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Abstract—Deep learning-based point cloud processing plays
an important role in various vision tasks, such as autonomous
driving, virtual reality (VR), and augmented reality (AR). The
submanifold sparse convolutional network (SSCN) has been
widely used for the point cloud due to its unique advantages
in terms of visual results. However, existing convolutional neu-
ral network accelerators suffer from non-trivial performance
degradation when employed to accelerate SSCN because of the
extreme and unstructured sparsity, and the complex computa-
tional dependency between the sparsity of the central activation
and the neighborhood ones. In this paper, we propose a high
performance FPGA-based accelerator for SSCN. Firstly, we
develop a zero removing strategy to remove the coarse-grained
redundant regions, thus significantly improving computational
efficiency. Secondly, we propose a concise encoding scheme to
obtain the matching information for efficient point-wise multi-
plications. Thirdly, we develop a sparse data matching unit and
a computing core based on the proposed encoding scheme, which
can convert the irregular sparse operations into regular multiply-
accumulate operations. Finally, an efficient hardware architecture
for the submanifold sparse convolutional layer is developed and
implemented on the Xilinx ZCU102 field-programmable gate
array board, where the 3D submanifold sparse U-Net is taken
as the benchmark. The experimental results demonstrate that
our design drastically improves computational efficiency, and can
dramatically improve the power efficiency by 51 times compared
to GPU.

Index Terms—Point cloud, submanifold sparse convolution,
hardware architecture

I. INTRODUCTION

Three dimensions (3D) point cloud is the inherently sparse
data acquired from 3D sensors and can provide rich geo-
metric, shape, and scale information [1]. Compared with two
dimensions (2D) RGB images, 3D point cloud preserves a
better understanding of the original geometric information
in 3D space for deep learning-based vision tasks. While
the biggest challenge of computing on the 3D point cloud
comes from its extremely sparse nature. What’s more, the
sparsity of point cloud is fundamentally different from that in
traditional convolutional neural networks (CNNs). For CNNs,
the sparsity is usually caused by the activation functions. But
for point cloud, its sparsity reflects the 3D composition of
the real world. How to reduce the redundant computation
caused by high sparsity becomes the key to the processing of
point cloud. Prior works have proposed deep learning-based
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Fig. 1. An example of the point cloud application [2].

methods. For instance, [3]–[5] projected the 3D point cloud
into 2D to compress the data dimensions and reduce compu-
tational complexity, then applied 2D CNNs on the 2D point
cloud. [6]–[8] directly leveraged the Multi-Layer Perceptrons
(MLPs) operation for the original points to extract semantic
features from the sparse point cloud, without voxelizing point
cloud into 3D grids. [9]–[12] converted the point cloud into
sparse discrete representation, then applied modified 3D CNNs
for different tasks. Furthermore, authors in [12] proposed
submanifold sparse convolution (Sub-Conv) to reduce memory
and computational costs of computing on the point cloud
by restricting the computation of convolution to be related
to nonzero activations. The submanifold sparse convolutional
network (SSCN) [12] achieves remarkable results compared to
other deep learning-based methods [13]. Consequently, SSCN
plays an important role in point cloud-based deep learning
applications, motivating its deployment on resource constraint
edge devices and corresponding dedicated accelerators.

Nowadays, to accelerate CNNs, some specifically designed
hardware accelerators [14]–[16] are proposed. Eyeriss [14]
presented a general dataflow to minimize data movement.
GoSPA [16] proposed an intersection method to optimize
the dataflow when the activations and weights had sparsity.
However, when these accelerators for CNNs are directly used
for SSCN, they suffer from severe performance degradation
because they can not perform the matching operation of
explicitly determining each nonzero activation and searching
its nonzero neighbors, which is the core operation of the Sub-
Conv layer. Therefore, a dedicated accelerator for SSCN is
highly desired to promote its deployment.

Currently, several works presented solutions for point cloud-
based networks. [17] and [18] introduced ASIC-based acceler-
ators for PonitNet++ and proposed optimization schemes to the
neighbor point search. [19] designed a low-power FPGA-based
accelerator, which optimized the nonlinear implementations in
PointNet. The above works are based on the PointNet and
PointNet++ networks, and thus cannot be directly applied
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to the acceleration of SSCN. PointAcc [20] proposed an
ASIC-based accelerator that unified diverse mapping opera-
tions into a multiply-accumulate operation through coordinate
transformation to be compatible with different point cloud
networks. Other hardware solutions such as GPUs can be
deployed to accelerate the point cloud networks. However,
GPUs are not suitable for resource constraint edge devices
because of their high power consumption, and the matching
operation also limits their performance. Concentrating on the
SSCN, we propose an FPGA-based efficient SSCN accelerator,
ESCA, to support the matching operation and corresponding
computations. This work makes the following contributions:

• A tile-based zero removing strategy is proposed to im-
prove computational efficiency. The strategy reduces the
processing time of the sparse information significantly,
which also alleviates the computational load imbalance.

