

Quantum Key Distribution Post-processing: A
Heterogeneous Computing Perspective

He Li, Adrian Wonfor, Amanda Weerasinghe, Muataz Alhussein, Yupeng Gong and Richard Penty
Department of Engineering, University of Cambridge, Cambridge, UK

Abstract—Recent experimental demonstrations of quantum
key distribution (QKD) have caught worldwide attention for
their ability to transmit encryption keys. Current commercial
QKD typically uses discrete optical components, resulting in
systems which are typically sized to fit within
telecommunications racks. Widespread deployment of QKD
systems will require low-SWaP (i.e., Size, Weight, and Power)
QKD systems, thus Photonic Integration is seen as a key enabler
of widespread adoption. QKD post-processing systems play a
significant role in the distillation and high-speed generation of
secure keys for discrete variable (DV) or continuous variable
(CV) QKD protocols. Interest in using heterogeneous computing
techniques for QKD post-processing is growing, owing to the
emergence of domain-specific hardware accelerators for
efficient quantum information processing applications. We
hence discuss in a tutorial manner the principles and techniques
of QKD post-processing. Characteristics of representative
heterogeneous platforms for QKD post-processing
implementations are compared, along with a review of the state-
of-the-art QKD post-processing accelerators.

Keywords—QKD, Post-processing, reconciliation, privacy
amplification, hardware acceleration

I. INTRODUCTION

Quantum key distribution (QKD) meets the desire for
cryptography that is more resistant to attack by tomorrow’s
quantum computers. A large-scale quantum computer will be
able to tackle the mathematical complexity challenges that
underpin public key cryptography, which is commonly used
today for secure communications. QKD uses the principle that
the quantum state of a single photon cannot be cloned, i.e. if
an eavesdropper intercepts our signal, she will change the
quantum state of the photon. QKD enables this change of state
to be detected and thus action to be taken to keep our
communication secure [1].

However, the cost, size, weight and power consumption of
QKD equipment must be decreased to allow quantum
cryptography to be competitive in future networks and a real
alternative to the quantum safe algorithms being proposed
today, which rely on computational complexity for their
security. This is especially true when it comes to expanding
QKD and quantum random number generators (QRNG) into
new areas like the last-mile link to the consumer or the Internet
of Things (IoT). The development of chip-based solutions is
essential for allowing mass market applications, which are
critical for realizing a quantum-ready economy [2]. For
example, various companies have established solutions for
shrinking the optical circuits used in QKD and QRNG down
to the size of a single semiconductor chip. Not only are they
smaller and lighter than their discrete component equivalents,
but they also use less power. Most importantly, multiple
modules can be fabricated on the same semiconductor wafer

using industry-standard procedures, allowing them to be
mass-produced in considerably higher quantities [3].

QKD systems consist of two main stages: quantum signal
generation, transmission and detection through a quantum
channel and post-processing through a classical channel.
Development of QKD systems is difficult, owing to the
combination of quantum physics, quantum information theory
and computer engineering required to produce a successful
QKD system. In particular, specialist skills are required to
integrate different hardware components into a homogenous
computing system. To address this issue, in this paper, we
provide a tutorial for the design of full-stack QKD
postprocessing systems, in a step-by-step procedure able to
produce final keys. Three main steps in post-processing are
discussed: 1) basis sifting for discrete variable QKD
(DVQKD) protocols, or bit conversion from continuous
variables to binary bit strings for continuous variable QKD
(CVQKD) protocols, 2) error correction and 3) privacy
amplification. To achieve high-speed QKD systems, efficient
post-processing accelerations have been investigated by
employing algorithmic and architectural optimisations on
different hardware platforms including graphics processing
units (GPUs) and field-programable gate arrays (FPGAs) [4]–
[6]. We review the state-of-the-art post-processing designs
and discuss their design features which will be beneficial for
potential users.

