ISA. The corresponding func-

tional unit will be added in the processor’s pipeline. More investigation is

needed to determine what instructions need to be implemented in the ex-

tended ISA.

4.3 The DRMP as a Platform Architecture

During the early stages of investigation, the DRMP was envisaged as a Plat-

form Architecture, with an abstract base architecture that is derived by de-

signers into a real design as dictated by their own specific requirements. Later

research then focused on a three-protocol specific architecture and forms the

primary subject for this thesis. However, the vision for a platform architec-

ture was revisited later and it is discussed briefly in this section. Further

investigation in this area can make the DRMP a truly commercial and en-

during platform architecture.

4.3.1 Platform-Based Design

The Platform-Based Design (PBD) approach to SoC design allows the de-

signers to start with a pre-designed and verified SoC platform that has been

designed for a specific type of application. The Virtual Socket Interface Al-

liance (VSIA)1 describes a platform as [93]:

1The VSIA became defunct in 2008, and has been superseded by the Open Core Pro-
tocol International Partnership Association (OCP-IP).

102

Chapter 4. Using the DRMP Architecture

“A platform comprises an integrated and managed set of com-

mon features upon which a set of products of product family can

be built. In the SoC context, it is a library of Virtual Compo-

nents (VCs) and an architectural framework consisting of a set of

integrated and prequalified software and hardware VCs, models,

Electronic design automation (EDA) and software tools, libraries

and methodology to support rapid product development through

architectural exploration, integration and verification.”

and a platform-based design as:

“Platform-based design is an integration-oriented design ap-

proach emphasizing systematic reuse, for developing complex prod-

ucts based upon platforms and compatible hardware and software

VCs, intended to reduce development risks, costs, and time-to-

market.”

A platform design can be technology-driven, architecture-driven or applica-

tion-driven. A platform’s target application spectrum can be quite broad or

quite narrow, depending on the requirements of the application domain. A

platform has a Foundation Block along with a library of pre-verified Virtual

Components, and a derivative design can be designed in view of the specific

requirements. Fig. 4.5 shows the typical route for creating such a derivative

design. Interested readers are referred to [83, 78, 22] for more discussion on

platform-based design methodology.

4.3.2 Evolving DRMP into a Platform Architecture

There are three main reasons for proposing that the DRMP be evolved into a

platform architecture. They are interdependent and are elaborated as follows:

1. While investigating the three protocol MACs for deriving a suitable set

of RFUs, it was observed that there is some functionality in the MAC

103

Chapter 4. Using the DRMP Architecture

New VC

VC Authoring

Foundation
Block Design

Derivative
Design

Platform
Design

Methodology

Derivative
Design

Methodology

Staged Level Platform Level Derivative Chip

Sub-block requests

Optimised
Sub-block

Peripheral
Block

Authored
Sub-block

Foundation
Block,
Peripheral
Block

VC Library

VC = Virtual Component

Figure 4.5: Flow of Hardware Design in Platform-Based Design Methodology
[90]

protocols that requires hardware acceleration, yet is completely unique

to each protocol. It was mostly control-logic dominated, like ARQ and

ACK generation that fell into this category. This presented a problem

because the RFUs were meant to be function-specific, reconfigurable

or parameterizable to accommodate small variations from one protocol

to another. Hence, to implement hardware accelerator functions that

were unique to each protocol, it was decided that one of two approaches

could be taken:

One could include a certain area of FPGA-logic in the hardware co-

processor and these could be programmed by a hardware designer at

design-time. The other option was that the designer could include

fixed-logic RFUs for the specific protocols in question at design time.

Both these approaches fit in quite well with a platform-based design

104

Chapter 4. Using the DRMP Architecture

approach, where the designer would take the foundation-block (the

DRMP), and either add FPGA-logic and program it, or add fixed-logic

RFUs. These add-on IPs could be custom-built, or could be taken from

a library of Virtual Components that have been verified to work with

the DRMP.

2. If we look at the two options considered in point 1, the first option of

including FPGA-type general-purpose reconfigurable logic makes the

device more future-proof but less power-efficient. The other option of

including specialized RFUs for a certain set of protocols will result in

a more rigid device that is also more power-efficient. Each designer

using the DRMP IP will have his or her own constraints for a specific

application, and will be designing to hit a certain trade-off between

flexibility and power-efficiency. A platform-based approach to using

the DRMP thus leaves the designer the flexibility to choose the more

flexible or the more power-efficient functional-units, thus enable hitting

the sweet spot where the balance of flexibility and power-efficiency is

optimal for the specific application intended.

3. While the prototype model has been investigated in view of three pro-

tocols only, the DRMP design effort always had as an objective the

design of an almost universal MAC processor that could be used for

current and future MAC protocols. A platform architecture allows the

flexibility to derive the DRMP for new protocol versions in very short

time periods, since the designer will be starting from a pre-designed

and verified platform. So, while some hardware design effort for intro-

ducing new protocols is not completely eliminated, a platform-based

design approach gives a reasonable middle-ground where derivative de-

sign for a specific target device can be made with comparatively very

little design effort.

The above three points resulted in a convincing case for the evolution of

the DRMP as platform architecture. Rabaey et al. [73] also propose the

platform-based design methodology as the solution to meet the strict wireless

105

Chapter 4. Using the DRMP Architecture

communication design requirements in energy consumption, cost, size and

flexibility, with a short time-to-market. It could follow a design approach

as presented in figure 4.5. The VC library could contain pre-designed and

verified RFUs that designer could choose make an optimal derivative design

for their specific requirements. Even the extended-ISA feature of the CPU

could be customized for each derivation, if required. The platform IP could

be accompanied by a software development environment and a prototyping

tool to further reduce the design effort. A platform-based design thus fits

in very nicely with an architecture like the DRMP, and if the platform and

accompanying tools are further investigated and matured, a very practical

commercial IP can be realized.

4.4 An Example of DRMP Application

In this section, it will be shown how the DRMP can be used in a typical

multi-standard wireless consumer device using a certain set of protocols (Wifi,

WiMAX and UWB). It will be compared to a conventional implementation

that does not involve the DRMP. The RFUs needed for the protocols will be

discussed. This section links with chapter 5 where results of a Wifi-specific

simulation of a prototype Simulink model of the DRMP are presented.

It is assumed that three protocol MACs that need to be implemented are

WiFi, WiMAX and UWB (IEEE Std. 802.11, 802.16 and 802.15.3 respec-

tively). The device could be any consumer wireless device. The applica-

tion processor generating and consuming data, or the implementation of the

PHY layer are not of concern. It is assumed that the end user may gener-

ate/consume data on multiple protocol modes in parallel, e.g. using WiFi to

access the internet while using UWB for accessing another peripheral device.

In this context, it will be discussed how a hypothetical conventional imple-

mentation would look like, and then it will be compared with the equivalent

implementation using the DRMP. Note that while the conventional imple-

mentation is a hypothetical one, a timing-accurate DRMP model simulates

this scenario and the results are discussed in Chapter 5.

106

Chapter 4. Using the DRMP Architecture

4.4.1 A Conventional Implementation

A conventional implementation can take a number of forms. The assump-

tion for this comparison exercise is that a hardware / software partitioned

approach has been taken to implement all three protocol MACs. The control

logic is implemented in a CPU, while a fixed-logic hardware accelerator im-

plements the datapath operations. Each MAC implementation is a separate

IP.

It may be quite possible to implement the MAC functionality in a CPU and

do away with the hardware accelerators, or even implement all the three MAC

processors in a single high-performance CPU. Another possibility might be

to use FPGA-logic to implement the hardware accelerators. However, the

power constraint of a hand-held device makes both solutions unfeasible. The

conventional implementation approach has thus been assumed, which is most

likely to be taken where power-efficiency is an overriding concern, which

would be the case for a consumer hand-held device.

Fig. 4.6 shows a block diagram of such a conventional implementation, where

each protocol is implemented in a separate chip or IP, partitioned between a

CPU and hardware accelerator. Panic et al. [65] and Sung [85] have presented

system-on-chip single protocol implementations of WiFi and WiMAX respec-

tively. It is compared with an equivalent implementation using a DRMP,

which is discussed in the following section.

4.4.2 Implementation on DRMP

The DRMP clearly partitions the control operation and the data-path oper-

ations such that the CPU is only left to deal with control-logic tasks. This

partition allows a single CPU to implement the control logic of three pro-

tocol modes without having to clock at frequencies that are too high for a

power-sensitive device.

A single hardware co-processor in the DRMP caters to all three protocol

modes and reconfigures on a packet-by-packet basis. The quick processing

107

Chapter 4. Using the DRMP Architecture

DRMP

Dynamically Reconfigurable Hardware Accelerator

Application Processor

Driver A Driver B Driver C

MAC Processor A

CPU
(Control Logic A)

Hardware
Accelerator A

MAC Processor B

CPU
(Control Logic B)

Hardware
Accelerator B

MAC Processor C

CPU
(Control Logic C)

Hardware
Accelerator C

PHY A

(a) Conventional Implementation of a Multi-
Standard Wireless Device

PHY B PHY C

If flexibility is
desired for
future-proofing,
the entire MACs
may be
implemented in a
high-performance
CPU. Another
option would be
to use FPGA-
logic to
implement the
hardware
accelerator(s).

Application Processor

DRMP Driver

Accelerated
Tasks B

Accelerated
Tasks A

Accelerated
Tasks C

CPU
(Control Logic A, B and C)

PHY A PHY B PHY C

The CPU implements
the control-logic in
an interrupt-driven
manner. The
Hardware Co-
Processor can
reconfigure packet-
to-packet to service
packets of different
protocol modes.

(b) Implementation of a Multi-Standard Wireless
Device Using the DRMP

Figure 4.6: Implementation of three different MAC protocols in a multi-
standard, power-sensitive wireless device (Conventional Implementation vs.
Implementation Using DRMP)

108

Chapter 4. Using the DRMP Architecture

enabled by hardware acceleration of key tasks allows these tasks to be carried

out in a fraction of the packet duration. Hence, while functional units in

the hardware co-processor are together processing any one protocol mode

at a time (time-multiplex sharing), the hardware co-processor on the whole

handles three data streams of three protocol modes concurrently.

The control-logic is implemented in an interrupt-driven manner that allows

three protocol modes to use a single CPU to execute their control logic with-

out the overhead of a scheduling mechanism.

See Fig. 4.6 where an implementation with the DRMP is shown against a

conventional implementation.

4.4.2.1 Sequence of Functions

To illustrate the unique operations of the DRMP, and how it is different from

a conventional implementation, a sequence diagram is shown in fig. 4.7 for

two modes requesting service from the same RFU one after the other, as they

both attempt to transmit a packet. The complete operation is not shown in

the sequence diagram, but it can be seen how the various entities inside the

DRMP interact in a way that works for three protocol modes simultaneously

transmitting (only two shown for clarity).

109

re
ad

In
t_

A
In

t B
In

t C
IR

C
_M

ai
n_

C
on

tr
ol

TH
_A

TH
_B

TH
_C

R
_C

on
tr

ol
R

FU
_1

Pa
ck

et
-M

em

tr
ig

ge
r

R
FU

Ta
bl

e
O

C
Ta

bl
e

R
EC

_R
EQ

rc
_r

fu
en

_1

co
nf

ig
_r

ea
d

re
ad

G
O

re
ad

 a
nd

 a
ss

er
t i

n-
us

e R
D

O
N

E

w
rit

e_
cs

ta
te

R
EC

_O
K rf

ue
n_

1

M
A

C
_p

ac
ke

t_
w

rit
e

D
O

N
E

ne
ga

te
_i

nu
se

 a
nd

 fi
nd

 q
ue

ue
d

re
qu

es
t

D
O

N
E

in
te

rr
up

t

C
on

fig
-M

em
M

ai
n

ca
ll

D
R

M
P

-C
PU

D
R

M
P

–
H

ar
dw

ar
e

C
o-

Pr
oc

es
so

r

Application Processor

ca
ll

tr
ig

ge
r

G
O

re
ad

 a
nd

 fi
nd

 R
FU

 b
us

y

W
A

K
E

re
ad

 a
nd

 a
ss

er
t i

n-
us

e

R
EC

_R
EQ

co
nt

in
ue

s
co

nt
in

ue
s

co
nt

in
ue

s

F
ig

u
re

4.
7:

S
eq

u
en

ce
d
ia

gr
am

sh
ow

in
g

op
er

at
io

n
s

th
at

ta
ke

p
la

ce
w

h
en

tw
o

p
ro

to
co

l
m

o
d
es

ar
e

tr
an

sm
it

ti
n
g

p
ac

ke
ts

si
m

u
lt

an
eo

u
sl

y

Chapter 4. Using the DRMP Architecture

4.4.2.2 RFUs for WiFi, WiMAX and UWB

As a result of investigation of MAC commonalities, precedent research, and

using the partitioning logic discussed in section 3.6.2.3, a pool of RFUs has

been implemented in the prototype DRMP model that caters to a WiFi MAC

implementation. The two other protocols are also investigated, WiMAX

(IEEE Std. 802.16) and UWB (IEEE Std. 802.15.3). Section 2.3.2 dis-

cusses all three protocols, their similarities and differences, and appendix B

elaborates.

The RFUs expected to be incorporated to make the DRMP function for the

three protocols, are discussed in Table. 4.1. The RFUs specific to WiFi have

been abstractly modeled in the prototype model, while the RFUs for the other

two protocols have been investigated only. Further investigation is needed

to determine the most suitable set that can service not only these three

protocols, but also other protocol MACs that may require implementation

on the device. The scope for innovation is quite extensive in the investigation

for optimal RFUs and their implementation, and is outside the scope of this

thesis. There is some interesting work available that may be investigated for

designing function-specific reconfigurable RFUs for DRMP. E.g. Pionteck et

al. [69] present a dynamically reconfigurable function-unit for error detection

and correction in mobile terminals. The same authors have presented a

reconfigurable encryption engine for mobile terminals [68].

Table 4.1: RFUs expected to be used for WiFi, WiMAX and UWB

RFU Protocol-

Relevance

Functionality and Remarks

Make-

Frame RFU

WiFi, WiMAX

and UWB

Creates a basic frame by copying data

from a source location to the packet-

memory, and appends a header to it. Its

operation is similar to a DMA controller.

111

Chapter 4. Using the DRMP Architecture

continued from previous page

RFU Protocol-

Relevance

Functionality and Remarks

Fragmen-

tation RFU

WiFi, WiMAX

and UWB

Reads a packet from the packet-memory

and stores it back in fragments, repeat-

ing the header for each fragment.

Defrag-

mentation

RFU

WiFi, WiMAX

and UWB

Reads fragments of a packet from the

packet-memory and stores it back as a

single fragment that can be read by the

upper layers.

Crypto-

RFU

WiFi, WiMAX

and UWB

Encrypts and decrypts the incoming and

outgoing data as required. This can

be expected to be a complex RFU that

caters to to various encryption algo-

rithms as required by the three protocols

(i.e. RC4, DES, 3DES, AES). The simi-

larity of different algorithms may be used

to incorporate units (inside this RFU or

as a separate RFU) that best exploit this

similarity. As an example, Logger et al.

[51] propose a reconfigurable encryption

unit that can implement three different

encryption algorithms; RC4, DES and

3DES, while Pionteck et al. [68] present

the design of a reconfigurable encryption

engine for the AES algorithm supporting

all key lengths.

112

continued from previous page

RFU Protocol-

Relevance

Functionality and Remarks

Redundancy

Check RFU

WiFi, WiMAX

and UWB

Reads, creates and verifies redundancy

data like CRC which is required by all

three protocol modes. RFUs for encryp-

tion, decryption, transmission and recep-

tion would use this RFU to carry out the

redundancy creation and verification op-

eration they require. Pionteck et al. pro-

pose a reconfigurable function-unit for

error detection and correction in mobile

terminals [69, 70].

Transmission

RFU

WiFi, WiMAX

and UWB

Reads packet fragments from the packet-

memory, calculates and appends the re-

dundancy check value (using the CRC-

RFU), and then transmits the data to

the transmission buffer. The transmis-

sion buffer in turn conveys the data to

the PHY layer, via a protocol compliant

wrapper.

Reception

RFU

WiFi, WiMAX

and UWB

Receives data from the reception buffer

(which is receiving data from the PHY

via a protocol compliant wrapper), cal-

culates and validates the redundancy

check value, and stores the data in the

packet-memory.

ACK Con-

trol RFU

WiFi and UWB MAC protocols some times require ACK

packets to be sent very quickly. This

dedicated RFU would generate and

transmit ACK packets quickly without

involving the CPU. Such an RFU would

eliminate the need for high-performance

CPU to create ACKs quickly. Such

an RFU is specially relevant in the

Immediate-ACK scheme of UWB.

Chapter 4. Using the DRMP Architecture

continued from previous page

RFU Protocol-

Relevance

Functionality and Remarks

ARQ RFU WiMAX Automatic-repeat request functionality

can be partitioned to a dedicated RFU

which uses a local timer to determine

when to to re-send a packet

Pack/Unpack

RFU

WiMAX The opposite of fragmentation, this RFU

would take multiple packets from mem-

ory and package them into a single

packet.

Timer RFU WiFi, UWB and

WiMAX

Time-keeping operations are very com-

mon in MAC protocols, e.g. keeping

track of Inter-frame spaces in contention-

access mechanisms. A single timer of

the maximum required accuracy of the

three modes along with some combina-

torial logic could serve the needs of all

protocol modes.

Table 4.1 links with the section 5.4 where the WiFI-specific RFUs are mod-

eled in a prototype Simulink model, and the simulation results presented.

As discussed in section 4.2, the Instruction-set architecture of the CPU would

also be extended to include some MAC-specific functionalities like mask

read/write operations, comparators and duplicate detectors, pseudo-random

number generators, back-off calculation specific arithmetic logic, etc. The

details of a suitable ISA extension have not been investigated and is outside

the scope of this thesis.

114

Chapter 4. Using the DRMP Architecture

4.4.2.3 The Interrupt-Driven Software Implementation of MAC

Control

In section 4.1, it was discussed how the DRMP has a unique interrupt-driven

mechanism for implementing the protocol control of three MACs on a sin-

gle CPU. Fig. 4.8 and Fig. 4.9 show a WiFi-specific pseudo-code of such

an interrupt-handler showing the transmission of a packet. The complete

protocol implementation will have other control flows as well related to man-

agement operations. The other two protocol modes will have similar flows.

This chart links with section 5.4 where the WiFi-specific control flow is sim-

ulated as MATLAB code.

+ //==
// Pseudo-Code of Interrupt Handler that Implements
// Wifi MAC control (Transmission only) and uses DRMP API
// to access Hardware Co-Processor (continues)
//==

//-----------------------------
// State Encoding
//-----------------------------

// Every time the interrupt handler for Wifi is invoked
// it is in one of the following states (Transmission only).
// After executing some control logic, the state is
// updated and contol passed to the RHCP or to the
// Application Processor.

sIDLE = 1;// Reset state, no state info
sINIT = 2;// Protocol state-machine has been initialized,
sIHEADER = 3;// State to write basic header
sMKFRAME = 4;// State to make basic frame with payload
sFRAGMENT = 5;// State for making Fragmentation request
sENCRYPT = 6;// State for encryption
sENCRYPT_POST = 7;// Post-encryption processing state
sTRANSMIT = 8;// State for tranmission
sTRANSMIT_POST= 9;// Post tranmission

Figure 4.8: Pseudo-code of interrupt handler that implements Wifi MAC
control (transmission only) and uses the DRMP API. This figure shows the
state-encoding.

115

//===
// Continued: Pseudo-Code of Interrupt Handler that Implements
// Wifi MAC control (Transmission only) and uses DRMP API
// to access Hardware Co-Processor
//===
//---
// Interrupt Handler for MAC Protocol A
//---
switch(PSA.state)
{

case sIDLE:
 Initialize_PSA_structure();

PSA.state = sINIT;

case sINIT:
 // On receiving request from LLC
 Validate_request_parameters();
 Update_PSA_structure();

PSA.state = sIHEADER;

case sIHEADER:
 Write_basic_header_in_mem();
 Initialize_pointers();

PSA.state = sMKFRAME;

case sMKFRAME:
 // Request RHCP to read LLC packet data
 // and store a basic frame in packet memory
 Request_RHCP_Service(CommandID, ProtocolMode, ARGS);
 PSA.state = sFRAGMENT;

case sFRAGMENT:
 Calculate_number_of_fragments();
 Initialize_fragment_counter();
 Calculate_first_fragment_size();
 Initialize_encryption_pointer();

// Request RHCP to fragment packet
 Request_RHCP_Service(CommandID, ProtocolMode, ARGS);
 PSA.state = sENCRYPT;

case sENCRYPT:

Update_fragment_counter();
// Request RHCP to encrypt packet

 Request_RHCP_Service(CommandID, ProtocolMode, ARGS);
 PSA.state = sENCRYPT_POST;

case sENCRYPT_POST:
 Update_header_of_fragment();
 if (more fragments left in this packet)
 Update_next_fragment_size();

PSA.state = sENCRYPT
 else
 Reset_fragment_counter()
 Calculate_first_fragment_size();

 PSA.state = sTRANSMIT

case sTRANSMIT:
Update_fragment_counter();
// Request RHCP to calculate CRC and trasnmit to PHY

 Request_RHCP_Service(CommandID, ProtocolMode, ARGS);
 PSA.state = sTRANSMIT_POST;

case sTRANSMIT_POST:

if (more fragments left in this packet)
 Update_next_fragment_size();

PSA.state = sTRANSMIT;
 else
 Interrupt_Host_Indicate_Transmission_Complete()

 PSA.state = sIDLE;
}

Figure 4.9: Pseudo-code of interrupt handler that implements Wifi MAC con-
trol (transmission only) and uses the DRMP API. This figure shows protocol
state-machine.

Chapter 5

Modeling and Simulation

A prototype model of the DRMP SoC has been designed in Simulink. In this

model, three packets, of three different protocol modes1have been successfully

transmitted and received concurrently. The model’s abstraction is discussed

in this chapter, along with the tools used, and then the results of simulation

runs are presented, their implications discussed.

Although a route to implementation in silicon has been considered, it was

not the main purpose of the modeling effort. The model was designed to

present a proof-of-concept of the architecture, to show that the unique de-

sign of the DRMP is capable of packet-by-packet reconfiguration to process

three concurrent protocol data streams, while the overheads and the clocking

frequency are kept low enough to make it feasible for hand-held devices.

5.1 Development Tools

The choice of development tools was an important and interesting decision

for this project. From the onset it became clear that the development envi-

ronment will have to cope with some unique requirements of this project:

1For the prototype, all three protocol ‘modes’ are actually implementing simplified Wifi
functionality, but I assume they are different protocols and reconfigure the RFUs whenever
there is a protocol mode switch.

117

Chapter 5. Modeling and Simulation

1. The project had a wide scope — a complete SoC for MAC is a complex

and large IP, and implementing it in Register transfer level (RTL) would

have been impractical in the life-time of an Engineering Doctorate.

2. The DRMP is a completely new and innovative architecture that has

been designed from scratch. Trials and corrections were expected dur-

ing the course of its development. The development tool should have

allowed that in a convenient way.

3. In some ways the architecture is a traditional hardware / software par-

titioned SoC. It was expected that for many parts of the SoC, there

was a very good option already available in the form of some precedent

research or a commercial IP. As such, all parts of the SoC design were

not ‘innovative’. It was decided therefore that the prototype model

would be kept at high-abstraction in general and only those parts of

the architecture would be detailed at a lower abstraction that added

value to the project and were innovative. This consideration implied a

development environment that supported a co-simulation environment

for different abstractions.

In view of the above considerations, SystemC was initially chosen to de-

velop the model, and its Transaction-Level Modeling library was considered

very useful. However, the Matlab and Simulink environment was eventually

considered more suitable for these considerations. The Stateflow toolbox

provided by Simulink proved very useful in modeling the control flow in the

DRMP. Toolboxes like Link for ModelSim, Stateflow Coder and Simulink

HDL Coder provide a convenient route to full implementation as well [55].

Another benefit of using a graphical tool like Simulink was that it made it

very easy to visualize a block-level view of the architecture. The visualization

assisted in the design of and improvements in the architecture, and also made

it easier to share and discuss amongst the people the involved in the research

effort. The control-flow visualization provided by Stateflow assisted in a

similar manner.

118

Chapter 5. Modeling and Simulation

5.2 Abstraction Level

The functionality is modeled at various levels of detail. The timing is cycle-

approximate. The bus-interface is approximate but more detailed than a

transaction-level model.

The model approximates the actual timing quite closely. E.g., when trans-

ferring a block of data, the required number of clocks are spent rather then

doing a block transfer on a single clock tick. The interface amongst the var-

ious blocks, though not pin-accurate, is also defined in considerable detail.

The point to note is that although the modeling is done on a tool capable of

various levels of abstraction, the route taken reveals detailed information in

two key areas: timing results and interconnect requirements2. Both of them

are the more critical indicators of the architecture’s success or otherwise. On

the flip side, one can make but vague approximations about the area and

power of the DRMP from this model of the architecture. However, a first-

order approximation is still possible, enough to decide if the area and power

usage is low enough for hand-held devices (See section 6.1).

Functional abstraction is not uniform across the model. The tasks parti-

tioned to software, primarily the high-level protocol state-machine, are mod-

eled with very little detail. Same goes for some operations in the hardware.

E.g. the encryption RFU is a dummy functionality-wise, but it spends the

required number of clock ticks for each byte (3 clock ticks / byte according

to [46]). But components like the Interface and Reconfiguration Controller

are modeled in much more detail, and little design effort will be needed to

derive the RTL design.

2The model is simulated with a clock, and for those blocks are modeled at high ab-
straction or as stubs, clock cycles are wasted to ensure an accurate timing estimate. The
communication between blocks is also simulated with a clock, on interconnects of defined
widths.

119

Chapter 5. Modeling and Simulation

5.3 The Simulink Model

The Simulink Model of the DRMP models a transmitting and a receiving

wireless device. A GUI can be used to set parameters like the frequency of

the protocols, the size of packet data to be transmitted, the clock frequency of

the hardware etc. A scripts initializes parameters at beginning of simulation.

Once the simulation is complete, another script collects the results, indicates

if the data was successfully received, and generates various plots that show

the behavior of the model for that simulation run—some of these plots appear

in the next section. Some snapshots from the model appear in Appendix A.

5.4 Simulation Results

On a prototype DRMP model in Simulink, successful simulations of concur-

rent transmission and reception of 3 packets, fragmented as required, were

carried out. The packets were assumed to be of 3 different protocols.

When the DRMP architecture was being designed, the decision to incorpo-

rate concurrent processing of three modes was based on the estimates that

considerable time slack will be available in the DRMP. The time taken to

process a packet was expected be considerably less than the packet duration.

This observation was used as a basis to propose that a packet-by-packet re-

configuration would be possible, and also that there would be room for power

efficiency improvement by trading off this time slack. The simulation results

confirmed the assumption as the following sections indicate.

