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Abstract—In this paper, we present EBBIOT-a novel
paradigm for object tracking using stationary neuromor-
phic vision sensors in low-power sensor nodes for the
Internet of Video Things (IoVT). Different from fully
event based tracking or fully frame based approaches, we
propose a mixed approach where we create event-based
binary images (EBBI) that can use memory efficient noise
filtering algorithms. We exploit the motion triggering aspect
of neuromorphic sensors to generate region proposals based
on event density counts with > 1000X less memory and
computes compared to frame based approaches. We also
propose a simple overlap based tracker (OT) with pre-
diction based handling of occlusion. Our overall approach
requires 7.X less memory and 3.X less computations than
conventional noise filtering and event based mean shift
(EBMS) tracking. Finally, we show that our approach
results in significantly higher precision and recall compared
to EBMS approach as well as Kalman Filter tracker
when evaluated over 1.1 hours of traffic recordings at two
different locations.

Index Terms—Event based image sensor, Tracking, Re-
gion proposal network, neuromorphic vision

I. INTRODUCTION

Internet of Things (IoT) is a rapidly growing phe-
nomenon where millions of connected sensors are dis-
tributed to improve a variety of applications ranging
from precision agriculture to smart factories. Among the
sensors, cameras offer unique opportunities due to the
wealth of information they provide [1] at the cost of
hugely increased bandwidth and energy to wirelessly
transmit the huge volume of video data. The unique
challenges and opportunities offered by camera sensors
has led to a sub-field of IoT called the internet of
video things (IoVT). Edge computing becomes important
in this case to process data locally to reduce wireless

transmission [2]. Neuromorphic sensors and processors
offer an unique low power solution for this case.

In the past, neuromorphic vision sensors (NVS) have
been employed for a variety of applications and tasks
including microsphere tracking, multiple person track-
ing, vehicle-speed estimation, controlling robotic-arm,
gesture recognition, etc [3][4][5]. While the role of these
sensors in IoVT have been envisioned [2], there has
not been any concrete work showing details of resource
(energy, area) required by NVS based solutions for IoVT.

Object tracking forms the essential first step in most
computer vision applications. Research work on tracking
using N'VS has mostly been focused on taking advantage
of the high temporal resolution to faithfully track high
speed objects which is a problem for frame based
cameras [3][4]. Mean shift [4], combination of CNN and
particle filtering [6] and Kalman Filters [7] have been
employed in the past for tracking NVS outputs. While
such applications demonstrate the ability of NVS based
systems to handle complex tasks, they do not show their
applicability to resource constrained systems which is a
hallmark of IoT.

In this paper, we propose EBBIOT-a low-complexity
tracking algorithm for surveillance applications in IoVT
using a NVS. The focus of our approach is to make
the whole system less memory intensive (thus reducing
chip area) and less computationally complex leading to
savings in energy. Different from purely event based
or purely frame based approaches, we accumulate the
events from a NVS into a binary image and perform
tracking on these frames. We further propose an event
density based region proposal network (RPN) that has far
less computations compared to traditional RPN. Lastly,
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Fig. 1: Flowchart depicting all the important blocks in
the system: binary frame generation, region proposal and
overlap based tracking.

we demonstrate a simple overlap based tracker (OT)
that requires far less resources than the conventional
event based mean shift (EBMS) [4] while producing
superior performance compared to it. This is of immense
importance when using NVS for IoVT applications like
remote surveillance where long battery life of the sensor
node is critical. We describe the details of our approach
in the following sections.