The main contributions made in this paper are as follows:

• We give an overview of the physical processes of QKD
systems and the subsequent processing required to
produce secure keys.

• We then present a full-stack tutorial for efficient
implementations of QKD post-processing, with
principles and step-by-step procedures.

• We summarise the characteristics of CPU, GPU and
FPGA hardware platforms for QKD post-processing
implementations.

• We review the state-of-the-art QKD post-processing
implementations with a focus on recent architectural
optimisations and hardware acceleration.

 We will now describe the operational principles of QKD
systems, which will then enable us to describe their
optimisations, both in terms of integration and computation in
more details.

II. QUANTUM KEY DISTRIBUTION PRINCIPLES

QKD technology can be divided into two main families:
DVQKD and CVQKD. The main distinctions between
DVQKD and CVQKD protocols lie in the optical
transmission and detection techniques used. DVQKD takes
advantage no-cloning properties of single photons, while
CVQKD employs coherent states of light and their excess
noise upon detection [1].

A. Discrete-variable QKD
 A DVQKD system performs the data communication by
encoding the discrete bit values into the polarisation or phase
of single photons. To decode the discrete data, a single photon
detector is needed at the Bob side. The de facto DVQKD
protocol is called BB84 proposed by Bennett and Brassard in
1984 [7], where a binary bit is encoded into photon
polarisations using two non-orthogonal basis pairs (usually
horizontal/vertical and diagonal/anti-diagonal, each pair
represents 0 and 1). Alice and Bob each apply a sequence of
randomly assigned bases at the transmit and receive modules.
Only after Bob detects photons, does she tell Alice when they
arrived and what basis she used to detect them, she does not
disclose their values. Alice then tells Bob which of these
detections correspond to a transmission event where they both
used the same basis pair. If an eavesdropper (Eve) listened to
this quantum channel she would have to randomly choose an
basis pair herself for eavesdropping. This random choice of
detection and retransmission by Eve, would result in an
increased Quantum Bit Error rate (QBER) as her random
choice of basis will result in a 50% QBER for each instance
where she chooses wrongly. High QBERs in QKD systems
are always attributed to eavesdropping attacks. Steps are taken
to reduce the information which Eve can recover, by hashing
the received error corrected signal to a smaller size secure key,
effectively reducing Eve’s recovered information to an
arbitrarily small level.

 As a key hardware device in DVQKD systems, a stable
and accurate single photon source is required for security
proof assumptions. However, high cost and technological
difficulties still exist, making these single photon sources
impractical. Consequently, researchers typically employ
highly attenuated weak coherent pulses (WCPs) to reduce the
average number of photons per pulse below 1 in most physical
DVQKD systems (to limit the probability of transmitting
multiple photons). Even so, some pulses can contain more
than one photon, resulting in a potential photon-number
splitting attack (PNS) [2]. To avoid the PNS attack, the decoy
state BB84 protocol was proposed by using multiple intensity
levels at the transmitter’s source (one signal state and several
decoy states), resulting in varying photon number statistics
throughout the quantum channel. Alice announces publicly a
specific intensity level that has been used for the transmission
of each qubit. By monitoring QBERs associated with each
intensity level associated with the decoy state protocol, Alice
and Bob can detect a PNS attack. Furthermore, realistic
implementations of QKD systems now face a new class of
practical security issues, referred to as side-channel attacks
such as detector blinding and control attack [9]. Many
countermeasures against these have been proposed by adding
either additional hardware to the system or using information
processing to reveal side-channel attack events [9], [10].

