
Hardware Acceleration of HDR-Image
Tone Mapping on an FPGA-CPU platform

through High-Level Synthesis

Mattia Cacciotti, Vincent Camus, Jeremy Schlachter, Alessandro Pezzotta, Christian Enz
Integrated Circuits Laboratory (ICLAB)

École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

mattia.cacciotti@epfl.ch

Abstract—In this paper, the hardware acceleration of a tone-
mapping algorithm for High-Dynamic-Range image processing
is presented. Starting from the C++ source code, High-Level
Synthesis has been performed using Xilinx SDSoC for a Xilinx
Zynq SoC device. After an initial code optimization to improve
the memory access bottleneck, SDSoC pragmas have been in-
troduced to boost system performance through an increased
parallelism. Preliminary results have shown significant reductions
in the execution time and the energy consumption compared to
the conventional software implementation.

Index Terms—Heterogeneous systems, FPGA, high-level syn-
thesis, hardware-software co-design, image tone mapping.

I. INTRODUCTION

By 2025, 1 trillion devices will be connected to the in-

ternet [1], sending an incredibly large amount of data to

cloud servers, which already consume more than 2 % of

the world’s produced electricity [2]. With the breakdown of

Dennard’s scaling, energy issues are becoming dominant to

the development of future computing platforms, both at cloud

server scale and IoT edge. At the sensor node, low-power

techniques such as approximate computing [3] have been

developed to trade off computation exactness for lower power

consumption and increased battery life. While at the high-

performance and cloud-computing scale, specialized hardware

accelerators such as Field Programmable Gate Arrays (FPGA)

have gained considerable interest thanks to their capability in

performing massive amounts of operations in parallel with a

lower energy cost [4].

The increasing demand for custom hardware has driven

embedded software developers towards more complex archi-

tectures, employing heterogeneous systems which combine

together processing units and hardware accelerators [5]–[7].

By doing so, computationally-intensive operations can be

unloaded from the CPU to the dedicated circuit.

Developing application-specific hardware accelerators for

sophisticated applications, however, is not trivial and requires

complex coding in specialized Hardware Description Lan-

guages like VHDL or Verilog. To provide a solution to this

This work was funded by the Swiss-French SNSF/ANR ARTEFaCT project.

problem, High-Level Synthesis (HLS) tools have been devel-

oped to directly map a C/C++ algorithm into a digital circuit.

Even if a faster and more efficient design-space exploration

is allowed by HLS, these tools are not yet independent and a

solid knowledge of hardware design is still required to interpret

results properly and guide the optimization efficiently.

This work aims at presenting the hardware acceleration of

a popular image processing algorithm, the tone mapping, on a

Xilinx Zynq SoC, a heterogeneous platform which combines

an ARM-based processing unit together with programmable

logic. Xilinx SDSoC has been used as development environ-

ment and it allows to perform hardware-software co-design

through HLS and a C/C++ compiler respectively.

The paper is organized as follows: Section II gives a general

overview of tone mapping and focuses on its algorithmic

implementation; Section III presents the target platform and

design tool and describes the developed optimization flow for

the hardware acceleration; Section IV shows the experimental

results obtained for execution time and energy consumption.

II. HDR-IMAGE TONE MAPPING

Tone-mapping is an image processing algorithm that has re-

cently gained more and more importance due to the spreading

of High-Dynamic-Range (HDR) images in mobile phones and

other portable devices. Those images are characterized by a

very high ratio between the luminance of the brightest and

the darkest pixel and are able to represent a wide range of

luminance values.

Tone mapping is widely used to match the dynamic range

of the captured image with the one of the device where

it is going to be displayed, which is usually limited. This

algorithm essentially allows to optimize the contrast, which

is directly related to the dynamic range, while still preserving

the high resolution of the image and its color appearance. In

this way, dark zones will become brighter while bright zones

will become darker.

Different tone-mapping techniques are available, but the

algorithms can be overall classified in two groups: global

and local. In the former, the same transformation applies to

all the pixels of the image, while in the latter each pixel

transformation depends on the value of its neighboring pixels.