II. MATERIALS AND METHODS

NVS differ from a traditional frame based sensor in
that they output an event [e; = (z;, yi, t;, p;)] Whenever
there is a positive or negative change in the intensity
of light falling on that pixel. Here, e; represents the
event, (x;,y;) represent the events location on the sensor
array, t; represents the time stamp of the event generally
at a microsecond resolution and p; = 1 (ON Event)
whenever the change in intensity is increases beyond a
threshold and p; = -1 (OFF Event) whenever the change
in intensity decreases below a threshold [8]. We define
a list of symbols that we will use throughout the paper:

A x B Image resolution
By Number of bits to store time stamp ¢;
Nt Number of trackers
tr Frame duration
P Neighbourhood size for noise filtering

The sensor used in this work is DAVIS [8] with
A = 240 and B = 180. Also, we use ¢ty = 66 ms which
is sufficient for tracking vehicles—a longer exposure is
needed for humans. A flowchart depicting the entire
algorithm pipeline is shown in Figure 1 and is described
in details in the following subsections.
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Fig. 2: Timing diagram showing interrupt driven opera-
tion of the NVS for duty cycled low power operation.

A. Event based Binary Image and Noise Filtering

While most work on NVS has focussed on its event
driven nature where number of computations are pro-
portional to event rate, noise prevalent in such sensors
invariably lead to spurious spikes even in the absence
of any objects in the scene [9]. This is a problem for
IoT nodes which rely on saving energy by heavy duty
cycling—using the NVS events as interrupts would rarely
allow the processor to sleep.

Instead, we propose to use an interrupt based sensing
scheme where the EBBIOT processor generates an in-
terrupt at regular time intervals ¢ to collect the events
accumulated since the last interrupt (Figure 2). Such a
scheme makes it possible to interface NVS with others
FPGA and microprocessors commonly used in IoT. This
scheme is feasible for two reasons:

e Frame rates (= 15 Hz) are good enough for traf-
fic surveillance as shown later in the paper. This
scheme loses appeal as ¢t becomes smaller.

o We exploit the fact that the pixels firing an event are
not reset till the event is readout in an NVS. Thus
it can effectively store a binary image of events
occurring while the processor is sleeping. In other
words, we reuse the sensor as a memory.

Since we readout a binary image with only one possible
event per pixel (ignoring polarity), we call the image an
event based binary image (EBBI). Note that the NVS
is always awake in this scenario and it is the processor
which goes to sleep and wakes up regularly. However,
this binary image is useful only if sufficient information
can be extracted from it-we show corresponding results
in later sections. For a binary frame, noise removal may
be easily done by a median filter [10] (with patch size
p X p) since spurious events result in salt and pepper
noise. In this work, we used p = 3. The total number
of computes per pixel of the filtered image is then equal
to incrementing a counter every time a 1 is encountered
in the p? pixels of that patch followed by a comparison



with Lpz /2J This has to be added with the memory
writes for creating the EBBI (ignoring memory reads
due to lower energy requirement). The total memory
requirement is twice the frame size—one frame to store
the original image and one for the filtered version. We
chose to keep the original frame since it might carry
more information necessary for classification at a later
stage. Thus we can summarize the computation Cppp;
and memory Mpgpps required by the proposed method
as:

Crppr ~ (ap® +2) x Ax B(.p << A, B)

MEBBIZ2XAXB (1)
where o denotes the fraction of active pixels in a patch
on average.

It may be argued that the NVS may be operated
in a traditional mode while a noise filter block can
generate an interrupt for the processor after filtering
noise events. We show next that our approach is more
memory efficient than this one. A commonly used filter
for event-based output stream is a Nearest Neighbour
filter (NN-filt) [9] that stores timestamps (using B; bits
per timestamp) for every incoming event and marks
this event as a noisy event if it does not get temporal
support in a p X p spatial neighbourhood. The number
of computes per event is then equal to p?>—1 comparisons
and counter increments followed by one B, bit memory
write to update the timestamp. The memory requirement
for the two approaches may now be compared as:

Cnn—gir = (2(p> = 1)+ By) x 7

MnN_jius = By x Ax B 2
where 7 is the average number of events per frame
Note that @ = f X a x A x B (8 > 1) where 3
represents average number of times an active pixel fires
in tp. Since the objects generally take up less than
10% of the image, we have a conservative estimate of
CEBBI = 125.2 kops/frame while CNfoilt ~ 276.4
kops/frame. For the memory requirement, with typical
values of B; = 16, our proposed method provides
8X memory savings. For the DAVIS sensor used, the
reduced memory requirement of our proposed EBBI is
only 10.8 kB.

