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Abstract—AES (Advanced Encryption Standard) accelerators
are commonly used in high-throughput applications, but they
have notable resource requirements. We investigate replacing
the AES cipher with ChaCha ciphers and propose the first
ChaCha FPGA implementations optimized for data throughput.
In consequence, we compare implementations of three different
system architectures and analyze which aspects dominate the
performance of those.

Our experimental results indicate that a bandwidth of
175 Gbit/s can be reached with as little as 2982 slices, whereas
comparable state of the art AES accelerators require 10 times
as many slices [1]. Taking advantage of the flexibility inherent in
the ChaCha cipher, we also demonstrate how our implementation
scales to even higher throughputs or lower resource usage (down
to 476 slices), benefiting applications which previously could not
employ cryptography because of resource limitations.

Index Terms—chacha, cryptography, symmetric cipher, fpga,
evaluation, stream cipher, arx

I. INTRODUCTION

As private data has recently become increasingly valu-
able and problems with espionage and data theft arise, data
security has become more and more important in various
domains. Whereas cryptography has been widely deployed in
the IoT (Internet of Things) and consumer device domains,
applications in communication, data processing and high-
bandwidth sensor data acquisition present higher demands
on throughput, limiting the adoption. High-throughput AES
accelerators of up to 260 Gbit/s have been proposed [1], but
the cost of 35 328 slices is often too high for applications
where cryptography is not perceived as an integral part. In
order to obtain a better throughput per slice ratio, we provide
a detailed analysis of efficient hardware architectures for the
ChaCha cipher, a detailed analysis of the performance limiting
factors as well as an overview of parallelization possibilities.
We describe hardware building blocks for the cipher and
three different implementations built on these, then compare
performance and hardware resource characteristics for the
different implementations. Compared to the state-of-the art,
our implementation focuses on throughput, whereas existing
implementations focus on low resource utilization. In addition,
our implementation can be configured to balance throughput
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and resource requirements. We further show that a pipeline
implementation is much more efficient compared to multiple
instances of independent block primitives, as often used in
state-of-the-art IP-core implementations.

II. RELATED WORK

The ChaCha ciphers are a family of symmetric stream
ciphers proposed by D. J. Bernstein [2] as an evolution of
the earlier published Salsa ciphers [3]. As endorsed by crypt-
analysis publications of Salsa and ChaCha ciphers [4], [5], it
is a more conservative design than AES, providing similar or
better level of security. ChaCha is an Add-Rotate-XOR cipher:
All operations performed by the ChaCha algorithms are based
on additions, XOR operations and rotations (cyclic bit shifts)
of 32 bit data words. The ChaChaN cipher family provides
three standardized variants, which differ only in the number
of operations performed on the cipher state (N = 8, 12 or 20
rounds). A larger number of rounds increases data diffusion
and therefore security of the cipher, but it also increases the
processing time (scaling linearly with the number of rounds)
when encrypting or decrypting data.

For ciphers such as AES, studies on hardware implementa-
tions have been presented [1], [6], but for ChaCha ciphers,
publications such as [7] mostly describe optimizations for
efficient software implementations. To the best of our knowl-
edge, there are three hardware implementations of the ChaCha
cipher: A commercial ChaCha20 implementation by Xiphera,
Inc. [8]. This IP core was developed as an TLS accelerator and
therefore integrates a Poly1305 implementation to calculate
message authentication codes. It does however not allow to
customize the number of rounds and does not support ChaCha
variations with different counter or nonce sizes. Also, due to
it’s closed-source IP-core nature, the building blocks can not
be reused to implement algorithms based on ChaCha, such
as the Blake2 hash function [9]. The second implementation
is an open source Verilog implementation available from
J. Strömbergson [10]. This implementation allows configuring
the number of rounds, it does however not allow to make trade-
offs between throughput and hardware resource requirements.
The third implementation was published by At et al. as part of
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their BLAKE implementation [11]. It is optimized for very-
low resource usage (49 slices) at the cost of low throughput
of only 595 Mbit/s.