• An encoding scheme is introduced to efficiently support
the matching operation. Based on the above scheme, a
matching method is proposed to execute the matching
operation for each nonzero activation, which solves the
problems of explicit representation in the matching oper-
ation.

• A dedicated SSCN accelerator is proposed to support the
matching operation and corresponding computations. The
proposed design is implemented in the Xilinx ZCU102
platform and achieves significant improvement in terms
of GOPS and power efficiency compared with GPU.

II. BACKGROUND

The computation rules of Sub-Conv are fundamentally dif-
ferent from that of traditional convolution. Fig. 2(a) shows the
results of traditional convolution for sparse features, and Fig.
2(b) shows the matching process of Sub-Conv. In traditional
convolution, the input feature map is traversed by a kernel, and
multiply-accumulate operations are performed in order. Even
if the feature map has sparsity, as long as the convolution
parameters, such as stride, kernel size, etc., are determined,
the computation rules and correspondences in the convolution
are explicitly determined. As a result, the sparse data in the
output feature map dilates [12], so it is not suitable for point
cloud-based computation.

For Sub-Conv [12], the fields of the feature map involved in
the convolution operations are strictly limited to the neighbors
of the nonzero activations, and the output feature map main-
tains the same sparsity as the input feature map. As shown in
Fig. 2(b), five nonzero activations mean that this feature map
only needs to perform five convolution operations with the
corresponding kernel, and the positions are strictly limited to
the fields where the central activation is nonzero. Because the
Sub-Conv layer can keep the same pattern of sparsity between
the input feature map and the output feature map, it shows
satisfying visual results when is applied to the point cloud
with high sparsity.

However, because the restricted computation pattern of the
Sub-Conv layer leads to irregular sparse matching operations,
traditional convolution accelerators suffer from performance
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Fig. 2. Illustration of traditional convolution and Sub-Conv. (a) Traditional
convolution: the feature map is traversed by the kernel, and the sparsity in
the output feature map dilates. (b) Sub-Conv: The kernel only calculates with
the fields where the center activation is non-zero.

degradation when they are directly applied to it [20]. There-
fore, efficient accelerators for SSCN are urgently needed, and
the bottleneck lies in the extreme and unstructured sparsity,
and the complex computational dependency between the spar-
sity of the central activation and the neighborhood ones.

III. EFFICIENT DESIGN FOR SUBMANIFOLD SPARSE
CONVOLUTIONAL NETWORK

A. Tile-based Zero Removing Strategy

Voxelized point cloud has huge sparsity. Directly processing
on the original feature map results in large memory overhead
and computation cost, and dramatically reduce computational
efficiency. Take the ShapeNet dataset [21] as an example, it
has nearly 99.9% sparsity, resulting in many regions without
nonzero activations. Since the computation depends on the
sparsity of the central activation, removing the all-zero regions
has no effect on the result. To tackle this problem, we propose
an effective tile-based zero removing strategy to remove the
coarse-grained redundant sparse regions. As illustrated in Fig.
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Fig. 3. The process of zero removing strategy. (a) The original input feature
map is first divided into tiles of fixed size. (b) The fully sparse tiles of the
input are removed, keeping only tiles containing nonzero activations. (c) Due
to the nature of Sub-Conv, the removal of fully sparse tiles does not affect
the output.
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3(a), the original 3D feature map is divided into tiles of size
N ×M × L, where N , M and L are configurable parameters,
and the sparsity in each tile is detected. If all the activations
are zero in the tile, the tile is fully sparse and will be removed
from the original feature map as shown in Fig. 3(b). Because
the fully sparse tile is irrelevant to the computation of the
Sub-Conv, the output feature map, as depicted in Fig. 3(c),
still maintains the same sparsity. Then the processed feature
map is only composed of active tiles, which contain at least
one nonzero activation, and will be sequentially matched and
computed. With this zero removing strategy, the time overhead
when processing sparse information is significantly reduced,
and the problem of computational imbalance is also alleviated.