B. Continuous-variable QKD
As an alternative approach to DVQKD, CVQKD employs

coherent states of light and modulates both quadratures of the
electromagnetic field in a similar way to those that used in
classical high-speed optical communications [11]. The de
facto standard of CVQKD protocol is GG02, proposed by
Grosshans and Grangier [12]. A breakthrough of GG02 is the
elimination of single-photon generation, detection and photon
counting techniques, which allows CVQKD to be compatible
with commercial off-the-shelf optical communication
components. However, there are also several challenges that

CVQKD has to face, such as dedicated post-processing
algorithms and finite-size security analysis to decode final
secure keys [13]. In comparison with DVQKD, CVQKD still
has some open questions in both theory and experiments [13].
The security proof of the Gaussian modulation protocol has
been established against collective attacks [14] and general
attacks [15]. Recently, a finite-size analysis of a binary phase
modulated CVQKD protocol is proposed to prove its security
against general coherent attacks, based on proof techniques of
DVQKD [13]. Finite-size analysis for other modulation forms
of CVQKD is still an open research question in the QKD
community. In practical systems, however, imperfections in
transmitted Local oscillator (LO) CVQKD systems may result
in loopholes which compromise their secure key [16]. The
Local Oscillator enables coherent detection of the CVQKD
signal. To overcome the weakness of transmitting the Local
Oscillator from Alice, some have suggested using a Local
Local Oscillator (LLO) or reference free CVQKD to nullify
any possible side-channel attacks on LO CVQKD [16]. Table
I illustrates the principal technical differences between
DVQKD and CVQKD systems.

TABLE I. COMPARISONS BETWEEN DVQKD AND CVQKD SYSTEMS

Technical
features

QKD physical setups
DVQKD CVQKD

Detection tech.
Single photon detector/

photon counting
Coherent detectors (e.g.,

Homodyne detector)

Parameter
estimation

QBER
Excess noise,
trasnmittance

Max. distance >300km [17] ~100km[18]

Max. data rate
(distance)

~10 kbps
(100km) [17]

~1Mbps
(25km) [19]

III. QKD POST-PROCESSING TUTORIAL

DVQKD post-processing systems receive random bit
sequences from the detection system, establish frame
synchronization and extract a sifted key referring to these
random bits. An alternative step is needed for CVQKD
postprocessing to convert transmitted continuous variables
into discrete or binary strings. The data transmission rate is of
the order of Gb/s and thus the transmitter must be able to
handle Gb/s of random input, therefore FPGAs promise an
appropriate platform for this task. In CVQKD the symbol rates
are generally lower, but they are transmitted and received in
the analogue domain, requiring the use of high-speed digital-
to-analog and analog-to-digital converters, with efficient
processing at the receiver to convert these complex symbols
into binary data sequences, another application for FPGAs.

After this initial step, we need to correct errors in the keys.
Two types of error correction methods have been used:
interactive and forward error correction code based [5].
Interactive error correction needs interactive communication
between Alice and Bob, leading to throughput degradation
when Alice and Bob are separated by long distances. Modern
error correction utilises low-density parity-check (LDPC)
code for high-speed QKD systems. Error correction exposes
some data to Eve, but this is eliminated through privacy
amplification (PA) to obtain a smaller, yet secure key. To
obtain high throughout EC and PA process, accelerations via
coprocessor, GPU and FPGAs have been widely investigated,

which will be discussed in Section IV. Table II lists the choice
hardware platforms for each postprocessing step.

TABLE II. QUANTUM INFORMATION PROCESSING PLATFORMS

A. Sifting in DVQKD

The first process in DVQKD postprocessing is called
sifting. Modern DVQKD systems use optical phase rather
than polarization, as it is more resistant to perturbation when
transmitting signals along optical fibres. In typical phase
encoded BB84, Alice transmits random encoded data by one
of four phases 0, π, π/2 and 3π/2 for each pulse. {0, π} and
{π/2, 3π/2} correspond to two non-orthogonal bases. Bob
receives Alice’s signal and randomly chooses which basis he
measures with (0 or π/2) [20]. The 0 and π/2 phases in the
Mach-Zehnder interferometer correspond to {0, π} and {π/2,
3π/2} basis selections, respectively, and the detectors
characterise the bit information {0,1}. Fig. 1 illustrates a step-
by-step tutorial of sifting implementation.