5.4.1 Simulation Run with One Protocol Mode

Simulations were run involving transmission and reception of a Wifi packet

on the prototype model, and the results showed that the processing of packet

on the DRMP architecture indeed took a fraction of the actual duration of

the packet. Fig. 5.1 shows the output taken directly from the simulation

120

Chapter 5. Modeling and Simulation

showing the active and idle times of various blocks in the DRMP during

the transmission of a packet. It clearly indicates that various RFUs as well

as the controllers are busy for only a fraction of the duration of the packet

transmission. The RFUs do their job very quickly and store the formatted

packet in the buffer, ready to be sent, in a fraction of even the first fragments

transmission duration. The buffer then sends out these fragments (in bytes)

at the frequency expected by the protocol. The active time of the buffer in

Fig. 5.1 and subsequent figures thus represents the actual protocol packet

duration.

Fig. 5.2 shows a similar situation for the packet reception, with the RFUs

busy for a fraction of the duration of packet reception. The name of the

RFUs in these figures correspond to the RFUs discussed earlier in Table 4.1.

The size of the packet is 200 bytes, and an arbitrary fragmentation threshold

of 80 bytes results in three fragments being sent, which can be seen in the

timing diagram. The architecture is assumed to run at a frequency of 200

MHz—a realistic frequency for hand held devices. The timing axis is appro-

priately scaled to represent time in microseconds. The exchange of data with

the PHY is modeled at 20 Mbps.

The simulation results of simulating 1 mode on the prototype model were

very promising. They clearly indicated that the DRMP architecture would

be capable of handling parallel streams of data, since its various entities

were busy for only a fraction of actual packet durations. They could be

reconfigured and used for other protocols in their idle time. The idle time

also opened doors for power-efficiency improvement.

5.4.2 Simulation Run with Three Concurrent Protocol

Modes

After simulating a single protocol mode on the architecture, I then proceeded

to test the packet-by-packet reconfiguration and concurrent processing of

three protocol modes on the architecture.

121

Chapter 5. Modeling and Simulation

0 20 40 60 80 100 120 140
IDLE

BUSY

MAC Microprocessor

0 20 40 60 80 100 120 140
IDLE

BUSY

Task Handler for MAC Operations (Mode 1)

0 20 40 60 80 100 120 140
IDLE

BUSY

Reconfiguration Controller

0 20 40 60 80 100 120 140
IDLE

BUSY

RFU for Making Basic MAC Frame

0 20 40 60 80 100 120 140
IDLE

BUSY

RFU for Fragmentation

0 20 40 60 80 100 120 140
IDLE

BUSY

RFU for Encryption

0 20 40 60 80 100 120 140
IDLE

BUSY

RFU for CRC

0 20 40 60 80 100 120 140
IDLE

BUSY

RFU for Tx to PHY

0 20 40 60 80 100 120 140
IDLE

BUSY

Tx Buffer Interface with PHY (Actual Duration of Tranmission)

SIMULATION TIME IN MICROSECONDS

Figure 5.1: Activity Timing Diagram of Blocks in the DRMP Architecture
(Packet Transmission of 1 Mode)

Application processor of the transmitting device sends three packets, each

packet of a separate protocol data stream. The DRMP processes these pack-

ets one by one, reconfiguring RFUs as it switches from one mode to another,

and then stores packets in their respective transmit buffers. The receiving

device receives these packets concurrently in its buffers, the MAC processing

is done in the DRMP sequentially, the RFUs reconfigured and shared among

the three modes.

The size of the packet in each mode is 200 bytes, broken into 3 fragments.

The architecture is assumed to run at a frequency of 200 MHz. The exchange

of data with the PHY is modeled at 20 Mbps for all three modes.

Fig. 5.3 shows the output taken directly from the simulation showing the

122

Chapter 5. Modeling and Simulation

50 100 150 200
IDLE

BUSY

MAC Microprocessor

50 100 150 200
IDLE

BUSY

Task Handler for MAC Operations (Mode 1)

50 100 150 200
IDLE

BUSY

Reconfiguration Controller

50 100 150 200
IDLE

BUSY

RFU for Defragmentation

50 100 150 200
IDLE

BUSY

RFU for Decryption

50 100 150 200
IDLE

BUSY

RFU for CRC

50 100 150 200
IDLE

BUSY

RFU for Rx from PHY

50 100 150 200
IDLE

BUSY

Rx Buffer Interface with PHY (Actual Duration of Reception)

SIMULATION TIME IN MICROSECONDS

Figure 5.2: Activity Timing Diagram of Blocks in the DRMP Architecture
(Packet Reception of 1 Mode)

active and idle times of various blocks in the DRMP for the first 30 mi-

croseconds of the transmission of the three packets. Note that that while the

task-handlers and the buffers—unique to each protocol mode—run concur-

rently, the RFUs are time-multiplexed among the three protocol modes. Yet,

the packets are processed and ready to be sent in a fraction of the packet

durations. Fig. 5.4 shows a similar situation for the packet reception (with

complete packet duration shown).

Tables 5.1 and 5.2 show the actual and proportional durations that the blocks

are busy during transmission and reception. These results have been com-

pared with results from a simulation with one protocol mode. It can be seen

that e.g. RFU for encryption (which has the highest clocks/byte ratio) is ac-

tive for 12.1% of the duration of packet transmission, when all three modes

123

Chapter 5. Modeling and Simulation

The Various Blocks of the DRMP
take less than 30 microseconds
to process the 3 Packets, each
with 3 fragments each, and each
belonging to a different protocol
mode. For the rest of the packet’s
protocol duration, they are Idle.
The Activity of the various blocks
in the DRMP during the first 30
microseconds is shown in detail
below.

30 MICROSECONDS

PACKET DURATION (AT 20 Mbps) =

120 MICROSECONDS

0 5 10 15 20 25 30
IDLE

BUSY A
BUSY B
BUSY C

MAC MICROPROCESSOR

0 5 10 15 20 25 30
IDLE

BUSY A
BUSY B
BUSY C

TASK HANDLER FOR MAC OPERATIONS

0 5 10 15 20 25 30
IDLE

BUSY

RECONFIGURATION CONTROLLER

0 5 10 15 20 25 30
IDLE

BUSY

RFU FOR MAKING BASIC MAC FRAME

0 5 10 15 20 25 30
IDLE

BUSY

RFU FOR FRAGMENTATION

0 5 10 15 20 25 30
IDLE

BUSY

RFU FOR ENCRYPTION

0 5 10 15 20 25 30
IDLE

BUSY

RFU FOR CRC

0 5 10 15 20 25 30
IDLE

BUSY

RFU FOR Tx TO PHY

0 5 10 15 20 25 30
IDLE

BUSY A
BUSY B
BUSY C

Tx BUFFER INTERFACE WITH PHY (ACTUAL DURATION OF TRANSMISSION

Simulation Time in Microseconds

0 20 40 60 80 100 120 140 160
IDLE

BUSY A
BUSY B
BUSY C

MAC MICROPROCESSOR

0 20 40 60 80 100 120 140 160
IDLE

BUSY A
BUSY B
BUSY C

TASK HANDLER FOR MAC OPERATIONS

0 20 40 60 80 100 120 140 160
IDLE

BUSY

RECONFIGURATION CONTROLLER

0 20 40 60 80 100 120 140 160
IDLE

BUSY

RFU FOR MAKING BASIC MAC FRAME

0 20 40 60 80 100 120 140 160
IDLE

BUSY

RFU FOR FRAGMENTATION

0 20 40 60 80 100 120 140 160
IDLE

BUSY

RFU FOR ENCRYPTION

0 20 40 60 80 100 120 140 160
IDLE

BUSY

RFU FOR CRC

0 20 40 60 80 100 120 140 160
IDLE

BUSY

RFU FOR Tx TO PHY

0 20 40 60 80 100 120 140 160
IDLE

BUSY A
BUSY B
BUSY C

Tx BUFFER INTERFACE WITH PHY (ACTUAL DURATION OF TRANSMISSION

Simulation Time in Microseconds

Figure 5.3: Activity Timing Diagram of Blocks in the DRMP Architecture
(Packet Transmission of 3 Modes)

124

Chapter 5. Modeling and Simulation

60 80 100 120 140 160 180 200 220
IDLE

BUSYA
BUSYB

BUSYC

MAC Microprocessor

60 80 100 120 140 160 180 200 220
IDLE

BUSY
IDLE

BUSY

Task Handler for MAC Operations

60 80 100 120 140 160 180 200 220
IDLE

BUSY

Reconfiguration Controller

60 80 100 120 140 160 180 200 220
IDLE

BUSY

RFU for Defragmentation

60 80 100 120 140 160 180 200 220
IDLE

BUSY

RFU for Decryption

60 80 100 120 140 160 180 200 220
IDLE

BUSY

RFU for CRC

60 80 100 120 140 160 180 200 220
IDLE

BUSY

RFU for Rx from PHY

60 80 100 120 140 160 180 200 220
IDLE

BUSYA
BUSYB

BUSYC

Rx Buffer Interface with PHY (Actual Duration of Reception)

Simulation Time in Microseconds

Figure 5.4: Activity Timing Diagram of Blocks in the DRMP Architecture
(Packet Reception of 3 Modes)

are concurrently transmitting. Note that the Task-Handler, showing a 13%

busy time, is not a shared resource. Each of the three protocol modes has

one of its own.

5.4.3 Results for the IRC

A more detailed look into various states that the Interface and Reconfigura-

tion Controller takes while in operation gives valuable information about the

usage of shared resources.

Fig. 5.5 shows the various active states inside the Task-Handler for MAC

(TH M) of the three modes when a packet is sent by the three modes concur-

rently. All three modes currently simulate the same protocol i.e. WiFi, and

125

Chapter 5. Modeling and Simulation

Table 5.1: Busy Time of Various Entities in DRMP During Transmission
µs % of Packet Duration

Entity 1 Mode 3 Modes 1 Mode 3 Modes
Task Handler
MAC, Mode A

9.1 16.9 7.0 13.1

Reconf’n Con-
trol

0.1 1.0 0.1 0.8

RFU-
MakeFrame

0.8 2.5 0.6 1.9

RFU-Frag’t 1.3 3.9 1.0 3.0
RFU-Encrypt 4.0 12.1 3.1 9.4
RFU-CRC 5.4 16.3 4.2 12.6
RFU-Tx 2.0 6.3 1.6 4.9
Tx-Buffer,Mode
A

128.9 128.9 100.0 100.0

hence all three modes would need the RFUs in the same configuration state.

However, to get realistic results, the RFUs are reconfigured every time there

is a mode switch. Fig. 5.6 is a similar timing diagram for the Task-handler for

Reconfiguration (TH R) of the three modes. The value on the x-axis is time

in microseconds. The name of the various states correspond to the states in

the statechart in Fig. 3.6 and Fig. 3.5 in section 3.6.1.2. Some states indicate

the controller using a resource, while some indicate the controller waiting

for a resource to become free. This timing diagram indicates how the three

task-handlers work concurrently to provide a mechanism where three proto-

col modes access shared resources, with RFU’s dynamically reconfigured as

required. Note that all the activity of the three task-handlers is completed in

less than 10µs. Looking at Fig. 5.3 it can be clearly seen that the complete

active duration of a task-handler for MAC, during which cycles through its

state-machine and does all the tasks required to transmit a packet, is a small

fraction (13%) of the packet duration.

In Fig. 5.7, the first few microseconds of Fig. 5.5 are magnified, to show

more clearly the relationship between the three concurrent task-handlers,

and how they access shared resources. E.g. between 1.5µs and 3µs, one can

see that Mode B acquires the packet-bus (goes into USE PBUS state), and

126

Chapter 5. Modeling and Simulation

Table 5.2: Busy Time of Various Entities in DRMP During Reception
µs % of Packet Duration

Entity 1 Mode 3 Modes 1 Mode 3 Modes
Task Handler
MAC, Mode A

7.8 8.6 6.0 6.7

Reconf’n Con-
trol

0.1 0.6 0.1 0.5

RFU-Defrag’t 1.1 3.0 0.8 2.3
RFU-Decrypt 4.2 11.5 3.2 8.9
RFU-CRC 5.3 15.1 4.1 11.7
RFU-Rx 1.6 5.0 1.2 3.9
Rx-Buffer,Mode
A

129.2 129.2 100.0 100.0

0 5 10 15 20 25 30
IDLE

ACTIVE

WAIT4OCT

USE_OCT

WAIT4RFU1

USE_RFU1

WAIT4PBUS

USE_PBUS

WAIT4RFUdone

WAIT4RFUT2

USERFUT2

SLEEP1

SLEEP2

Simulation Time in Microseconds

Mode A
Mode B
Mode C

Figure 5.5: Timing Diagram Showing State Occupation in a Task-Handler
for MAC During Packet Transmission

then proceeds to the WAIT4RFUdone state where it has triggered an RFU and

is waiting for response. The packet-bus is still with Mode B and one can

see Mode A stuck in the WAIT4PBUS state, waiting for the packet-bus to

127

Chapter 5. Modeling and Simulation

0 5 10 15 20 25 30
IDLE

ACTIVE

WAIT4OCT

USE_OCT

WAIT4RFU1

USE_RFU1

WAIT4_RC

USERC_WAIT4RCNFG

WAIT4RFUT2

USERFUT2

SLEEP

Simulation Time in Microseconds

Mode A
Mode B
Mode C

Figure 5.6: Timing Diagram Showing State Occupation in a Task-Handler
for Reconfiguration During Packet Transmission

become free. As soon as Mode B releases the packet-bus, Mode A changes

state to USE PBUS, indicating that it is now in control of the packet-bus.

5.5 Discussion of Results

The result shown in section 5.4.2 have proved that it is possible to dynam-

ically reconfigure the DRMP architecture on a packet-by-packet basis, and

handle three protocol modes concurrently. The platform can thus be used

in a multi-standard device and concurrently handle the MAC processing of

3 wireless protocols. All this is achievable at a moderate frequency of 200

MHz on a 32-bit architecture.

128

Chapter 5. Modeling and Simulation

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
IDLE

ACTIVE

WAIT4OCT

USE_OCT

WAIT4RFU1

USE_RFU1

WAIT4PBUS

USE_PBUS

WAIT4RFUdone

WAIT4RFUT2

USERFUT2

SLEEP1

SLEEP2

Simulation Time in Microseconds

Mode A
Mode B
Mode C

Figure 5.7: Timing Diagram Showing State Occupation in a TH M During
Packet Transmission, with the first few Microseconds Magnified

5.5.1 Time Slack and Reducing Power Consumption

Its worth pointing out that large parts of the architecture are idle even when

three modes run concurrently—a typical RFU is active for around 10% of

packet duration. In fact, when just one mode is active, which one can expect

to be the case for most of the time the device is being used, the RFUs are

typically busy for less than 5% to process a packet. Considerable power can

be saved by exploiting this time lag: E.g. parts of the DRMP can be switched

off when idle; or one could e.g. dynamically scale the operating frequency so

that the DRMP’s throughput is just fast enough to meet real-time protocol

constraints, and no more.

The simulation results from the prototype model are very promising. They

clearly indicate that the DRMP architecture is be capable of handling parallel

streams of data, since its various entities are busy for only a fraction of

129

Chapter 5. Modeling and Simulation

actual packet durations. These units can be reconfigured and used for other

protocols in their idle time. The idle time also implies that one can use high-

latency reconfiguration mechanisms that yield better power-efficiency than

other high-speed reconfiguration mechanisms, as discussed in section 6.2.

Moreover, hardware co-processor can be clocked at slower frequencies than

the current 200 MHz assumed, which also means better power-efficiency.

Compared to general-purpose reconfigurable architectures like FPGAs, the

DRMP needs less interconnect resources. Moreover, heterogeneous function-

specific reconfigurable units will need less configuration data than general-

purpose units like LUT based logic blocks. All these features would add up

to give power-efficient flexibility in the DRMP.

There is another outcome of these results. The DRMP is a modular archi-

tecture, with only certain parts of the architecture working at one time and

the others idle. Idle, in context, means an entity is not active and also is in

its reset state. Effectively, it can be switched off when it is idle, without in-

curring the overheads associated with saving and restoring state information.

Considering that a typical RFU is active for around 5% of the time with a sin-

gle active mode, one can save considerable power this way. Power-efficiency

improvement is discussed further in section 6.2.

These results show that the DRMP — a dynamically reconfigurable archi-

tecture — implements the MAC layer of WiFi with minimal timing overhead

introduced by the architecture. In fact, the modular design makes it possible

to take large parts of the hardware off-line for most of the device’s up-time.

These features are very different from alternative flexible solutions like an

FPGA or a microprocessor. I am confident of achieving the target of im-

plementing three parallel streams in this prototype, reconfiguring packet to

packet, yet at moderate power consumption suitable for hand-held devices.

5.5.2 Frequency of Operation

The results shown in the section 5.4 and discussed here were for a clock

frequency of 200 MHz. The frequency chosen was ad-hoc, a value that can

130

Chapter 5. Modeling and Simulation

be considered suitable for power-sensitive hand-held devices. It was seen

that at this frequency, and with three protocols simultaneously transmitting,

there was considerable time-slack available, as was clearly shown in Fig. 5.3.

Keeping all other simulation parameters the same, an interesting question

is of how low a frequency can be used and yet process the three packets

in time. In context of concurrent transmission of three packets of different

protocols, the criteria of the DRMP meeting throughput requirements is that

it should complete the MAC processing of all three protocols and store them

in the transmit buffers, ready to be sent, within one packet duration from

the moment the request for transmission is made (in the simulation setup

the three protocol modes make transmission request almost simultaneously).

Looking again at the case where the architecture was running at 200 MHz,

and the duration of packets was 120 microseconds, it was seen that the three

packets were processed in a little less than 30 microseconds. Fig. 5.8 shows

this situation again.

It can be deduced that were one to run the architecture at one-fourth the

original speed, it should still be able to meet the real-time requirements. Such

a simulation was carried out, reducing the architecture frequency to 50 MHz.

Fig. 5.9 shows the result of the transmit side of this simulation. It can be

seen that the MAC processing for all the three protocols is completed inside

120 microseconds, which is the protocol duration of the three fragments of a

packet.

5.5.3 Single Protocol vs. Three Concurrent Protocols’

Operation

Fig. 5.10 shows this comparison of resource usage between one mode opera-

tion and three mode operation. The busy time of various entities is shows as

a percentage of the total packet duration. Since the three modes were mod-

eled at the same data rate of 20 Mbps, and were sending packets of same

sizes, the busy time of the functional units increases by approximately three

131

Chapter 5. Modeling and Simulation

0 20 40 60 80 100 120 140 160
IDLE

BUSY A
BUSY B
BUSY C

MAC MICROPROCESSOR

0 20 40 60 80 100 120 140 160
IDLE

BUSY A
BUSY B
BUSY C

TASK HANDLER FOR MAC OPERATIONS

0 20 40 60 80 100 120 140 160
IDLE

BUSY

RECONFIGURATION CONTROLLER

0 20 40 60 80 100 120 140 160
IDLE

BUSY

RFU FOR MAKING BASIC MAC FRAME

0 20 40 60 80 100 120 140 160
IDLE

BUSY

RFU FOR FRAGMENTATION

0 20 40 60 80 100 120 140 160
IDLE

BUSY

RFU FOR ENCRYPTION

0 20 40 60 80 100 120 140 160
IDLE

BUSY

RFU FOR CRC

0 20 40 60 80 100 120 140 160
IDLE

BUSY

RFU FOR Tx TO PHY

0 20 40 60 80 100 120 140 160
IDLE

BUSY A
BUSY B
BUSY C

Tx BUFFER INTERFACE WITH PHY (ACTUAL DURATION OF TRANSMISSION

Simulation Time in Microseconds

Figure 5.8: Packet Transmission of 3 Modes at 200 MHz

times.

An interesting result that can be derived from the simulation with three

concurrent modes, and the simulation with just one mode active on the de-

vice; that is, the delay caused in the processing of a packet due to DRMP

sharing resources with two other protocol modes. Comparison was made

of the duration from the time that a request for packet transmission is re-

ceived, to the time the packet is processed completely and is stored in the

transmission buffer. First measurement was made with one protocol running

(section 5.4.1), and this duration was measured with three protocol modes

running(section 5.4.2), taking the worst-case result of the three modes. It

was observed that the packet processing time increases from 8.9µs for one

mode, to 24.5µs with three modes concurrently active. This increase of

15.6µs is the time spent waiting for a shared resource to become free, which

132

Chapter 5. Modeling and Simulation

0 50 100 150 200 250
IDLE

BUSY A
BUSY B
BUSY C

MAC MICROPROCESSOR

0 50 100 150 200 250
IDLE

BUSY A
BUSY B
BUSY C

TASK HANDLER FOR MAC OPERATIONS

0 50 100 150 200 250
IDLE

BUSY

RECONFIGURATION CONTROLLER

0 50 100 150 200 250
IDLE

BUSY

RFU FOR MAKING BASIC MAC FRAME

0 50 100 150 200 250
IDLE

BUSY

RFU FOR FRAGMENTATION

0 50 100 150 200 250
IDLE

BUSY

RFU FOR ENCRYPTION

0 50 100 150 200 250
IDLE

BUSY

RFU FOR CRC

0 50 100 150 200 250
IDLE

BUSY

RFU FOR Tx TO PHY

0 50 100 150 200 250
IDLE

BUSY A
BUSY B
BUSY C

Tx BUFFER INTERFACE WITH PHY (ACTUAL DURATION OF TRANSMISSION

Simulation Time in Microseconds

Figure 5.9: Packet Transmission of 3 Modes at 50 MHz

is still a fraction of the packet duration. This result is shown is a pie-chart

in Fig. 5.11. It shows time a mode spends active on the DRMP, waiting for

a shared resource, or idle, as a proportion of the total packet duration of

128.9µs. The operating frequency of the architecture is 200 MHz. It can be

concluded that the processing lag experienced by one protocol mode due to

resource sharing of the DRMP amongst two other modes is not significant,

and there is still a significant time slack, as can be seen from Fig. 5.11.

5.5.4 The Interface and Reconfiguration Controller

Looking more closely inside the IRC, another interesting result can be derived

(Fig. 5.5); what is the critical shared resource that determines the over-all

time that the IRC takes to complete its task? The TH M and not the TH R is

133

Chapter 5. Modeling and Simulation

7.0

13.1

0.1
0.8 0.6

1.9

1.0

3.0
3.1

9.4

4.2

12.6

1.6

4.9

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

B
us

y
Ti

m
e

(%
 o

f P
ac

ke
t D

ur
at

io
n)

TaskHandler R-Cont'l RFU-
MakeFrame

RFU-Frag'n RFU-Encrypt RFU-CRC RFU-Tx

1 mode
3 concurrent modes

Figure 5.10: Comparison of resource usage between one mode transmission
and three mode concurrent transmission. Shown as percentage of packet
duration.

considered because the TH M is the more critical controller that has to ensure

that the MAC related tasks are carried out in the required time. This issue

is important because it determines the bottleneck that will put a limit on the

maximum throughput of the device. It can be seen that the task-handlers

are waiting most often for the Packet-bus to become free.

Fig. 5.12 presents this result quantitatively and it can be seen that the three

TH M are in the WAIT4PBUS state, waiting for the Packet bus to become

free, for around 20–30% of their active times, which is more than any other

idle waiting state. Note that the WAIT4RFUDONE is not an idle waiting state

caused by contention on a shared resource—it is the Task-handler waiting for

an RFU to complete a task it has been assigned. In this sense, this is actually

an active state for that protocol mode. Hence this state is not counted when

trying to determine the critical shared resource.

134

Chapter 5. Modeling and Simulation

Waiting for a shared
resource,

15.6us, 12%

Active on the DRMP,
 8.9us, 7%

Idle / Slack time,
 104.4us, 81%

Figure 5.11: Time a mode spends: active on the DRMP, waiting for a shared
resource, or idle. Shown as a proportion of the total packet duration of
128.9µs, when three modes are concurrently transmitting. Operating fre-
quency is 200 MHz.

The behavior of the IRC during simulation runs indicates that if, because

of higher bandwidth protocols or introduction of more than three protocol

modes, the DRMP fails to process packets in the required time, the inter-

connect will be the bottleneck that will need a redesign. It is important to

note that the percentages shown are percentage of the active time of a TH M.

From Table. 5.1, one can see that the complete active time of a TH M is itself

a mere 13% of the actual Wifi packet duration, so such a scenario of faliure

to meet protocol timing requirements is unlikely.

The most sought-after shared resource in the DRMP architecture is the bus

that connects the RFUs to each other and the memory. At some point, due

to increase in data rates or perhaps introduction of more protocol modes,

this resource will become saturated. It may then be required to introduce a

secondary interconnect to allow true concurrent use of RHCP by the different

modes, or one could simply clock the architecture faster.

135

Chapter 5. Modeling and Simulation

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

ACTIVE

WAIT4O
CT

USE_O
CT

WAIT4R
FU1

USE_R
FU1

WAIT4P
BUS

USE_P
BUS

WAIT4R
FUdone

WAIT4R
FUT2

USERFUT2

SLEEP1

SLEEP2

State of TH_M

A
ct

iv
e

D
ur

at
io

n
(P

er
ce

nt
ag

e
of

 T
ot

al
 A

ct
iv

e
D

ur
at

io
n)

Mode A Mode B Mode C

Figure 5.12: Active Time of Various States in the Task-handler for MAC as
a Percentage of its Total Active Time

5.5.5 Performance Assumptions (Software and Recon-

figuration)

The DRMP prototype models the transmission and reception of packets,

loosely following the WiFi protocol. The software in the DRMP simply

keeps track of the state of the system and does not perform computationally

intensive tasks. It is completely interrupt-driven and only generates control

signals, resulting in a very simple, lightweight API, as discussed in some

detail in section 4.1. The protocol control tasks the software is left to perform

between calls to the the RHCP can be implemented in a CPU running at

moderate frequencies. A frequency of 200 MHz has been assumed, same as

the assumed operating frequency of the hardware co-processor, which is a

suitable one for hand-held devices.

The DRMP is a hardware / software partitioned architecture and the func-

tionality of both the hardware and software has been modeled. However, the

136

Chapter 5. Modeling and Simulation

software functionality is modeled at a more abstract level than the hardware.

Panic et al. [65] state that a pure software implementation of the WiFi MAC

layer will need to run on a CPU clocked at nearly 1 GHz. It then goes on to

propose a software / hardware partitioned SoC solution with an operating fre-

quency of 80 MHz. The tasks partitioned by Panic et al. [65] to hardware are

very similar to the partitioning done in the DRMP. However, their hardware

is not reconfigurable. More importantly, their hardware/software partition-

ing offloads less functionality to the Hardware than the DRMP. Considering

the time-slack available even when three protocol are transmitting concur-

rently, one can be confident that the 80MHz quoted in [65] will constitute

an upper limit to the required clock frequency of the microprocessor. Also

refer to Fig. 4.9 in section 4.4 where a more detailed view of the tasks that

the software performs between calls to the hardware, and the relatively few

software instructions/CPU clock cycles needed to implemented these tasks

can be inferred.

Currently most of the RFUs have been modeled as context-switching RFUs,

while when three different protocols are actually deployed, some RFUs may

be reading configuration data from a memory on a mode switch. However,

because the RFUs are function-specific, it is safe to assume that the config-

uration data will be very little compared to more general-purpose functional

units. E.g. the Chameleon Reconfigurable Communications Processor [76]

needs less than 50,000 bits for a complete new configuration and takes 3

microseconds to load it. Note that the Chameleon architecture is a homoge-

neous array of general purpose datapath units. One can very safely infer that

the DRMP will need much less configuration data for a new configuration.