III. A SHORT SUMMARY OF THE CHACHA ALGORITHM

In this section, we briefly reiterate the ChaCha algorithm as
specified in [2]. As a stream cipher, ChaChaN first generates
a stream of key data called keystream. To encrypt data, the
bytes of this keystream are combined with the bytes of the
data stream by an XOR operation, yielding the cipherstream
(Eq. 1). As decryption works the same way (Eq. 2), both
the en- and decrypting parties have to generate the same
keystream. The whole algorithm for encryption and decryption
is therefore identical.

cipherstream = keystream ⊕ datastream (1)
datastream = keystream ⊕ cipherstream (2)

In order to generate the keystream, ChaCha performs various
operations on a matrix consisting of 32 bit unsigned integers.
The initial matrix M is formed as follows:

M =




61707865 3320646e 79622d32 6b206574
key0 key1 key2 key3

key4 key5 key6 key7

counter0 counter1 nonce0 nonce1




(3)
The first entries shown are the 16 constant bytes “expand 32-
byte k” in hexadecimal notation, followed by the symmetric
en-/decryption key. The counter is used to provide the current
position in the keystream. For the first block (the first 64
bytes in the keystream) it is zero, for the next block it is one,
etc. ChaCha allows for random access to the keystream: It
is possible to calculate blocks at any stream offset without
calculating any previous block. The last entry, the nonce
(number-used-once), is a number unique to each keystream.

To process the matrix M , ChaChaN performs N = 8, 12
or 20 rounds of operations on the matrix (Lst. 1):

Listing 1: The roundsN (M) Operation
foreach i in (0 .. N-1)
| in = i.odd ? diags(M) : cols(M)
| out(0..4) = qround(in(0..4))
| i.odd ? diags(M)= out : cols(M)= out

Listing 2: The qround(a, b, c, d) Operation
a += b; d ˆ= a; d <<<= 16;
c += d; b ˆ= c; b <<<= 12;
a += b; d ˆ= a; d <<<= 8;
c += d; b ˆ= c; b <<<= 7;

As shown in Fig. 1, even rounds operate on the four columns
of the matrix (column rounds), odd rounds on four diagonal
vectors (diagonal rounds). Each round then performs the
quarter-round sub-operations (qround) once per input vector.
Quarter-rounds consist of Add, XOR (ˆ=) and rotate (<<<=)
operations and are defined in Lst. 2. After matrix M has been




m0 m1 m2 m3 m0 m1 m2 m3

m4 m5 m6 m7 m4 m5 m6 m7

m8 m9 m10 m11 m8 m9 m10 m11

m12 m13 m14 m15 m12 m13 m14 m15




c0 c1 c2 c3

d0 d1 d2 d3

Fig. 1: Columns ci and Diagonals di for qround Inputs

processed through N rounds, the last processing step for the
ciphertext block keystream(counter) is to add the processed
matrix to the initial matrix:

keystream(counter) := M + roundsN (M) (4)

To obtain the next 64 B of the keystream, the counter field in
the initial matrix M is incremented by one and the process in
Eq. 4 is repeated for the new matrix.

IV. A HARDWARE PERSPECTIVE ON THE CHACHA CIPHER

Fig. 2a shows the quarter-round operation of Lst. 2 in a
graphical form, depicting both the operations used and the
data flow of the algorithm. As can be seen, each output a,
b, c and d is dependent on each input and on intermediate
results, showing that parallelization of this operation is not
easily possible. This restriction does not come as a surprise:
The main purpose of the quarter-round operation is to disperse
data in the matrix, ensuring that each bit in the final result
depends on the whole initial matrix. As such, there is an
inherent conflict here: In order to be cryptographically secure,
algorithms have to introduce many data dependencies. On the
other hands side, these data dependencies limit parallelization
opportunities.

Fig. 2b shows a slightly modified form of the first two
sections of the graph, suggesting that the whole operation can
be built out of four basis cells. These Add-Rotate-XOR (ARX)
cells form the base operation used in the ChaCha cipher. As
suggested by Fig. 2b, the outputs need to be permuted in order
to directly chain these cells: The outputs of the first cell, a′, b′,
c′ and d′ are updated input variables as described in line one of
Lst. 2. Line two of Lst. 2 then applies the same operations on
the updated input variables. As it maps the inputs differently to
the operations, the basis cell has to perform that permutation.
If four basis cells are connected serially, the final result will
be in the same order as the input variables.