B. Matching Operation and Encoding Scheme

Matching operation is the procedure to locate each nonzero
activation and search its nonzero neighbors, which is crucial
for the computation of SSCN, and the position information
recording the geometric distribution of nonzero activations is
required to support the matching operation. Thus, an encoding
scheme is proposed, which encodes the feature map into two
types of data: index mask and valid data.

Index Mask. The index mask is used to explicitly rep-
resent the sparsity distributions of the feature map and is
dynamically traversed during computation. The relationship
between features, masks, and nonzero activations is shown
in Fig. 4. Mask is a one-bit signal with only two states of
0 and 1, which represents that the activation is zero or not,
respectively, and it is stored in the mask buffer. It also has
a strong correlation with the sparse distribution of the point
cloud, so the computation relationship between input feature
maps and matching operation can be established explicitly.

Valid Data. Valid data are the nonzero activations and the
corresponding weights, as shown in Fig. 4. As valid data, the
activations and weights are stored in the corresponding buffers,
and can be read from the buffers under the guidance of the
index mask. Thus, the matching operation can be performed
through the process of interaction between the index mask and
the valid data.
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Fig. 4. Composition of the index mask and the vaild data.

C. Sparse Data Matching Unit

The matching operation and the composition of match group
are elaborated in Fig. 5. A match group contains the nonzero
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Fig. 5. Illustration of the matching operation and match group.
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Fig. 6. Description of the SDMU. The Acc in the state index generator
corresponds to the accumulation operation.

activations and corresponding weights for each convolution
calculation based on the central nonzero activation. Also a
set of elements in a match group is called a match. Thus,
after determining all the match groups for each nonzero
activation, the matching operation is completed for one feature
map. Meanwhile, the computation of the Sub-Conv layer is
decomposed into point-wise multiply-accumulate operations
for each match group.

To support the matching operation and search all match
groups efficiently for the Sub-Conv layer, we propose the
sparse data matching unit (SDMU), which is shown in Fig.
6. The mask judger and the decoder perform the matching
operation and generate the match groups from the buffers. For
the convolution with the kernel size of K ×K ×K, the index
masks of each column are read sequentially. So the parallelism
of the decoder in SDMU is K2, which corresponds to the
number of columns. Then the FIFO group stores the match
groups in column order. Finally, the multiplexer (MUX) selects
matches from the FIFO group and sends them to the computing
core for point-wise multiply-accumulation.

To coordinate the computation rules, activations and the
ones that are in their neighbor field need to be explicitly
acquired at the same time. Therefore, Kcomputearray3
masks are required for determination. This area is called the
sparse receptive field (SRF). For each nonzero activation, the
matching operation and the acquisition of the match group are
limited to the SRF.

The process of matching operation is described in Fig. 7(a).
In this case, it is presented in 2D and can be smoothly extended
to 3D. The kernel size is 32, so the parallelism is 3. The
following steps of the matching method, read masks, judge
state, generate state index, and fetch activations are presented
to conduct the matching operation.
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Fig. 7. Examples of the matching steps in the SDMU. (a) The process
of obtaining match groups through masks. (b) Pipeline representation when
executing the matching operation.

Read masks: The index mask is read from the mask buffer
for each SRF and sent to the mask judger.

Judge state: The mask is judged whether to perform the
convolution for the SRF by the mask judger. If the center mask
corresponds to a nonzero activation, then this SRF is active,
and the match group is fetched from buffers according to the
generate state index step and fetch activations step. Otherwise,
it is non-active and the fetch activations step will be skipped.

Generate state index: In this step, the relative position of
nonzero activations is generated for each SRF and is called the
state index. It can be regarded as an array (A, B). The index A
records the nonzero activations accumulated in each column
and it is cumulated for each SRF. The index B represents the
number of activations in each column for each SRF if the state
is active, otherwise, index B equals 0. Thus, the index A marks
the highest address of the activation in the activation buffer for
each match group. And the index B corresponds to the address
length of the activation involved in the computation in each
column.

Fetch activations: The address fragment for nonzero acti-
vations of each column can be represented by (A, A-B). It is
generated in the address generator and contains addresses for
all activations in each match group. Then the corresponding
activations are read from the activation buffer. If the mask of
the central site is zero, which indicates the matching operation
will not be implemented, the fetch activations step for this SRF
will be skipped accordingly.

