MPT: Multiple Parallel Tempering for

High-Throughput

Morteza Hosseini

Computer Science and Electrical Engineering Department

University of Maryland, Baltimore County
Maryland, USA
hs10@umbc.edu

Lahir Marni
Computer Science and Electrical Engineering Department
University of Maryland, Baltimore County
Maryland, USA
mlahirl @umbc.edu

Abstract—This paper proposes ‘“Multiple Parallel Tempering”
(MPT) as a class of Markov Chain Monte Carlo (MCMC) algo-
rithm for high-throughput hardware implementations. MCMC
algorithms are used to generate samples from target probability
densities and are commonly employed in stochastic processing
techniques such as Bayesian inference, and maximum likelihood
estimation, in which computing large amount of data in real-time
with high-throughput samplers is critical. For high-dimensional
and multi-modal probability densities, Parallel Tempering (PT)
MCMC has proven to have superior mixing and higher conver-
gence to the target distribution as compared to other popular
MCMC algorithms such as Metropolis-Hastings (MH). MPT
algorithm, proposed in this paper, imposes a new integer pa-
rameter, D, to the original algorithm of PT. Such modification
changes one MCMC sampler into multiple independent kernels
that alternatively generate their set of samples one after another.
Our experimental results on Gaussian mixture models show
that for large values of D, the auto-correlation function of the
proposed MPT falls comparably to that of a PT sampler. A
fully configurable and pipelined hardware accelerator for the
proposed MPT, as well as PT are designed in Verilog HDL and
implemented on FPGA. The two algorithms are also written
in C language and evaluated on Multi-core CPU from the
TX2 SoC. Our implementation results indicate that by selecting
an appropriate value for D in our case study the sampling
throughput of the MPT can raise from 4.5 Msps in PT to
135 Msps on average, an amount near maximum achievable
frequency of the target FPGA, which is about 1470x higher
than when implementing on fully exploited Multi-core CPU.

Index Terms—MCMC, Mixture model, Parallel Tempering,
High-Throughput Sampler, Hardware Accelerator

I. INTRODUCTION

MCMC is one of the essential tools for stochastic processing
techniques and is mainly used for solving Bayesian inference
problems found in several fields such as modern machine
learning [1], probabilistic mixture models [2], genetics [3] and
prediction of time series events [4][5]. Stochastic estimators
such as MCMC are regularly becoming methods of choice
as deterministic numerical techniques are inefficient for large
dimension data. In probabilistic inference problem, we often

MCMC Samplers

Rashidul Islam
Computer Science and Electrical Engineering Department
University of Maryland, Baltimore County
Maryland, USA
dr97531 @umbc.edu

Tinoosh Mohsenin
Computer Science and Electrical Engineering Department
University of Maryland, Baltimore County
Maryland, USA
tinoosh@umbc.edu

need to compute expectation of a function g(x) for a random
variable x by solving the integral:

[s@pla)da

where p(x) is the target probability distribution. MCMC
consists of two steps: Monte Carlo, that indicates that the
process is based on random events, and Markov Chain, that
implies the sequence of the events are causal, which means
every current event is a result of previous event (or events). In
Monte Carlo integration, a set of samples, z(®) where t=1...N
are drawn out from a target distribution to approximate an
expected value as calculated below:

(D

R 1 & ,
Elg(a)] = ;g(x“)))

Generally, the accuracy of the MCMC sampler can be
improved by increasing number of samples, “N”. However,
there is no unique way to measure the convergence of MCMC
samples [6]. Common techniques include checking the auto-
correlation of the samples from the underlying sampler, or
using several independent sampling kernels initialized to dif-
ferent states that should eventually generate similar results
once converged [6][2].

Markov chain is an iterative stochastic process which is
initialized to a starting state, 1:(1), and determines the next
states based on a transition probability, where the transition
probability can be described by a 1°% order Markov chain as
shown in equation 3:

p(a®]etD 272) — p@® 0Dy 3)

MCMC contains iterative interdependent kernels which
makes hardware acceleration challenging. To overcome this
challenge, FPGA-based research has focused on paral-
lel implementation of Markov chains to achieve accelera-
tion [7][8][9][10][11][12][13].