Fig. 1: HDR-Image Tone Mapping block diagram [8].

A. Algorithm implementation

The algorithm considered in this work belongs to the second

group [8, 9] and it has been implemented as a C/C++ code.

Fig. 1 shows its block diagram. The input HDR image goes

through the following steps:

1) Image normalization: each pixel inside the input image

is normalized with respect to their maximum value.

2) Gaussian blur: bi-dimensional image filter in which each

pixel is updated summing up to it a certain number of

adjacent pixels, horizontal or vertical, weighted by a

certain coefficient. The number of adjacent pixels and

the weights of the multiplications are determined by

width and magnitude of a Gaussian distribution.

3) Non-linear masking: main tone mapping operation used

to modify through gamma-correction the pixel values of

the original image using the pixels of the blurred image.

4) Brightness and contrast adjustments to improve quality.

III. HARDWARE-SOFTWARE CO-DESIGN

A. Target platform and design tool

The platform targeted for the design implementation has

been a Xilinx Zynq-7000 All Programmable System-on-Chip

(AP SoC) [10], a heterogeneous system that combines the

flexibility of programmable logic together with the software

programmability of an ARM-based processor.

Given the nature of the Zynq SoC, Xilinx SDSoC (Soft-

ware Defined SoC) [11] has been used to perform hardware-

software co-design. This recent tool suite is an Integrated De-

velopment Environment (IDE) dedicated to Zynq SoC devices

that allows to generate both the ARM software and the FPGA

bitstream. For the hardware part, the SDSoC compiler invokes

Xilinx Vivado HLS to compile synthesizable C/C++ functions

into programmable logic. For the software part, instead, the

accelerated functions are replaced by software stubs and the

code is compiled and linked using a standard GNU toolchain.

The SDSoC design flow is presented in Fig. 2.

Given a specific application running on ARM, the code

is profiled to determine the most computationally-intensive

functions. Once identified, these functions are selected for

hardware acceleration in order to be off-loaded from the CPU

execution. However, this operation might not guarantee an

immediate improvement in system performance, especially

when memory accesses are not optimized. CPUs, in fact,

have usually faster random accesses to external memories than

programmable logic, thanks to caches and higher clock fre-

quencies. Hence, algorithm restructuring might be necessary

Fig. 2: SDSoC design flow [11].

to transform random memory accesses into sequential accesses

and, if dependencies make it unfeasible, to exploit local data

buffers using memory blocks inside the FPGA (Fig. 3).

Only once the data transfer bottleneck is solved, it will be

possible to obtain significant benefits from the computational

parallelism offered by the FPGA architecture.

B. Algorithm optimization

Given the aforementioned considerations, the tone-mapping

algorithm has been profiled and the Gaussian blur function

identified as the most computationally-intensive. Since the

code was not optimized for hardware acceleration, the first

system implementation using SDSoC did not show any im-

provement in the execution time. An extensive amount of

random memory accesses, in fact, was required in the marked

function, since neighboring pixels (preceding and succeeding)

were needed to perform blurring.

Therefore, the data flow has been restructured to make

the accesses to the external memory sequential (Fig. 4).

Pixels are now sequentially read from the off-chip RAM

and stored in a local buffer inside the programmable logic,

the block RAM (BRAM). Once the buffer becomes full, the

CPU-friendly 
code

Algorithm 
restructuring

Sequential memory 
accesses
Local data buffers

FPGA-friendly 
code

Fig. 3: Algorithm restructuring.



FPGA

Off-Chip 
Shared 

Memory 
(RAM) 

Local buffer 
(BRAM)

Hardware 
accelerator

Sequential read access

Sequential write access

Fig. 4: FPGA sequential accesses to external memory.

Gaussian blur starts the computation and each new streamed

pixel substitutes the oldest one in the buffer. Each output pixel

is then sequentially written back to the external memory.

The advantage of HLS does not only lie in the possibility

to accelerate functions in hardware avoiding coding complex

Verilog or VHDL, but also to have a faster and more efficient

design space exploration [12]. Compiler directives called prag-
mas can be used in SDSoC to guide the compilation to improve

system performance at a higher abstraction level, essentially

controlling the following knobs:

• Data motion network, to specify both the most suitable

data mover between software routine and hardware func-

tion and the kind of access pattern employed (i.e. random

or sequential).