A reconfiguration data throughput of 6 Gbps (32-bit reconfiguration bus at

200 MHz) will ensure that this little configuration data is loaded well within

the protocol time constraints. E.g. at this rate, 50,000 bits will be loaded in

8.7 microseconds.

137

Chapter 6

Implementation Aspects

The DRMP SoC is a work in a progress, and needs more work before it

becomes a commercial silicon product. In this chapter, we discuss the im-

plementation aspects of the DRMP architecture; where it stands at present,

what it is expected to become, and how it compares with other commercial

MAC solutions.

In the first section, first-order estimates of power and area for the DRMP

are presented. The next section discusses some power-efficiency improvement

techniques for the DRMP architecture. The third section discusses the com-

mercial utilization potential and the last section presents some commercial

MAC solutions in comparison with the DRMP architecture.

6.1 Area and Power Estimates

The suitability of DRMP for consumer wireless devices cannot be truly

judged until one has some idea of how much power and silicon area it can be

expected to consume. The abstraction level of the prototype DRMP model

is not detailed enough to make any accurate judgments in this regard. To

address this shortcoming, a first-order ballpark estimate has been attempted

for the DRMP in terms of:

138

Chapter 6. Implementation Aspects

Table 6.1: Synthesis Results for a SoC WiFi MAC Implementation [65]
Design Name Estimated Area

(mm2)
Estimated Power
(mW)

MIPS core 3.00 98.4
I2C bus controller 0.05 2.3
UART 0.24 10.1
EC-to-X bus controller 0.6 4.7
Peripheral bus controller 0.15 9.1
Accelerator core 2.53 91.5
Single-port RAM 512B 1.5 (1 of 5) 57.5 (1 of 5)
Dual-port RAM 256B 1.75(1 of 5) 27.5 (1 of 5)
GPIO 0.15 7.8
Glue Logic 0.04 2
Chip 17.76 578.5

• resource usage (gate count)

• area (in mm2 on a particular technology)

• power (milli-watts)

The estimates were calculated by mapping parts of DRMP to parts of other

devices whose area and power figures were available. Estimates were also

made on how the DRMP could be expected to fare relative to traditional

implementations of protocol MACs; more specifically, WiMAX, WiFi and

UWB. Following, estimates are presented for stand-alone implementations of

the three standards considered, then an estimate is made for the DRMP.

6.1.1 WiFi Estimates

Panic et al. [65] discuss a system-on-chip implementation of the WiFi MAC

layer. Table 6.1 from [65] gives the synthesis results for a hardware / software

partitioned implementation of WiFi. The results are for a 0.25µm technology.

Excluding memory, the MAC implementation’s area is 6.76 mm2, and it

consumes 236 mW. The hardware accelerator core takes 2.53mm2, 91.5 mW.

139

Chapter 6. Implementation Aspects

On a 0.25µm technology, at 25K gates per mm21, 169K gates will be used

for the complete implementation (excluding memory) of which the hardware

accelerator core consumes 63K gates.

Iliopoulos et al. [38] discuss another hardware / software partitioned WiFi

implementation. The usage figures are given in Configurable Logic Blocks

(CLBs) used for a Xilinx XC4020E device, for which equivalent ASIC gates

are derived through a transformation factor of 28.5 gates per CLB. This

factor has been taken from a Xilinx Application note [98]. The complete

implementation (excluding memories) consumes 73K equivalent ASIC gates.

The hardware accelerator (which implements Wired Equivalent Privacy -

WEP) and peripherals consume 48K gates, while the remaining 25K gates is

the ARM processor (ARM7TDMI) and its wrapper2.

On a 0.25µm technology, this second implementation would take approxi-

mately 3mm2 in Silicon. If the implementation from Table 6.1 is taken as

a reference, the complete implementation takes 444K gates and 578.5 mw,

which means approximately 1.3uW per gate. Hence this second implemen-

tation, implemented on 0.25µm technology and operated at similar voltages

and frequency as the first implementation, it should consume around 100

mW.

6.1.2 UWB Estimates

An implementation giving estimates for a UWB (IEEE 802.15.3) could not

be found, owing most likely to the protocols eventual abandonment. How-

ever, figures are available for a bluetooth baseband unit implemented on a

dynamically reconfigurable architecture, partitioned to two contexts. In such

a situation the gate usage was 6K gates. If one assumes all of the baseband

is implemented in one context, then gate usage will be approximately 12K

gates.

1Derived from [85], which gives figures for 0.35 um technology. Estimate for 0.25um
technology extrapolated

2Gate count for ARM core from [26] is 19K. Presumably its 25K for this implementation
because of the wrapper.

140

Chapter 6. Implementation Aspects

The baseband of a bluetooth is not equivalent to the MAC of 802.15.3.

The baseband does some job of the PHY layer, but avoids some manage-

ment/control jobs of MAC layer. The base band unit does have the key

resource consuming components of the MAC like CRC, encryption, buffering

etc. Based on these observations, for now it will be assumed that a UWB

MAC would take about the same resources as a Bluetooth baseband. Since

it is the smallest of the 3 MACs, a crude approximation for 802.15.3 should

not introduce a significant error into the overall approximation.

6.1.3 WiMAX Estimates

Sung [85] gives a hardware / software partitioned implementation of a 802.16

(WiMAX) MAC. The uProcessor is a StrongARM SA-110 operated by Mon-

tavista Linux. The SW implementation codes are developed as loadable

kernel modules. The hardware accelerator is implemented on a Xilinx Virtex

XC2V3000 device.

The hardware accelerator used 6538 of a total of 14336 slices. Using an

estimate of 30 gates per slice3, the hardware accelerator should consume

196K equivalent ASIC gates. The StrongARM processor has a gate count of

625K gates [26], which includes Data and Instruction Cache. If other support

circuitry is assumed to be a negligible fraction of the total gate count for

this first-order estimate, then the total gate count is 821K. Assuming one

implements the architecture on a 0.25µm technology and runs at the same

frequencies and voltages as that of the first WiFi implementation, we arrive

at a total area of 32mm2, and a power consumption of approximately 1W.

Tables 6.2, 6.3 and 6.4 summarize the gate count, area and power estimates

for the three protocols.

3The estimate of 30 gates / slice of a Virtex II is by looking at the Xilinx app note
[98] which gives 28.5 gates per CLB of Virtex XC4000, and from the observation that the
Virtex II Slice is quite similar to a XC4000 CLB; perhaps a couple of gates larger.

141

Chapter 6. Implementation Aspects

Table 6.2: Gate Count Estimates for Conventional MAC Implementations

Eq. ASIC Gate Count (K)
Implementation uProcessor uProc HW-

Acc
Other Total

WiFi [65] MIPS Core 75 63 31 169
WiFi [38] ARM7TDMI 25 48 - 73
WiMAX [85] StrongARM

SA-110
625 196 - 821

UWB [21] - - - - 12

Table 6.3: Estimated Area for Conventional MAC Implementations on a
0.25µm technology

Area (mm2)
Implementation uProcessor uProc HW-

Acc
Other Total

WiFi [65] MIPS Core 3 2.53 1.23 6.76
WiFi [38] ARM7TDMI - - - 3
WiMAX [85] StrongARM

SA-110
22 10 - 32

UWB [21] - - - - 16

6.1.4 DRMP Estimates

A first-order estimate of the gate-count of the DRMP has been made. A

StrongARM SA-110 uProcessor (with D/I caches as well) was assumed, which

has been used in [85] for WiMAX implementation, the fastest and most

complex of the three protocols considered. It will consume approximately

625K equivalent ASIC gates. It is expected though that smaller and lower-

performance CPU could be use in the DRMP because of the light-weight

tasks assigned to the CPU in the DRMP, along with an extended-ISA.

Making estimates for the hardware co-processor was the trickier part, and

only crude approximations can be claimed. An external memory controller

would consume approximately 4K gates while a PCMCIA Interface controller

will use 7K equivalent gates [38]. Timers and Interrupt Controller for a WiFi

take 8.8K equivalent gates [38]. The assumption is that for 3 standards 20K

gates will be used (timers unique to each standards, interrupt controller

142

Chapter 6. Implementation Aspects

Table 6.4: Power Estimates for Conventional MAC Implementations

Power (mW)
Implementation uProcessor uProc HW-

Acc
Other Total

WiFi [65] MIPS Core 98.4 91.5 73.1 263
WiFi [38] ARM7TDMI - - - 100
WiMAX [85] StrongARM

SA-110
686 314 - 1000

UWB [21] - - - - 16

shared).

The physical interface for a WiFi implementation in reference [38] includes:

Tx and Rx state-machines, FIFOs, registers for access to an AMBA bus,

Tx and Rx DMA engine, Tx and Rx CRC and shift registers. It consumes

approximately 20K equivalent ASIC gates. The DRMP is designed to re-use

all of these resources for the 3 standards. But WiMAX will require more

resources for the same functions than a WiFi interface. The assumption is

that the reconfigurable interface (including a reconfigurable CRC) uses 40K

gates.

Now comes the most resource-consuming element of the Hardware Co-Processor—

encryption. RC4, DES, 3DES and AES are the encryption algorithms that to-

gether cover the three standards. Hamalainen et al. [27] gives figures for RC4

implementation using 255 CLBs of a Xilinx XC4000 device, which is 7.3K

equivalent ASIC gates. Pionteck et al. [68] discuss the implementation of

a reconfigurable AES implementation, and the complete Hardware/Software

partitioned implementation took 1.374mm2 on a 0.25um technology, which

approximates to 34K gates. From [95], it can be seen that a 3DES imple-

mentation uses 125% of an AES implementation. So one can approximate

it to consume 125% of 34K i.e. 43K gates. It may be assumed that a DES

encryption can be carried out on a parameterizeable 3DES implementation.

So if three encryption cores are implemented separately (RC4, 3DES and

AES), the gate count is appoximately 84K gates.

The reconfiguration overhead can only be guessed at this point. Pionteck

143

Chapter 6. Implementation Aspects

et al. [68] mention a reconfigurable AES encryption module in which area

overheads of reconfiguration logic and tables is 6.5%. For DRMP , the ap-

proximation is a 7% overhead of reconfiguration, in terms of both area and

gate usage. The power is also seen to be proportional. The percentage is

that of the Hardware co-processor, and not the whole SoC.

The interconnect is expected to consume a small fraction of the overall silicon

area (unlike an FPGA), and its contribution for a first-order estimate may be

ignored. All RFUs have not been taken into account, nor have the overheads

of interconnect. There is expected to be a control module for power and

clock management. A novel memory-manager that gives the RFUs access to

memory is also planned for this architecture. All these elements are assumed

to consume 20% more gates (See the entry for ‘others’ in the table).

Table 6.5 summarizes these results for the DRMP. It uses about 825K gates,

but note that the assumption is of a processor with Instruction/Data (I/D)

caches that uses 625K or 79% of that total area. The I/D caches in turn take

up a large proportion of the silicon in the uprocessor. If one just looks at the

Hardware co-processor, it consumes 200K gates, 8mm2 and may be expected

to consume around 260mW.

Component in the DRMP Estimated
Gate
Usage

Area in
mm2

Approximate
Power
(Watts)

Microprocessor 625 25 0.8125
Memory Controller 4 0.16 0.0052
Host Bus Interface 7 0.28 0.0091
Timer and Interrupt Con-
troller

20 0.8 0.026

PHY Interface (and CRC) 40 1.6 0.052
Encryption Core 84 3.36 0.1092
Reconfiguration Overheads 11 0.44 0.0143
Others 34 1.36 0.0442
DRMP Total 825 33 1.1

Table 6.5: Estimates for the DRMP.

Koushanfar et al. [48] mention typical die areas for mobile processors in the

144

Chapter 6. Implementation Aspects

year 2000 were between 22 to 154mm2. The estimated die area of the DRMP

of 33mm2 (for the complete HW/SW architecture) looks about right. The

figure for DRMP does not include resources for memories though and when

they are added the die area of the DRMP would be approaching the upper

limit of this range.

It is also relevant to discuss the effects of more current silicon technologies.

The estimates for DRMP have been made assuming a 0.25µm technology.

The silicon industry is has now advanced to using 40nm technology and

smaller. The relationship between the silicon technology scaling and the

power consumption per logic operation has been exponential until about

0.13 micron technology, according to [9]. However, while technology scaling

improves the active power consumption, it also increases the static leakage

current in the circuit. Beyond 0.13 micron, further scaling the dimensions

brings diminishing returns in terms of power consumption per logic operation

[9]. If we scale the DRMP to 0.13 µm technology, the power consumption for

the same DRMP device should decrease significantly, by almost 4–5 times

according to [9]. That means we can expect the DRMP device to consume

around 0.3 Watts or less on 0.13 µm technology. Scaling down to 40 nm

will decrease the power consumption even further, though not by the same

amount due to increased leakage currents.

6.2 Power-Efficiency Improvements

In section 5.5, it was discussed why the DRMP is expected to be more power-

efficient than an equivalent FPGA or software implementation. There are

some power-efficiency improvement techniques that suit the DRMP archi-

tecture and will improve the DRMP’s efficiency further. Note that these

are directly linked with the power modes of the MAC protocol themselves

(e.g. in WiFi and UWB) have sleep modes to conserve power. The focus

here is the optimization of power-efficiency beyond these protocol-specific

power-save modes.

145

Chapter 6. Implementation Aspects

60 80 100 120 140 160 180 200 220
IDLE

BUSYA

BUSYB

BUSYC

MAC Microprocessor

60 80 100 120 140 160 180 200 220
IDLE

BUSY

IDLE

BUSY

Task Handler for MAC Operations

60 80 100 120 140 160 180 200 220
IDLE

BUSY

Reconfiguration Controller

60 80 100 120 140 160 180 200 220
IDLE

BUSY

RFU for Defragmentation

60 80 100 120 140 160 180 200 220
IDLE

BUSY

RFU for Decryption

60 80 100 120 140 160 180 200 220
IDLE

BUSY

RFU for CRC

60 80 100 120 140 160 180 200 220
IDLE

BUSY

RFU for Rx from PHY

60 80 100 120 140 160 180 200 220
IDLE

BUSYA

BUSYB

BUSYC

Rx Buffer Interface with PHY (Actual Duration of Reception)

Simulation Time in Microseconds

Most of the modules in the hardware co-processor
can be seen to be idle in these high-lighted portions

Figure 6.1: Activity Timing Diagram of Blocks in the DRMP Architecture
(Packet Reception of 3 Modes) highlighting the time slack

Two important aspects of the DRMP architecture are relevant to this topic:

1. In section 5.4, the simulation results for the concurrent transmission

and reception of three protocol modes was presented. It was noted

that large parts of the architecture were idle even when three modes

run concurrently—a typical RFU was active for around 10% of packet

duration. It was also noted that when just one mode is active, which

one can expect to be the case for most of the time the device is being

146

Chapter 6. Implementation Aspects

used,the RFUs are typically busy for less than 5% to process a packet.

The time-slack available provides opportunity for power-optimization

techniques. Fig. 5.4 is reproduced here as Fig. 6.1 with the idle time

of various entities highlighted.

2. The DRMP’s hardware co-processor has a modular design with func-

tionality distributed in clearly partitioned functional units. These func-

tional units are designed such that they do not need to retain state

information across multiple uses—they are stateless and may be con-

sidered as hardware functions. Also, the RFUs in a non-active state do

not contribute to the interconnect network in any way4. The conclu-

sion I am driving towards is that when an RFU is not in use, it can

be powered-down without any loss of state-information or interconnect

throughput.

Standard low-power techniques like clock-gating, area optimization and mul-

tiple threshold voltage optimization optimization commonly used, and they

require little change in the architectural exploration, design, verification or

implementation stages. More advanced techniques like Dynamic Voltage and

Frequency Scaling (DVFS) and Power Shutoff (PSO) offer further power-

efficiency improvements, but have a higher methodology impact on the dif-

ferent stages of the SoC design.

From point 1, one can see an obvious solution for saving power; reduce the

clock frequency (the prototype model is simulated at 200 MHz). In section 5.5

in Fig. 5.5, it was shown that one could reduce the clock frequency to 50 MHz

while meeting real-time requirements. With a reduced clock frequency, a

lower voltage could also be used. However, since the DRMP aims to provide

flexibility to implement a variety of MAC protocols, one has to consider the

possibility that high bandwidth protocols could be deployed (In the prototype

model the three protocols have a bandwidth of 20 Mbps). Fixing the clock

4See [7] which describes a reconfigurable mesh architecture where the functional units
not only perform datapath operations but also act as router, passing data from one end
to the other without processing.

147

Chapter 6. Implementation Aspects

frequency and voltage very low would render the DRMP suitable for faster

protocol standards.

Even if one fixes the clock frequency and voltage to be just fast enough for

the fastest protocol being implemented, the chip would waste power when

the other slower protocols are being executed.

The Dynamic Voltage and Frequency Scaling (DVFS) technique suitably ad-

dresses this problem. The frequency and voltage can be dynamically scaled

to accommodate the fastest protocol that is running at any time. If the user

switches to using a slower protocol, the frequency and voltage can be scaled

down so that the throughput is just enough for the slower protocol.

DVFS is a very effective and proven technique. It can reduce leakage power

by 2-3 times, and dynamic power by 40-70% [11, 82]. The timing and area

penalty is very little. It needs to be integrated into the design at the archi-

tecture design stage, and impacts the development process from the architec-

tural design stage through to design, verification and implementation. Since

the DRMP is still in the architectural design stage, it will be convenient to

integrate DVFS logic in the architecture.

Another exciting technique that could be used in the DRMP is Power Shutoff

(PSO). The RFUs in the DRMP are very well-suited for PSO techniques since

they do not need to retain state, and have no participation in the interconnect

network. It can reduce leakage power by 10-50 times [11, 82], and have very

little timing and area penalty. Vorwerk et al. [92] present a novel way of

using the PSO technique, reporting maximum net power savings of 61%.

This technique too requires integration from the onset of the architecture’s

design, which is not a problem for the DRMP architecture at its present

stage.

Note that even if one uses DVFS technique to dynamically scale the frequency

of the DRMP to as slow as possible, PSO could still be used to turn off power

to those RFUs in the DRMP that are not being used. At any one time in

the prototype model, a maximum of two RFUs are used. All the rest can

shut-off even if the clock frequency is just fast enough to process the packet

148

Chapter 6. Implementation Aspects

in time. In short, there is potential to use both DVFS and PSO techniques

simultaneously.

In section 6.1, the power consumption for the DRMP has been roughly esti-

mated without assuming any of these power saving techniques. In section 6.4,

this estimated power consumption of the DRMP is shown to be compara-

ble with commercial MAC solutions. The point to note is that according to

current estimates, even without these power saving techniques, the DRMP’s

power consumption is comparable to commercial devices. Hence the applica-

tion of these techniques is not a requirement to make the DRMP a feasible

solution for power-sensitive devices. However, these techniques will make the

DRMP a more attractive platform for power-conscious devices.

6.3 Utilization Potential and Limitations

The DRMP platform targets hand-held/portable devices - in other words

devices where power is an important consideration. For power-insensitive

devices, the more attractive option for incorporating flexibility is to imple-

ment the MAC entirely in Software or an FPGA.

It is meant to target multi-standard hand-held devices that need to deal

with multiple wireless standards at the same time. Such devices are al-

ready present in the market and the trend is towards greater integration of

standards in a single device. Eventually, this platform could be used for

Software-defined radios. But that is not the main target and so the unique

considerations associated with SDR’s were not addressed in the project.

It is also meant to address the wireless protocols that can be typically ex-

pected in consumer devices. So WiFi, Bluetooth, WiMAX are the protocols

that will be targeted. Protocols like Zigbee which are not designed for con-

sumer devices were not considered. The reason for aiming at consumer de-

vices is that these devices tend to be produced at massive scales and in such

scenarios it becomes possible to justify a domain-specific hardware platform.

Having run simulations involving transmission and reception of packets of

149

Chapter 6. Implementation Aspects

three different protocol modes concurrently, the results have confirmed that

the processing of packet on the DRMP architecture takes a fraction of the

actual duration of the packet (See table 5.1 on page 126).

In section 5.5, these results were discussed, where it was seen that the DRMP,

clocked at 200 MHz, manages to process the transmission and reception of

three packets simultaneously at data rates of 20 Mbps—yet the functional

units remain idle for more than 90% of the time. The power-saving oppor-

tunities offered by this time-slack and the limited interconnect requirement

in the hardware co-processor were also discusssed. In section 6.1, the power-

consumption of the DRMP was estimated, without using any power-saving

techniques that were discussed in section 6.2.

With these results, there is effectively a proof-of-concept that the DRMP can

replace up to three MAC processors in a hand-held device. This should make

it a attractive SoC IP for the hand-held device market in one the following

contexts:

• an IP on another higher-level SoC

• a chip on a System-in-Package (SiP) or

• a packaged chip on a PCB — though considering the form factor of the

target devices, this option is unlikely.

The potential customer thus could either be a chip manufacturer or a device

manufacturer. The possible considerations of an expected customer looking

to use this IP in one of the above scenarios will now be discussed, along with

where the DRMP stands at present in view of these considerations.

6.3.1 Power-Efficiency

The tool used to model the DRMP (Simulink), and the way its been used

(abstract functionality, relatively exact timing) imply that only a crude first-

order estimation of power and area expected to be used by the DRMP, can

150

Chapter 6. Implementation Aspects

be made. It should be noted though that the DRMP is not an attempt to

optimize the power-efficiency or gate-count. It aims to provide the flexibility

needed to incorporate multiple MACs in a single device, while keeping the

power-efficiency acceptable for a hand-held device. That is to say, the aim

is to keep the power consumption below a certain threshold of acceptance

for hand-held devices; and certainly less than that of the architectures tra-

ditionally used where flexibility is required e.g. microprocessors or FPGAs.

Table 6.5 gives the first order estimates of gate count and power consumption.

A 0.25um technology and operating frequency of 85 MHz is assumed for

estimating the power consumption. It was found that the first-order estimate

of die area was within acceptable range for mobile devices.

In brief, the first order calculations indicate that the DRMP will indeed be

suitable for power and resource sensitive hand-held devices. But some effort

to get more accurate estimates would be in order before committing more

resources to this architecture’s further development.

6.3.2 Performance

Performance here means the throughput—how fast can the DRMP process

packet data. The aim is simply to achieve throughput above a certain

threshold—the real-time throughput requirements imposed by the protocol.

Once that threshold is crossed, nothing is gained by further improvements

in the performance. Fortunately, because of the cycle-approximate model

of the DRMP, it is quite straightforward to decide if the DRMP is meeting

the timing requirements of the protocol. Results from the prototype model

indicate that the DRMP will comfortably meet the throughput requirements

of the protocols being considered even when running at a moderate 200 MHz

operating frequency and processing three protocol data streams at 20 Mbps

concurrently.

151

Chapter 6. Implementation Aspects

6.3.3 Cost

The DRMP, if it is to be commercialized, will involve the complete design,

synthesis and fabrication of a SoC, and hence the cost will be in the order

of millions of dollars. It is however targeting a mass-market of consumer

hand-held devices which includes mobile phones, smart phones, PDAs and

laptops etc. If the DRMP is used by a fraction of device manufacturers in

this market for implementing the MAC layer on their devices, one is easily

looking at a figure of millions of chips per year. If the DRMP is used by

even one mainstream wireless consumer device manufacturer, the economies

of scale would bring the price tag to an acceptable value.

6.3.4 Programmability and Extensibility

It is important to note that DRMP is planned to be configurable at two

distinct levels. One is the dynamic, on-the-fly reconfiguration for concurrent

multi-mode operation on a device. This aspect of DRMP’s configuration has

been the focus of this research, and it is at this level that the current results

are very significant. The other level of configuration is the DRMP’s ability to

evolve or change functionality over time to incorporate other protocol MAC

functionalities in the same hardware IP. This is the future-proofing aspect of

this architecture. Further research needs to be done to elevate the DRMP

from a 3-MAC-protocol specific architecture to a more general purpose MAC

processor, as discussed in section 4.3.

In terms of the DRMP’s programmability, the current model meets an im-

portant requirement of a flexible, future-proof device. Among other things,

to make an architecture flexible and future-proof, it needs to have high-level

programmability. In context of the MAC layer, the designers need to meet

very strict time-to-market constraints in the fast evolving world of wireless

standards. That the DRMP is domain-limited results in a very simple API

for it. The functional units in the DRMP, in the prototype at least, are flex-

ible but function-oriented; i.e. the hardware elements are closely matched

152

Chapter 6. Implementation Aspects

to the intended functionality. Configuring them does not require a general-

purpose programming paradigm like RTL design in an HDL. The way the

RFUs have been partitioned, it is expected that in most cases, all it would

take to configure an RFU to make it work with a new protocol would be

the loading of some parameters. In the prototype, in which three protocols

are expected to be implemented, a simple function call is all that is required

for an microprocessor to access the resources offered by the flexible hard-

ware co-processor. Any reconfiguration required is done automatically by

the hardware co-processor. No other programming of hardware is needed.

It should be noted that the DRMP’s prototype is designed to be extensible

by third-party system and hardware designers. The reconfigurable functional

units (RFUs) in the DRMP, which do all the MAC operations partitioned to

hardware, have a well-defined interface. They are not homogeneous, but they

are clearly categorized into a number of classes, and their hence their interface

for carrying out a function as well as reconfiguration is well-defined. It will

thus be relatively straightforward for a third-party to extend the DRMP

by designing their own RFUs and integrating them into the Hardware Co-

Processor in the DRMP.

6.4 Commercial Wireless MAC solutions

In this section, some commercial implementations of wireless protocols for

consumer devices are discussed. Commercial device manufacturers give out

limited information about their architectures and power consumption and

area figures. The information available is typically given for the complete

MAC + PHY implementation. From these figures the usage for MAC im-

plementations can be loosely approximated. Also note that the estimates for

the DRMP architecture are at best indicative, as calculated and discussed

in section 6.1. The purpose though is to give an idea of the practicality of

the DRMP architecture in view of its power consumption relative to other

devices implementing MAC layers, and for this purpose such a comparison

suffices.

153

Chapter 6. Implementation Aspects

The estimates we have calculated for the DRMP assume it is being used for

WiMAX as well as the other two smaller protocols. The DRMP cannot be

compared with a single protocol solution of any of these protocols, but the

comparison is even more unrealistic for single protocol solution for WiFi and

Bluetooth. To make a realistic comparison, it is compared with a hypothet-

ical multi-standard device where all three protocol MACs are implemented

separately.

Cambridge Silicon Radio (CSR) is a company based in Cambridge, Eng-

land, and their products include single-chip implementations of Bluetooth

and Wifi. The BlueCore is a single-chip solution for Bluetooth5 including a

RISC processor, and aimed at low-power devices. The latest device in the

range is BlueCore7. It has an active power consumption of 19mW [16]. It is

a complete Bluetooth stack solution6.

CSR also have a single-chip solution for WiFi, UniFi. This solution is tar-

geted at low-power devices. In this product family, UniFi UF1050 device

implements 802.11b/g for application in handheld devices. It is fabricated

on 0.13 micron CMOS. It provides Dual 60 MHz RISC processors, one for

MAC and one for PHY, and accelerators for Encryption and other MAC

functions. Power consumption or area figures are not available.

Intersil Corp. has been involved in solutions for WiFi in all its versions, and

has been a major producer in the WiFi market [23]. Its Prism architecture

(now maintained by Conexant) implements both the MAC and PHY layers.