B. Region Proposal

A region proposal network (RPN) is the first block
in a tracking pipeline [11]. In our application of traf-
fic monitoring using a stationary camera, NVS offers
the advantage of almost perfect foreground background
separation inherently since the pixels only respond to
changes in contrast [8]. Thus background pixels will
generate little or no events while moving objects will
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Fig. 3: A sample EBBI with corresponding X and Y
histogram based region proposals.
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generate a significantly larger number of events. This
allows us to locate valid regions without having to
perform costly CNN operations [12].

A traditional approach to detect regions in our case
would have been to perform connected components
analysis (CCA) on binary images using morphological
operators [10]. While this is still less costly than CNN
operations, we propose a further simplified approach
in our case by exploiting the fact that our application
only requires a side view of the ongoing traffic. Instead
of doing CCA on a 2-D image, we create X and Y
histograms (H x and Hy ) for the image and find regions
in these two 1-D signals by finding consecutive entries
that are higher than a threshold (Figure 3). The RPN
and the following tracker both operate on these 1-D data
structures reducing the computational burden. The actual
2D region is obtained by finding intersections of the X
and Y regions (Figure 3). Histogram based location of
objects for NVS has been earlier proposed [13], but the
authors only had one moving object without any realistic
occlusion and did not implement a full tracker on these
region proposals.

To further reduce the computation and memory re-
quirement, we create the histograms from a scaled im-
age, [°1%2 downsampled from the original one (/) by
factors s; and sy in X and Y directions respectively.

Mathematically we can write the scaled image as:
82—1 S1 —1

151,52(1-7]‘) — Z Z I(zsl +m,7S2 +n)

n=0 m=0

i< [A/s1],j <[B/s2] (3
where I(i,j)e{0,1}. Based on this, the histograms are
defined as:

H3 (i) =Y T2 (i, )
J

Hy(5) =Y T2, ) (4)

i



X and Y regions are then found from HY and Hy?
by finding contiguous elements that are higher than a
threshold (set to 1 in this case). This is acceptable since
we need a coarse location for the objects which will be
smoothed by the tracker. In fact, this helps in overcoming
fragmentation of the object into smaller parts. As an
example, the car in Fig. 3 displays two peaks in Hx
and would normally generate two separate regions. But
in the low resolution histogram H;g, these mini regions
get merged to create one region albeit with a slightly
larger size than desired. One issue with this approach
is that if there are multiple regions in both X and Y
directions, false regions may be proposed by considering
all overlaps between the two. In such cases, a check
needs to be done in the original image to see if there
are any valid pixels in that region. A better solution in
that case is to perform the 2-D CCA, a task which we
leave for future generalization of this approach. The total
number of computes and memory requirement may now
be summarized as follows:

Crpn =AXB+2 a

22 ltoga(s152)] 1+

(2 {lt0ga(B x s1)1} + T {Tloga (A x s2)1)
)

Here the first term for Crpy (Mgpn) denotes the
computes (memory) needed for I°1*2 while the second
term denotes the same for H5' and Hy?. For our specific
case, s; = 6 and sy = 3 were found to work well and in
that case, Crpn = 45.6 kop/frame while Mrpy ~ 1.6
kB. Both of the equations are dominated by the first
term. In comparison to this, even the simplest CNN-
based object detector like YOLO [11] would need GPUs
for real-time performance (30 fps) with RAM usage in
the order of Gigabytes (> 1GB).

C. Overlap Based Tracker

5152

MpgrpN =

In this paper we implement a multi-tracker system that
can have up to Ny = 8 trackers simultaneously active on
the frame. Two main assumptions have driven the design
of this simplified tracker:

e tr is small enough such that there is significant
overlap between objects from one frame to next.

o Distractors such as trees which create spurious
events can be removed by a manually provided
definition of region of exclusion (ROE). Static oc-
clusion from posts etc can also be included in ROE.