• System parallelism, to improve the parallelism between

loop iterations through loop pipelining or loop unrolling

and to increase the memory bandwidth by local memory

blocks reshaping.

Different implementations of the Gaussian blur function have

been synthesized to decrease the execution time. At each

optimization step, the performance report obtained after the

compilation has been analyzed to identify the bottleneck of the

design. This report shows for each clock cycle which operation

is performed by the hardware module. The pragmas that have

been added to the source code to boost the performance are:

• #pragma HLS PIPELINE, used to increase the parallelism

of the loops required for pixel processing, instantiating in

hardware multiple iterations of these loops (which would

else be executed sequentially in software). Vivado HLS

performs this operation trying to minimize the initiation

interval, i.e. the number of clock cycles necessary be-

tween consecutive loop iterations. Data dependency and

hardware resources might limit this optimization.

• #pragma HLS ARRAY_PARTITION, used to map and par-

tition software-defined arrays into specific FPGA memory

units (e.g. BRAMs or registers). In this way, the through-

put of read/write operations is increased thanks to the

availability of a higher number of memory ports.

C. Fixed-point conversion

After having optimized the system at the architectural level,

the focus has been moved towards the successive bottleneck,

the arithmetic. Despite floating-point representation is a highly

accurate data type simple to use at the software level, it moves

all the complexity down to hardware in complex Floating-

Point Units (FPUs). For this reason, most low-power embed-

ded systems prefer to adopt fixed-point arithmetics [13]. This

type of representation shifts the complexity up to software,

allowing the use of simple hardware operators implementing

integer arithmetic and improving speed, area and energy at the

price of a reduced, but acceptable, accuracy.

Therefore, the Gaussian blur function has been converted

from floating-point to fixed-point to further reduce the ex-

ecution time while still keeping accuracy within reasonable

boundaries. To this extent, the Vivado HLS C++ arbitrary

precision data type ap_fixed has been used, choosing 16-bit

as total number of bits. When designing through SDSoC,

not all arbitrary bit widths can be chosen for the arguments

of hardware functions, due to communication issues between

FPGA and processing system. In order to guarantee the bus

alignment, in fact, the width must be 8, 16, 32, or 64 bits.

IV. EXPERIMENTAL RESULTS

The experimental results shown in this section have been

obtained providing as input to the system the HDR image

shown in Fig. 5a, with a size of 1024×1024 pixels.

A. Execution time

In order to provide an execution time reference, the C++

source code has been fully executed on the ARM processor

embedded in the Zynq SoC. Then, after having marked the

Gaussian blur function for acceleration in the programmable

logic, the design has been optimized following the steps listed

in Table I.

TABLE I: Hardware acceleration optimization steps.

1 Algorithm restructuring for sequential memory accesses

2 Pipelining and array partitioning through HLS pragmas

3 Floating-point to fixed-point conversion

The tone mapping execution times for the different im-

plementations are presented in Table II. The table entry

Marked HW function shows how a straightforward selection

of the most computationally-intensive function for hardware

acceleration would not produce any immediate gain. Most

likely, it will lead to a degradation of the performance due

to a poor compatibility of a general software code with the

FPGA computing paradigm.

Execution times are summarized in Fig. 6, omitting the

Marked HW function which is not relevant. The bar chart

underlines both the time spent in the programmable logic (PL)

TABLE II: Tone mapping execution times.

Design implementation
Execution time

Gaussian blur Total

SW source code 7.29 s 26.66 s

Marked HW function 176.00 s 195.28 s

Sequential memory accesses 17.02 s 35.34 s

HLS pragmas 0.79 s 19.10 s

FlP to FxP conversion 0.42 s 19.27 s



(a) Initial HDR image (b) 32-bit Floating-Point (c) 16-bit Fixed-Point

Fig. 5: Initial 1024×1024 HDR image (a) and tone-mapped versions obtained using either floating-point (b) or fixed-point (c) Gaussian blur accelerators.

for the execution of the Gaussian blur and the one spent in the

processing system (PS) for the rest of the algorithm. Overall,

an execution time improvement of more than 17× has been

achieved for the final hardware accelerated Gaussian blur with

respect to its original software version. The optimization steps

that contributed the most to the speed-up have been the algo-

rithm restructuring and the pipelining and array partitioning.