In this paper, we propose “Multiple Parallel Tempering”
(MPT) MCMC algorithm which is a special case of D order
Markov chain and probability transition of the MPT can be
described by:

p(x(i)|x(i_1), A G S a:(l)) = p(x(j’) \x(i_D)) 4

where D is an integer greater or equal to 1. Equation 4 is
representable by D independent partitioned subsets of the set
of variable z, and can be described by D independent 15 order
Markov chains. The bottleneck of the sequential behavior
when implementing an MCMC algorithm on hardware, can
be resolved by changing a 15¢ order MCMC algorithm to the
D' order MCMC algorithm, with an appropriate selection of
the parameter D. This modification is inspired from hardware
designer’s perspective, with the intention of achieving an ultra
high-throughput sampler. In this paper, we evaluate the impact
of imposing such parameter in the algorithm, validate the new
algorithm by showing the auto-correlation and expected value
graphs, and implement the hardware of our proposed MPT
MCMC as well as the traditional MCMC algorithms, Parallel
Tempering (PT) and Metropolis Hastings (MH) on the FPGA.

Main contributions to this paper include:

o Two most popular MCMC algorithms are studied in terms
of application, limitation, and complexity.

« A modification in PT MCMC algorithm is proposed,
named MPT, and the mixing and convergence behavior
of the new algorithm over a given p(z) is investigated
with respect to the number of samples.

o A high-throughput fully scalable hardware accelerator of
the proposed MPT along with the original PT sampler is
designed and implemented on Artix-7 Xilinx FPGA for
chain numbers of 1, 2, 4 and 8 and is compared with PT.

o The original PT and the proposed MPT algorithms are
implemented on the Multi-core CPU and the result of
which is compared with the FPGA implementations.

II. MULTIPLE PARALLEL TEMPERING (MPT)

This section briefly introduces two popular MCMC al-
gorithms, Metropolis-Hastings (MH) and Parallel Tempering
(PT), and will propose Multiple Parallel Tempering (MPT)
algorithm from which both former algorithms are deducible.

MH algorithm, one of the most basic variations of MCMC
algorithms, initiates a random sample from a probability den-
sity space, and thereafter continues a sequence of random steps
to generate other samples that will eventually approximate
the given probability distribution. Each random step at every
iteration that generates the next sample is taken based on an
accept/reject probability criteria given in equation 5, where z*
sample is generated by using another proposal distribution and
sample z(*~1) is generated in the (¢t — 1)*" iteration.

p(z”))
p(z(=1)
The proposal distribution, g(x|z(*~1), is a symmetrical pdf

that decides the next random jump from the current state, and
is usually a Gaussian distribution (Line 9 in Algorithm 1).

®)

a =min(1,

PT MPT (D=2)

X0 x® x® x@ XN W @ N1 y(N)
e e U G s
Initial Initial -
Sample Samples

Fig. 1. Proposed sampling technique for MPT: In PT, next sample can
only be derived when previous sample is available, but in MPT every
next sample is generated upon the previous D" sample. In the figure,
for D=2, two independant kernels are illustrated that alternatively
generate and interleave their set of chain samples.

For multi-modal distributions, MH gets trapped in isolated
modes [2] and suffers from slow convergence. To overcome
this drawback, PT was proposed by [14] that uses parallel
Markov chains in which each chain ¢ samples from a tempered
version of the original distribution. A tempered version of p(z)
is denoted by p;(z) and formulated by equation 6:

pi(e) = p(@)" /i € {1, M} ©

where M is the number of the chains and 7} represents the
temperature of the i*" chain. The 1% chain is the principal
chain whose temperature is equal to 1 and from which the
final samples are extracted. Temperature selection for other
chains depends on the target distribution and the algorithm
configuration. In this work, however, we use a geometric pro-
gression of temperatures suggested by [14]. It has been shown
in [15] that choosing temperatures for every two consecutive
chains ¢ and j such that % is a constant value results in equal
acceptance ratios between chains. In PT algorithm, p; () is the
main target distribution and the remaining distributions are the
tempered versions of p(x). After samples are generated from
chains in parallel, samples from different pairs of chains are
swapped with a probability condition; the larger probability
of a proposed sample of a tempered chain, the more likely it
is swapped with a colder chain. The objective of this swap is
to push samples, that are more likely meeting isolated modes
in the py(x), from the high temperature chain to the coldest
chain, thereby mixing and redemption from getting stuck in a
particular mode. PT with one chain is the same as MH.

MPT, proposed in this paper, is devised by adding a new
parameter, D, to the original PT algorithm. In MPT the
next sample, instead of being contingent upon the current
sample, is derived from the previous D** sample as shown
in the Figure 1. MPT with D equal to 1 is the same as PT.
Algorithm 1 shows the pseudo-code of the proposed MPT.
Throughout the rest of this paper, we denote PT-m and MPT-
m as PT and MPT that employ m number of chains.

III. CASE STUDY: GAUSSIAN MIXTURE MODEL

In order to evaluate and compare the three sampling algo-
rithms, we investigate their sampling performance over i.i.d.
multivariate multi-modal Gaussian mixture models (GMM)
which are weighted summation of Gaussian densities. This
model is used to establish a likelihood function, which is
used in a Bayesian Inference problem, where the parameters
of posterior is tuned upon the likelihood and prior density

Algorithm 1 Multiple Parallel Tempering (MPT)
1: Inputs:
2: Density p(z), chain temperatures 7., parameter D,
initial samples (xglj)v[xﬁ}), mean u, proposal variances
(0% : M), number of the required samples (N).
3: Output:
4: Samples taken from x;
5: Sampling:
6: for i =D 41 to N do
7
8
9

Sample update:
for j =2 to M do

Xt x4 N,
10: Do Xy) < x} with probability:
1
e aceept(x”),x;) = min(L, (1) ™)
)) PiX;
12: Otherwise do ng) — XEI_D)

13: end for

14. Sample Exchange:

15: Choose chain pairs in a binary fashion: ((1,2),(3,4), ...)
in stage 1, chain pairs ((1,3),(5,7),...) in stage 2, ..., and
chain pair (1, & + 1) in stage log(M).

16: for every chosen pair (u,v) in consecutive stages do

17: Swap samples ng) and xSf) with prolbabillity:
s swap(x x) = min(1, (2200)
P(Xy

19: end for
20: end for

functions, or in Markov random fields where the exact maxi-
mum likelihood estimation (MLE) is impossible. A likelihood
function that employs i.i.d GMMs can be generically denoted
by equation 7:

_ (=, 5)>

=))

m k
p(x) = H(Z(Wi,j exp

=1 j=1

—

where, m, k, o and p are respectively the number of di-
mensions, number of mixture modes per dimension, variances,
and means of the GMM. w; is the weight of the subclass i,
0 < w; < 1 for all subclasses and 2521 w; ; = 1 given any
i. The model employed for our work to compare the three
algorithms adapts to k = 4, m = 4, 01, = 02, = 03, =
04, = (07,07,07,07) and M1, = M2, = M3, = H4, =
(10,30, 50, 70) which is a 4 dimensional i.i.d. GMM with 4
modes per dimension.

We performed several experiments on the given case study
to display how the three algorithms mix generated samples
from the GMM. Figure 2 shows a traceplot that represents
the mixing properties of the three MCMC samplers. MH
sampler gets trapped in isolated modes of the distribution,
thus indicating poor mixing. PT shows good mixing, and
although switching between different modes is quite frequent,
it is evident that the random walking from the sampler gets
temporarily trapped, but eventually hops to other modes more
frequently. MPT with D = 51, on the other hand, displays

MH PT-4 MPT-4
70 70 70
60 60 i 60
50 - 50 | 50

40 40

w
o

30 30

Sample Value
N
o

N
=}

20 20

1o a——— 1o o

0 100000 200000 0 100000 200000 0
Sample Index

100000 200000

Fig. 2. Trace-plot of samples for one variable of 4D distribution
with 4 modes with mean values equal to 10,30, 50, and 70. MH
gets trapped in a mode, PT-4 can sample from all four modes, but
the mixing quality is low and MPT-4 with D=51 represents better
mixing properties to sample from all the 4 modes.

more mixing than both of the latter as a result of having 51
kernels that independently sample from the target probability
density one after another.