In transmission mode, the Prism 1 device consumes 488 mA (2.4W at 5V)

5Although we have investigated the MAC layer of IEEE 802.15.3 WPAN for the DRMP,
it was never commercialized. Hence, for making comparison with commercial devices,
Bluetooth solutions have been investigated since Bluetooth is a widely commercialized
WPAN protocol.

6To estimate the MAC power consumption, we need an approximate figure for the
proportional contribution of MAC to the total MAC + PHY solution in terms of com-
putational requirement (MIPS) and power consumption. A complete WiFi solution at 12
Mbps requires 5500 MIPS. Of this, approximately 4500 MIPS are required for the PHY
layers [19], hence about 1000 MIPS for the MAC. An approximate 1000 MIPS require-
ment for the WiFi MAC layer can also be inferred from [65]. Therefore, for the MAC
layer, an approximate 20% utilization of the total power consumption of the MAC + PHY
integrated solution is a reasonable assumption. We will use this approximation for all the
wireless protocol solutions considered in this section.

154

Chapter 6. Implementation Aspects

Figure 6.2: High-level block diagram of Sequans SQN1010 WiMAX SoC
(Reproduced from [81])

[41] when it is actively transmitting.

Conexant’s CX53121 is a single-chip solutions for WiFi, targeted at small

form factor mobile applications. The MAC is implemented in an ARM9

processor. The device includes Conexant’s PowerSave technology, which pro-

vides intelligent power control, and results in a deep sleep current in the order

of 10 microamps. Active power consumption figures were not available.

Sequans Communications have designed an integrated MAC/PHY SoC so-

lution for WiMAX subscriber stations. The MAC implementation is parti-

tioned between hardware and software. The software is implemented on an

ARM9 processor. The power consumption is up to 2W [81]. Fig. 6.2 is a

high-level block diagram of the SQN1010 SoC, where it can be seen that the

MAC implementation is accelerated in a separate hardware block.

Fujitsu Microelectronics Inc. have also developed an integrated MAC/PHY

SoC solution, MB87M3400, for WiMAX base stations and subscriber sta-

tions. It has dual RISC processors for implementing upper and lower MAC

layer functions. The upper MAC layer processing is done by an ARM9 pro-

cessor, while the lower MAC layer processing is done on an ARC processor

155

Chapter 6. Implementation Aspects

Figure 6.3: Block Diagram of the Fujitsu MB87M3400 Integrated SoC solu-
tion for WiMAX MAC/PHY (Reproduced from [25])

[25]. Power consumption can be up to 6W [57]. Fig. 6.3 is a simplified block

diagram of the MB87M3400 SoC, showing the two RISC processors and the

hardware blocks that together provide the WiMAX solution.

Intel has been a major force behind the adoption of WiMAX. One of its

WiMAX solutions is the WiMAX connection 2250 [40]. This product too is

an integrated SoC solution. Two ARM9 processors are used for PHY, MAC

and application protocol processing. Power consumption figures for this SoC

were not available. Fig. 6.4 is a block diagram of the WiMAX connection

2250 SoC.

Intel IXP1200 Network Processor also makes an interesting comparison. It

is a software programmable device that has a StrongARM core and six in-

tegrated “Programmable Microengines” that can access the SRAM and the

DMA channels. It also has other integrated hardware peripherals geared

towards packet-processing applications. It can be used in a wide variety

of LAN and telecommunications products. Typical power consumption is

5.19W [39]. Fig. 6.5 is a block diagram showing the StrongARM core, the

six programmable microengines, and other peripherals.

While there are many other devices that could be used for comparison, the

above mentioned suffice to indicate the trend in the commercial sector in

context of wireless MAC solutions, in context of their high-level architec-

ture, as well the power typically consumed by these commercial devices. In

156

Chapter 6. Implementation Aspects

Figure 6.4: Intel WiMAX Connection 2250 SoC (Reproduced from [40])

Figure 6.5: Intel IXP 1200 Network Processor (Reproduced from [39])

Table 6.6, this information is tabulated, and then compared with the DRMP

in terms of power consumption. While the figures for DRMP are based on a

0.25µm technology, the technology for all of the commercial devices listed is

157

Chapter 6. Implementation Aspects

not available, which is a limitation of this comparison.

We can see that the DRMP MAC processor consumes approximately the

same amount of power as a hypothetical multi-standard MAC solution we

have constructed from three commercial devices. If we consider that the

DRMP is programmable for other MAC protocols, while the hypothetical

multi-standard solution is limited to three specific MAC protocols, we can

conclude that DRMP should be feasible for commercial consumer devices.

Limitations of Comparison

The complete life-cycle of the the development of an SoC architecture re-

quires many times more effort than is possible in a single doctorate project.

The DRMP in its current shape can be considered to be an SoC in its in-

fancy. There are hence short-comings in the architecture—and consequently

its power estimates and its comparison to commercial devices—that can be

addressed through further research and development until it becomes an IP

ready for commercial usage.

A key issue that was felt to be unaddressed, is further investigation, modeling

and implementation of RFUs that are suitable for a certain set of protocols.

While this topic is addressed in this dissertation, it is realized that the current

depth of investigation in this avenue is not satisfactory from the point of

view of a designer who would want to judge the suitability of using this

architecture.

Lack of synthesis results and concrete estimates of power and area is another

shortcoming that can be addressed by designing the RTL for the architecture.

While some design aspects have been investigated in some detail, like the

design of the Interface and Reconfiguration Controller, other aspects of design

like the interconnect, the memory-architecture, extended-ISA for the CPU

etc have considerable room for investigation and optimization.

158

Chapter 6. Implementation Aspects

Product Company Target Protocol Layers Active Power
BlueCore 7 CSR Bluetooth MAC +

PHY
19 mW (4 mW
for MAC)

UniFi CSR WiFi MAC +
PHY

Not Available

Prism I Intersil WiFi MAC +
PHY

2.4 W (0.5 W for
MAC)

CX53121 Conexant WiFi MAC +
PHY

Not Available

SQN1010 Sequans
Commu-
nications

WiMAX MAC +
PHY

2 W (0.4 W for
MAC)

MB87M3400 Fujitsu
Micro-
electron-
ics

WiMAX MAC +
PHY

6 W (1.2 W for
MAC)

WiMAX Con-
nection 2250

Intel WiMAX MAC +
PHY

Not Available

IXP1200
Network Pro-
cessor

Intel Programmable
Processor Op-
timized for
Packet-Processing
Applications

Not Ap-
plicable

5.19 W

Hypothetical
Multi-
standard De-
vice (BlueCore
7 + Prism I +
SQN1010)

– Bluetooth + WiFi
+ WiMAX

MAC +
PHY

4.6 W (0.92 W
for MAC)

DRMP SLI Bluetooth + WiFi
+ WiMAX +
Programmable for
Other protocols

MAC 1.1 W (approx.)

Table 6.6: Commercial Solutions for Various Wireless Standards. Power
consumption figures shown where available. A hypothetical multi-standard
device containing three of these products is included for comparison with
DRMP.

159

Chapter 7

Conclusions

Devices capable of wireless communication have become a part of our ev-

eryday lives. As consumers, our expectations have steadily kept growing,

with the industry responding by bringing out newer protocols and devices.

In the near future, commercial software-defined radios will replace the multi-

standard handsets that are already available and one can then expect to

see commercialization of cognitive radios. Reconfigurable computing is re-

garded as the key enabling technology that will enable such devices to be

widely available to consumers at affordable prices and with good battery

lives. Wireless communication protocols, hand-held devices and reconfig-

urable technologies were reviewed. Using these discussions, a case was built

for the architecture of the DRMP platform.

The DRMP is an innovative coarse-grained dynamically reconfigurable system-

on-chip architecture. It is not a device looking for a killer application, but

is an architecture that is designed around and specialized for the Wireless

MAC layer, and aimed at a specific market of consumer hand-held devices.

The DRMP allows reconfiguration dynamically on a packet-by-packet basis

for three protocols. The hardware co-processor has coarse-grained, hetero-

geneous, function-specific reconfigurable processing units. There is a clear

partition of datapath logic to the hardware co-processor, such that the CPU

never directly handles the packet data, and is only left to perform the pro-

160

Chapter 7. Conclusions

tocol control operations.

The project has spanned across a wide range of issues since it essentially deals

with the architectural design of a complete System-on-Chip. Knowledge of

various subjects like:

• reconfigurable computing,

• interconnection,

• memory design,

• Hardware / Software co-design,

• MAC protocols,

• power-saving techniques,

• parallel computing

were an important part of the project. However, this project as-such does not

advance the state of the art in these areas. It is more of a bringing together

of various technologies for a specific purpose. The resulting design is unique

and innovative, and I believe it can make a very important contribution in

the area of multi-standard wireless consumer devices. It is in this area where

I feel the state of the art has been advanced in this project. More specifically,

five cornerstones of the project which make it innovative have been identified

:

1. Exploitation of similar functionality of MAC Layers of various wireless

standards.

2. Heterogeneous, function-specific, reconfigurable functional units.

3. Use of dynamic and partial reconfiguration for implementing MAC

functions.

161

Chapter 7. Conclusions

4. An interface and reconfiguration control that enables transparent use

of a dynamically reconfigurable hardware for running three parallel

protocol contexts, reconfiguring the hardware co-processor packet to

packet.

5. A CPU that has only the MAC protocol control to implement, and a

interrupt-driven programming model that handles three protocol con-

trol on a single CPU.

A Simulink model and results of simulation runs involving concurrent trans-

mission and reception of packet of different protocols was presented. From

the results, it has been shown that the DRMP is more than capable of meet-

ing the protocol timing requirements even though it shares the hardware

resources amongst the three protocol modes, and dynamically reconfigures

the functional resources on every packet. This performance is achieved at

a modest 200MHz clock, and yet leaves considerable time-slack that can be

used for getting more power-efficiency than the coarse-grained and hetero-

geneous nature of the DRMP inherently offers. Re-using the DRMP for

different protocols through a simple API would reduce development risks,

costs and time to market.

The DRMP is by all means an innovative and unique architecture, designed

with the consumer hand-held device in mind. It has been made to meet

the challenges that the consumer hand-held industry places on wireless so-

lution designers; flexibility, power-efficiency, performance, programmability

and future-proofing. From the knowledge about the architecture’s poten-

tial from its prototype model and related investigation, it appears to be a

very promising device with potential to find its place among handset and chip

manufacturers in the consumer wireless market. There are however still some

unknowns and further research and investigation is needed before designers

and manufacturers will become seriously interested in it.

162

Chapter 7. Conclusions

7.1 Future Architectural Exploration

There is tremendous room for research and development on this architecture.

The DRMP is fundamentally unique and innovative architecture. While in

context of this dissertation the research work on the architecture is complete,

the architecture can still be considered to be in its infancy, and has some way

to go before it can be realized in silicon. It needs work in two main areas:

System Design and Synthesis.

7.1.1 System Design or Architectural Exploration

The basic architecture of the DRMP is in place in the current prototype,

designed at an abstract level. But even at this abstraction, further refine-

ment needs to be made. More specifically, the following areas need further

exploration:

Design of RFUs The RFUs are heterogeneous, to be designed keeping in

view the overlapping as well as distinct functionalities of the various

MAC protocols considered. The RFUs currently are modeled at high

abstraction and some with dummy functionality, aimed mostly at the

802.11 WiFi MAC. Focus has mostly been on their interaction, recon-

figuration and topology. There is an avenue of research open where

RFUs optimal for the WiFi as well as other chosen MAC protocols

would be designed, with the aim to achieve the optimum balance of

power-efficiency / resource-usage and flexibility. This R&D work is

essential to take the DRMP from concept to a real, usable IP.

Memory Architecture Although the DRMP prototype clearly partitions

the various memory elements used in the hardware co-processor, these

memories are modeled at a high abstraction without detailing their

technology, sizes, or access characteristics. These are not the kind of

unknowns though that will need a extensive innovative research to be

quantified. It can be expected be a relatively straightforward engineer-

ing task.

163

Chapter 7. Conclusions

Interconnect The interconnect in the Hardware Accelerator of the DRMP

is currently modeled as a simple bus-based mechanism, albeit with some

unique characteristics. Although it is a feasible option, it has not been

investigated and identified as the optimal solution. More research in

this area could yield a better interconnect design that can e.g. provide

the same interconnect throughput while using fewer resources.

Power-Efficiency Improvement Techniques The fact that the hardware

functional units are idle for large proportion of the packet duration,

along with the modular partitioning of the DRMP leaves considerable

room for employing power-improvement techniques. Results of brief in-

vestigation have been presented in section 6.2 Further research in this

area should result in making the DRMP a more attractive option for

power-sensitive hand-held devices.

From a 3-protocol Specific to a General-purpose MAC Architecture

This was discussed earlier in the section 4.3 where the evolution of

DRMP as a platform architecture is presented. This is probably the

most exciting and potentially innovative area of research open from

this point on. If it can eventually be shown that the DRMP can: im-

plement the MAC layer functionality of most if not all the prevalent

wireless protocols, do it at acceptable power consumption, provide a

simple API, and run up to any of these 3 (or perhaps more) protocols

in parallel, then there is a very strong case for commercializing the

DRMP.

Other Application-Domains Although this architecture is aimed at the

MAC-layer domain, there is nothing in the architecture that would limit

it to this domain only, apart from the choice of RFUs. It would be very

interesting to explore other application domains where a heterogeneous,

domain-specialized device, offering limited flexibility at improved effi-

ciency, may be feasible.

164

Chapter 7. Conclusions

7.1.2 Synthesizing the Architecture to Lower Abstrac-

tion

Once a stable high abstraction model is complete, the next step would be

to synthesize it to lower abstraction for two reasons: First, to confirm the

timing and area estimates and thus establish the viability of the architecture.

Secondly, the more obvious reason get an actual implementation in silicon,

or at least a synthesizable soft IP, to be able to sell it to handset and chip

manufacturers.

The current abstraction level of the DRMP model should make the synthesis

exercise a relatively straightforward, engineering task. The timing accuracy

of the DRMP model should give enough detail to the RTL designer so as

to make the RTL design a simple development task, rather than a research

effort.

In addition to the future exploration avenues discussed above, there are some

ideas that are very interesting and will make this architecture attractive for

manufacturers of handsets and portable devices. These ideas mostly deal

with using an already available technology in the context of this reconfig-

urable MAC processor. Use of power islands e.g. is an attractive option

in this sharply partitioned hardware architecture where power to functional

units not being used can be switched off. The concept of dynamic voltage

and frequency scaling of microprocessors is very relevant in this context too.

Another idea that was found to be appealing was the use of a software-based

universal low-performance backup functional unit that sits in the hardware

and caters for unforeseen functions in future standards that have no corre-

sponding hardware functional unit. Such a feature on top of the discussed

architecture of the DRMP will make it very flexible and perhaps even a

universal MAC platform that is power-efficient enough for portable devices.

With the extensive proliferation of multi-standard portable devices, such a

platform can be very attractive to handset manufacturers.

165

Appendix A

Snapshots of SIMULINK

Model

Mathwork’s Simulink modeling environment has been used for a prototype

model of the DRMP architecture. The Stateflow toolbox has been used to

model control logic in the model.

The chapter on system architecture contains block diagrams of the various

parts of the architecture. Here some snapshots of the actual model’s various

hierarchical levels are included. While this is just a model for simulation,

the interesting thing to note is how modeling in Simulink exposes the hierar-

chical structure of the architecture, the interconnect arrangement, and also

indicates the actual topology of various blocks.

The snapshots are not exhaustive. They are chosen to represent the different

techniques used to model the various parts of the DRMP SoC in the Simulink

environment. The rest of the snapshots are very similar to the ones presented,

and hence not produced.

166

Ti
m

e
in

 N
S

 fo
r a

 2
00

 M
H

Z
cl

oc
k

1
--

>
A

 is
 T

x,
 B

 is
 R

x
0

--
>

B
 is

 T
x,

 A
 is

 R
x

D
at

aR
dy

C
To

pS
iz

eC
To

pD
at

aC

D
at

aR
dy

B
To

pS
iz

eB
To

pD
at

aB

D
at

aR
dy

A
To

pS
iz

eA
To

pD
at

aA

si
m

tim
e

5

12
:3

4

D
ev

ic
e_

2

Tx
_R

x

Tx
_R

xB

Tx
_R

xC

D
ev

ic
e_

1

Tx
_R

x

Tx
_R

xB

Tx
_R

xC

0
1

 C
H

A
N

N
E

L
A

B
S

TR
A

C
TI

O
N

 C

 C
H

A
N

N
E

L
A

B
S

TR
A

C
TI

O
N

 A

 C
H

A
N

N
E

L
A

B
S

TR
A

C
TI

O
N

 B

Figure A.1: The Simulink model showing the simulation setup where two
devices transmit and receive packets of three protocols, using the DRMP

db
g_

rfu
8

db
g_

rfu
7

db
g_

rfu
6

db
g_

rfu
5

db
g_

rfu
3

db
g_

rfu
2

D
E

V
IC

E
_I

D

db
g_

bu
s

dg
_t

hr
3

dg
_t

hr
2

dg
_t

hr
1

dg
_t

hm
3

dg
_t

hm
2

dg
_t

hm
1

db
g_

rx
bu

f_
pi

C
db

g_
rx

bu
f_

pi
B

db
g_

rx
bu

f_
di

C

IF
_r

eg
_A

P
P

uP

db
g_

rx
bu

f_
di

B

db
g_

tx
bu

f_
pi

C
db

g_
tx

bu
f_

pi
B

db
g_

rx
bu

f_
pi

A
db

g_
rx

bu
f_

di
A

db
g_

tx
bu

f_
di

C
db

g_
tx

bu
f_

di
B

db
g_

tx
bu

f_
pi

A
db

g_
tx

bu
f_

di
A

db
g_

rfu
1

pm
em

_e
nd

ad
dr

_a
pr

oc

pm
em

_s
ta

rta
dd

r_
ap

ro
c

pm
em

1

B
uf

fe
r_

D
es

cC
B

uf
fe

r_
D

es
cB

hw
re

g0

hw
re

g4

hw
re

g3

hw
re

g2

hw
re

g1

B
uf

fe
r_

D
es

cA

{C
LK

}

W
ifi

_P
H

Y
C

PhyIF_ds

Tx_Rx
PhyIF_us

W
ifi

_P
H

Y
B

PhyIF_ds

Tx_Rx
PhyIF_us

W
ifi

_P
H

Y
A

PhyIF_ds

Tx_Rx
PhyIF_us

Tx
_R

xA
1

pm
em

1

R
ec

on
f_

H
W

_A
cc

M
A

C
up

_b
us

H
os

t_
bu

s

P
hy

IF
_u

sA

P
hy

IF
_u

sB

P
hy

IF
_u

sC

in
t2

sw

P
hy

IF
_d

sA

P
hy

IF
_d

sB

P
hy

IF
_d

sC

P
cl

oc
k_

ge
npc

lk
A

pc
lk

B

pc
lk

C
{P

C
LK

C
}

{P
C

LK
B

}

{P
C

LK
A

}

M
A

cu
p_

M
em

or
y

Tr m
as

te
r_

bu
sdo

ut

M
A

C
_S

of
tw

ar
e

in
t2

sw
A

M
A

C
up

_b
us

IN
T2

A
P

P
uP

In
ve

rt_
C

on
ve

rtB
oo

l

In
1

O
ut

1

IF
 R

E
G

 T
ab

le

D
O

C Te
xt

H
os

t_
M

em
or

y

Tr

Host_bus

dout

H
B

_A
rb

A
_i

M
_i

H
b

{H
M

_d
o}

{M
M

_d
o}

{P
M

_a
d1

}

{M
U

D
r}

{P
C

LK
C

}
{P

C
LK

B
}

{M
U

D
i}

{d
bg

_i
rc

_t
h3

_t
hr

}

{R
C

_E
N

_8
}

{R
C

_E
N

_6
}

{R
C

_E
N

_5
}

{R
C

_E
N

_3
}

{R
C

_E
N

_7
}

{R
C

_E
N

_2
}

{R
C

_E
N

_1
}

{d
bg

_i
rc

_r
cn

tr
}

{d
bg

_i
rc

_t
h1

_t
hr

}

{M
U

D
Si

}

{d
bg

_i
rc

_t
h1

_t
hm

}

{d
bg

_m
ac

pr
oc

}

{R
D

O
N

E8
}

{R
M

_a
d8

}

{D
O

N
E8

}

{P
M

_d
i8

}

{P
M

_a
d8

}

{P
M

_w
r8

}

{P
C

LK
A

}

{d
bg

_i
rc

_t
h2

_t
hr

}

{M
M

_d
o}

{R
M

_a
d7

}

{P
M

_d
i7

}

{P
M

_a
d7

}

{P
M

_w
r7

}

{R
D

O
N

E7
}

{D
O

N
E7

}

{R
M

_a
d6

}

{P
M

_d
i6

}

{P
M

_a
d6

}

{P
M

_w
r6

}

{D
O

N
E3

}

{R
D

O
N

E6
}

{D
O

N
E6

}

{R
M

_a
d5

}

{P
M

_d
i5

}

{P
M

_a
d5

}

{P
M

_w
r5

}

{R
D

O
N

E5
}

{D
O

N
E5

}

{R
M

_d
o}

{R
M

_a
d3

}

{D
O

N
E2

}

{R
M

_a
d2

}
{R

M
_a

d1
}

{R
D

O
N

E3
}

{R
D

O
N

E2
}

{R
D

O
N

E1
}

{d
bg

_i
rc

_t
h3

_t
hm

}
{d

bg
_i

rc
_t

h2
_t

hm
}

{P
M

_w
r4

}
{P

M
_w

r3
}

{P
M

_w
r2

}

{D
O

N
E1

}

{P
M

_w
r1

}

{P
M

_d
o2

}
{P

M
_d

o}

{P
M

_d
i4

}
{P

M
_d

i3
}

{P
M

_d
i2

}
{P

M
_d

i1
}{P

M
_a

d4
}

{P
M

_a
d3

}
{P

M
_a

d2
}

{C
LK

}

{H
M

_d
o}

{C
LK

}

{C
LK

}

D
eb

ug
Tx

D
eb

ug
R

x

pm
em

1

01

D
M

A

bi bo

A
pp

_P
ro

ce
ss

or

IN
T1

Tx
_R

x

H
os

t_
bu

s

 V
IS

IB
IL

IT
Y

 T
A

G
S

 F
O

R
 S

C
O

P
IN

G

Tx
_R

xC
3

Tx
_R

xB
2

Tx
_R

x

1

H
os

t_
bu

s

Figure A.2: The device model showing the DRMP along with the Application
processor, the memories, and PHY layer models. The highlighted block in
the center is the DRMP, showing the CPU and the Hardware Co-Processor

168

 e
M

R

eq
ue

st
_R

H
C

P
_S

er
vi

ce
(P

m
od

e,
 C

om
m

an
d,

A
R

G
1,

A
R

G
2,

A
R

G
3,

A
R

G
4,

 A
R

G
5,

 A
R

G
6,

 A
R

G
7)

ID
LE

/
en

: t
r_

rh
a

=
0;

 e
M

R

es
et

_I
F_

R
E

G
IS

TE
R

S

 e
M

 y
=

ca
lc

_f
ra

gr
em

(s
iz

e,
 th

re
sh

ol
d,

 h
ea

de
r_

si
ze

)
 e

M
 y

=
ca

lc
_f

ra
gt

ot
al

(s
iz

e,
 th

re
sh

ol
d,

 h
ea

de
r_

si
ze

)

S
ta

tic
_C

on
fig

_M
od

eA

 e
M

D

O
N

E
 =

 In
t_

H
an

dl
er

_M
co

de
_A

S
ta

tic
_C

on
fig

_M
od

eB

S
ta

tic
_C

on
fig

_M
od

eC
W

A
IT

4i
nt

er
ru

pt

In
t_

H
an

dl
er

_B
In

t_
H

an
dl

er
_C

In
t_

H
an

dl
er

_A

/*
D

o
st

ar
tu

p
st

at
ic

co
nf

ig
ur

at
io

n
fo

r m
od

e
A

he
re

 *
/

/*
D

o
st

ar
tu

p
st

at
ic

co
nf

ig
ur

at
io

n
fo

r m
od

e
B

he
re

 *
/

/*
D

o
st

ar
tu

p
st

at
ic

co
nf

ig
ur

at
io

n
fo

r m
od

e
C

he
re

 *
/

cl
k

[in
t2

sw
A

 =
=

1]
1

cl
k

[in
t2

sw
C

 =
=

1]
2

{d
bg

_m
ac

pr
oc

 =
 1

}
cl

k
[in

t2
sw

B
 =

=
1]

 /
{d

bg
_m

ac
pr

oc
 =

 2
}

3
{d

bg
_m

ac
pr

oc
 =

 3
}

{tr
_r

ha
 =

 0
}

{tr
_r

ha
 =

 0
}

{tr
_r

ha
 =

 0
}

{tr
_r

ha
 =

 0
}

{tr
_r

ha
 =

 0
}

{tr
_r

ha
 =

 0
}

{d
bg

_m
ac

pr
oc

 =
 0

}

Figure A.3: The stateflow chart showing the interrupt-driven protocol control
of the three protocols. The Interrupt-handlers are implemented in matlab-
code.

169

P
M

 A
cc

es
s

B
us

To
 u

P
Fr

om
 u

P

R
ec

on
f C

on
tro

l B
us

C
lo

ck
 T

re
e

R
FU

_D
O

N
E

_B
U

S

R
O

M

B
U

S
 R

E
Q

U
E

S
TS

B
U

S
 R

E
Q

U
E

S
TS

<-
--

--
--

--
--

- I
/F

 to
 th

e
P

H
Y

 la
ye

r -
--

--
--

--
--

--
>

P
hy

IF
_d

sC
4

P
hy

IF
_d

sB
3

P
hy

IF
_d

sA
2

in
t2

sw
1

re
co

nf
_m

em

Tr R
M

_b
usdo

ut

re
co

nf
_b

us
_a

rb
ite

r

R
bu

s_
R

eq

re
co

nf
_b

us

R
bu

s_
G

rn
t

pa
ck

et
_m

em

Tr P
M

_b
us

P
M

_b
us

2

do
ut

do
ut

2

pa
ck

et
_b

us
_a

rb
ite

r

P
bu

s_
R

eq

pa
ck

et
_b

us

P
bu

s_
G

rn
t

de
co

de
r

bi
bo

B
U

S
_G

R
N

T_
O

R
ID

E

IR
C

_I
D

P
M

_R
FU

_N
O

P
M

_R
FU

_B
A

S
E

U
S

ar
bi

te
r

A
bu

s
B

bu
s

C
bu

s
O

bu
s

Tx
R

xB
uf

fe
rs

_M
od

eC

D
R

M
P

_d
s

P
H

Y
_I

nt
_u

s

D
R

M
P

_u
s

P
H

Y
_I

nt
_d

s

Tx
R

xB
uf

fe
rs

_M
od

eB

D
R

M
P

_d
s

P
H

Y
_I

nt
_u

s

D
R

M
P

_u
s

P
H

Y
_I

nt
_d

s

Tx
R

xB
uf

fe
rs

_M
od

eA

D
R

M
P

_d
s

P
H

Y
_I

nt
_u

s

D
R

M
P

_u
s

P
H

Y
_I

nt
_d

s

To
B

us
es

_4

pm
em

_b
us

R
FU

_T
rig

ge
r_

Lo
gi

c

P
B

U
S

R
FU

_C
nt

rl

R
FU

_P
oo

l

R
B

U
S

C
O

N
TR

O
L

C
LK

P
M

_B
U

S

R
M

_B
U

S

P
hy

IF
_u

s

P
hy

IF
_d

s

R
C

_I
C

_a
bs

tra
ct

io
n

rc
_r

fu
_c

nf
gs

t

rc
_r

fu
_i

d

rc
_r

en

R
C

_B
us

I_
R

_C
on

tro
lle

r

ho
st

_b
us

E
H

_t
r_

rh
a

cl
k

R
FU

_D
O

N
E

R
FU

_R
D

O
N

E

P
bu

s_
G

rn
t

R
bu

s_
G

rn
t

P
M

_B
U

S

in
t2

sw

rc
_r

fu
_c

nf
gs

t

rc
_r

fu
_i

d

rc
_r

en

R
bu

s_
R

eq

P
bu

s_
R

eq

P
M

_B
U

S
i

{P
M

_d
o}

{P
M

_d
o2

}

{R
M

_d
o}

{C
LK

}

E
ve

nt
_H

an
dl

er

cl
k

P
hy

IF
_u

sA
P

hy
IF

_u
sB

P
hy

IF
_u

sC
tr_

rh
aD

O
N

E
_L

O
G

IC

D
O

N
E

P
hy

IF
_u

sC
5

P
hy

IF
_u

sB
4

P
hy

IF
_u

sA
3

H
os

t_
bu

s

2

M
A

C
up

_b
us

1

<R
D

O
N

E
>

do
ut

_p
m

em

do
ut

_r
m

em
R

M
 A

cc
es

s
B

us

R
M

 A
cc

es
s

B
us

Figure A.4: Inside the RHCP sub-system in the model. IRC, RFU pool,
Interface Buffers, Memories, Arbiters and Interconnect can be seen.