Fig. 1 A step-by-step procedure of sifting process.

B. Bit Conversion in CVQKD

Since DVQKD is based on a binary channel, sifting
methods cannot be directly applied to CVQKD owing to
continuous variables transmitted in the QKD link [11].
Consequently, before performing reconciliation in CVQKD
schemes, conversion of continuous variables to discrete or
binary strings is needed. Slice-based and multidimensional
conversion methods are normally used for this task. The slice-
based method can distil more than 1 bit per pulse and allows
processing slices in parallel, even though, its transmission
distance is limited to about 30 km [21]. Multidimensional
method can extend the distance up to about 50-100 km [22],
however, this method results in larger amounts of
communication traffic through the classical channel. Fig. 2
illustrates how slice-based bit conversion works in CVQKD.
The continuous variables at Bob and Alice are quantised and
converted to slices.

Fig. 2 A flowchart of slice-based conversion.

C. Error Correction

Prior to reconciliation, Alice has already sent her original
message x over the quantum channel. Alice and Bob must
undergo photon statistics evaluation at the end of the quantum
exchange. Any baseline error rate is indistinguishable from the
presence of an eavesdropper and must be treated as such.
Therefore, an error estimation must be done and compared
against a bound in order to ensure confidentiality. The most
widely used error correction scheme, LDPC, is uniquely
defined by its m´n matrix of sparse 1s, known as a parity-
check matrix, where the original message has m bits, and the
coded data has n bits, augmented with n-m parity bits. The
coded data, if correctly received, will satisfy n-m parity
checks, conventionally as even parity. The code rate in this
error correction scheme is defined as m/n, satisfying the
Shannon’s channel coding theorem

 !" = 1 − ℎ#(&), (1)

where e is the error rate and ℎ#(&) is the binary entropy
function

ℎ#(&) = & log# +$%, + (1 − &) log# +
$
$&%,.

Fig. 3 Block diagram of LDPC-based reconciliation process.

Fig. 3 shows the general protocol for LDPC-based
reconciliation process. Alice and Bob will have already agreed
on what parity-check matrices to use for various QBERs, the
value of QBER determines the dimensions of the LDPC
matrix used (the higher the QBER, the larger the LDPC matrix
required to correct it). Due to the channel noise, Alice receives
a vector y similar to x but with some bits flipped. Bob first
computes the syndrome of the original message as s =Hx,
where H is the m´n parity-check matrix, and x is a size n
column vector. She then sends s to Alice over a public
channel, which Alice receives as a soft-decision vector. Using
a decoding procedure, Alice then attempts to use H to produce
an estimate ./ such that H./ = s. As highlighted in Fig. 4, there
are necessary modifications to the decoding algorithm for

Name Simulation Acceleration

Sifting CPU FPGA

Bit conversion CPU FPGA

EC CPU Co-processor, GPU, FPGA

PA CPU GPU, FPGA

LDPC-based error correction in QKD. The sign of computed
value of 01!" in the original LDPC decoding algorithm [23],
when the parity bit is 1. Consequently, the decoding
termination is determined by comparing newly calculated
parities with those from the other side, rather than expecting a
zero vector in the traditional LDPC decoding [23].

D. Privacy Amplification
 The purpose of privacy amplification is to compress the
error corrected data between Alice and Bob, so that Eve no
longer has any information about the final key. This is
performed by applying a one-way function, which produces a
completely different output if any input bit is changed. Thus,
unless Eve has the entire error corrected key, she cannot
generate the final secure key after privacy amplification. Fig.
4 shows the flow of privacy amplification. Alice and Bob
share a random t-bit binary string T, called the corrected key
in QKD. Eve may learn a correlated random string Q with q
bits, where q is smaller than p. Alice and Bob wish to publicly
choose a compression function 2(3, 5):	{0, 1}' → {0, 1}(,
such that Eve can only obtain very little information of the
secure key. To model the security of a QKD protocol, a tight
finite-key security analysis has been provided by using two
criteria, i.e., correctness (<) and secrecy (=) [24]. A QKD
protocol is < -correct, if Pr(./ ≠ .) ≤ 	< . In some realistic
applications, an incorrect decoding of the transmitted data
would be detected. We could aim an extremely low decoding
failure rate in reconciliation process with < approaching to 0.
A QKD protocol is =-secret, if it outputs B-secure keys with
(1 − C)*+,')B ≤ =, where C)*+,' is the probability that the
protocol aborts [24]. The derivation of final secure key length
B has been presented in detail in [24].