B. Image quality evaluation

The tone-mapped images resulting from HLS pragmas and

FlP to FxP conversion implementations are shown in Figs. 5b

and c, respectively. To evaluate the image quality degradation,

the Peak Signal-to-Noise Ratio (PSNR) has been computed

for the 16-bit FxP version taking the 32-bit FlP image as a

reference.

The resulting PSNR is equal to 66 dB, which is similar to

the typical values obtained in lossy image compression [14].

However, no real visual difference between the two images

can be noticed. To this extent, a better idea of image quality

degradation is given by the Structural Similarity (SSIM)

index [15]. This quality metric measures the similarity between

two images, hence it is somehow closer to human perception.

As a result, when computed between the floating-point and

0

10

20

30

40

SW source code Sequential
memory

accesses

HLS pragmas FlP to FxP
conversion

xe
cu

tio
n 

tim
e 

(s
) 

PS
PL

Fig. 6: Tone mapping execution time.

the fixed-point implementations, the resulting SSIM is equal

to 1, which corresponds to the same image quality.

C. Energy consumption

Core and auxiliary voltages are provided to the Zynq SoC

by Texas Instruments (TI) power controllers. These devices

feature a Power Management Bus (PMBus) that can be used

to communicate with an external PC through an USB-to-GPIO

adapter. By using the TI Fusion Digital Power Designer GUI,

is then possible to monitor the power consumption of the

system. Among the ten different power rails available, the

focus has been put on those powering up the main components,

i.e. the programmable logic (PL), the processing system (PS)

and the memories (DDR and BRAM).

Intuitively, when moving from a purely software implemen-

tation to one including a hardware accelerator, the overall

power consumption increases, since the synthesizer enables

a growing amount of logic circuits in the PL. On the other

hand, the presence of an accelerator allows to reduce the time

required to complete an operation. Hence, a more significant

figure is given by the energy instead of the power.

The energy values reported in Fig. 7 have been obtained

multiplying the average power consumption measured with

0

10

20

30

40

50

SW source code Sequential
memory

accesses

HLS pragmas FlP to FxP
conversion

Av
 e

ne
rg

y 
co

ns
um

pt
io

n 
(J

) BRAM
DDR
PL
PS

Fig. 7: Tone mapping average energy consumption.



0

5

10

15

SW source code Sequential
memory 

accesses

HLS pragmas FlP to FxP
conversion

 e
ne

rg
y 

co
ns

um
pt

io
n 

(J
) Execution overhead

Bottomline

(a) Processing System (PS)

0

1

2

3

4

5

6

SW source code Sequential
memory
accesses

HLS pragmas FlP to FxP
conversion

en
er

gy
 c

on
su

m
pt

io
n 

(J
) Execution overhead

Bottomline

(b) Programmable Logic (PL)

Fig. 8: Energy bottomline and execution overhead for PS (a) and PL (b).

the TI software by the corresponding execution time. Com-

pared to the initial software-only version, the final fixed-point

hardware-accelerated implementation allows a 23 % energy

consumption reduction for each processed image, going from

30 J down to 23 J.

The measured energy can be divided in two contributions,

namely the bottomline and the execution overhead. The first

term refers to the energy consumed by the system when it is in

idle state waiting for the application to be executed, while the

second represents the additional energy required to perform

the computations. Figs. 8a and b show this distinction for the

processing system and the programmable logic, respectively.

The energy consumption for the DDR and the BRAM is

not reported in this chart because it does not vary when

moving from idle to execution. As expected, for the PS, shorter

execution times allows to reduce both the bottomline and the

execution overhead energy terms. A more interesting insight,

however, is given by the PL. The bottomline term, in fact,

increases when going from SW source code to FlP to FxP
conversion, due to an increasing amount of programmable

logic being used. On the other hand, the execution overhead

(which is not present in the software-only version) decreases

thanks to the very short execution times.