170

P
M

_B
U

S
i

7

P
bu

s_
R

eq
6

R
bu

s_
R

eq
5

rc
_r

en4
rc

_r
fu

_i
d

3
rc

_r
fu

_c
nf

gs
t

2

in
t2

sw1

rfu
_t

ab
le

rfu
t_

bu
s

rfu
_i

do

ns
ta

te
s

na
rg

s

c_
st

at
e

in
_u

se

Q
re

q1

P
rQ

re
q1

Q
re

q2

P
rQ

re
q2

op
_c

od
e_

ta
bl

e

op_code

nargs

rfu_id

recon_st

recon_vec

{d
bg

_i
rc

_t
h3

_t
h

{d
bg

_i
rc

_t
h2

_t
h

{d
bg

irc
th

3
th

m
{d

bg
irc

th
2

th
m

{d
bg

_i
rc

_t
h1

_t
hm

{d
bg

_i
rc

_r
cn

tr}

{d
bg

irc
th

1
th

A
ss

ig
n2

R
C

_o
ct

IC
_o

p_
in

R
C

_o
p_

in
op

c_
ou

t

A
ss

ig
n2

R
C

IC
_b

us
_i

n

R
C

_b
us

_i
n

bu
s_

ou
t

R
_C

on
tro

l

re
co

n_
st

rfu
_i

d

rc
_r

fu
_c

nf
gs

t

rc
_r

fu
_i

d

rc
_r

en

rfu
_i

d_
ta

bl
e

rfu
t_

co
l

rfu
t_

ro
w

rfu
t_

va
lu

e

rfu
t_

w
re

n

as
si

gn
2r

c

op
_c

od
e

as
si

gn
2r

c_
oc

t

db
g_

irc
_r

cn
tr

R
E

C
_O

K

O
R

I_
C

on
tro

l

tr_
rh

a

ho
st

_d
at

a_
bu

s

R
FU

_D
O

N
E

P
bu

s_
G

rn
t

G
rID

R
bu

s_
G

rn
t

re
co

n_
ve

c

re
co

n_
st

rfu
_i

d_
i

na
rg

s

c_
st

at
e

in
_u

se

Q
re

q1

P
rQ

re
q1

Q
re

q2

P
rQ

re
q2

rfu
_i

d

in
t2

sw

rfu
_d

at
a

P
bu

s_
R

eq
1

P
bu

s_
R

eq
2

P
bu

s_
R

eq
3

op
_c

od
e

R
bu

s_
R

eq
1

R
bu

s_
R

eq
2

R
bu

s_
R

eq
3

rfu
_i

d_
ta

bl
e

rfu
t_

co
l

rfu
t_

ro
w

rfu
t_

va
lu

e

rfu
t_

w
re

n

ad
dr

_p
m

em

di
n_

pm
em

w
r_

en
_p

m
em

db
g_

irc
_t

h1
_t

hm

db
g_

irc
_t

h1
_t

hr

db
g_

irc
_t

h2
_t

hm

db
g_

irc
_t

h3
_t

hm

db
g_

irc
_t

h2
_t

hr

db
g_

irc
_t

h3
_t

hr

R
E

C
_R

E
Q

op
co

de
4R

C

O
C

T_
m

ut
ex

R
FU

T_
m

ut
ex

P
M

_B
U

S
8

R
bu

s_
G

rn
t

7

P
bu

s_
G

rn
t

6

R
FU

_R
D

O
N

E
5

R
FU

_D
O

N
E

4

cl
k3

E
H

_t
r_

rh
a

2

ho
st

_b
us

1

na
rg

srfu
_i

d
re

co
n_

st
re

co
n_

ve
c

c_
st

at
e

in
_u

se
Q

re
q1

P
rQ

re
q1

Q
re

q2
P

rQ
re

q2

rfu
_i

do
ns

ta
te

s
na

rg
s

<c
_s

ta
te

>

<i
n_

us
e>

<Q
re

q1
>

<P
rQ

re
q1

>

<Q
re

q2
>

<P
rQ

re
q2

>

<r
ec

on
_v

ec
>

<r
ec

on
_s

t>

<r
fu

_i
d>

<n
ar

gs
>

<r
ec

on
_s

t>

<r
fu

_i
d>

<t
r_

rh
a>

<d
in

_m
m

em
>

<d
ou

t_
pm

em
>

<P
bu

s_
G

rn
t>

<G
rID

>

Figure A.5: The IRC subsystem in the Simulink model. The two separate
Interface Control and Reconfiguration Control Stateflow charts can be seen.
The tables and their arbiters are also visible.

T
a
s
k
H

a
n
d
le

r_
3

5
R

e
a

d
 t

h
e

 S
u

p
e

r_
o

p
_

c
o

d
e

 (
s
o

p
c
)

re
g

is
te

r
in

 a
 l
o
o

p
 a

n
d

e
x
e

c
u

te
 t
h

e
 c

o
rr

e
s
p

o
n
d

in
g

 c
o

m
m

a
n

d
s
 o

n
 R

F
U

s
o

p
_
c
o
d
e
 =

=
 0

 i
m

p
lie

s
 s

o
p
c
 h

a
s
 n

o
m

o
re

 o
p

_
c
o
d
e
s
 l
e
ft

T
H

_
M

1

W
A

IT
%

th
is

 c
n
tr

 w
ill

 c
o

u
n
t

th
e
 8

%
 b

y
te

s
 i
n
 a

 s
u
p
e
r_

o
c

%
 s

ta
rt

 f
ro

m
 2

n
d
 e

le
m

e
n
t

%
 b

/c
 f

ir
s
t

is
 h

e
a
d

e
r#

%
 h

e
a
d
e

r
d
e
a
lin

g
 h

e
re

%
 z

e
ro

-b
a
s
e
d
 i
n
d
e
x
in

g
b
y
te

_
c
o
u
n

te
r

=
 1

B
E

G
IN

G
E

T
_
O

P
C

O
D

E

T
A

B
L
E

S

S
le

e
p

W
a

k
e

W
A

IT
4
M

U
T

E
X

1
d
g
_
th

m
3
 =

 2

J
U

N
C

T
IO

N
%

e
n
:

tr
_
rf

u
 =

 0
;

d
g
_
th

m
3
 =

 1

A
S

S
E

R
T

_
IN

U
S

E

N
E

G
A

T
E

_
IN

U
S

E
_
S

E
N

D
_
T

H
W

A
K

E

m
a
in

ta
in

e
x
e

c
u

ti
o

n
 o

rd
e

r

A
T

Y
P

_
R

E
C

O
N

F
W

A
IT

4
M

U
T

E
X

3
d
g
_
th

m
3
 =

 9

T
R

IG
G

E
R

_
W

A
IT

T
H

_
R

2

W
A

IT
%

th
is

 c
n

tr
 w

ill
 c

o
u

n
t
th

e
 8

%
 b

y
te

s
 i
n
 a

 s
u

p
e
r_

o
c

%
 s

ta
rt

 f
ro

m
 2

n
d

 e
le

m
e

n
t

%
 b

/c
 f

ir
s
t

is
 h

e
a

d
e
r#

%
 h

e
a

d
e
r

d
e

a
lin

g
 h

e
re

%
 z

e
ro

-b
a

s
e

d
 i
n
d
e

x
in

g
b

y
te

_
c
o

u
n

te
r

=
 1

G
E

T
_
O

P
C

O
D

E

B
E

G
IN

T
A

B
L
E

S

W
A

IT
4
M

U
T

E
X

1
d

g
_

th
r3

 =
 2

S
le

e
p
W

a
k
e

J
U

N
C

T
IO

N
d
g
_
th

r3
 =

 1

A
S

S
E

R
T

_
IN

U
S

E

N
_
IN

U
S

E
_
S

E
N

D
_
T

H
W

A
K

E
_
G

O
M

R
E

C
O

N
F

W
A

IT
4
M

U
T

E
X

3
d

g
_

th
r3

 =
 8

G
O

_
T

H
M

{d
b
g
_

ir
c
_
th

3
_

th
m

=
1

d
g
_
th

m
3
 =

 1
}

c
lk

[o
p

_
c
o

d
e
 =

=
 0

]

{ h
w

re
g
4
 =

 T
H

ID
D

O
N

E
O

C
T

_
m

u
te

x
 =

 0
d
b
g
_
ir
c
_
th

3
_
th

m
=

0
d
g
_
th

m
3
 =

 0
}

c
lk

[O
C

T
_

m
u

te
x
 =

=
 0

]
{O

C
T

_
m

u
te

x
 =

 1
d
g

_
th

m
3
 =

 3
}

/*
A

c
q
u
ir
e
 O

C
T

*/
c
lk

/*
In

u
s
e

 b
y
 a

n
o

th
e

r
m

o
d

e
G

o
 t

o
 S

le
e

p
(M

a
in

ta
in

 E
x
 o

rd
e

r)
*/

/*
F

re
e

 t
o

 u
s
e

 n
o
w

*/

c
lk

 [
(b

y
te

_
c
o
u
n
te

r
<

 8
)]

c
lk

c
lk

 /
 R

F
U

T
_
m

u
te

x
 =

 0

c
lk

/*
R

e
le

a
s
e

 R
F

U
T

*/

c
lk

 [
R

F
U

T
_
m

u
te

x
 =

=
 0

]
{R

F
U

T
_
m

u
te

x
 =

 1
rf

u
_

id
_

ta
b

le
 =

 r
fu

_
id

_
lc

l
d
g
_
th

m
3
=

1
0
}

/*
R

e
a

c
q

u
ir
e
 R

F
U

T
 a

n
d

 s
e

t
it
s
 i
/p

*/

c
lk

 [
 (

c
_

s
ta

te
 !

=
 r

e
c
o

n
_

s
t_

lc
l)
]

/
R

F
U

T
_

m
u

te
x
 =

 0

c
lk

 /
 R

F
U

T
_

m
u

te
x
 =

 0

{R
C

_
m

u
te

x
 =

 0

}/
*R

e
s
le

a
s
e

 R
-C

*/

{ b
y
te

_
c
o
u
n
te

r+
+

}

G
O

{d
b

g
_
ir
c
_

th
3
_

th
r

=
 1

d
g
_
th

r3
 =

 1
}

c
lk

[o
p
_
c
o
d
e
 =

=
 0

]

{ %
h
w

re
g
4
 =

 T
H

ID
%

D
O

N
E

O
C

T
_
m

u
te

x
 =

 0
d
b

g
_

ir
c
_
th

3
_

th
r

=
 0

d
g
_
th

r3
 =

 0
}

c
lk

[O
C

T
_

m
u

te
x
 =

=
 0

]
{O

C
T

_
m

u
te

x
 =

 1
d
g
_
th

r3
=

3
}

/*
A

c
q

u
ir
e

 O
C

T
*/

/*
R

F
U

T
 r

e
le

a
s
e
d
 a

n
d

 Q
re

q
 a

s
s
e
rt

e
d

in
s
id

e
 S

L
E

E
P

 s
ta

te
*/

c
lk

 [
in

_
u

s
e
!=

0
]

c
lk

c
lk

 [
in

_
u
s
e
 =

=
 0

]

c
lk

 [
(b

y
te

_
c
o

u
n

te
r

<
 8

)]
{ R

F
U

T
_
m

u
te

x
 =

 0
;

}

c
lk

c
lk

/*
R

e
le

a
s
e

 R
F

U
T

*/

c
lk

 [
 (

c
_
s
ta

te
 !

=
 r

e
c
o

n
_
s
t_

lc
l)
]

/
R

F
U

T
_
m

u
te

x
 =

 0
c
lk

 [
R

F
U

T
_
m

u
te

x
 =

=
 0

]
{R

F
U

T
_
m

u
te

x
 =

 1
rf

u
_
id

_
ta

b
le

 =
 r

fu
_

id
_

lc
l

d
g
_
th

r3
 =

 9
}

c
lk

 {
 R

F
U

T
_
m

u
te

x
 =

 0
 }

{R
C

_
m

u
te

x
 =

 0
}/

*R
e

s
le

a
s
e
 R

-C
*/

{ b
y
te

_
c
o

u
n

te
r

=
 b

y
te

_
c
o

u
n

te
r

+
 n

a
rg

s
_

lc
l
+

 1
%

in
c
re

m
e

n
t
to

 r
e

a
c
h

 t
h

e
 n

e
x
t
o

p
c
o

d
e

}

Figure A.6: The stateflow chart for the task-handler for MAC. Corresponds
to the stateflow diagram of Fig. 3.5

172

IN
IT

%
 d

is
ab

le
 re

co
nf

 tr
ig

ge
r

rc
_r

en
 =

 0
;

rfu
t_

w
re

n
=

0;
as

si
gn

2r
c

=
0;

as
si

gn
2r

c_
oc

t =
 0

;

W
A

IT
4M

U
TE

X
1

IP
2O

C
T

op
_c

od
e

=
op

co
de

4R
C

as
si

gn
2r

c_
oc

t =
 1

U
P

D
A

TE
_R

TA
B

LE

A
S

S
E

R
T

rc
_r

en
 =

 0
;

rfu
_i

d_
ta

bl
e

=
rc

_r
fu

_i
d

%
 T

he
 rf

u_
id

 s
el

ec
ts

 th
e

co
l (

+1
 b

/c
 1

 b
as

ed
 in

de
x)

rfu
t_

co
l =

 rc
_r

fu
_i

d
+

1;
%

4t
h

en
ty

 (r
ow

) i
s

th
e

cs
ta

te
)

rfu
t_

ro
w

 =
 4

;
%

 T
he

 v
al

ue
 to

 w
rit

e
is

 th
e

ne
w

 re
co

nf
 s

ta
te

rfu
t_

va
lu

e
=

rc
_r

fu
_c

nf
gs

t;
%

Ta
ke

 c
on

tro
l o

f w
_b

us
 to

 rf
u_

ta
bl

e
an

d
as

se
rt

w
r_

en
as

si
gn

2r
c

=
1;

rfu
t_

w
re

n
=

1;

W
A

IT
rfu

t_
w

re
n

=
0

R
E

A
D

_O
C

T
%

 s
et

 o
/p

 rc
_r

fu
_i

d
fro

m
 in

pu
t f

ro
m

 O
C

T
rc

_r
fu

_i
d

=
rfu

_i
d

%
 s

et
 o

/p
 re

co
n_

st
 fr

om
 in

pu
t f

ro
m

 O
C

T
rc

_r
fu

_c
nf

gs
t =

 re
co

n_
st

R
E

C
O

N
F_

A
N

D
_R

E
LE

A
S

E
_O

C
T

%
 tr

ig
ge

r r
fu

 re
co

nf
ig

ur
at

io
n

rc
_r

en
 =

 1
;

%
 re

le
as

e
O

C
T

O
C

T_
m

ut
ex

 =
 0

as
si

gn
2r

c_
oc

t =
 0

W
A

IT
4M

U
TE

X
2

{d
bg

_i
rc

_r
cn

tr
=

0}

{ R
E

C
_O

K
R

FU
T_

m
ut

ex
 =

 0
}

R
E

C
_R

E
Q

{d
bg

_i
rc

_r
cn

tr
=

1}

cl
k

[O
C

T_
m

ut
ex

 =
=

0]
 /

O
C

T_
m

ut
ex

 =
 1

cl
k

cl
k

cl
k

[R
FU

T_
m

ut
ex

 =
=

0]
 /

R
FU

T_
m

ut
ex

 =
 1

R
FU

_R
D

O
N

E

cl
k

cl
k

Figure A.7: The stateflow chart of the Reconfiguration Controller. Corre-
sponds to the stateflow diagram of Fig. 3.7

This the dynamic rfu_table
See the DOC for more details

Qreq2

PrQreq2
9

Qreq2
8

PrQreq1
7

Qreq1
6

in_use
5

c_state
4

nargs
3

nstates
2

rfu_ido
1

doc_rfu_table

DOC

Text

LUT_Writer

matrix_in

wr_en

row

col

value

matrix_out

Direct Lookup
Table (n-D)1

 2-D T[k]

T

Data Type Conversion

uint8

rLUTdata

rLUTdata

rLUTdata

rLUTdata

rfut_bus
1

in_use

c_state

nargs

nstates

rfu_id

Qreq1

PrQreq1

PrQreq2

<rfut_wren>

<rfut_row>

<rfut_col>

<rfut_value>

<rfu_id_table>

Figure A.8: The RFU Lookup table subsystem that is used by the IRC to
check an RFU’s status. Since this is a dynamic table, it has write logic
modeled as well.

174

P
hy

IF
_d

s

1

{R
D

O
N

E
8

{R
D

O
N

E
7

{R
D

O
N

E
6}

{R
D

O
N

E
2}

{R
D

O
N

E
5

{R
D

O
N

E
1}

{R
D

O
N

E
3}

To
B

us
es

8

pm
em

_b
us

rm
em

_b
us

To
B

us
es

7

pm
em

_b
us

rm
em

_b
us

To
B

us
es

6

pm
em

_b
us

rm
em

_b
us

To
B

us
es

5

pm
em

_b
us

rm
em

_b
us

To
B

us
es

3

pm
em

_b
us

rm
em

_b
us

To
B

us
es

2

pm
em

_b
us

rm
em

_b
us

To
B

us
es

1

pm
em

_b
us

rm
em

_b
us

R
FU

s
D

es
cr

.

D
O

C Te
xt

R
FU

8_
D

ef
ra

g

FU
N

C
_t

r

R
C

_e
n

R
C

_c
nf

gs
t

do
ut

_r
m

em
<L

o>

do
ut

_p
m

em
<L

o>

di
n_

pm
em

<L
o>

pm
em

_b
us

8

rm
em

_b
us

6

D
O

N
E

R
D

O
N

E

R
FU

7_
cr

yp
to

FU
N

C
_t

r

R
C

_e
n

R
C

_c
nf

gs
t

do
ut

_r
m

em
<L

o>

do
ut

_p
m

em
<L

o>

di
n_

pm
em

<L
o>

pm
em

_b
us

7

rm
em

_b
us

7

D
O

N
E

R
D

O
N

E

tr_
ou

t_
cr

c

R
FU

6_
Fr

ag

FU
N

C
_t

r

R
C

_e
n

R
C

_c
nf

gs
t

do
ut

_r
m

em
<L

o>

do
ut

_p
m

em
<L

o>

di
n_

pm
em

<L
o>

pm
em

_b
us

6

rm
em

_b
us

6

D
O

N
E

R
D

O
N

E

R
FU

5_
P

hy
R

xS
M

FU
N

C
_t

r

R
C

_e
n

R
C

_c
nf

gs
t

do
ut

_r
m

em
<L

o>

do
ut

_p
m

em
<L

o>

di
n_

pm
em

<L
o>

P
hy

IF
_u

s

pm
em

_b
us

4

rm
em

_b
us

4

D
O

N
E

R
D

O
N

E

tr_
ou

t_
cr

c

P
hy

_I
F_

ds

R
FU

3_
P

hy
Tx

S
M

FU
N

C
_t

r

R
C

_e
n

R
C

_c
nf

gs
t

do
ut

_r
m

em
<L

o>

do
ut

_p
m

em
<L

o>

di
n_

pm
em

<L
o>

P
hy

IF
_u

s

pm
em

_b
us

3

rm
em

_b
us

3

D
O

N
E

R
D

O
N

E

P
hy

IF
_d

s

tr_
ou

t_
cr

c

R
FU

2_
C

R
C

FU
N

C
_t

r

S
ec

_t
r

R
C

_e
n

R
C

_c
nf

gs
t

do
ut

_r
m

em
<L

o>

do
ut

_p
m

em
<L

o>

di
n_

pm
em

<L
o>

pm
em

_b
us

2

rm
em

_b
us

2

D
O

N
E

R
D

O
N

E

R
FU

1_
M

ak
e_

Te
m

pl
_P

kt

FU
N

C
_t

r

R
C

_e
n

R
C

_c
nf

gs
t

do
ut

_r
m

em
<L

o>

do
ut

_p
m

em
<L

o>

di
n_

pm
em

<L
o>

pm
em

_b
us

1

rm
em

_b
us

1

D
O

N
E

R
D

O
N

E

O
R

{D
O

N
E

2
{D

O
N

E
1

{D
O

N
E

8{D
O

N
E

7

{D
O

N
E

6

{D
O

N
E

5
{D

O
N

E
3

P
hy

IF
_u

s

6

R
M

_B
U

S

5

P
M

_B
U

S

4

C
LK3

C
O

N
TR

O
L

2

R
B

U
S

1

<d
ou

t_
rm

em
>

<d
ou

t_
pm

em
>

<d
in

_p
m

em
>

<r
c_

rfu
_c

nf
gs

t>

<r
c_

rfu
en

_8
>

<r
fu

en
_8

>

R
xS

ig
na

ls

Tx
S

ig
na

ls

<r
c_

rfu
_c

nf
gs

t>

<r
c_

rfu
en

_2
>

<r
c_

rfu
_c

nf
gs

t>

<r
c_

rfu
en

_1
>

<r
fu

en
_2

>

<d
in

_p
m

em
>

R
D

O
N

E
1

<r
fu

en
_1

>

D
O

N
E

2
D

O
N

E
1

rm
em

_b
us

1
<d

ou
t_

rm
em

>
<d

ou
t_

rm
em

>

pm
em

_b
us

1

<r
fu

en
_3

>

<r
c_

rfu
_c

nf
gs

t>

<r
c_

rfu
en

_3
>

<d
ou

t_
rm

em
>

<d
in

_p
m

em
>

<d
ou

t_
pm

em
>

<d
ou

t_
pm

em
>

<d
ou

t_
pm

em
>

pm
em

_b
us

3

rm
em

_b
us

3

<r
fu

en
_5

>

<r
c_

rfu
en

_5
>

<r
c_

rfu
_c

nf
gs

t>

<d
ou

t_
rm

em
>

<d
ou

t_
pm

em
>

<d
in

_p
m

em
>

<d
in

_p
m

em
>

<d
ou

t_
pm

em
>

<d
ou

t_
rm

em
><r

fu
en

_6
>

<r
c_

rfu
en

_6
>

<r
c_

rfu
_c

nf
gs

t> <r
fu

en
_7

>

<r
c_

rfu
en

_7
>

<r
c_

rfu
_c

nf
gs

t>

<d
in

_p
m

em
>

<d
ou

t_
pm

em
>

<d
ou

t_
rm

em
>

<d
in

_p
m

em
>

Figure A.9: The Pool of RFUs showing interfaces, various data and control
buses, and primary and secondary (peer-to-peer) trigger lines

175

(state==1) => encryption
(state==2) => decryption

Not needed but just to keep
a uniform interface.

If RC_en, then load new value,
otherwise remain in the
same context

Since This RFU reconfigures by
switching context only, the RDONE
is sent automatically (after some ticks)

Source Pointer

Size

Header Size

Destination Pointer

Key

tr_out_crc
5

RDONE
4

DONE
3

rmem_bus7
2

pmem_bus7
1

on

Display

state_reg

state_reg

state_reg

ARG5

ARG4

ARG1

ARG3

rfu_id

state_reg

ARG2

MYADDRESS

0

CRYPT

dout_pmem

state_in

func_tr

din_pmem_r

DONE

addr

din_mem

wr_en_mem

tr_out_crc

Trigger

din_pmem
6<Lo>

dout_pmem
5<Lo>

dout_rmem
4<Lo>

RC_cnfgst
3

RC_en
2

FUNC_tr
1

addr_rmem

wr_en_pmem

din_pmem

addr_pmem

Figure A.10: Inside the subsystem that is the RFU for encryption and decryp-
tion. Note the stateflow block containing encryption logic, the context-switch
logic, the state registers, and the interface signals.

176

If
(s

ta
te

_i
n=

=1
) -

->
 W

ifi
 E

nc
ry

pt
io

n
A

R
G

1
=

P
oi

nt
er

 to
 p

la
in

-te
xt

 P
D

U
A

R
G

2
=

S
iz

e
of

 P
D

U
 p

ac
ke

t i
nc

 h
ea

de
r

A
R

G
3

=
S

iz
e

of
 P

D
U

 H
ea

de
r (

no
t t

o
en

cr
yp

t)
A

R
G

4
=

D
es

tin
at

io
n

P
oi

nt
er

 (f
or

 c
ip

he
rte

xt
)

A
R

G
5

=
E

nc
ry

pt
io

n
K

ey
 (f

or
 P

R
N

G
)

A
R

G
6

=
R

FU
_I

D
 o

f S
la

ve
 C

R
C

 R
FU

 fo
r B

us
 G

ra
nt

 ?
?

 e
M

y

=
R

C
4_

P
R

N
G

(K
ey

, S
iz

e)
B

R
E

A
K

D
O

N
E

 =
 0

;
A

R
G

S
 e

M

y
=

E
nc

ry
pt

_w
or

d(
pt

ex
t_

w
or

d,
 p

rn
g_

w
or

d)

 e
M

y

=
D

ec
ry

pt
_w

or
d(

ct
ex

t_
w

or
d,

 p
rn

g_
w

or
d)

If
(s

ta
te

_i
n=

=2
) -

->
 W

ifi
 D

ec
ry

pt
io

n
A

R
G

1
=

P
oi

nt
er

 to
 c

ip
he

r-
te

xt
 P

D
U

A
R

G
2

=
S

iz
e

of
 P

D
U

 p
ac

ke
t i

nc
 h

ea
de

r
A

R
G

3
=

S
iz

e
of

 P
D

U
 H

ea
de

r (
no

t t
o

de
cr

yp
t)

A
R

G
4

=
D

es
tin

at
io

n
P

oi
nt

er
 (f

or
 p

la
in

te
xt

)
A

R
G

5
=

D
ec

ry
pt

io
n

K
ey

 (f
or

 P
R

N
G

)
A

R
G

6
=

R
FU

_I
D

 o
f S

la
ve

 C
R

C
 R

FU
 fo

r B
us

 G
ra

nt
 ?