As shown in the graph, the rotation distance is different for
each stage. To handle this in the basis cell, the distance can
be required to be a constant parameter. The rotation operation
will then be implemented as a simple wire permutation by
synthesis tools, introducing no additional logic delay. As such
a cell can be used for only one stage in the quarter-round, four
physical copies of these cells with different rotation distances
will be required. An alternative is to make the rotation distance
changeable as a runtime input: In that case, the rotation oper-
ation will be synthesized into a 4-input multiplexer structure,



++

<<<
16
<<<
16

++

+

<<<
16

+

++

<<<
12
<<<
12

++

+

<<<
12

+

++

<<<
8

<<<
8

++

+

<<<
8

+

++

<<<
7

<<<
7

++

+

<<<
7

+

a b d bc

c‘ b‘ d‘a‘

(a) Quarter-round Operation in
Graph Form

++

<<<
n
<<<
n

++

+

<<<
n

+

a b d bc

c‘ d‘ b‘ d‘a‘

+

<<<
n

+

a b d bc

c‘ d‘ b‘ d‘a‘

++

<<<
n
<<<
n

++

+

<<<
n

+

+

<<<
n

+

(b) Two
Add-Rotate-XOR Basis

Cells

++

<<<
n
<<<
n

++

+

<<<
n

+

a b d bc

c‘ d‘ b‘ d‘a‘

+

<<<
n

+

a b d bc

c‘ d‘ b‘ d‘a‘

(c) Pipelined
Add-Rotate-XOR Cell

Fig. 2: Quarter-round Decomposed to ARX Basis Cells

requiring additional hardware resources and introducing logic
delay.

In Fig. 2c we propose one way to pipeline this ARX basis
cell. For clarity, we show the four pipeline registers inserted
after the addition operation, but in our implementation, we
move one register into the adder. This benefits FPGA imple-
mentations which use DSP blocks for the addition, as these
DSP blocks usually require internal pipelining registers for
enhanced performance. Depending on how the rotate operation
is implemented, additional pipelining between the XOR and
rotate operation may be beneficial. To keep the implementation
simple, we do not explicitly insert a pipelining stage there.
Instead, the depth of the post-addition pipeline is adjustable
and we rely on retiming optimization to distribute the registers.

A. Quarter-Round and Rounds

We use two different options to combine ARX cell forming
the ChaCha cipher, both shown in Fig. 3. Fig. 3a employs a
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Fig. 3: Different Building Blocks for the roundsN Operation

pipeline structure implicitly suggested by the graph in Fig. 2.
In this implementation, the quarter-round is implemented as
one pipeline consisting of four physical ARX cells. This
pipeline does the complete round processing for a quarter of
the matrix and each operation can be mapped to one physical
ARX cell. The rotation distance for each cell is constant,
reducing logic delay as previously explained. Another benefit
of this structure is the possibility of deep-pipelining: As the
ARX basis cell is pipelined, an in-series chain of these cells
should not pose further restrictions on the critical path and
overall performance.

In order to utilize such a deep-pipeline completely, all stages
have to be filled with independent data vectors, i.e. any vector
in the pipeline may not in any way depend on the final qround
result for any other vector in the pipeline. As can be seen from
Fig. 1, Fig. 2 and in Lst. 1, the four quarter-rounds in each
round are independent. Their inputs depend on the results of
the previous round, but not on any result of other quarter-
rounds in this same round. Problems however arise after the
vectors of one round have been pushed into the pipeline:
Assume the cipher is processing round zero. It first pushes
the columns c0, c1, c2 and c3, one each cycle. Now in cycle
five, it would have to push one of the diagonals d0, d1, d2 or
d3 of round 1. However, as can be seen in Fig. 1, each of these
diagonals depends on some inputs of the first round’s columns.
One possible solution is to start processing the diagonals only
when previous columns have been completely processed. This
however reduces the performance of the implementation. As
individual keystream blocks in ChaCha are independent, a
better solution is to simply prepare the initial matrix Mn+1

for the next keystream block. We then push the columns of
this matrix Mn+1 into the qround pipeline. This idea can
be generalized to any number of matrices, depending on the
pipeline depth. In general, processing then alternates between
the rounds of multiple matrices.