We also investigate the convergence to the target distribution
by evaluating auto-correlation between drawn samples from
PT and MPT algorithms. The auto-correlation function [16] is
a figure of merit that measures correlation between neighbor-
ing observations in a series of samples, and is calculated with
the following equation:

SN i (@ = T) (@igs, — @)
S (g —)2

where ACF is the auto-correlation function that spans be-
tween —1 and + 1, z; are the drawn samples (: = 1...N), T is
the average value of all the drawn samples, and k is the lag.
The lagged series, x4, is simply the original series shifted %
units backward in time. ACF' identifies the non-randomness
of a series of data and can be used to evaluate the mixing
property of the drawn samples; the quicker the auto-correlation
curve falls w.r.t the lag, the less correlated, and hence the
more random the drawn samples are. Figure 3 depicts the auto-
correlation function versus lag over the drawn samples for the
case study with various values of D. Figure 3 indicates that PT
(D = 1) and MPT with D = 2 respectively have the least and
the most correlations between their drawn samples. However,
increasing D in MPT increases the randomness of the drawn
samples as a result of D many independent kernels, and
therefore, results in more analogous auto-correlation curves
of MPT to that of PT.

Figure 4 depicts the normalized expected value calculated
on one of the 4 dimensions of the actual samples generated
by MPT-8 and PT-8 with respect to the samples generated.
It shows that the expected value for one of the dimensions
of the case study in PT-8 fluctuates around the true value,
whereas the expected value for MPT-8 with D=54 has a more
smooth curve that quickly averaged to the actual result within
a defined confidence range. The smoother curve of the latter is

ACF(k) = (8)

0.8

0.6

0.4

0.2

Samples Autocorrelation

0

-0.2

0 40000 80000 120000 180000

Lag

Fig. 3. Auto-correlation function versus lag for MPT (D>1) evaluated
by 8 chains indicates that for large values of D, the correlation
between the drawn samples can be as little as the correlation between
samples drawn by PT (D=1). Periodic ripples within the auto-
correlation curves of MPT, that make the curves look solid for D>1,
indicate that there are periodic inter-dependencies between generated
samples as a result of multiple independent samplers.

121

1

%0.8’

M 06

0.4

0.2 . .)
0 1 2 3 4 5 6
S

Number of Samples X10

Fig. 4. Comparison between normalized expected value of one of
the output dimensions of PT and MPT (D=54), both evaluated by 8
chains, with respect to the generated samples

due to multiple independent kernels in the MPT that has more
degree of freedom to explore the target probability density.

IV. HARDWARE ARCHITECTURE

In PT MCMC algorithm, shared chain architecture expe-
riences trade-off between throughput and number of chains,
however number of chains will add idle cycles due to
pipeline structure of the architecture [17]. We propose a high-
throughput architecture for MPT algorithm with limited num-
ber of chains, which can be efficiently implemented on tiny
Artix-7 Xilinx FPGA for a given distribution. Figure 5 depicts
the hardware architecture of MPT Algorithm (algorithm 1)
with two chains that generates samples from the given p(z).
We consider this architecture as a baseline for a PT and a high-
throughput MPT sampler over the given p(z). The architecture
has two streams of data that can be assumed as a clockwise
circular flow: forward and backward data flows.