?

W
A

IT
/*

fo
r f

un
c_

tr
to

 b
e

en
ab

le
d

ag
ai

n*
/

A
R

G
S

_2
_C

R
C

_R
FU

IN
IT

_F
U

N
C

R
ea

d_
W

rit
e_

D
is

ab
le

_H

R
ea

d_
E

nc
ry

pt
_W

rit
e_

D
is

ab
le

_D

R
E

A
D

_W
R

IT
E

_H
E

A
D

E
R

R
ea

d_
D

ec
ry

pt
_W

rit
e_

D
is

ab
le

_D

R
E

A
D

_E
N

C
R

Y
P

T_
W

R
IT

E
_D

A
TA

_D
O

N
E

D
IA

B
LE

_A
N

D
_W

A
IT

_F
O

R
_R

E
S

P
O

N
S

E

B
U

S
_G

R
A

N
T_

O
V

E
R

R
ID

E
_2

_C
R

C
_R

FU

R
E

A
D

_C
R

C
_R

E
TU

R
N

D
IA

B
LE

_A
N

D
_W

A
IT

_F
O

R
_D

O
N

E

W
A

IT
4b

us
W

R
IT

E
_E

N
C

R
Y

P
TE

D
_I

C
V

W
A

IT
5

[fu
nc

_t
r =

=
1]

{d
bg

_r
fu

7=
1}

{d
bg

_r
fu

7=
0}

[fu
nc

_t
r =

=
0]

[fu
nc

_t
r =

=
1]

{p
nt

r_
pt

ex
t =

 A
R

G
3

%
re

la
tiv

e
to

 A
R

G
1;

 h
ea

de
r s

ki
pp

ed
pn

tr_
ct

ex
t =

 0
 %

 re
la

tiv
e

to
 A

R
G

4
en

c_
st

rin
g

=
R

C
4_

P
R

N
G

(A
R

G
5,

 A
R

G
2

- A
R

G
3

);}

{w
_c

ou
nt

 =
 A

R
G

3
i =

 0
}

[i<
w

_c
ou

nt
]

1
{i+

+}

2

/*
en

cr
yp

tin
g*

/[(
st

at
e_

in
==

1)
 ||

 (s
ta

te
_i

n=
=3

) |
| (

st
at

e_
in

==
5)

]
1

[i<
w

_c
ou

nt
]

1

2
{w

_c
ou

nt
 =

 A
R

G
2

- A
R

G
3

i =
 0

}
{i+

+}
/*

as
su

m
ed

 d
ec

 s
ta

te
 --

>
2,

4,
6

*/

2

{i+
+}

/*
 A

ss
er

t t
he

 s
pe

ci
al

 a
dd

re
ss

 th
at

 w
ill

 o
ve

r_
rid

e
bu

s
gr

an
t

an
d

al
so

 a
se

rt
on

 d
at

a
bu

s
th

e
id

 o
f s

la
ve

 R
FU

A
ls

o
tri

gg
er

 s
la

ce
 R

FU
 to

 in
di

ca
te

 b
us

 is
 a

va
ila

bl
e*

/
{ ad

dr
 =

 B
U

S
_G

R
N

T_
O

R
ID

E
di

n_
m

em
 =

 2
w

r_
en

_m
em

 =
 1

tr_
ou

t_
cr

c
=

1
}

{w
r_

en
_m

em
 =

 0
tr_

ou
t_

cr
c

=
0}

/*
 If

 d
ec

ry
pt

in
g

*/
[(f

un
c_

tr
==

 1
) &

&
 (

(s
ta

te
_i

n=
=2

) |
| (

st
at

e_
in

==
4)

 ||
 (s

ta
te

_i
n=

=6
))

]
{IC

V
_c

te
xt

 =
 d

in
_p

m
em

_r
%

re
ad

 IC
V

 fr
om

 C
R

C
}

2
/*

 If
 e

nc
ry

pt
in

g
*/

[(f
un

c_
tr

==
 1

) &
&

 (
(s

ta
te

_i
n=

=1
) |

| (
st

at
e_

in
==

3)
 ||

 (s
ta

te
_i

n=
=5

))
]

{IC
V

_c
te

xt
 =

 E
nc

ry
pt

_w
or

d(
di

n_
pm

em
_r

, e
nc

_s
tri

ng
[i]

)
%

re
ad

 IC
V

 fr
om

 C
R

C
, a

nd
 e

nc
ry

pt
}

1

[fu
nc

_t
r =

=
0]

{w
r_

en
_m

em
 =

 0
}

/*
sl

av
e

R
FU

 in
di

ca
te

s
do

ne
 b

y
w

rit
in

g
to

th
e

M
as

te
r R

FU
's

 a
dd

re
ss

 i.
e.

 tr
ig

ge
rin

g
it*

/
[fu

nc
_t

r =
=

1]
/*

en
cr

yp
tin

g*
/

[(s
ta

te
_i

n=
=1

) |
| (

st
at

e_
in

==
3)

 ||
 (s

ta
te

_i
n=

=5
)]

1
/*

H
av

e
to

 w
ai

t s
om

e
tic

ks
 s

o
th

at
 b

us
 c

on
tro

l
ha

s
be

en
 re

tu
rn

ed
 b

y
th

e
C

R
C

-R
FU

*/
af

te
r(

3,
tic

k)
{d

in
_m

em
 =

 IC
V

_c
te

xt
ad

dr
 =

 (A
R

G
4

+
pn

tr_
ct

ex
t)

+
A

R
G

3
+

 i
%

 w
rit

e
ci

ph
er

-IC
V

 o
n

th
e

ne
xt

 a
va

ila
bl

e
lo

ca
tio

n
w

r_
en

_m
em

 =
 1

}
/*

de
cr

yp
tin

g*
/

2

{w
r_

en
_m

em
 =

 0
}

/*
IC

V
-E

rr
or

*/
2

/*
co

rr
ec

t I
C

V
, s

en
d

D
O

N
E

*/
[IC

V
_r

ec
ei

ve
d=

=I
C

V
_c

te
xt

]
1

{D
O

N
E

 =
 rf

u_
id

}

Figure A.11: The stateflow chart of the encryption / decryption RFU. Re-
ceives arguments, writes header, encrypts or decrypts, and calculates or
checks redundancy value using slave RFU.

177

Pbus_Grnt
2

packet_bus
1

Grant_delay

Pbus_Grnt

wr_en_pmem

Pbus_Grnt_out

Grant_Override_Logic

addr_pmem

din_pmem

wr_en_pmem

OVERIDE_OK

grant_rfu_id

{PM_ad4}

{PM_wr4}

{PM_di2}

{PM_ad2}

{PM_do}

{PM_wr2}

{PM_di1}

{PM_ad8}

{PM_wr8}

{PM_di8}

{PM_ad7}

{PM_wr7}

{PM_di7}

{PM_ad1}

{PM_ad6}

{PM_wr6}

{PM_di6}

{PM_ad5}

{PM_wr5}

{PM_di5}

{PM_di3}

{PM_ad3}

{PM_wr3}

{PM_di4}

{PM_wr1}

{CLK}

dbg_bus

Bus_Mux

Bus_Arbiter

Pbus_Req1

Pbus_Req2

Pbus_Req3

Pbus_Grnt

GrID
Pbus_Req

1

BUS

PMbus

<Pbus_Req1>

<Pbus_Req2>

<Pbus_Req3>

<wr_en_pmem>

<addr_pmem>

<din_pmem>

<wr_en_pmem>

Figure A.12: Inside the Packet bus arbiter sub-system. Compare with block
diagram in Fig. 3.11

178

PHY_Interface 1

INIT

INIT25

INIT2

INIT10

INIT3

INIT9

Word_Loop

Byte_Loop

INIT4

INIT5

INIT6

INIT7

INIT8

DRMP_Interface 2

INIT

INIT2

INIT3
du: dPhyData_confirm = 0;
du: dPhyTxStart_confirm = 0;

INIT4

INIT5

INIT6

INIT7

PFC
/*Packets_Finished_Counter*/

3

INIT

PSC
/*Packets_Started_Counter
(Write counter) */

4

INIT

/*init read packet counter*/
{rpcount=0} /*init to the number packets that are

to be sent before sim is stopped*/
{simstop--
dbg_txbuf_piA=0}

/* whenever packet count is not zero
it means a packet is waiting to be sent*/
dclk [rpcount!=wpcount]

[pPhyTxEnd_confirm==1]
{pPhyTxEnd_request=0}

after(20,dclk)
{pPhyTxStart_request = 1
dbg_txbuf_piA=1}

/*read starting index in the buffer
from pindex array*/
dclk {pstarti = pindex[rpcount]
i = 1
%send(down,PSC) %Do not dec since circular counter
} /*on pclk, ind to PHY

that packet has ended*/
pclk
{pPhyTxEnd_request=1}

/* Wait for confirm from PHY
start counter that counts upto 4 bytes for each word*/
dclk [pPhyTxStart_confirm==1]
{bcounter = 0
pPhyTxStart_request=0}

/*count down
the finished packet
counter, since one
of the finished packets
has been sent*/
{send(down,PFC)}

/*Packet finished
circular increment read_packet_counter*/
{rpcount++}

2

2

/*Have reached buffer limit?; then rese*/
[rpcount==ModeATxBufPktLmt]

1

{bcounter = 0
i++}

2

/*No packet finished yet (from DRMP)
so can go back and transmit the next word safely*/
[pfcount==0]

1
/*atleast one packet finished
so read first word of index and check if packet size
is reached*/

2

[i < Tx_Buffer[pstarti]]
1

/*For now,
transmit the same data
again (i.e. i not inc)*/

/* Assert Data on protocol clock*/
pclk {pPhyData = Tx_Buffer[pstarti + i]}

/*make request*/
{pPhyData_request = 1
bcounter++}

/*wait4conf*/[pPhyData_confirm==1]
{pPhyData_request=0}

/*bytes left in word*/
[bcounter<4]

1

/*init buffer counter*/
{k=0}

{dbg_txbuf_diA=0}

/*if a packet being received & target thsi mdoe ,then let
the PHY_interface know by inc counter*/
dclk [dPHYTxStart_request==1 && TargetMode == my_id]
{send(up,PSC)
dbg_txbuf_diA=1}

/* Send confirmation back to Tx-RFU */
{dPhyTxStart_confirm = 1
k_init = k %store starting index
%to later save the size, and inc it
k++}dclk

[dPhyTxEnd_request==1]

2

/*Let Phyint know
that packet ended
and update counter*/
{TxEndRequest
send(up,PFC)
%store size
Tx_Buffer[k_init]=k-k_init}

/* Store data in local buffer */
dclk [dPHYData_request==1]
{Tx_Buffer[k] = dPhyData
k++}

1

dclk {dPhyData_confirm = 1}

dclk {dPhyTxEnd_confirm = 1}

{dPhyTxEnd_confirm=0}

{pfcount = 0}

up
{pfcount++}

1

down
{pfcount--}

2

{wpcount = 0}

up
1

/*Reset Buffer if Max Packet limit reached*/
[wpcount==ModeATxBufPktLmt]
{wpcount = 0
k = 0}

1

down / wpcount--

2

2

/*Store starting address in array
at the read_pointer location*/
{pindex[wpcount] = k
wpcount++}

Figure A.13: Stateflow chart for the Tx-buffer control logic. DRMP-side and
PHY-side interface logic can be seen as separate control entities. Compare
with block diagram of Fig. 3.15

179

1

2

3

4

5

6

7

8

9

10

11

12

14

13

15

16
ScopeA

{dbg_irc_th3_thm}
{dbg_irc_th2_thm}

[PCLK]

{CLK}

{dbg_irc_rcntr}

{dbg_macproc}

{dbg_irc_th1_thr}

{dbg_irc_th1_thm}

dbg_txbuf_piA

dbg_txbuf_diA

dbg_rfu5

dbg_rfu8

dbg_rfu3

dbg_rfu2

dbg_rfu7

dbg_bus

dbg_rfu6

dg_thr3
dg_thr2

dg_thr1
dg_thm3

dg_thm2

dg_thm1
dbg_txbuf_piC

dbg_txbuf_piB

dbg_txbuf_diB
dbg_txbuf_diC

dbg_rfu1

dbg_mac_proc

dbg_irc_th1_thm

dbg_irc_th1_thr

dbg_irc_rcntr

clk

pclk

dbg_rfu1_makeframe

dbg_rfu3_PhyTx
dbg_rfu3_PhyTx

dbg_rfu5_PhyRx

dbg_rfu7_crypto

dbg_rfu8_defrag

dbg_rfu2_CRC

dbg_rfu6_Frag

dbg_txbuf_di

dbg_txbuf_pi

dbg_irc_thm

dbg_txbuf_di

b

c
dbg_txbuf_pidg_thm1

dg_thm

dg_thr

dg_bus

Figure A.14: The Simulink subsystem that collects signals from throughout
the model, and dynamically plots them. The signals values are also stored
for later evaluation and plots, e.g. the plots in figures 5.1 and 5.3.

180

Appendix B

Detailed Comparison of Wifi,

WiMAX and UWB

In section 2.3.2, we took a brief comparative look at the features of the

three MAC protocols that have been investigated for this project, i.e. IEEE

Std. 802.11 (WiFi), IEEE Std. 802.16 (WiMAX) and IEEE Std. 802.15.3

(UWB). Here we look at this comparison in some detail in tabulated form.

This comparison played a crucial part in determining the design of the DRMP

architecture, the partition of tasks between software and hardware, and the

granularity and functionality of RFUs.

181

IE
E

E
 8

0
2
.1

1
 (

W
iF

i)
IE

E
E

 8
0
2
.1

5
.3

 (
U

W
B

)
IE

E
E

 8
0
2
.1

6
 (

W
iM

A
X

)

1
D

a
ta

 R
a
te

s
1
,
2
,
5
.5

 a
n
d
 1

1
 M

b
p
s

2
0
 M

b
p
s
 (

8
0
2
.1

5
.3

)
U

p
to

 7
2
 M

b
p
s
 (

s
h
a
re

d
),

 l
o
w

e
r

fo
r

m
o
b
ile

 W
iM

A
X

2
F

ra
m

e
 B

o
d

y
 (

M
P

D
U

)
3
0
 (

h
e
a
d
e
r)

 +
 4

 (
F

C
S

)
+

 0
-2

3
1
2

(P
a
y
lo

a
d
)

=
 2

3
4
6
 b

y
te

s
 M

A
X

2
0
4
8
 b

y
te

s
 (

e
x
c
lu

d
in

g
 M

A
C

 h
e
a
d
e
rm

P
H

Y
 p

re
a
m

b
le

 o
r

h
e
a
d
e
r)

V
a
ri
a
b
le

 L
e
n
g
th

.

O
n
ly

 h
e
a
d
e
r

is
 m

a
n
d
a
to

ry
.

P
a
y
lo

a
d
/C

R
C

 o
p
ti
o
n
a
l.

3
H

E
C

1
6
-b

it
 C

R
C

T
h
e
 1

6
-b

it
 H

e
a
d
e
r

C
h
e
c
k
 S

e
q
u
e
n
c
e

is
 t
h
e
 s

a
m

e
 a

s
 t
h
a
t
fo

r
8
0
2
.1

1

8
-b

it
 H

C
S

 (
H

e
a
d
e
r

C
h
e
c
k
 S

e
q
u
e
n
c
e
)

(i
n
v
o
lv

e
s
 m

o
d
u
le

-2
 d

iv
is

io
n
 a

n
d

m
u
lt
ip

lic
a
ti
o
n
)

4
F

ra
m

e
 C

h
e
c
k
 S

e
q

u
e
n

c
e

(C
R

C
)

3
2
-b

it
 C

R
C

3
2
-b

it
 C

R
C

3
2
-b

it
 C

R
C

 (
o
p
ti
o
n
a
l)

5
A

d
d

re
s
s
e
s

4
8
-b

it
 8

0
2
 f
a
m

ilt
 M

A
C

 a
d
d
re

s
s

1
-o

c
te

t
D

E
V

ID
 u

s
e
d
 (

is
 a

s
s
ig

n
e
d
 a

t

jo
in

in
g
 t
h
e
 P

ic
o
n
e
t)

 i
n
s
te

a
d
 o

f
th

e

M
A

C
 a

d
d
re

s
s

4
8
-b

it
 8

0
2
 f
a
m

ilt
 M

A
C

 a
d
d
re

s
s
 b

u
t

C
o
n
n
e
c
ti
o
n
 I
D

 i
s
 t
h
e
 p

ri
m

a
ry

 a
c
c
e
s
s

m
e
c
h
a
n
is

m

6
F

ra
g

m
e
n

ta
ti

o
n

Y
e
s
 -

 b
a
s
e
d
 o

n
 a

 f
ra

g
m

e
n
ta

ti
o
n

th
re

s
h
o
ld

.

T
im

e
o
u
t
a
s
 w

e
ll.

Y
e
s
.
B

a
s
e
d
 o

n
 t
h
re

s
h
o
ld

.
Y

e
s
.
(h

a
s
 a

 s
u
b
-h

e
a
d
e
r

to
 d

e
a
l
w

it
h
 i
t)

7
P

a
c
k
a
g

in
g

N
o

N
o
.

Y
e
s
.
(h

a
s
 a

 s
u
b
-h

e
a
d
e
r

to
 d

e
a
l
w

it
h
 i
t)

8
A

c
c
e
s
s
 M

e
th

o
d

s
1
.
C

o
n
te

n
ti
o
n
 A

c
c
e
s
s
 i
n
 D

C
F

 m
o
d
e

2
.
C

o
n
te

n
ti
o
n
-f

re
e
 p

o
ll-

b
a
s
e
d
 a

c
c
e
s
s
 i
n

th
e
 P

C
F

 m
o
d
e
q

S
u
p
e
rf

ra
m

e
 h

a
s
 t
w

o
 d

is
ti
n
c
t
p
e
ri
o
d
s
:

1
.
C

o
n
te

n
ta

io
n
-a

c
c
e
s
s
 p

e
ri
o
d

(C
S

M
A

)

2
.
C

o
n
ti
o
n
-f

re
e
 p

e
ri
o
d
 (

T
D

M
A

)

1
.
c
o
n
s
ta

n
t
b
it
-r

a
te

 (
U

G
S

)

2
.
R

e
a
l-
ti
m

e
 p

o
lli

n
g
 w

it
h
 v

a
ri
a
b
le

 b
it

ra
te

3
.
N

o
n
-R

-T
 p

o
lli

n
g
 w

it
h
 v

a
r

b
it
 r

a
te

4
.
B

e
s
t
e
ff
o
rt

 (
c
o
n
te

n
ti
o
n
 a

c
c
e
s
s
)

9
T

D
M

 /
 T

D
M

A
N

o
.
U

s
e
s
 C

o
n
te

n
ti
o
n
 a

c
c
e
s
s
 a

n
d
 p

o
lli

n
g

Y
e
s
.
T

D
M

A
 i
n
 t
h
e
 C

o
n
te

n
ti
o
n
-f

re
e

p
e
ri
o
d
 o

f
th

e
 s

u
p
e
rf

ra
m

e

Y
e
s
.
E

s
s
e
n
ti
a
lly

 T
D

M
 s

y
s
te

m
:

-
T

D
M

A
 f
o
r

u
p
lin

k
 (

b
e
c
a
u
s
e
 m

u
lt
ip

le

tr
a
n
s
m

it
te

rs
)

/

-
T

D
M

A
 f
o
r

d
o
w

n
lin

k
.

1
0

C
o

n
te

n
ti

o
n

 A
c
c
e
s
s
 a

n
d

E
x
p

o
n

e
n

ti
a
l
B

a
c
k
o

ff

C
S

M
A

/C
A

 i
s
 t
h
e
 a

c
c
e
s
s
 m

e
th

o
d
 i
n
 t
h
e

d
o
m

in
a
n
t
m

o
d
e
 o

f
o
p
e
ra

ti
o
n
 (

D
C

F
).

U
s
e
s
 e

x
p
o
n
e
n
ti
a
l
b
a
c
k
o
ff
 a

lg
o
.

C
S

M
A

/E
x
p
o
n
e
n
ti
a
l
B

a
c
k
o
ff
 u

s
e
d
 i
n

th
e
 C

o
n
te

n
ti
o
n
-A

c
c
e
s
s
 p

e
ri
o
d
 o

f
th

e

s
u
p
e
rf

ra
m

e
.

E
x
p
o
n
e
n
ti
a
l
B

a
c
k
o
ff
 (

tr
u
n
c
a
te

d
)

u
s
e
d

fo
r

B
W

 r
e
q
u
e
s
t
/
In

it
ia

l
ra

n
g
e
-r

e
q
u
e
s
t

s
lo

t

1

182

IE
E

E
 8

0
2

.1
1

 (
W

iF
i)

IE
E

E
 8

0
2

.1
5

.3
 (

U
W

B
)

IE
E

E
 8

0
2

.1
6

 (
W

iM
A

X
)

1
1

P
o

ll
in

g

P
o

lli
n

g
 i
s
 a

d
o

p
te

d
 i
n

 t
h

e
 P

C
F

 m
o

d
e

 -

n
o

n
-d

o
m

in
a

n
t

a
n

d
 m

o
s
tl
y
 n

o
t

im
p

le
m

e
n

te
d

N
o

.
T

h
e

 t
w

o
 m

o
d

e
s
 a

re
 C

S
M

A
 a

n
d

T
D

M
A

Y
e

s
.

B
o

th
 R

-T
 a

n
d

 n
o

n
 R

-T
 p

o
lli

n
g

1
2

F
ra

m
e

 T
y

p
e

s
/F

o
rm

a
ts

D
a

ta

C
o

n
tr

o
l

M
a

n
a

g
e

m
e

n
t

w
it
h

 s
u

b
ty

p
e

s

C
o

m
m

a
n

d

D
a

ta

B
e

a
c
o

n

A
C

K
s

H
a

s
 t

w
o

 h
e

a
d

e
r

fo
rm

a
ts

:

1

.
G

e
n

e
ri
c
 h

e
a

d
e

r

2

.
B

W
 r

e
q

u
e

s
t

h
e

a
d

e
r

1
3

H
e

a
d

e
r

c
o

n
te

n
ts

 /

S
u

b
h

e
a

d
e

rs

T
h

e
 f

ra
m

e
 h

e
a

d
e

r
h

a
s
:

F

ra
m

e
 C

o
n

tr
o

l,

D

u
ra

ti
o

n
/I

D
,

A

d
d

re
s
s
e

s
 a

n
d

S

e
q

u
e

n
c
e

 C
o

n
tr

o
l

2
-b

y
te

 f
ra

m
e

 c
o

n
tr

o
l
te

lls
 i
f:

m
o

re
 f

ra
g

s
,

fr
o

m
 a

n
d

 t
o

 a
d

d
re

s
s
e

s
 p

re
s
e

n
t,

re
tr

y
 s

ta
t,

w
a

it
in

g
 d

a
ta

 s
ta

t,

e
n

c
ry

p
te

d
 o

r
n

o
t

T
h

e
 h

e
a

d
e

r
h

a
s
 i
n

fo
 a

b
o

u
t

a
d

d
re

s
s
e

s
,

fr
a

g
m

e
n

ta
ti
o

n
 c

o
n

tr
o

l,

a
n

d
 h

a
s
 a

 f
ra

m
e

 c
o

n
tr

o
l.

F
ra

m
e

 c
o

n
tr

o
l
te

lls
 i
f

m
o

re
 d

a
ta

w
a

it
in

g
,

if
 t

h
is

 i
s
 r

e
tr

y
,

th
e

 A
C

K
 p

o
lic

y
,

a
m

o
n

g
 o

th
e

r
th

in
g

s

H
a

s
 (

o
p

ti
o

n
a

l)
 s

u
b

h
e

a
d

e
rs

:

1
.

G
ra

n
t

m
a

n
a

g
e

m
e

n
t

2
.

F
ra

g
m

e
n

ta
ti
o

n

3
.

P
a

c
k
a

g
in

g

4
.

M
e

s
h

 s
u

b
-h

e
a

d
e

r

h
e

a
d

e
r

fi
e

ld
s
 i
n

d
ic

a
te

 w
h

ic
h

 o
f

th
e

s
e

s
u

b
-h

e
a

d
e

rs
 i
s
 p

re
s
e

n
t.

H
e

a
d

e
r

a
ls

o
 i
n

d
ic

a
te

s
 i
f

th
e

 p
a

y
lo

a
d

 i
s

A
R

Q
 f

e
e

d
b

a
c
k
.

T
h

e
 F

ra
m

e
's

 'C
o

n
tr

o
l'

h
a

s
 D

L
-M

A
P

a
n

d
 U

L
-M

A
P

 i
n

fo
rm

a
ti
o

n

1
4

S
u

p
e

rf
ra

m
e

s

In
 P

C
F

 m
o

d
e

,
a

 's
u

p
e

rf
ra

m
e

'
s
im

ila
r

to

th
e

 c
a

s
e

 f
o

r
U

W
B

.
H

a
s
 a

 C
F

P
 (

p
o

lli
n

g
)

a
n

d
 t

h
e

n
 a

 C
A

P
 (

C
S

M
A

/C
A

).

N
o

te
 d

if
ff

e
re

n
c
e

 f
ro

m
 U

W
B

.
In

 U
W

B
,

C
F

P
 i
s
 T

D
M

A
,

h
e

re
 i
t

is
 p

o
lli

n
g

H
a

s
 a

 '
s
u

p
e

rf
ra

m
e

'
th

a
t

c
o

n
s
is

ts
 o

f:

1
.

N
e

tw
o

rk
 b

e
a

c
o

n
 i
n

te
rv

a
l

2
.

C
o

n
te

n
ti
o

n
 A

c
c
e

s
s
 P

e
ri
o

d
(C

A
P

)

3
.

C
o

n
te

n
ti
o

n
 F

re
e

 P
e

ri
o

d
(C

F
P

)

N
o

.

1
5

A
d

-H
o

c
 n

e
tw

o
rk

s

Y
e

s
 (

o
p

ti
o

n
a

l)
.

N
o

 A
P

 r
e

q
u

ir
e

d
.

J
u

s
t

tw
o

 s
ta

ti
o

n
s
 m

a
y

c
o

m
m

u
n

ic
a

te

A
ls

o
 c

a
lle

d
 I

B
S

S
.

Y
e

s
.

E
s
s
e

n
ti
a

lly
 a

n
 a

d
-h

o
c
 n

e
tw

o
rk

w
it
h

 o
n

e
 d

e
v
ic

e
 b

e
c
o

m
in

g
 t

h
e

 c
o

-

o
rd

in
a

to
r

(P
N

C
).

 T
h

e
 P

N
C

 m
a

y

c
h

a
n

g
e

 d
y
n

a
m

ic
a

lly
 i
n

 a
 p

ic
o

n
e

t

o
p

e
ra

ti
o

n
.

A
ll

d
e

v
ic

e
s
 n

e
e

d
 n

o
t

h
a

v
e

P
N

C
 c

a
p

a
b

ili
ti
e

s
.