The alternative in Fig. 3b is closer to the usually employed
software approach. Here, at least one ARX cell is used with
a configurable rotation distance. This way, the four stages of
a quarter-round can be processed consecutively and the result
of every step will be written back to the processing matrix.
We use four ARX cells in parallel to enhance throughput,



similar to the way software ChaCha implementations use
SIMD optimizations. The main difference to the pipelined
implementation is that four parallel ARX ciphers will pro-
cess the whole matrix at once, instead of processing vectors
consecutively. As one cycle always yields a complete matrix,
there are no pipelining problems when starting to process the
next round. It is therefore not necessary to alternate processing
between multiple matrices. The main drawback is that this
requires a runtime-adjustable rotation distance, as the distance
will be different for each processing cycle.

B. Final Data En-/Decryption Operation

After the matrix has been processed through the roundsN
implementation, the final addition of Eq. 4 as well as the
encrypt (Eq. 1) or decrypt operation (Eq. 2) need to be
performed. As the final operation is an addition followed by
an XOR operation, it is possible to reuse the ARX cell for this
operation. In the round-processing we use implementations
such as in Fig. 3, which provide only four ARX cells. The final
addition and XOR are performed for every matrix element, so
processing using the round cells would take four clock cycles.
To improve throughput, we therefore prefer to implement the
finalize operation in dedicated hardware.

V. CHACHA HARDWARE ARCHITECTURES

Based on the round building blocks of Fig. 3, we will
now present three different implementations. The top level
interface is the same for all implementations: It provides an
input labeled datastream, an output labeled cipherstream and
a configuration port, each with valid and ready handshaking
signals. As the encrypt and decrypt operations are identical,
the datastream and cipherstream roles can also be swapped.
The configuration port is used to configure the contents of
the initial matrix, M , which is stored in 14 words of register
memory. The remaining two words of the matrix are counter
values, which are calculated on demand by the Counter
module: This module internally contains two counters with
independent enable signals. The count1 counter is used for the
initial matrix for the roundsN operation, the count2 output
is used to form the initial matrix for Eq. 4. This idea is based
on the observation that the initial matrix of each keystream
block only differs in the counter value. Instead of keeping
a backlog of all initial matrices (or count values) which are
currently being processed, we use one counter for matrices
which have started processing and one for matrices which
have finished processing. The Finalizer block contains the final
addition and XOR operation of Eq. 4. In cooperation with the
FSM block, it also handles valid and ready handshake signals
for the datastream input and cipherstream output to disable the
Round blocks if one of these ports is not ready.

A. A Pipeline-based Implementation

The Pipeline implementation is shown in Fig. 4. It consists
of common elements described previously, as well as of a set
of Round blocks. These blocks consist of four parallel quarter-
round cells of Fig. 3a, calculating one round completely in
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parallel. The individual Round blocks are then chained to form
a deep pipeline, taking care to permute signals connecting two
rounds according to Fig. 1. If the output datastream is not
ready or the input datastream is not valid, the FSM accordingly
stops the Round blocks to pause keystream generation.

B. Block Memory and Register Implementations

Fig. 5 shows the top level architecture common to the Block
Memory and the Register implementation. It mostly resembles
the Pipeline implementation with one important difference:
The Round blocks in the pipeline have been replaced by j Core
blocks. Core blocks calculate the complete roundsN operation
and their implementation differs for the Block Memory and the
Register implementation. In either case, processing a matrix
in a Core block takes a certain amount of cycles. The top
level therefore allows to use a configurable number of cores in
parallel, interleaving their outputs and enhancing throughput.
As the outputs are interleaved, the maximum number of cores
is reached when every cycle yields 16 words of data. Any
further parallelization then requires duplicating the top-level
architecture. The Counter and Finalizer blocks are shared
between all blocks, requiring some additional logic to properly
drive the enable signals and the Finalizer data input.