V. CONCLUSION

In this paper, the hardware-software co-design steps neces-

sary to accelerate a HDR-image tone-mapping algorithm on a

Xilinx Zynq SoC platform through Xilinx SDSoC have been

explored.

Despite a faster and more efficient design-space exploration

is allowed by HLS-based tools, the designer still needs to be

aware of the hardware implementation constraints in order to

guide the optimization flow effectively.

After having profiled the source code to identify the most

computationally-intensive software routine for the embedded

ARM CPU, the Gaussian blur function has been marked for

hardware implementation in the programmable logic of the

FPGA. Further optimizations have been performed through

algorithm restructuring, loop pipelining, array partitioning and

fixed-point conversion, targeting at each step the computation

bottleneck. Overall, an improvement of 17× in the execution

time has been achieved for the accelerated function together

with a 23 % energy consumption reduction.

REFERENCES

[1] J. Heinlein, in ARM TechCon, Cambridge, UK, Oct. 25 2016.
[2] “After Moore’s law - Technology Quarterly,” The Economist,

March 12 2016. [Online]. Available: http://www.economist.com/
technology-quarterly/2016-03-12/after-moores-law.

[3] V. Camus, M. Cacciotti, J. Schlachter, and C. Enz, “Design of approx-
imate circuits by fabrication of false timing paths: The carry cut-back
adder,” in IEEE Journal on Emerging and Selected Topics in Circuits
and Systems (JETCAS), June 2018.

[4] A. Putnam, A. M. Caulfield et al., “A Reconfigurable Fabric for
Accelerating Large-scale Datacenter Services,” in Computer Architecture
(ISCA), ACM/IEEE 41st International Symposium on, 2014, pp. 13–24.

[5] L. Suriano, A. Rodriguez, K. Desnos, M. Pelcat, and E. de la Torre,
“Analysis of a heterogeneous multi-core, multi-HW-accelerator-based
system designed using PREESM and SDSoC,” in IEEE Reconfigurable
Communication-centric Systems-on-Chip (ReCoSoC), July 2017.

[6] S. D. Roh, K. Cho, and K. S. Chung, “Implementation of an LDPC
decoder on a heterogeneous FPGA-CPU platform using SDSoC,” in
2016 IEEE Region 10 Conference (TENCON), 2016, pp. 2555–2558.

[7] S. Nouri, J. Rettkowski, D. Göhringer, and J. Nurmi, “HW/SW co-design
of an IEEE 802.11a/G receiver on Xilinx Zynq SoC using high-level
synthesis,” in ACM Highly Efficient Accelerators and Reconfigurable
Technologies (HEART), June 2017.

[8] V. Camus, J. Schlachter, M. Gautschi, F. K. Gurkaynak, and C. Enz,
“Approximate 32-bit floating-point unit design with 53% power-area
product reduction,” in European Solid-State Circuits (ESSCIRC), IEEE
42nd Conference, Sept 2016, pp. 465–468.

[9] N. Moroney, “Local Color Correction Using Non-Linear Masking,” in
Color Imaging Conference (CIC), 8th IS&T/SID, 2000, pp. 108–111.

[10] Xilinx Inc., Zynq-7000 Technical Reference Manual (UG585).
[11] Xilinx Inc., SDSoC Environment User Guide (UG1027).
[12] Xilinx Inc., SDSoC Environment Profiling and Optimization (UG1235).
[13] D. Menard, D. Chillet, and O. Sentieys, “Floating-to-Fixed-Point Con-

version for Digital Signal Processors,” EURASIP Journal on Advances
in Signal Processing, vol. 2006, no. 1, Jan 2006.

[14] Q. Huynh-Thu and M. Ghanbari, “Scope of validity of PSNR in
image/video quality assessment,” Electronics Letters, vol. 44, no. 13,
pp. 800–801, June 2008.

[15] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,” IEEE
Transactions on Image Processing, vol. 13, no. 4, pp. 600–612, 2004.