A major issue faced by trackers for EBBI is object
fragmentation as shown in Fig. 3 and discussed in

Section II-B. This happens because big vehicles like a
bus have a lot of plane surface on their sides that do not
generate much events.

A block diagrammatic representation of the major
steps in the algorithm are shown in Fig. 1. The basic
philosophy is to make predictions about the current
position of a tracker from earlier frame and then correct-
ing it based on current region proposals [14]. Denoting
the position vectors (bottom left corner co-ordinates
(x,y), width (w) and height (h) of tracker box) for
region proposals and trackers by P; and 7; respectively
(1 < ¢ < 8), we summarize the major steps below for
every frame:

1) Get predicted position T7"**(z,y) of all valid
trackers by adding 7T;(x,y) with corresponding X
and Y velocities.

2) Match TF™** for each valid tracker i with all
available region proposals P;. A match is found
if overlapping area between the two is larger than
a certain fraction of area of T7"** or P;~hence the
name overlap based tracker (OT).

3) If a P; has no match and there are available free
trackers, seed a new tracker k with T}, = P;.

4) If a TP"** matches single or multiple P;, assign
all P; to it and update T; and velocities as a
weighted average between prediction and region
proposal. Here, past history of tracker is used to
remove fragmentation in current region proposal if
multiple P; had matched.

5) If a P; matched multiple Tipmd, we can have
two cases—dynamic occlusion between two moving
objects or the earlier region proposals for this
object were fragmented leading to multiple track-
ers being assigned to it. Occlusion is detected if
the predicted trajectory of those trackers for upto
n = 2 future time steps result in overlap. In
that case, T} is updated entirely based on TP
and previous velocities are retained. Otherwise, the
multiple 77"** are merged into one tracker based
on P; and corresponding velocity updated. The
other trackers are freed up for future use.

The memory requirement for this tracker is negligible
(< 0.5 kB) compared to the other modules and can be
implemented in registers. The computation depends on
which of the above cases is true. An average number of
computes per frame can be obtained as follows:

Cor = 134N7" +43N3 + N + %5 N;  (6)
where N7 denotes the average number of valid trackers,
v; and N; denote probability and number of computes
for step j in the tracker description above. The first term



dominates the others due to low values of ;. For the
recordings used, Ny =~ 2 resulting in Cor ~ 564.

A Kalman Filter (KF) tracking algorithm based on
[14] was used as comparison. The implementation fol-
lows a constant velocity motion model, hence contains
a state vector of length 2 (Xcentroid, Yeentroid) for
each track. Using [15] to approximate its computational
complexity, Eq. 7 shows the approximate computes for
a Kalman filter with N; = 2 tracks.

Crr =4m> + 6m?*n + 4mn® + 4n® + 30> (7)

Where n and m are the state and measurement vector
size, respectively. Therefore, for this implementation
with n = 2 x Ny and m = 2 x Ny, Cgp = 1200.
Memory requirement of the KF is ~ 1.1 kB which is
also much smaller compared to the earlier blocks in the
processing pipeline.

As an example of an event based tracker to be used
in a fully event based pipeline after NN-filt, we chose
[4]. For the event based mean shift (EBMS), average
number of computes per frame (Crpars) and memory
requirement in bits (Mgpars) can be given as:

Cppms =Np[9 CL + (169 + 16 Ymerge) CL + 11]
MEBMS :408CL77L(13; + 56 (8)

Where Ny is the average number of events per frame
at the output of NN-filter, C'L is the average number
of active clusters at any given time (= Np), Vmerge
is the probability of two clusters merging and C' L4,
is the maximum number of potential clusters.For these
calculations we have assumed that past 10 positions of
a cluster is used to calculate the current velocity of the
cluster using least square regression. For our experiments
we have used C'L,,q. = 8 and for our dataset, CL =~ 2,
Ymerge = 0.1 and Np =~ 650. So, EBMS requires 252
kops per frame which is ~ 500X higher than EBBIOT.
The total memory required for EBMS is 3.32 kB which
is again negligible compared to the earlier processing
blocks for noise filtering.