For the Block Memory Implementation, one pipelined
quarter-round as in Fig. 3a is used. The four output words are
then saved to four parallel Block Rams at a certain indices:
Each row of the matrix is kept in one Block Ram, which
then allows to read all four inputs for a column round or for



a diagonal round in parallel using proper addressing (refer to
Fig. 1). The benefit of this implementation is that all operations
in the quarter-round are placed into one physical pipeline
implementation with constant rotation values. To always keep
the pipeline utilized, multiple matrices at different offsets in
the Block Ram are processed in parallel. There’s one drawback
to this approach though: In the final round, the outputs can be
directly obtained at the quarter-round output port. However, as
the final round is a diagonal round, the matrix elements will
be emitted in the order (0, 5, 10, 15), (1, 6, 11, 12), etc.

For the register based implementation, no complex address
calculation needs to be done for memory access. Instead, after
the initial matrix has been loaded using a multiplexer, the
complete matrix is kept in register storage internal to the
parallel quarter-round implementation of Fig. 3b. The outputs
are then looped back to the inputs. The block operates on the
whole matrix, processing one fourth of a round per cycle. Once
a round is finished, the multiplexer is configured to permute
the inputs according to diagonal vs. column based indexing.
This implementation outputs the result as 16 words in one
cycle and does therefore not face the output order problem
shown of the Bock Memory implementation.

VI. AREA AND PERFORMANCE COMPARISON OF THE
THREE ARCHITECTURES

We use Xilinx Vivado 2018.3 and the standard synthesis
strategy with retiming enabled, targeting the VC707 board and
Virtex 7 XC7VX485T-2FFG1761C FPGA for implementation.
Fig. 6 shows the maximum reachable clock frequency and
required number of slices when increasing the Core count
(see Fig. 5), whereas Tab. I gives a more detailed resource
overview for configurations with Core count 1. As can be
seen from these figures, maximum reachable clock frequency
reduces with Core count, as increasing the number of cores
stresses placement and routing phases. Throughput depends on
the number of cores and the clock frequency, so Fig. 7 com-
pares different implementations’ throughput vs. the required
resources. The Pipeline implementation is shown as points,
as it does not provide a Core count parameter to balance
resources vs throughput. In all these figures, d = denotes
whether DSP blocks have been used for the ARX cell (1)
or not (0) and r = gives the number of introduced pipeline
registers. Tab. I shows that all our implementations surpass all
state of the art ChaCha implementations but the low-resource
optimized implementation by At et al. in regard to bitrate per
slice. The Block Memory and Pipeline implementation also
surpass AES state of the art, the Pipeline implementation even
by a factor of 8.

These results are for ChaCha8. To calculate numbers for
ChaCha12/20, divide throughput by 1.5 and 2.5 for the Regis-
ter and Memory implementations. For the Pipeline implemen-
tation, resource requirements are increased by these factors
and the maximum clock frequency and therefore throughput
may also be affected.
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Fig. 6: Results for the Memory and Register Implementation

VII. CONCLUSION

In this work we presented design considerations to effi-
ciently map the ChaCha cipher to hardware. We demonstrated
three different, scalable designs and analyzed their perfor-
mance and resource requirements, concluding that a fully
pipelined architecture is beneficial when high throughput is
required.

We have shown that the commonly employed approach
of combining multiple processing core blocks to increase
throughput is not optimal, as a pipeline based implementation
provides better results for high-throughput applications. To
obtain even-higher throughput, the Pipeline implementation
can be instantiated multiple times without a decrease in the
maximum clock rate: N such pipelines can operate completely
without synchronization, each one i processing every i+ xN
matrix. This therefore even enables placing the Pipeline in-
stances into different FPGAs. As our Pipeline implementation
provides a significantly higher bitrate per slice ratio than state
of the art, this work enables usage of encryption in high-
throughput applications which previously could not afford the
resource overhead.
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