These matching steps are executed in a pipeline, as shown
in Fig. 7(b). Since weights and activations have a positional
correspondence in each match group, the weights that need
to participate in the computation can also be obtained by
state index synchronously, and the corresponding activations
and weights are concatenated when read from buffers. In

summary, the state index obtained by traversing the index mask
can establish a matching relationship with valid data, through
which the match group can be collected.

In the matching steps, parallel processing is performed
according to the column dimension in every SFR to maintain
the synchronization of explicit representations of each match
group. Therefore, after obtaining the match group from K2

columns, which is decided by the kernel size, a FIFO group is
applied to store them. The FIFO group consists of K2 identical
FIFOs, and each FIFO stores the matches belonging to one
column. In each cycle, the controller in the decoder selects a
match from a FIFO based on the calculation order, and MUX
sends it to the computing core.

D. Computing Core
Since the sparse data are already transformed into match

groups in the SDMU, the computing core (CC) is designed to
implement dense point-wise multiply-accumulate operations.
The CC contains a computing array and an accumulator.
In each cycle, the input to the computing array is a match
belonging to a match group. In order to improve throughput,
the computing array is divided into m + 1 computing units
(CUs), each of which performs the computation of n+1 input
channels (ICs), and the output of each CU is the partial sum of
the corresponding output channel (OC), so the total parallelism
of the computing array is (m+ 1)(n+ 1).

Fig. 8(b) illustrates the inputs and outputs of the computing
array. The activations of the n + 1 ICs are broadcast to all
CUs. A[n] represents activations belonging to IC n. W[n][m]

represents weights belonging to IC n, OC m. For example,
the result of CU m is equal to the partial sum of the n ICs
on the mth OC.

The detailed structure of the computing unit is shown in
Fig. 8(c). The partial sum of nonzero activations for different
OCs can be obtained through the computing array, then the
partial sum is sent to the accumulator and the output of each
SRF is obtained.

The loops of computation
for (active tile i; i=i+1):

for (SRF j; j=j+1):
for (match k in match group K):
   for (N=0; N<Ni; N=N+n): loop unrolling  

Ni: IC of input feature map 
Mi: OC of output feature map

   for (M=0; M<Mi; M=M+m): loop unrolling
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Fig. 8. Illustration of loop unrolling and the composition of computing array.
(a) The process of loop unrolling. (b) The description of the computing array.
(c) The structure of the computing unit in the computing array.

The details of the loops are shown in Fig. 8(a). Each active
tile is traversed in turn. The obtained data are fed to the CC in
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the order of matched nonzero activations and weights, and the
IC and OC dimensions are completed sequentially according
to the parallelism of the proposed computing array. Finally, the
partial sum of each match group is accumulated to obtain the
outputs corresponding to nonzero activations. The SDMU and
CC are executed in pipeline to increase resource utilization
and the system throughput.

E. Overall Hardware Architecture

The overall hardware architecture is shown in Fig. 9,
mainly containing a main controller, an SDMU, a CC, and
corresponding buffers on the on-chip logic.

Main Controller. The main controller is responsible for
ensuring that the SDMU and the CC are executed in the right
order.

SDMU. In SDMU, the mask judger and the decoder perform
the matching operation. The obtained match groups are stored
in the corresponding FIFOs, so as to read them under the
control of the FIFO group and MUX, and the matched data
are sent to the computing array in order.

CC. In the computing array of CC, computation is per-
formed in the IC and OC dimensions, and the partial sum
is generated in the OC dimension. Then the partial sum is
accumulated in the accumulator and finally sent to the output
buffer. In our structure, the parallelism is set to 16 both in the
OC and IC dimensions.

There are four buffers to store data, whose basic unit
is block RAM. The mask buffer stores the mask, while
the activation buffer and weight buffer store activations and
weights respectively. The output buffer stores the outputs and
sends them to the off-chip DRAM.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

We adopt the 3D submanifold sparse U-Net (SS U-Net) [12]
to evaluate our ESCA. SS U-Net can perform the semantic
segmentation task of the point cloud with satisfactory visual
results. The pre-trained network parameters are 8bit quantized,
and the activations are 16bit quantized. The kernel size of the
Sub-Conv in the SS U-Net is 3× 3× 3, so the parallelism of
SDMU and the number of FIFOs in the FIFO group are set

to 32. The whole system is implemented with Vivado Design
Suite. The performance of the GPU baseline is measured by
NVIDIA System Management Interface.