III. RESULTS
A. Datasets

Address Event Representation (AER) based event data
is acquired from a DAVIS setup at a traffic junction. This
scenario captures moving entities in the scene and the
typical objects in the scene include humans, bikes, cars,
vans, trucks and buses. Two sample recordings of vary-
ing duration are obtained at different lens settings and
the comprehensive details of those two recordings used
in the paper are presented in table 1. The sizes of various
moving objects vary by an order of magnitude in any
given scene and their velocities also range over a wide

range (sub-pixel to 5-6 pixels/frame). These recordings
were manually annotated to generate the Ground Truth
tracker annotations of these objects in the scene.

TABLE I: Dataset Details

Location | Lens Duration | Num Events
(mm) (s)

ENG 12 2998.4 107.5M

LT4 6 999.5 12.5M

B. Tracker Evaluation Metrics

To assess the performance of the tracker, we examine
how closely the tracks generated by the proposed tracker
match with the ground truth tracks. The first step in
this evaluation process involves obtaining the boxes
encapsulating the objects in the scene from both Ground
Truth and the proposed tracker annotations at multiple
instances of time (with a fixed time interval) in the entire
duration of the recording. For each instance, if the area
of a ground truth box enclosing an object in the scene
is AGgroundTruth, the area of a tracker box enclosing an
object is AproposedTracker, the area of intersection of
these two boxes is denoted as Af,tersection and the area
of the union of these two boxes is denoted as Ayryion. We
adopted Intersection over Union (IoU) typically used in
computer vision community (as defined in 9) to measure
the effectiveness of our tracker algorithm.

ToU — Alntersection (9)

The proposed tracker box i(sjgzsosnumed to be a correct
region proposal only if the IoU of that box is greater
than a threshold.

A certain parametric threshold is defined based on
IoU (e.g. IoU 0.5) to determine if a proposed box
is a correct region proposal. Proposal boxes with IoU
values larger than that threshold value is considered
correct region detection (true positive box). Then, the
performance of the tracker is evaluated on precision
(true positive boxes/total proposal boxes) and recall(true
positive boxes/total ground truth boxes) calculated over
all the frames of the video.

C. Performance and Resource Requirements

Finally, for a fair comparison of the EBBIOT algo-
rithm with EBMS and Kalman Filter (KF) we compare
the weighted average of precision and recall across
multiple recordings where the weights correspond to
the number of ground truth tracks present in a given
recording. The results are shown in fig. 4.

We also calculated total computes per frame and
total memory required for KF and EBMS relative to
EBBIOT (fig. 5). For EBBIOT and KF total memory
and computes are calculated considering memory and
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Fig. 4: Comparison of EBMS, KF and EBBIOT in
terms of precision and recall for different IoU thresholds.
EBBIOT outperforms others and shows more stable
precision and recall values for varying thresholds.

computes required for generating EBBI, RPN and tracker
while for EBMS we consider memory and computes of
NN-filt and EBMS tracker.
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Fig. 5: Comparison of EBMS and EBBI+KF with
EBBIOT in terms of total computations per frame and
memory requirement showing significantly less resource
requirement for EBBIOT.

IV. CONCLUSION

In this paper, we presented EBBIOT - a novel
paradigm for object tracking using stationary neuromor-
phic vision sensors in low-power sensor nodes for IoVT
applications and demonstrated reliable tracking perfor-
mance compared to both event-based tracking method-
ologies and traditional frame-based tracking frameworks.
In particular, the mixed approach of creating event-
based binary images resulted in ~ 7X reduced memory
requirement and 3X less computes over conventional
event-based approaches. On the other hand, region pro-
posals based on event density resulted in > 1000X
less memory and computes compared to frame based
approaches. Future work will change the RPN to a a
general connected component approach [10] instead of
relying on side views. Further, we have not tracked slow

and small objects like humans—this can be done by a two
time scale approach where a second frame is generated
with longer exposure times to capture activity of humans.
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