N
o

.

N
o

te
 t

h
a

t
M

e
s
h

 o
p

e
ra

ti
o

n
 d

o
e

s
 a

llo
w

p
e

e
r

2
 p

e
e

r
b

u
t

th
a

t
a

ls
o

 i
n

v
o

lv
e

s
 B

S

in
v
o

lv
e

m
e

n
t

to
 s

e
tu

p
.

2

183

IE
E

E
 8

0
2

.1
1

 (
W

iF
i)

IE
E

E
 8

0
2

.1
5

.3
 (

U
W

B
)

IE
E

E
 8

0
2

.1
6

 (
W

iM
A

X
)

1
6

A
R

Q
N

o
.

N
o

Y
e
s
.
Is

 h
a
n
d
le

d
 i
n
 t
h
e
 M

A
C

 l
a
y
e
r

(i
s

p
o
s
s
ib

le
 i
n
 t
h
e
 P

H
Y

 a
s
 w

e
ll)

.

O
p
ti
o
n
a
l
fo

r
im

p
le

m
e
n
ta

ti
o
n

1
7

A
C

K
s

Y
e
s
.
S

e
n
t
in

 D
C

F
 m

o
d
e
s
.
A

b
s
e
n
c
e

(w
h
e
n
 A

C
K

 e
x
p
e
c
te

d
)

in
d
ic

a
te

s

c
o
lli

s
s
io

n
.

A
ll

fr
a
m

e
s
 d

o
 n

o
t
re

q
 A

C
K

.
E

.g
.

b
ro

a
d
c
a
s
t
fr

a
m

e
s

Y
e
s
.

T
h
re

e
 t
y
p
e
s
:

Im

m
e
d
ia

te

D

e
la

y
e
d
 (

M
u
lt
ip

le
 A

C
K

s
 i
n
 a

 s
in

g
le

M
P

D
U

)

Im

p
lie

d
 (

 o
r

n
o
 A

C
K

)

U
s
e
d
 i
n
 a

n
 o

p
ti
o
n
a
l
A

R
Q

 s
c
h
e
m

e
 (

H
-

A
R

Q
)

a
n
d
 i
n
 r

e
s
p
o
n
s
e
 t
o
 s

o
m

e

m
a
n
a
g
e
m

e
n
t
m

e
s
s
a
g
e
s
 (

D
S

x
).

B
u
t
a
p
p
a
re

n
tl
y
 n

o
t
o
n
 a

 d
a
ta

 f
ra

m
e
-b

y
-

fr
a
m

e
 b

a
s
is

.

1
8

P
ig

g
y
b

a
c
k
in

g

Y
e
s
.

In
 P

C
F

 m
o
d
e
,
C

F
-A

C
K

s
 c

a
n
 b

e

p
ig

g
y
b
a
c
k
e
d
 o

n
 s

u
c
c
e
s
s
ic

e
 d

a
ta

 f
ra

m
e
s
.

A
p
p
a
re

n
tl
y
 n

o
t.
 T

h
e
 D

e
la

y
e
d
 A

C
K

m
a
y
 b

e
 c

o
n
s
id

e
re

d
 s

im
ila

r
to

p
ig

g
y
b
a
c
k
in

g
 b

u
t
is

 d
if
fe

re
n
t
b
e
c
a
u
s
e

th
e
 A

C
K

s
 a

re
 n

o
t
s
e
n
t
o
n
 a

 d
a
ta

M
P

D
U

,
b
u
t
g
ro

u
p
e
d
 t
o
g
e
th

e
r

in
 a

s
in

g
le

 d
e
d
ic

a
te

d
 M

P
D

U
.

Y
e
s
.

A
R

Q
 f
e
e
d
b
a
c
k
s
 c

a
n
 b

e
 'p

ig
g
y
b
a
c
k
e
d
'

o
n
 a

n
 e

x
is

ti
n
g
 c

o
n
n
e
c
ti
o
n
 (

in
 a

d
d
it
io

n

to
 b

e
in

g
 s

e
n
t
s
e
p
a
ra

te
ly

 o
n
 a

n

a
p
p
ro

p
ri
a
te

 m
a
n
a
g
e
m

e
n
t
c
o
n
n
e
c
ti
o
n
)

1
9

In
te

r-
F

ra
m

e
 S

p
a
c
e
s

IF
S

 u
s
e
d
 t
o
 a

s
s
ig

n
 p

ri
o
ro

ti
e
s
.
F

o
u
r

IF
S

's

d
e
fi
n
e
d
.

Y
e
s
 a

n
d
 v

e
ry

 s
im

ila
r

to
 W

if
i.
 F

o
u
r

IF
S

's
 d

e
fi
n
e
d
 h

e
re

 a
s
 w

e
ll.

A
p
p
a
re

n
tl
y
 n

o
t.

H
a
s
 a

 C
o
lli

s
io

n
 a

c
c
e
s
s
 m

e
c
h
a
n
is

m

b
u
t
th

a
t
is

 e
s
s
e
n
ti
a
lly

 f
o
r

B
W

 r
e
q
u
e
s
t

s
o
 I
F

S

n
o
t
re

le
v
a
n
t.

2
0

M
A

C
 S

y
n

c
h

ro
n

iz
a
ti

o
n

T
h
ro

u
g
h
 b

e
a
c
o
n
 f
ra

m
e
s
.

S
y
n
c
h
.
to

 a
 c

o
m

m
o
n
 c

lo
c
k
 (

T
S

F
)

a
n
n
o
u
n
c
e
d
 b

y
 b

e
a
c
o
n
.
A

ll
S

T
A

's
 t
o
 k

e
e
p

a
 l
o
c
a
l
c
o
p
y
 o

f
T

S
F

.

A
ll

D
E

V
s
 s

y
n
c
h
 t
o
 t
h
e
 P

N
C

 c
lo

c
k
.

B
e
a
c
o
n
 s

e
n
t
a
t
th

e
 b

e
g
g
in

in
g
 o

f
e
v
e
ry

s
u
p
e
rf

ra
m

e
.

M
A

C
 s

y
n
c
h
.
b
u
ilt

 o
n
 t
o
p
 o

f
P

H
Y

 s
y
n
c
h

p
ro

c
e
s
s
.

M
A

C
 o

f
S

S
 i
s
 i
n
 d

o
w

n
lo

a
d
 s

y
n
c
h
.
a
s

lo
n
g
 a

s
 i
t
re

c
e
iv

e
s
 D

L
-M

A
P

.

U
p
lin

k
 i
s
 e

s
ta

b
lis

h
e
d
 f
o
llo

w
in

g
 t
h
e

d
o
w

n
lin

k
 s

y
n
c
h
.

3

184

IE
E

E
 8

0
2
.1

1
 (

W
iF

i)
IE

E
E

 8
0

2
.1

5
.3

 (
U

W
B

)
IE

E
E

 8
0

2
.1

6
 (

W
iM

A
X

)

2
1

Q
o

S

In
 D

C
F

 m
o

d
e

,
s
o

m
e

 s
o

rt
 o

f
p

ri
o

ri
ty

p
ro

v
id

e
d

 b
y
 I

F
S

's

-
In

 P
C

F
 m

o
d

e
,

s
ta

ti
o

n
s
 a

re
 p

o
lle

d
 a

n
d

b
e

tt
e

r
Q

o
S

 t
h

a
n

 D
C

F
 t

h
o

u
g

h
 n

o
t

e
n

o
u

g
h

fo
r

m
a

n
y
 c

a
s
e

s

-
8

0
2

.1
1

E
 e

n
h

a
n

c
e

m
e

n
t

in
 t

h
e

 M
A

C

a
llo

w
s
 f

o
r

b
e

tt
e

r
Q

o
S

Y
e

s
.

U
n

lik
e

 8
0

2
.1

1
 Q

o
S

 i
s
 b

u
ilt

-i
n

.

-
T

h
e

 P
N

C
 m

a
n

a
g

e
s
 t

h
e

 Q
o

S

-
G

o
o

d
 Q

o
S

 g
u

a
ra

n
te

e
d

 b
e

c
a

u
s
e

 o
f

T
D

M
A

 m
e

c
h

a
n

is
m

.

-
P

N
C

 d
iv

id
e

s
 C

T
A

's
 a

m
o

n
g

 D
E

V
's

a
n

d
 t

h
e

 D
E

V
 i
s
 g

u
ra

n
te

e
d

 n
o

t
to

 h
a

v
e

in
te

rf
e

re
n

c
e

 d
u

ri
n

g
 t

h
a

t
C

T
A

.

C
o

m
m

u
n

ic
a

ti
o

n
 i
s
 p

e
e

r
2

 p
e

e
r.

Y
e

s
.

Q
o

S
 i
s
 e

s
s
e

n
ti
a

l
fa

c
to

r
o

f

W
iM

A
X

.
A

v
a

ila
b

le
 b

e
c
a

u
s
e

 o
f

T
D

M
A

n
a

tu
re

.

F
o

u
r

m
o

d
e

s
 p

ro
v
id

e
 Q

o
S

 f
o

r
d

if
fe

re
n

t

ty
p

e
 o

f
d

a
ta

/a
p

p
lic

a
ti
o

n
.

A
ls

o
 c

o
n

c
e

p
t

o
f

s
e

rv
ic

e
 f

lo
w

s
.

E
a

c
h

s
e

rv
ic

e
 f

lo
w

 a
s
s
o

c
ia

te
d

 w
it
h

 a

p
a

rt
ic

u
la

r
Q

o
S

.

2
2

C
o

n
n

e
c

ti
o

n
-o

ri
e

n
te

d

N
o

.
D

o
m

in
a

n
t

m
o

d
e

 o
f

o
p

e
ra

ti
o

n
 i
s

c
o

n
n

e
c
ti
o

n
-l
e

s
s
.

M
a

y
 b

e
 c

o
n

s
id

e
re

d
 c

o
n

n
e

c
ti
o

n
-o

ri
e

n
te

d

in
 P

C
F

 m
o

d
e

.

N
o

.

Y
e

s
.

S
tr

o
n

g
ly

 c
o

n
n

e
c
ti
o

n
-o

ri
e

n
te

d

m
e

c
h

a
n

is
m

 e
v
e

n
 t

h
o

u
g

h
 a

 p
a

c
k
e

t-

b
a

s
e

d
 s

y
s
te

m
.

E
a

c
h

 s
ta

ti
o

n

a
s
s
o

c
ia

te
d

 w
it
h

 a
 n

u
m

b
e

r
o

f

c
o

n
n

e
c
ti
o

n
 I

D
s
.

C
ID

s
 a

re
 t

h
e

 p
ri
m

a
ry

a
c
c
e

s
 m

e
c
h

a
n

is
m

 a
n

d
 a

re
 a

s
s
o

c
ia

te
d

w
it
h

a
 a

 p
a

rt
ic

u
la

r
Q

o
s
.

2
3

P
o

w
e

r
M

o
d

e
s

Y
e

s
.

A
c
ti
v
e

 m
o

d
e

 a
n

d
 P

o
w

e
r-

S
a

v
e

m
o

d
e

.

In
 P

S
 p

a
c
k
e

ts
 f

o
r

a
 S

T
A

 a
re

 b
u

ff
e

re
d

 a
t

th
e

 A
P

.

Y
e

s
.

H
a

s
 a

n
 A

C
T

IV
E

 a
n

d
 a

H
IB

E
R

N
A

T
E

 m
o

d
e

N
o

 l
o

w
-p

o
w

e
r

m
o

d
e

s
 s

im
ila

r
to

W
if
i/
U

W
B

.

H
o

w
e

v
e

r,
 i
n

it
ia

l
a

n
d

 d
y
n

a
m

ic
 r

a
n

g
in

g

o
p

e
ra

ti
o

n
s
 s

e
t

th
e

 o
p

ti
m

a
l
tr

a
n

s
m

it

p
o

w
e

r.

2
4

S
c

a
n

n
in

g
P

a
s
s
iv

e
 a

n
d

 a
c
ti
v
e

 s
c
a

n
n

in
g

.

P
ro

b
e

s
 a

re
 s

e
n

t
fo

r
a

c
ti
v
e

 s
c
a

n
n

in
g

Y
e

s
.

P
a

s
s
iv

e
 s

c
a

n
n

in
g

 o
n

ly
 t

o
 d

e
te

c
t

a
n

 a
c
ti
v
e

 p
ic

o
n

e
t.

S
e

e
m

s
 t

o
 d

o
 o

n
ly

 p
a

s
s
iv

e
 s

c
a

n
n

in
g

 b
y

w
a

it
in

g
 f

o
r

s
p

e
c
if
ic

 m
e

s
s
a

g
e

s
.

2
5

A
u

th
e

n
ti

c
a

ti
o

n

O
p

e
n

-s
y
s
te

m
 a

n
d

 s
h

a
re

d
-k

e
y

a
u

th
e

n
ti
c
a

ti
o

n
.

T
h

e
 l
a

tt
e

r
re

q
u

ri
e

d
 W

E
P

to
 b

e
 i
m

p
le

m
e

n
te

d
.

A
u

th
e

n
c
ti
o

n
 i
s
 m

u
tu

a
l
a

n
d

 b
a

s
e

d
 o

n

p
u

b
lic

-k
e

y
 c

ry
p

to
g

ra
p

h
y

B
a

s
e

d
 o

n
 P

K
M

 (
P

ri
v
a

c
y
 K

e
y

M
a

n
a

g
e

m
e

n
t)

 -
 a

c
c
o

m
o

d
a

te
s
 A

E
S

.

P
K

M
 m

e
s
s
a

g
e

s
 u

s
e

 H
M

A
P

F
o

r
a

u
th

e
n

ti
c
a

ti
o

n
,

p
u

b
lic

 R
S

A
 k

e
y
 i
s

c
o

n
ta

in
e

d
 i
n

 X
.5

0
9

 d
ig

it
a

l
c
e

rt
if
ic

a
te

4

185

IE
E

E
 8

0
2
.1

1
 (

W
iF

i)
IE

E
E

 8
0
2
.1

5
.3

 (
U

W
B

)
IE

E
E

 8
0
2
.1

6
 (

W
iM

A
X

)

2
6

S
e

rv
ic

e
 P

ri
m

it
iv

e
s

in
te

ra
c
ti
o

n
 w

it
h

 L
L

C
:

-
re

q
u

e
s
t

-
in

d
ic

a
ti
o

n

-
s
ta

tu
s
.i
n

d
ic

a
ti
o

n

S
im

ila
r

m
a

n
a

g
e

m
e

n
t

p
ri
m

it
iv

e
s

W
e

ll
d

e
fi
n

e
d

 p
ri
m

it
iv

e
s
.

T
w

o
 t

y
p

e
s
:

1
.

fo
r

p
e

e
r

2
 p

e
e

r
c
o

m
m

2
.

o
f

lo
c
a

l
s
u

b
-l
a

y
e

r
c
o

m
m

s
ig

n
if
ic

a
n

c
e

.

S
im

ila
r

re
q

u
e

s
t/

in
d

ic
a

ti
o

n
 s

tr
u

c
tu

re
 o

f

p
ri
m

it
iv

e
s
 a

s
 i
s
 t

h
e

 c
a

s
e

 f
o

r
W

iF
i.

T
w

o
 c

a
te

g
o

ro
e

s
 f

o
r

M
A

C
 p

ri
m

it
iv

e
s

fo
r

d
a

ta
 t

h
o

u
g

h
:

A
s
y
n

c
h

ro
n

o
u

s
 D

a
ta

a
n

d
 I

s
ic

h
ro

n
o

u
s
 D

a
ta

.

M
a

n
a

g
e

m
e

n
t

p
ri
m

it
iv

e
s
 d

if
fe

re
n

t
a

s

e
x
p

e
c
te

d
.

D
a

ta
 d

e
liv

e
ry

 o
ri
e

n
te

d
 s

e
rv

ic
e

p
ri
m

it
iv

e
s
 a

re
 s

im
ila

r
to

 W
if
i.

T
h

e
 p

ri
m

it
iv

e
s
 a

re
 h

o
w

e
v
e

r

e
x
c
h

a
n

g
e

d
 b

e
tw

e
e

n
 M

A
C

 a
n

d
 C

S

(c
o

n
v
e

rg
e

n
c
e

 s
u

b
la

y
e

r)
 a

n
d

 n
o

t
L

L
C

.

T
h

e
re

 a
re

 s
o

m
e

 p
ri
m

it
iv

e
s
 a

s
s
o

c
ia

te
d

w
it
h

 m
a

n
a

g
e

m
e

n
t

o
f

'S
e

rv
ic

e
 f

lo
w

s
'

w
h

ic
h

 i
s
 a

 W
iM

a
x
 s

p
e

c
if
ic

 c
o

n
c
e

p
t.

2
7

E
n

c
ry

p
ti

o
n

R
S

A
's

 R
C

4
 E

n
c
ry

p
ti
o

n
.

6
4

-b
it
 R

C
4

.

C
C

M
P

 (
A

E
S

)
-

N
e

w
 s

ta
n

d
a

rd
.

Y
e

s
.

In
v
o

lv
e

s
 X

.5
0

9
 c

e
rt

if
ic

a
te

s
 a

n
d

 A
E

S

T
w

o
 'p

ro
to

c
o

ls
':

1
.

E
n

c
a

p
s
u

la
ti
o

n

2
.

P
ri
v
a

c
y
 K

e
y
 m

a
n

a
g

e
m

e
n

t

-
D

a
ta

 e
n

c
y
p

ti
o

n
 d

o
n

e
 u

s
in

g
 D

E
S

ru
n

n
in

g
 i
n

 C
D

C
 m

o
d

e
 w

it
h

 5
6

 k
e

y
s
.

-
3

D
E

S
 f

o
r

p
a

s
s
in

g
 k

e
y
s
.

-
P

K
M

 a
c
c
o

m
o

d
a

te
d

 A
E

S
.

-
P

K
M

 m
e

s
s
a

g
e

s
 t

h
e

m
s
e

lv
e

s
 a

re

a
u

th
e

n
ti
c
a

te
d

 u
s
in

g
 H

a
s
h

e
d

 M
e

s
s
a

g
e

A
u

th
e

n
ti
c
a

ti
o

n
 P

ro
to

c
o

l

-
P

u
b

lic
k
 R

S
A

 k
e

y
 i
s
 c

o
n

ta
in

e
d

 i
n

X
.5

0
9

 d
ig

it
a

l
c
e

rt
if
ic

a
te

.

5

186

IE
E

E
 8

0
2
.1

1
 (

W
iF

i)
IE

E
E

 8
0
2
.1

5
.3

 (
U

W
B

)
IE

E
E

 8
0
2
.1

6
 (

W
iM

A
X

)

2
9

S
e

q
u

e
n

c
in

g

1
2

-b
it
s
 f

o
r

S
e

q
u

e
n

c
e

 n
u

m
b

e
r

o
f

M
P

D
S

(m
o

d
u

lo
-4

0
9

6
)

4
 b

it
s
 f

o
r

F
ra

g
m

e
n

t
n

u
m

b
e

r.

S
o

 1
6

-b
y
te

s
 (

2
 o

c
te

ts
)

fo
r

th
e

 '
S

e
q

u
e

n
c
e

c
o

n
tr

o
l
fi
e

ld
'

T
h

e
 '
M

S
D

U
 N

u
m

b
e

r'
 f

ie
ld

 i
s
 a

 m
o

d
u

lo

5
1

2
 c

o
u

n
te

r
fo

r
s
e

q
u

e
n

c
e

 n
u

m
b

e
r.

S
e

p
a

ra
te

 c
o

u
n

te
r

fo
r

a
s
y
n

c
h

 a
n

d

is
o

s
y
n

c
h

 d
a

ta
 t

ra
ff

ic
 p

e
r

D
E

V
.

O
n

e
 s

ig
n

le
 c

o
u

n
te

r
fo

r
c
o

m
m

a
n

d

fr
a

m
e

s
.

F
ra

g
m

e
n

t
a

ls
o

 h
a

s
 a

s
 s

e
q

u
e

n
c
e

n
u

m
b

e
r.

B
lo

c
k
s
 h

a
v
e

 B
S

N
 (

B
lo

c
k
 s

e
q

u
e

n
c
e

n
u

m
b

e
r

-
1

1
 b

it
s
)

F
ra

g
m

e
n

ts
 h

a
v
e

 F
S

N
 (

fr
a

g
m

e
n

t

s
e

q
u

e
n

c
e

 n
u

m
b

e
r

-
1

1
 b

it
s
 /

m
o

d
u

lo
-

2
0

4
8

 c
o

u
n

te
r

-
e

x
te

n
d

e
d

 t
y
p

e
)

E
n

c
ry

p
ti
o

n
 h

a
s
 a

s
s
o

c
ia

te
d

 s
e

q
u

e
n

c
e

n
u

m
b

e
rs

 (
E

K
S

 e
tc

)
n

o
t

d
is

c
u

s
s
e

d

h
e

re
.

A
R

Q
 b

lo
c
k
 i
s
 a

s
s
ig

n
e

d
 a

 s
e

q
u

e
n

c
e

n
u

m
b

e
r

(A
R

Q
 s

ta
te

-m
a

c
h

in
e

)

2
8

R
T

S
/C

T
S

R
T

S
/C

T
S

 m
e

c
h

a
n

is
m

 b
a

s
e

d
 o

n
 a

n
 R

T
S

th
re

s
h

o
ld

 (
fo

r
h

id
d

e
n

 n
o

d
e

 p
ro

b
le

m
)

N
/A

N
/A

3
0

R
e

tr
y

 C
o

u
n

te
r

R
e

tr
y
 c

o
u

n
te

rs
N

/A
N

/A

2
9

P
o

w
e

r
c

o
n

tr
o

l
/

le
v

e
ll

in
g

 /

ra
n

g
in

g
N

/A
P

o
w

e
r

C
o

n
tr

o
l:
 f

ix
e

d
 d

u
ri
n

g
 C

A
P

 b
u

t

a
d

ju
s
ta

b
le

 d
u

ri
n

g
 C

F
P

P
o

w
e

r
le

v
e

lli
n

g
 a

n
d

 r
a

n
g

in
g

 u
s
in

g

R
N

G
-R

E
Q

 m
e

s
s
a

g
e

s
.

B
o

th
 i
n

it
ia

l
a

n
d

 p
e

ri
o

d
ic

 r
a

n
g

in
g

F
ir
s
t

o
p

p
 a

c
q

u
ir
e

d
 u

s
in

g
 c

o
n

te
n

ti
o

n

a
c
c
e

s
s
.

3
0

B
u

rs
t

P
ro

fi
le

s
N

/A
N

/A

B
S

 t
ra

n
s
m

it
s
 b

u
rs

t
p

ro
fi
le

s
 U

IU
C

 a
n

d

D
IU

C
.

B
S

 m
o

n
it
o

rs
 a

n
d

 r
e

q
u

e
s
ts

 n
e

w
 U

IU
C

 i
f

re
q

u
ir
e

d
.

S
S

 m
o

n
it
o

rs
 a

n
d

 r
e

q
u

e
s
ts

 a
 n

e
w

U
IU

C
 i
f

re
q

u
ir
e

d
.

3
1

P
a

y
lo

a
d

 H
e

a
d

e
r

S
u

p
p

re
s

s
io

n
N

/A
N

/A
P

a
y
lo

a
d

 h
e

a
d

e
r

S
u

p
p

re
s
s
io

n
 i
s

p
o

s
s
ib

le
 i
n

 t
h

e
 C

S
 s

u
b

-l
a

y
e

r

6

187

IE
E

E
 8

0
2

.1
1

 (
W

iF
i)

IE
E

E
 8

0
2

.1
5

.3
 (

U
W

B
)

IE
E

E
 8

0
2

.1
6

 (
W

iM
A

X
)

3
2

C
la

s
s

if
ie

r
N

/A
N

/A

C
la

s
s
if
ie

r
in

 t
h

e
 s

e
rv

ic
e

-s
p

e
c
if
ic

c
o

n
v
e

rg
a

n
c
e

 s
u

b
-l
a

y
e

r
m

a
p

s
 a

 p
a

c
k
e

t

to
 a

 p
a

rt
ic

u
la

r
C

ID

3
3

D
y

n
a

m
ic

 C
h

a
n

n
e

l
S

e
le

c
ti

o
n

N
/A

D
y
n

a
m

ic
 C

h
a

n
n

e
l
S

e
le

c
ti
o

n
 p

o
s
s
ib

le

b
y
 t

h
e

 P
N

C

D
y
n

a
m

ic
 r

a
n

g
in

g
/B

W
 r

e
q

u
e

s
t

is
 a

lo
n

g

th
e

 s
a

m
e

 l
in

e
s
.

3
4

N
A

V
 c

a
lc

u
la

ti
o

n
 /

im
p

le
m

e
n

ta
ti

o
n

Y
e

s
.

d
o

n
e

 u
s
in

g
 t

h
e

 i
n

c
o

m
in

g
 p

a
c
k
e

t'
s

h
e

a
d

e
r.

N
/A

N
/A

7

188

Bibliography

[1] Al-Hashimi, B. M. System-on-Chip: Next Generation Electronics.

Institution of Engineering and Technology, January 2006.

[2] Athanas, P. M., and Silverman, H. F. Processor reconfiguration

through instruction-set metamorphosis. Computer 26, 3 (Mar. 1993),

11–18.

[3] Bacchini, F., Rabaey, J., Cox, A., Lane, F., Lauwereins, R.,

Ramacher, U., and Witt, D. Wireless platforms: GOPS for cents

and Milliwatts. In Design Automation Conference, 2005. Proceedings.

42nd (June 13–17, 2005), pp. 351–352.

[4] Baschirotto, A., Castello, R., Campi, F., Cesura, G.,

Toma, M., Guerrieri, R., Lodi, R., Lavagno, L., and Malco-

vati, P. Baseband analog front-end and digital back-end for recon-

figurable multi-standard terminals. Circuits and Systems Magazine,

IEEE 6, 1 (Quarter 2006), 8–28.

[5] Becker, J., Pionteck, T., Habermann, C., and Glesner, M.

Design and implementation of a coarse-grained dynamically reconfig-

urable hardware architecture. In VLSI, 2001. Proceedings. IEEE Com-

puter Society Workshop on (Orlando, FL, Apr. 19–20, 2001), pp. 41–46.

[6] Benini, L., and Bertozzi, D. Network-on-chip architectures and

design methods. Computers and Digital Techniques, IEE Proceedings

- 152, 2 (Mar 2005), 261–272.

189

Bibliography

[7] Bondalapati, K., and Prasanna, V. K. Reconfigurable comput-

ing: Architectures, models and algorithms. Current Science 78 (2000),

828–837.

[8] Bondalapati, K., and Prasanna, V. K. Reconfigurable comput-

ing systems. Proceedings of the IEEE 90, 7 (July 2002), 1201–1217.

[9] Borkar, S. Getting gigascale chips: Challenges and opportunities in

continuing moore’s law. Queue 1, 7 (2003), 26–33.

[10] Brunelli, C., Garzia, F., Nurmi, J., Campi, F., and Picard,

D. Reconfigurable hardware: The holy grail of matching performance

with programming productivity. Field Programmable Logic and Ap-

plications, 2008. FPL 2008. International Conference on (Sept. 2008),

409–414.