Fig. 4 A step-by-step procedure of privacy amplification.

IV. QKD POST PROCESSING ON HETEROGENEOUS

HARDWARE PLATFORMS
A. Characteristics of QKD Post Processing on Different

Hardware Platforms
The characteristics of representative platforms such as

CPU, GPU and FPGA for QKD post-processing are
summarized as shown in Table 3.

1) Development cost and difficulty: We first compare the
development difficulty, development cycle and device cost
for a QKD system implementation. A CPU is the most user
friendly platform, as the x86 architecture is fully supported
by various algorithm libraries, programming evironment,
compilers, APIs and design manuals from the community.
Therefore, its development cost is the lowest. The GPU has

its own special architecture for parallel programming,
however, users also need specialized design skills to make the
most advantage of the GPU’s parallel computation ability.
Compared to CPUs and GPUs, the development cost and
difficulty using an FPGA is the highest and longest, because
users have to use a hardware description language (HDL) to
design basic operations, instructions, and APIs, etc. Even
though FPGA vendors, such as AMD (Xilinx) and Intel
(Altera) have built their high-level synthesis (HLS)
toolchains, dedicated design optimisations are needed to
implement common post-processing algorithms e.g. FFT and
large integer multiplication, using HLS.

2) Integration control for a complete QKD system: In the
post-processing stage, there are two main tasks to address:
signal control and calculation. An FPGA can complete both
the system control and calculation tasks in an efficient
manner, therefore, by the use of an FPGA it is easy to
integrate optical and electronic devices into a system.
However, the CPU, as a general-purpose processor can only
complete the calculation task, and is difficult to use for
system control tasks. Similarly, GPUs are designed for
parallel computing accelerators, therefore system control
tasks still require CPUs. Therefore, high speed system control
is optimised with an FPGA, and CPUs should be used for
complex, non time critical tasks.

3) Power consumption: GPUs can produce very high data
throughputs, but at the cost of relatively low energy
efficiency. FPGA implementations demonstrate high power
efficiency [30], but are less flexible.

TABLE III. CHARACTERISTICS OF DIFFERENT PLATFORMS

Platform CPU GPU FPGA

Development cost

and difficulty
Low Medium High

Integration control

for a complete QKD

system

Fair Hard Easy

Power efficiency High Low High

B. Hardware Acceleration for Error Correction

For high-speed quantum key distribution (QKD) post-
processing, error correction is one of the most
computationally intensive steps and is usually the system
speed bottleneck. As the mostly used error correction method
in the reconciliation process, LDPC linear codes demonstrate
high throughput reconciliation, because LDPC codes have
very low communication complexity and only require a
single unidirectional message between Alice and Bob.
Communication latency thus does not reduce the throughput,
unlike Cascade reconciliation requiring many round-trip
messages and performing poorly at long distances [4]. The
structure of the decoding algorithm, combined with the
simple communication complexity, also allows for the EC
process to be readily parallelized. This is an important factor
for achieving high decoding throughput, and also makes

LDPC decoders suitable for implementing using GPUs and
FPGAs for very high throughput.