The proposed architecture is reconfigurable for PT and MPT
algorithms depending on the value selected for parameter D:
in case of D = 1 it is configured to PT algorithm, and
when D > 1 it acts as an MPT algorithm. The architecture

is initially designed from a PT point of view with a purely
combinational logic for the forwarding data flow. Sample
values are in 18-bit fixed-point format, and the probability
of each sample is calculated in the logarithmic domain. Fixed
point representation reduces hardware complexity, while loga-
rithmic representation converts the exponential, multiplication
and division in Algorithm 1 to multiplication, addition, and
subtraction respectively. The proposed architecture consists
of four kernels: 1. Algorithm Initialization (INIT), 2. Ran-
dom Number Generators (RNG), 3. Chain Update, and 4.
Exchanger. INIT kernel initializes samples (331%1)\/1 xfj\})
by user and are carefully chosen. The Random Number
Generators (RNG) consists of Uniform and Gaussian Random
Number Generators (URNG and GRNG.) We implement Taus-
worthe URNG, and GRNG is implemented by using Inverse
Cumulative Distribution Function (ICDF) [18]. The Chain
Update is the computational block that chooses between the
current sample and the proposed sample by comparing the
ratio of their probabilities with a generated URNG sample.
The proposed sample is made by summing a GRNG sample
and the current sample and the chosen sample will be the next
sample (line 9 to 12 of Algorithm 1). Probability Estimation
module in each chain update kernel calculates the probability
of each incoming proposed sample, and is the most computa-
tionally intensive module among all modules of the design. It
comprises logarithm and exponential calculators, implemented
using 16 cascaded blocks on behalf of 16 unfolded iterations
of CORDIC algorithms. Every hardware configuration and
application specific data, such as chain temperatures, GRNGs’
standard deviations, initialization values, p’s and weights of
the GMM model are stored in Block RAMs and are subject
to the change of the application and the configuration. For the
sample exchange between chains, we choose a binary fashion
policy so that with the least required number of stages all
chains have the chance to mix with the 1% chain. In order
to mix chains in an 8 chain design for example, 4 parallel
exchangers handle chain pairs (1,2), (3,4), (5,6) and (7,8) at
the first stage, then again two parallel exchangers handle (1,3)
and (5,7), and finally a last exchanger mixes chain pair (1,5).

The PT architecture can be converted to an MPT by
applying D-pipeline stages to the forwarding data flow. The
conceptual Pipeliner block defines the number of pipeline
stages that divide the forwarding data flow for MPT into D
chunks. We are interested in the smallest D that results in
the maximum system frequency. By doing so, both the system
throughput and each independent PT sampler within the MPT
will reach to their maximum throughput. Ideally, the best D
for MPT can be inferred by dividing the maximum achievable
frequency of the FPGA by the clock frequency of the baseline
PT, from which MPT is derived. The updated and exchanged
sample of each chain will finally loop back to the Initializing
block of its affiliated chain. By using a counter that counts
only once from 1 to D + 1, the INIT block sends in the
first D initialization samples to the forwarding data flow upon
the system’s reset (line 1 of the algorithm) and, from there,

(RNG2) Chain Update2\ ("~ Exchange wmr
(_RNG-1 [Chain Update-1) C
URNG }] LoG 1 -
1 X,
GRNG | Log[P(X;)] {
- JogP(X",)]
Signal
GRNG } From RNG
NI
A T
LogP(X)1—0 - fi fj oglPX)
LoglP(X®)] |1
: e (n)
; | Log[P(X
N k og[P(X1)] Xz -’\l :X
) / X4 ')

/[#Dm m L;l m Pipeliner ...#4|:;| :3 #2|;| #1L—P| /]