[11] Cadence. Why care about power?, Feb. 2008. At http:

//www.cadence.com/rl/Resources/conference_papers/lptp_

01Overview.pdf. Last accessed on 5th April 2009.

[12] Carter, A. Using Dynamically Reconfigurable Hardware in Real-time

Communications systems – Literature survey. Tech. rep., University of

York, Real Time Systms Group, 2001.

[13] Chen, D., Cong, J., Fan, Y., and Zhang, Z. High-level power

estimation and low-power design space exploration for fpgas. Design

Automation Conference, 2007. ASP-DAC ’07. Asia and South Pacific.

[14] Chun, A., Tsui, E., Chen, I., Honary, H., and Lin, J. Ap-

plication of the Intel reconfigurable communications architecture to

802.11a, 3g and 4g standards. In Emerging Technologies: Frontiers of

Mobile and Wireless Communication, 2004. Proceedings of the IEEE

6th Circuits and Systems Symposium on (May 31–June 2, 2004), vol. 2,

pp. 659–662.

[15] Compton, K., and Hauck, S. Reconfigurable computing: a survey

of systems and software. ACM Comput. Surv. 34, 2 (2002), 171–210.

190

http://www.cadence.com/rl/Resources/conference_papers/lptp_01Overview.pdf
http://www.cadence.com/rl/Resources/conference_papers/lptp_01Overview.pdf
http://www.cadence.com/rl/Resources/conference_papers/lptp_01Overview.pdf

Bibliography

[16] CSR. Cambridge Silicon Radio official website. At http://www.csr.

com/.

[17] CSR. UniFi UF1050 product technical overview. Available at http://

www.csr.com/products/unifirange.htm. Last accessed on 5th April

2009.

[18] DeHon, A., and Wawrzynek, J. Reconfigurable computing: what,

why, and implications for design automation. In Design Automation

Conference, 1999. Proceedings. 36th (New Orleans, LA, June 21–25,

1999), pp. 610–615.

[19] Deshpande, S. D. Software implementation of IEEE 802.11b wireless

LAN standard. SDR 04 Technical Conference and Product Exposition

(2004).

[20] Elbirt, A. J., Yip, W., Chetwynd, B., and Paar, C. An FPGA-

based performance evaluation of the AES block cipher candidate algo-

rithm finalists. IEEE Transactions on Very Large Scale Integration

(VLSI) Systems 9, 4 (Aug. 2001), 545–557.

[21] Esquiagola, J., Ozari, G., Teruya, M., Strum, M., and Chau,

W. A dynamically reconfigurable bluetooth base band unit. Field

Programmable Logic and Applications, 2005. International Conference

on (Aug. 2005), 148–152.

[22] Ferrari, A., and Sangiovanni-Vincentelli, A. System design:

traditional concepts and new paradigms. Computer Design, 1999.

(ICCD ’99) International Conference on (1999), 2–12.

[23] Ferro, E., and Potorti, F. Bluetooth and wi-fi wireless protocols:

a survey and a comparison. Wireless Communications, IEEE 12, 1

(Feb. 2005), 12–26.

[24] Fourty, N., Val, T., Fraisse, P., and Mercier, J. J. Com-

parative analysis of new high data rate wireless communication tech-

nologies ”from Wi-fi to WiMAX”. In Autonomic and Autonomous

191

http://www.csr.com/
http://www.csr.com/
http://www.csr.com/products/unifirange.htm
http://www.csr.com/products/unifirange.htm

Bibliography

Systems and International Conference on Networking and Services,

2005. ICAS-ICNS 2005. Joint International Conference on (Oct. 23–

28, 2005), pp. 66–66.

[25] Fujistu Microelectronics. MB87M3550, the Fujitsu WiMAX

802.16-2004 SoC, product brief. Available at http://www.fujitsu.

com/downloads/MICRO/fma/pdf/wca_whitepaper_wimax.pdf. Last

accessed on 5th April 2009.

[26] Furber, S. ARM System-on-chip Architecture, second ed. Addison

Wesley, August 2000.

[27] Hamalainen, P., Hannikainen, M., Hamalainen, T., and

Snarinen, J. Hardware implementation of the improved WEP and

RC4 encryption algorithms for wireless terminals. The European Signal

Processing Conference (EUSIPCO’2000) (Sep 2000), 2289–2292.

[28] Haroud, M., Blazevic, L., and Biere, A. HW accelerated ultra

wide band MAC protocol using SDL and SystemC. Radio and Wireless

Conference, 2004 IEEE (Sept. 2004), 525–528.

[29] Hartenstein, R. Coarse grain reconfigurable architectures. Design

Automation Conference, 2001. Proceedings of the ASP-DAC 2001. Asia

and South Pacific (2001), 564–569.

[30] Hartenstein, R. A decade of reconfigurable computing: a visionary

retrospective. In Design, Automation and Test in Europe, 2001. Con-

ference and Exhibition 2001. Proceedings (Munich, Mar. 13–16, 2001),

pp. 642–649.

[31] Hauser, J. R., and Wawrzynek, J. Garp: a MIPS processor

with a reconfigurable coprocessor. In FPGAs for Custom Computing

Machines, 1997. Proceedings., The 5th Annual IEEE Symposium on

(Napa Valley, CA, Apr. 16–18, 1997), pp. 12–21.

[32] IEEE. IEEE standard for information technology - telecommunica-

tions and information exchange between systems - local and metropoli-

192

http://www.fujitsu.com/downloads/MICRO/fma/pdf/wca_whitepaper_wimax.pdf
http://www.fujitsu.com/downloads/MICRO/fma/pdf/wca_whitepaper_wimax.pdf

Bibliography

tan area networks - specific requirements part 15.3: wireless medium

access control (mac) and physical layer (phy) specifications for high

rate wireless personal area networks (wpans). IEEE Std 802.15.3-2003

(2003).

[33] IEEE. Information technology- telecommunications and information

exchange between systems- local and metropolitan area networks- spe-

cific requirements- part 11: Wireless lan medium access control (mac)

and physical layer (phy) specifications. ANSI/IEEE Std 802.11, 1999

Edition (R2003) (2003).

[34] IEEE. IEEE standard for local and metropolitan area networks part

16: Air interface for fixed broadband wireless access systems. IEEE

Std 802.16-2004 (Revision of IEEE Std 802.16-2001) (2004).

[35] IEEE. Draft standard for information technology-telecommunications

and information exchange between systems-local and metropolitan area

networks-specific requirements-part 11: Wireless lan medium access

control (mac) and physical layer (phy) specifications: Amendment 5:

Enhancements for higher throughput. IEEE Unapproved Draft Std

P802.11n/D5.0, May 2008 (2008).

[36] Iliopoulos, M., and Antonakopoulos, T. A methodology of im-

plementing medium access protocols using a general parameterized ar-

chitecture. In Rapid System Prototyping, 2000. RSP 2000. Proceedings.

11th International Workshop on (Paris, June 21–23, 2000), pp. 2–7.

[37] Iliopoulos, M., and Antonakopoulos, T. Optimised reconfig-

urable MAC processor architecture. In Electronics, Circuits and Sys-

tems, 2001. ICECS 2001. The 8th IEEE International Conference on

(Sept. 2–5, 2001), vol. 1, pp. 253–258.

[38] Iliopoulos, M., Maniatopoulos, A., and Antonakopoulos,

T. Design and implementation of a MAC controller for the IEEE802.11

wireless LAN. International Journal of Electronics 88, 3 (March 2001),

271–285.

193

Bibliography

[39] Intel. Intel ixp1200 network processor, datasheet. Avail-

able at http://download.intel.com/design/network/datashts/

27829810.pdf. Last accessed on 5th April 2009.

[40] Intel. The Intel WiMAX connection 2250, product brief. Available

at http://download.intel.com/network/connectivity/products/

wireless/IntelWiMAXConnection2250.pdf. Last accessed on 5th

April 2009.

[41] Intersil. Wireless LAN card WLANKITPR1-EVAL Datasheet.

[42] ITU. ICT market trends. Symposium on Telecommunications to

Commemorate the 10th Anniversary of the Fourth Protocol to the

GATS, Geneva, Switzerland (Feb. 2008). Available at http://www.

itu.int/ITU-D/ict/papers/2008/ITU_Gray_WTO.pdf. Last accessed

on 5th April 2009.

[43] ITU-T. ITU-T recommendation X.200; Data network and

open systems communications, Open systems interconnection–model

and notation. Available at http://www.itu.int/rec/T-REC-X.

200-199407-I/en. Last accessed on 5th April 2009.

[44] Keutzer, K., Malik, S., and Newton, A. R. From ASIC to

ASIP: the next design discontinuity. 2002. Proceedings. 2002 IEEE

International Conference on Computer Design: VLSI in Computers

and Processors (Sept. 16–18, 2002), 84–90.

[45] Kim, Y., Jung, H., Lee, H. H., and Cho, K. R. MAC implemen-

tation for IEEE 802.11 wireless LAN. ATM (ICATM 2001) and High

Speed Intelligent Internet Symposium, 2001. Joint 4th IEEE Interna-

tional Conference on (2001), 191–195.

[46] Kitsos, P., Kostopoulos, G., Sklavos, N., and Koufopavlou,

O. Hardware implementation of the RC4 stream cipher. In Circuits

and Systems, 2003. MWSCAS ’03. Proceedings of the 46th IEEE Inter-

national Midwest Symposium on (Dec. 27–30, 2003), vol. 3, pp. 1363–

1366.

194

http://download.intel.com/design/network/datashts/27829810.pdf
http://download.intel.com/design/network/datashts/27829810.pdf
http://download.intel.com/network/connectivity/products/wireless/IntelWiMAXConnection2250.pdf
http://download.intel.com/network/connectivity/products/wireless/IntelWiMAXConnection2250.pdf
http://www.itu.int/ITU-D/ict/papers/2008/ITU_Gray_WTO.pdf
http://www.itu.int/ITU-D/ict/papers/2008/ITU_Gray_WTO.pdf
http://www.itu.int/rec/T-REC-X.200-199407-I/en
http://www.itu.int/rec/T-REC-X.200-199407-I/en

Bibliography

[47] Knutson, C. Access isn’t always the killer application. Wireless

Systems Design (December 2004), 22–26. Also available at http:

//www.wsdmag.com/Articles/ArticleID/9420/9420.html. Last ac-

cessed on 5th April 2009.

[48] Koushanfar, F., Prabhu, V., Potkonjak, M., and Rabaey,

J. Processors for mobile applications. Computer Design, 2000. Pro-

ceedings. 2000 International Conference on (2000), 603–608.

[49] Lettieri, P., and Srivastava, M. B. Advances in wireless termi-

nals. IEEE [see also IEEE Wireless Communications] Personal Com-

munications 6, 1 (Feb. 1999), 6–19.

[50] Liu, Z., Arslan, T., Khawam, S., and Lindsay, I. A high perfor-

mance synthesisable unsymmetrical reconfigurable fabric for heteroge-

neous finite state machines. In Design Automation Conference, 2005.

Proceedings of the ASP-DAC 2005. Asia and South Pacific (Jan. 18–21,

2005), vol. 1, pp. 639–644.

[51] Logger, A., Upegui, A., Sanchez, E., and Gonzalez, I. Self-

reconfigurable pervasive platform for cryptographic application. Field

Programmable Logic and Applications, 2006. FPL ’06. International

Conference on (Aug. 2006), 1–4.

[52] Loraine, J. Integration is a must for future handsets. Wireless

Systems Design (December 2004), 22–26. Also available at http:

//www.wsdmag.com/Articles/Index.cfm?ArticleID=9421. Last ac-

cessed on 5th April 2009.

[53] Master, P. The next big leap in reconfigurable systems, a technology

vision whitepaper, 2001. Quicksilver Technology. Available at http://

www.qstech.com/pdfs/5-2_WP_NextBigLeap.pdf. Last accessed on

5th April 2009.

[54] Master, P. The next big leap in reconfigurable systems. Field-

Programmable Technology, 2002. (FPT). Proceedings. 2002 IEEE In-

ternational Conference on (Dec. 2002), 17–22.

195

http://www.wsdmag.com/Articles/ArticleID/9420/9420.html
http://www.wsdmag.com/Articles/ArticleID/9420/9420.html
http://www.wsdmag.com/Articles/Index.cfm?ArticleID=9421
http://www.wsdmag.com/Articles/Index.cfm?ArticleID=9421
http://www.qstech.com/pdfs/5-2_WP_NextBigLeap.pdf
http://www.qstech.com/pdfs/5-2_WP_NextBigLeap.pdf

Bibliography

[55] Mathworks. Mathworks product overview. At http://www.

mathworks.com/products/pfo/. Last accessed on 5th April 2009.

[56] Meyr, H. Why we need all these MIPS in future wireless communica-

tion systems-and how to design algorithms and architecture for these

systems. Signal Processing Systems, 2001 IEEE Workshop on (2001),

2.

[57] Mobile Dev & Design. SoC enables development of WiMAX-

compliant base stations and subscriber stations, Apr. 2005. Avail-

able at http://mobiledevdesign.com/hardware_news/radio_soc_

enables_development/. Last accessed on 5th April 2009.

[58] Morgan, P., and Taylor, R. ASIP Instruction Encoding for En-

ergy and Area Reduction. In Design Automation Conference, 2007.

DAC ‘07. 44th ACM/IEEE (San Diego, CA, USA, June 4–8, 2007),

pp. 797–800.

[59] Nabi, S. W., Wells, C. C., and Vanderbauwhede, W. A Dy-

namically Reconfigurable System-on-chip for Implementing Wireless

MACs. In Proceedings of the 2007 Ph.D Research in Microelectron-

ics and Electronics Conference (Bordeaux, France, July 2007), IEEE

Circuits and Systems Society, pp. 37–40.

[60] Nabi, S. W., Wells, C. C., and Vanderbauwhede, W. To-

wards a Dynamically Reconfigurable SoC for Wireless MACs in Con-

sumer Handheld Devices. In First Internationl Conference on Com-

puter, Control and Communication (Karachi, Pakistan, Nov. 12–13,

2007), pp. 182–191.

[61] Nabi, S. W., Wells, C. C., and Vanderbauwhede, W. A Dy-

namically Reconfigurable Hardware Co-Processor for a Multi-Standard

Wireless MAC Processor. In NASA/ESA Conference on Adaptive

Hardware and Systems (Noordwijk, The Netherlands, June 22–25,

2009). In Press.

196

http://www.mathworks.com/products/pfo/
http://www.mathworks.com/products/pfo/
http://mobiledevdesign.com/hardware_news/radio_soc_enables_development/
http://mobiledevdesign.com/hardware_news/radio_soc_enables_development/

Bibliography

[62] Ningyi, X., Dongjun, L., and Zucheng, Z. Protocol accelera-

tor design for IEEE 802.15.3 MAC implementation. Communications,

2004 and the 5th International Symposium on Multi-Dimensional Mo-

bile Communications Proceedings. The 2004 Joint Conference of the

10th Asia-Pacific Conference on 1 (Aug.-1 Sept. 2004), 189–192 vol.1.

[63] Ouellette, M., and Connors, D. Analysis of Hardware Accel-

eration in Reconfigurable Embedded Systems. In Parallel and Dis-

tributed Processing Symposium, 2005. Proceedings. 19th IEEE Inter-

national (Apr. 04–08, 2005).

[64] Paik, E. K., Kim, H., Heo, S. Y., Jin, J. S., Lee, S.-C., and

Lee, S. H. Development of mobile access point for vehicular wibro

networks. Advanced Communication Technology, 2008. ICACT 2008.

10th International Conference on 2 (Feb. 2008), 909–912.

[65] Panic, G., Dietterle, D., Stamenkovic, Z., and Tittelbach-

Helmrich, K. A system-on-chip implementation of the IEEE 802.11a

MAC layer. In Digital System Design, 2003. Proceedings. Euromicro

Symposium on (Sept. 1–6, 2003), pp. 319–324.

[66] picoChip. PC102 Product Brief, Mar. 2004. Available at http://www.

picochip.com/info/datasheets. Last accessed on 5th April 2009.

[67] Pionteck, T., Kabulepa, L. D., Schlachta, C., and Glesner,

M. Reconfiguration requirements for high speed wireless communica-

tion systems. In Field-Programmable Technology (FPT), 2003. Pro-

ceedings. 2003 IEEE International Conference on (Dec. 15–17, 2003),

pp. 118–125.

[68] Pionteck, T., Staake, T., Stiefmeier, T., Kabulepa, L., and

Glesner, M. Design of a reconfigurable aes encryption/decryption

engine for mobile terminals. Circuits and Systems, 2004. ISCAS ’04.

Proceedings of the 2004 International Symposium on 2 (May 2004),

II–545–8 Vol.2.

197

http://www.picochip.com/info/datasheets
http://www.picochip.com/info/datasheets

Bibliography

[69] Pionteck, T., Stiefmeier, T., Staake, T. R., and Glesner,

M. A dynamically reconfigurable function-unit for error detection and

correction in mobile terminals. In Field Programmable Logic and Ap-

plication, Lecture Notes in Computer Science. Springer Berlin, Heidel-

berg, Aug. 2004.

[70] Pionteck, T., Stiefmeier, T., Staake, T. R., and Glesner,

M. On the design of a dynamically reconfigurable function-unit for

error detection and correction. In VLSI-SoC: From Systems To Silicon,

vol. 240/2007. Springer Boston, Oct. 2007, pp. 283–297.

[71] Plunkett, B. The quest continues for the SDR holy grail. Wireless

Systems Design (July 2003). Also available at http://www.wsdmag.

com/Articles/Index.cfm?ArticleID=5998. Last accessed on 5th

April 2009.

[72] Rabaey, J. Low-power silicon architectures for wireless communica-

tions. Design Automation Conference, 2000. Proceedings of the ASP-

DAC 2000. Asia and South Pacific (2000), 377–380.

[73] Rabaey, J., Potkonjak, M., Koushanfar, F., Li, S.-F., and

Tuan, T. Challenges and opportunities in broadband and wireless

communication designs. Computer Aided Design, 2000. ICCAD-2000.

IEEE/ACM International Conference on (2000), 76–82.

[74] Rabaey, J. M. Wireless beyond the third generation: facing the

energy challenge. In ISLPED ’01: Proceedings of the 2001 international

symposium on Low power electronics and design (New York, NY, USA,

2001), ACM, pp. 1–3.

[75] Rincon, F., and Teres, L. Reconfigurable hardware systems. In

Semiconductor Conference, 1998. CAS ‘98 Proceedings. 1998 Interna-

tional (Sinaia, Oct. 6–10, 1998), vol. 1, pp. 45–54.

[76] Salefski, B., and Caglar, L. Re-configurable computing in wire-

less. Design Automation Conference, 2001. Proceedings (2001), 178–

183.

198

http://www.wsdmag.com/Articles/Index.cfm?ArticleID=5998
http://www.wsdmag.com/Articles/Index.cfm?ArticleID=5998

Bibliography

[77] Samadi, S., Golomohammadi, A., Jannesari, A., Movahedi,

M., Khalaj, B., and Ghammanghami, S. A novel implementation

of the IEEE802.11 medium access control. Intelligent Signal Processing

and Communications, 2006. ISPACS ’06. International Symposium on

(Dec. 2006), 489–492.

[78] Sangiovanni-Vincentelli, A., Carloni, L., De Bernardinis,

F., and Sgroi, M. Benefits and challenges for platform-based design.

Design Automation Conference, 2004. Proceedings. 41st (2004), 409–

414.

[79] Sassatelli, G., Cambon, G., Galy, J., and Torres, L. A dy-

namically reconfigurable architecture for embedded systems. In Rapid

System Prototyping, 12th International Workshop on, 2001. (Monterey,

CA, June 25–27, 2001), pp. 32–37.

[80] Schaumont, P., Verbauwhede, I., Keutzer, K., and Sar-

rafzadeh, M. A quick safari through the reconfiguration jungle.

2001. Proceedings Design Automation Conference (2001), 172–177.

[81] Sequans Communications. SQN1010 System-on-Chip for

WiMAX subscriber stations. Available at http://www.sequans.com/

products/sqn1010.php. Last accessed on 5th April 2009.

[82] Shukla, V. Low power ICD talks, Oct. 2007. At

http://www.cadence.com/rl/Resources/conference_papers/

6.2_presentationIndia.pdf. Last accessed on 5th April 2009.

[83] Smith, G. Platform based design: Does it answer the entire SoC

challenge? Design Automation Conference, 2004. Proceedings. 41st

(2004), 407–407.

[84] Stretch. Stretch S6000 Family Product Brief, 2009. Available

at http://www.stretchinc.com/products/s6000.php. Last accessed

on 5th April 2009.

199

http://www.sequans.com/products/sqn1010.php
http://www.sequans.com/products/sqn1010.php
http://www.cadence.com/rl/Resources/conference_papers/6.2_presentationIndia.pdf
http://www.cadence.com/rl/Resources/conference_papers/6.2_presentationIndia.pdf
http://www.stretchinc.com/products/s6000.php

Bibliography

[85] Sung, N. W. HW/SW codesigned implementation of IEEE 802.16

TDMA MAC for the subscriber station. In Computer and Informa-

tion Science, 2005. Fourth Annual ACIS International Conference on

(2005), pp. 436–440.

[86] Tabak, D., and Lipovski, G. J. Move Architecture in Digital Con-

trollers. IEEE Transactions on Computers 29, 2 (Feb. 1980), 180–190.

[87] Tempesti, G., Mudry, P. A., and Hoffmann, R. A Move pro-

cessor for bio-inspired systems. 2005. Proceedings. 2005 NASA/DoD

Conference on Evolvable Hardware (June 29–July 1, 2005), 262–271.

[88] Teng, C.-M., and Chen, K.-C. A unified algorithm for wire-

less MAC protocols. In Vehicular Technology Conference, 2002. VTC

Spring 2002. IEEE 55th (May 6–9, 2002), vol. 1, pp. 394–398.

[89] Tuan, T., Li, S.-F., and Rabaey, J. Reconfigurable platform

design for wireless protocol processors. In Acoustics, Speech, and Signal

Processing, 2001. Proceedings. (ICASSP ‘01). 2001 IEEE International

Conference on (Salt Lake City, UT, May 7–11, 2001), vol. 2, pp. 893–

896.

[90] University of Edinburgh. Platform-based design, Jan. 2005. Class

notes for MSc in System-level Integration.

[91] Vanderbauwhede, W. The Gannet Service-based Soc: A Service-

level Reconfigurable Architecture. In Adaptive Hardware and Systems,

2006. AHS 2006. First NASA/ESA Conference on (June 15–18, 2006),

pp. 255–261.

[92] Vorwerk, K., Raman, M., Dunoyer, J., chung Hsu, Y.,

Kundu, A., and Kennings, A. A technique for minimizing power

during fpga placement. Field Programmable Logic and Applications,

2008. FPL 2008. International Conference on (Sept. 2008), 233–238.

[93] VSIA. VSIA’s PBD definitions and taxonomy (PBD 1 1.0). At http:

//vsi.org/. Last accessed on 5th April 2009.

200

http://vsi.org/
http://vsi.org/

Bibliography

[94] Walko, J. Convergence time. IEE Communications Engineer 2, 6

(Dec 2004-Jan. 2005), 12–15.

[95] Wee, C., Sutton, P., Bergmann, N., and Williams, J. Multi

stream cipher architecture for reconfigurable system-on-chip. Field

Programmable Logic and Applications, 2006. FPL ’06. International

Conference on (Aug. 2006), 1–4.

[96] WiMAX. Motorola wins Pakistan WiMAX contract.

WiMax.com (Oct 2008). Available at http://www.wimax.

com/commentary/news/wimax_industry_news/october-2008/

motorola-wins-pakistan-wimax-contract. Last accessed 5th April

2009.

[97] Xiao, Z., Randhawa, T. S., and Hardy, R. H. S. A state-machine

based design of adaptive wireless MAC layer. 2003. VTC 2003-Spring.

The 57th IEEE Semiannual Vehicular Technology Conference 4 (Apr.

22–25, 2003), 2837–2841.

[98] Xilinx. Gate count capacity metrics for FPGAs, Feb. 1997. Xilinx

Application Note XAPP059. Available at http://www.xilinx.com/

support/documentation/application_notes/xapp059.pdf. Last

accessed on 5th April 2009.

[99] Xu, F., Zhang, L., Zhou, Z., and Ye, Y. Architecture for Next-

Generation Reconfigurable Wireless Networks using Cognitive Radio.

Cognitive Radio Oriented Wireless Networks and Communications,

2008. CrownCom 2008. 3rd International Conference on (May 2008),

1–5.

[100] Zhang, H., Wan, M., George, V., and Rabaey, J. Interconnect

architecture exploration for low-energy reconfigurable single-chip dsps.

VLSI ’99. Proceedings IEEE Computer Society Workshop On (1999),

2–8.

201

http://www.wimax.com/commentary/news/wimax_industry_news/october-2008/motorola-wins-pakistan-wimax-contract
http://www.wimax.com/commentary/news/wimax_industry_news/october-2008/motorola-wins-pakistan-wimax-contract
http://www.wimax.com/commentary/news/wimax_industry_news/october-2008/motorola-wins-pakistan-wimax-contract
http://www.xilinx.com/support/documentation/application_notes/xapp059.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp059.pdf

	List of Figures
	List of Tables
	Introduction
	Scope
	Target Markets
	Innovation
	Thesis Outline

	Background
	Feasibility
	An Overview of Reconfiguration Technologies
	Classification of Reconfigurable Architectures

	Wireless Standards
	The MAC Sub-layer
	Analysis of Wireless Standards

	Related Work

	System Architecture
	Context
	Design Considerations
	Assumptions
	Requirements and Constraints

	Key Architectural Features
	Classifying the DRMP Architecture
	System Partitioning
	The Reconfigurable Hardware Co-processor
	The Interface and Reconfiguration Controller
	The Reconfigurable Functional Units
	Memories and Interconnect
	Arbitration
	RFU Trigger Logic and Master-Slave Mechanism
	Event Handler and Interface Buffers

	Using the DRMP Architecture
	Programming Model
	The Interrupt-Driven Protocol Control
	API

	Extended Instruction Set Architecture
	The DRMP as a Platform Architecture
	Platform-Based Design
	Evolving DRMP into a Platform Architecture

	An Example of DRMP Application
	A Conventional Implementation
	Implementation on DRMP

	Modeling and Simulation
	Development Tools
	Abstraction Level
	The Simulink Model
	Simulation Results
	Simulation Run with One Protocol Mode
	Simulation Run with Three Concurrent Protocol Modes
	Results for the IRC

	Discussion of Results
	Time Slack and Reducing Power Consumption
	Frequency of Operation
	Single Protocol vs. Three Concurrent Protocols' Operation
	The Interface and Reconfiguration Controller
	Performance Assumptions (Software and Reconfiguration)

	Implementation Aspects
	Area and Power Estimates
	WiFi Estimates
	UWB Estimates
	WiMAX Estimates
	DRMP Estimates

	Power-Efficiency Improvements
	Utilization Potential and Limitations
	Power-Efficiency
	Performance
	Cost
	Programmability and Extensibility

	Commercial Wireless MAC solutions

	Conclusions
	Future Architectural Exploration
	System Design or Architectural Exploration
	Synthesizing the Architecture to Lower Abstraction

	Snapshots of SIMULINK Model
	Detailed Comparison of Wifi, WiMAX and UWB
	Bibliography