B. Analysis of Zero Removing Strategy

We comprehensively evaluate the zero removing strategy on
two representative point cloud datasets, ShapeNet dataset [21]
and NYU Depth dataset (v2) [22]. The feature maps are
normalized to the size of 192× 192× 192 after voxelization.
We test the effect of different tiling sizes on the sparsity and
the number of remaining active tiles. The experimental results
are shown in Table I. With different tiling sizes, this strategy
achieves up to 99.82% zero reduction in the ShapeNet [21],
and up to 99.85% in the NYU [22]. A more fine-grained tile
size increases the removing ratio of zeros, it also increases the
computational complexity. We use the tile size of 8× 8× 8.

TABLE I
ANALYSIS OF ZERO REMOVING STRATEGY

ShapeNet
[21]

Tile Size Active
Tiles

All
Tiles

Removing
Ratio

4× 4× 4 198 110592 99.82%
8× 8× 8 42 13824 99.69%

12× 12× 12 23 4096 99.43%
16× 16× 16 14 1728 99.18%

NYU
[22]

Tile Size Active
Tiles

All
Tiles

Removing
Ratio

4× 4× 4 161 110592 99.85%
8× 8× 8 33 13824 99.76%

12× 12× 12 19 4096 99.53%
16× 16× 16 9 1728 99.48%

C. Results Comparison

The proposed ESCA architecture is implemented on the
Zynq UltraScale+ ZCU102 FPGA at 270MHz. The hardware
resource utilization is reported in Table II.

TABLE II
FPGA FREQUENCY AND RESOURCE UTILIZATION

Frequency (MHz) LUT FF BRAM DSP

270 17614
(6.43%)

12142
(2.22%)

365.5
(40.08%)

256
(10.16%)

ESCA is compared with Tesla P100 GPU and Intel Xeon
Gold 6148 CPU, which are existing hardware acceleration so-
lutions for SSCN. As shown in Fig. 10, our ESCA outperforms
the CPU and GPU implementation by around 8.41 times and
1.89 times in terms of speedup. Since the computation of
SSCN depends on the sparsity of the center activation and its
neighborhood ones, the GPU and CPU cannot recognize this
correspondence, resulting in a large number of redundant com-
putations. While in ESCA, the matching operation is executed
efficiently. The detailed comparisons between GPU and our
design are summarized in Table III. Our design achieves 17.73
GOPS and 5.14 GOPS/W in terms of performance and power
efficiency, which outperforms GPU by around 1.88 times
and 51 times. Note that the GOPS is effective performance

5
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Fig. 10. Comparison with CPU and GPU in terms of time consumption when
processing a Sub-Conv layer.

TABLE III
COMPARISON WITH OTHER IMPLEMENTATIONS FOR POINT CLOUD

GPU [19] ours
Device Tesla P100 ZynqXC7z045 ZynpZCU102

Frequency (MHz) - 100 270
Model SS U-Net O-Pointnet SS U-Net

Precision FP32 INT16 INT8/INT16
Power (W) 90.56 2.15 3.45

Performance
(GOPS) 9.40 1.21 17.73

Power Efficiency
(GOPS/W) 0.10 0.56 5.14

containing only non-zero multiply-accumulate operations for
a fair and clear comparison with other implementations.

To further evaluate the performance of ESCA, it is also
compared with an FPGA-based accelerator [19], which targets
the optimized PointNet (O-Pointnet) and leverages the MLP
operations for point clouds. Compared with [19], our acceler-
ator has a significant improvement in both performance and
power efficiency as shown in Table III.

To sum up, the higher performance of ESCA comes from
two aspects. On one hand, the zero removing strategy and
encoding scheme optimize the data structure to facilitate
the match operation. On the other hand, the on-chip logic
efficiently performs matching operation and multiply-add com-
putations by the SDMU and CC.

V. CONCLUSION

In this paper, we present ESCA, an efficient FPGA-based
accelerator that supports SSCN. A zero removing strategy is
introduced to remove the coarse-grained redundant regions and
an encoding scheme is proposed to simplify the matching
operation. Based on the encoding scheme, the sparse data
matching unit (SDMU) and the computation core (CC) are
developed. The 3D submanifold sparse U-Net is considered
for the experiment. The proposed design is implemented on
Xilinx ZCU102. The experimental results show that our work
outperforms the GPU by around 1.88 times and 51 times in
terms of performance and power efficiency.
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