Fig. 5. Hardware architecture design of PT and MPT with two chains (PT-2 and MPT-2) for four dimensional multi-modal GMM on FPGA.
For every proposed sample, probability is evaluated by the Probability Estimation block in the logarithm domain, that for our case study in
this work is evaluated as log(p(z)) = Zle log(ef(:'”*‘“'*l)2 e Eimri)® 4 om(imnie)? Jref(“”i*‘”v“)rz). The proposed sample may get
accepted conditioned by a URNG sample. The accepted sample may similarly get swapped by means of the Exchange block with the sample
generated by the other chain. j; ; represents the mean of j*" mode in the '™ dimension of the probability density. X; ; and X ; respectively
represent the j** dimension and the n'" sample in the sequence of series generated by the i*" chain. For the sake of simplicity, weights
of the GMM aren’t shown. T; represents temperature of chain 7. The conceptual Pipeliner block implies that, in order to convert a PT into
an MPT, the forwarding data flow should get pipelined into D chunks. For a 1 chain design, only Chain Update-1, RNG-1, and INIT-1 are
required and no Exchanger is needed. For 4 chain configuration, the exact 2 chain architecture, before establishing the backward data, is
duplicated and an extra Exchanger mixes chain pair (1,3). Similarly, an 8 chain configuration is made out of two 4 chain architectures, as
well as an extra Exchanger that mixes chain pair (1,5).

TABLE 1
POST PLACE AND ROUTE IMPLEMENTATION RESULTS ON ARTIX-7 FOR PT AND MPT ARCHITECTURES WITH CHAIN NUMBERS EQUAL
TO 1, 2, 4, AND 8, IN TERMS OF RESOURCE UTILIZATION, THROUGHPUT AND POWER DISSIPATION.

Architecture PT-1 (MH) MPT-1 PT-2 MPT-2 PT-4 MPT-4 PT-8 MPT-8
Slice Count (%) 2757 8%) | 3,083 9%) | 6,597 (18%) | 6,948 (20%) 12,748 (36%) | 13,390 (39%) | 23,241 (70%) | 25,755 (76%)
Register Count (%) 66 (~0%) | 14,726 (5%) 133 (~0%) | 29,851 (11%) 418 (~0%) 59,726 (22%) 969 (~0%) 119,439 (44%)
Block RAMs 1 1 2 2 4 4 8 8
Mul 18x18 12 12 25 25 51 51 103 103
No. of Pipelines (D) 1 45 1 48 1 51 1 54
Dynamic Power (W) 0.07 1.61 0.13 3.05 0.27 5.82 0.54 11.71
Static Power (W) 0.22 0.23 0.22 0.25 0.22 0.29 0.23 0.39
Total Power (W) 0.29 1.84 0.35 3.30 0.49 6.11 0.77 12.10
Throughput (Msps) 5.0 156.5 4.7 147.4 43 125.7 4.1 114.6
Throughput Base 31.1x Base 31.4x Base 29.5x% Base 28.0x
Improvement

provides a direct link between backward and forwarding data
flows. Finally, only samples from the first chain will be taken
out of the hardware through four 18-bit outputs to feed any
interface, e.g. an accumulator for calculating equation 2, that
follows the sample generator for further process.

A. FPGA Implementation Results

The reconfigurable PT and MPT architecture with 1, 2,
4, and 8 number of chains is implemented using Verilog
HDL, and synthesized and placed & routed on tiny and
low power Artix-7 FPGA using Xilinx ISE tools. We start
each architecture from a PT algorithm point of view for
each number of chain configurations, and then, designing the
respective MPT required finding the optimal value for D. The

optimal D results in the highest throughput of the MPT, as a
whole, and the highest throughput of independent PT kernels
inside MPT. Such value for each case study and algorithm
configuration can be found experimentally; with a trial and
error method of placing pipeline stages at different locations of
the initial PT architecture, we found the near optimum values
of D for each configuration. Table I shows the chosen D,
device utilization, total power dissipation and throughput for
each configuration. At the expense of respectively 5, 11, 22,
and 44 percent extra utilization of register resources inside
the FPGA (for implementing the pipeline) for chain numbers
equal to 1, 2, 4, and 8, the MPT yields an average speed-up
of 30 x in throughput as compared to the analogous PT with
the same chain configuration.