Error correction efficiency and operation throughput are
the two most important performance parameters, but they are
often compromised in actual realization due to the available
hardware resources. Dixon et al. have previously realized a
GPU implementation of LDPC-based reconciliation, where
the authors presented an optimized memory access model
with flood scheduling in GPUs, resulting in better
performance [25]. Guo et al. employed the framework of
open computing language (OpenCL) to accelerate the speed
of reconciliation algorithms on a heterogeneous computing
structure (GPU with a general-purpose CPU). Computation
kernels that can be accelerated in parallel processing are
assigned to GPUs, while other signal controlling tasks are
performed by the CPU [6]. Yang et al. developed an LDPC-
based EC accelerator employing FPGA’s deep pipeline
parallelism characteristics [26]. With careful design space
exploration, multiplexing and non-multiplexing strategies
have been investigated to achieve the trade-off between area
and performance, leading to an up-to 100 million symbols per
second throughput on a Xilinx Virtex-7 FPGA [26].

Another characteristic in QKD error correction lies in its
time-varying quantum channel. In order to guarantee high
error correction efficiency, rate compatible reconciliation
scheme should be adopted. Recently, Zhu et al. have
proposed a rate-compatible reconciliation algorithm based on
quasi-cyclic (QC) low-density parity-check (LDPC) codes.
Prototyping tool of high-level synthesis (HLS) is used
targeting Zynq Ultrascale+ ZCU102 development board [4].
Experimental results show that the maximum throughput rate
of the implemented reconciliation module can reach 136
Mbps, while the efficiency factor is kept lower than 1.32
across the error rate range of 1.7% and 10.6% [4]. However,
in their method, a particular set of IEEE 802.16E standard
LDPC codes are used because these LDPC matrices have
regular structure leading to an easy mapping using on-chip
memory blocks on FPGAs.

C. Hardware Acceleration for Privacy Amplification

 Hardware accelerators for privacy amplification largely
focus on algorithmic and architectural optimisations by
employing the modern hardware architectures provided by
GPUs and FPGAs. The simplest approach for PA is direct
matrix multiplication, which has computational complexity of
D(E#). To reduce the computational complexity from D(E#)
to D(E log# E), Takahashi et al. first speeded up the Toeplitz
matrix in PA with number theoretical transform (NTT),
achieving a PA throughput of 28.22 Mb/s at a dataset size of
108 bits on CPUs [27]. Further improvement of PA throughput
has been demonstrated by exploiting massive parallelism
offered by Intel Xeon PhiTM co-processors. This co-processor
is able to perform fast matrix multiplication due to several
programming techniques, such as vectorization for matrix
transpose, butterfly computation of NTT, suitable instruction
set regarding cache hit ratio, loop unrolling to butterfly
computation for reducing the number of iterations and
parallelization by multi-thread processing of data input and
output [5]. Another algorithmic optimization is to use an FFT-
based PA algorithm, which is also performed in the
computational complexity of D(E log# E). An FFT enhanced

high-speed and large-scale PA scheme was first evaluated on
a commercial CPU platform [28]. When input scale is
128Mbits, the speed can reach at least 39.15Mbps. Except for
a Toeplitz hash, other universal hash families, such as modular
arithmetic hash which is suitable for low-cost CPU platform
have been investigated [29]. Yan et al.’s research focus on the
acceleration of large module multiplication in this hash
computation by using the GNU multiple precision arithmetic
library (GMP) in CPU, and 69 Mbps at the block sizes of108
has been achieved [29].

 Mirroring CPU software implementations, many GPU and
FPGA-based PA accelerators have been investigated.
Constantin et al. [30] and Yang et al. [31] both proposed
improved block algorithm of PA with Toeplitz matrix on
FPGAs, and achieved 41Mbps and 65.443Mbps, respectively.
However, this architecture requires a large amount of on-chip
storage. The computational power is limited by memory size,
and cannot perform long-input-block-length privacy
amplification directly. Thanks to the FPGA’s flexible
adaptability, Walenta et al. optimised FPGA-based PA using
pipeline and stored the data in off-chip memory instead of on-
chip block RAMs to be able to process enough bits following
the finite-size security proof [25]. Moreover, Wang et al.
proposed a attenuation-compatible method to satisfy the
sufficient key length requirement of different attenuation [32].
This method is implemented by dividing the long input length
into short block length, and then performing the privacy
amplification separately, finally merging the corresponding
results together. To make full use of the computing resources,
the short blocks can be calculated in parallel leading to a speed
around 1Gbps in PA process [32]. A review of FPGA-
accelerated EC and PA on different hardware platforms has
been summarised in Table IV.