B. TX2 Implementation Results

In order to evaluate the PT and MPT on other Commercial
Off-The-Shelf (COTS) products, the two algorithms for our
GMM case study were written in C and run on the Multi-
core CPU from TX2 SoC. NVIDIA’s Jetson TX2 features an
integrated 256-core NVIDIA Pascal GPU, a CPU complex
combining a dual-core NVIDIA Denver 2 alongside a quad-
core ARM Cortex-A57, and 8GB of LPDDR4 memory with a
128-bit interface. Every chain in PT and MPT was mapped to
a core for parallel processing, and message passing interface
(MPI) was used to communicate data for the swap phase
in their algorithms. The frequency of all cores were set to
1728 MHz and floating point operations were used. In each
experiment 100,000 samples were generated. We measured
that at the given frequency, the PT algorithm generates samples
on par with the MPT algorithm, regardless of the value of D,
with a throughput rate of 0.12, 0.11, 0.09, and 0.06 million
samples per second (Msps) respectively for chain number 1,
2, 4, and 8. It is noteworthy that mapping respectively 1 and
2 chains to the quad-core ARM processor is not as efficiently
resource-exploiting as mapping 4 and 8 chains.

V. CONCLUSION

In this work, we imposed a new parameter, D, to the Parallel
Tempering algorithm, a powerful class of MCMC algorithms,
and proposed Multiple Parallel Tempering algorithm that, by
choosing an appropriate integer value for D, allows to increase
the sampling throughput over a given p(z), to near the maxi-
mum frequency achievable by the targeted FPGA. The optimal
value selection for D in every application depends on the
hardware complexity of the implemented probability density,
i.e. the longer the critical path of a probability estimation, the
more number of pipeline stages will result in the maximum
throughout, and thus requiring larger D. For an employed 4
dimensional i.i.d GMM likelihood function in this work, and
by choosing an average value of 48 for D, the MPT sam-
pler approximately yields 30x speedup in sample generation
throughput for chain number 1, 2, 4 and 8 configurations when
compared to the PT sampler with equivalent number of chains.
When compared to the implementation on ARM Cortex A57,
as a Multi-core CPU, for the same case study and algorithm
configuration, MPT on the FPGA achieves averagely 1470x
speedup in terms of throughput. The new algorithm not only
gains in terms of throughput on FPGA, but also, for large
values of D, generates samples whose auto-correlation and
randomness are analogous to that of samples drawn out of an
equivalent PT sampler.

REFERENCES

[1]1 A.D. C. Andrieu, N.D. Freitas and M. Jordan, “An introduction to mcmc
for machine learning,” Machine Learning, no. 50, pp. 5-43, 2003.

[2] G. Mingas and C. S. Bouganis, “Population-based mcmc on multi-
core cpus, gpus and fpgas,” IEEE TRANSACTIONS ON COMPUTERS,
vol. 65, no. 4, pp. 1283-1296, 2016.

[3] C. J. Ter Braak, “A markov chain monte carlo version of the genetic
algorithm differential evolution: easy bayesian computing for real pa-
rameter spaces,” Statistics and Computing, vol. 16, no. 3, pp. 239-249,
2006.

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

F. Harl, F. Chatelain, C. Gouy-Pailler, and S. Achard, “Bayesian model
for multiple change-points detection in multivariate time series,” I[EEE
Transactions on Signal Processing, vol. 64, no. 16, pp. 4351-4362, 2016.
R. Azencott, V. Muravina, R. Hekmati, W. Zhang, and M. Paldino,
“Automatic clustering in large sets of time series,” in Contributions to
Partial Differential Equations and Applications. Springer, 2019, pp.
65-75.

B. Darvish Rouhani, M. Ghasemzadeh, and F. Koushanfar, “Causalearn:
Automated framework for scalable streaming-based causal bayesian
learning using fpgas,” in Proceedings of the 2018 ACM/SIGDA Interna-
tional Symposium on Field-Programmable Gate Arrays. ACM, 2018,
pp. 1-10.

G. M. Shuanglong Liu and C.-S. Bouganis, “An unbiased mcmc fpga-
based accelerator in the land of custom precision arithmetic,” IEEE
TRANSACTIONS ON COMPUTERS, vol. PP, no. 99, pp. 1-1, 2016.
N. B. Asadi et al., “Reconfigurable computing for learning bayesian
networks,” in Proceedings of the 16th international ACM/SIGDA sym-
posium on Field programmable gate arrays. ACM, 2008, pp. 203-211.
G. Mingas and C. S. Bouganis, “A custom precision based architecture
for accelerating parallel tempering memc on fpgas without introducing
sampling error,” in 2012 IEEE 20th International Symposium on Field-
Programmable Custom Computing Machines, April 2012, pp. 153-156.
L. Marni, M. Hosseini, and T. Mohsenin, “Mc3a: Markov chain monte
carlo manycore accelerator,” in ACM Proceedings of the 28th Edition of
the Great Lakes Symposium on VLSI (GLSVLSI). ACM, 2018.

G. Mingas and C.-S. Bouganis, “Population-based mcmc on multi-core
cpus, gpus and fpgas,” IEEE Transactions on Computers, vol. 65, no. 4,
pp. 1283-1296, 2016.

R. Hekmati, R. Azencott, W. Zhang, and M. Paldino, “Machine learning
to evaluate fmri recordings of brain activity in epileptic patients.”

S. Liu, G. Mingas, and C.-S. Bouganis, “An unbiased mcmc fpga-
based accelerator in the land of custom precision arithmetic,” IEEE
Transactions on Computers, no. 5, pp. 745-758, 2017.

D. J. Earl and M. W. Deem, “Parallel tempering: Theory, applications,
and new perspectives,” Physical Chemistry Chemical Physics, vol. 7,
no. 23, pp. 3910-3916, 2005.

D. A. Kofke, “Erratum:on the acceptance probability of replica-exchange
monte carlo trials[j. chem. phys. 117, 6911 (2002)],” The Journal of
chemical physics, vol. 120, no. 22, pp. 10852-10852, 2004.

G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time series
analysis: forecasting and control. John Wiley & Sons, 2015.

G. Mingas and C.-S. Bouganis, “Parallel tempering mcmc acceleration
using reconfigurable hardware,” in International Symposium on Applied
Reconfigurable Computing. Springer, 2012, pp. 227-238.

R. Gutierrez et al., “Hardware architecture of a gaussian noise generator
based on the inversion method,” IEEE Transactions on Circuits and
Systems II: Express Briefs, vol. 59, no. 8, pp. 501-505, Aug 2012.

C. Shea, A. Page, and T. Mohsenin, “Scalenet: a scalable low power
accelerator for real-time embedded deep neural networks,” in ACM
Proceedings of the 28th Edition of the Great Lakes Symposium on VLSI
(GLSVLSI). ACM, 2018.

A. Jafari, M. Hosseini, C. P. A.Kulkarni, and T. Mohsenin, “Binmac:
Binarized neural network manycore accelerato,” in ACM Proceedings of
the 28th Edition of the Great Lakes Symposium on VLSI (GLSVLSI).
ACM, 2018.

M. Hosseini, R. Islam, A. Kulkarni, and T. Mohsenin, “A scalable fpga-
based accelerator for high-throughput meme algorithms,” in /EEE Sym-
posium on Field- Programmable Custom Computing Machines (FCCM).
IEEE, 2017.

A. Kulkarni, A. Page, N. Attaran, A. Jafari, M. Malik, H. Homayoun,
and T. Mohsenin, “An energy-efficient programmable manycore accel-
erator for personalized biomedical applications,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, no. 99, 2017.

N. Attaran, A. Puranik, J. Brooks, and T. Mohsenin, “Embedded low-
power processor for personalized stress detection,” IEEE Transactions
on Circuits and Systems II: Express Briefs, vol. PP, no. 99, pp. 1-1,
2018.

A. Jafari, , and T. Mohsenin, “Sensornet: A scalable and low-power deep
convolutional neural network for multimodal data classification,” IEEE
Transactions on Circuits and Systems, vol. PP, pp. 1-12, 2018.

T. Abtahi, C. Shea, A. Kulkarni, and T. Mohsenin, “Accelerating
convolutional neural network with fft on embedded hardware,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, pp. 1-24,
2018.