TABLE IV. REPRESENTATIVE IMPLEMENTATIONS OF POST
PROCESSING ON HETEROGENOUS PLATFORMS

Stage
Authors
(Year)

Hardware
platform

Features

EC

Guo et al.
(2020) [6]

Intel CPU i7-
7700k & Nvidia

Tesla K40C

Heterogeneous system of
CPU+GPU and the

framework of OpenCL

Dixon et al.
(2014) [25]

Nvidia M2090
GPU

Flood scheduling and
fast floating-point
arithmetic cores

Zhu et al.
(2022) [4]

Zynq
Ultrascale+

ZCU102 FPGA

HLS for LDPC, and rate-
compatible EC

Yuan et al.
(2018) [5]

Custom-made
FPGA

Integration of optics
control, sifting, and

LDPC EC.
Yang et al.
(2020) [26]

Virtex-7 VC709
FPGA

Fully pipelined, non-
multiplexed and

multiplexed LDPC

Stage Authors
(Year)

Hardware
platform

Features

PA

Takahashi et al.

(2016) [27]
Intel Xeon E5-
2620v2 CPU

NTT for Toeplitz matrix
multiplication

Yan et al.
(2018) [29]

Intel i9-9900k
CPU

Modular arithmetic hash
with GMP

Yuan et al.
(2018) [5]

Intel Xeon

PhiTM co-

processor

Vectorization for matrix

transpose, butterfly

computation and parallel

computing insturctions

Constantin et al.
(2017) [30]

Virtex-6
LX240T FPGA

Use of off-chip memory
(DDR2 SDRAM)

Yang et al.
(2017) [31]

Vertex-7 FPGA
Rhomboid-block for
matrix multiplication

Tang et al.
(2019) [28]

Nvidia TITAN
Xp GPU

Length-compatible for
differentlength

requirement

V. CONCLUSION.

 In this paper, we provide a systematic tutorial for QKD
post-processing with step-by-step procedures. We also review
the state-of-the-art QKD post-processing implementations on
heterogenous CPU, GPU and FPGA platforms, with a
particular focus on domain-specific hardware accelerators for
LDPC-based error correction and privacy amplification. The
user-friendly design environment of the CPU is helpful for
software-based simulations, even though the use of CPU’s is
inadequate in performing parallel computation. GPU’s
provide parallel processing capabilities, however, high power
consumption hinders their potential deployment in embedded
systems. FPGAs can fulfil a key role in QKD post-processing.
They are ideally suited to the relatively simple, yet high speed
tasks required at the first stages of post processing. Their
outputs can be interfaced with general purpose CPUs and
specialised co-processors to perform more mathematically
complex functions such as error-correction and privacy
amplification.

ACKNOWLEDGMENT

This work has been funded by the UK EPSRC via the
Quantum Communications Hub (EP/T001011/1).

REFERENCES

[1] P. K. Lam and T. C. Ralph, ‘Continuous improvement’, Nat.
Photonics, vol. 7, no. 5, pp. 350–352, May 2013.

[2] B. Huttner, N. Imoto, N. Gisin, and T. Mor, ‘Quantum cryptography
with coherent states’, Phys. Rev. A, vol. 51, no. 3, pp. 1863–1869, Mar.
1995.

[3] Toshiba Europe, ‘Toshiba shrinks quantum key distribution
technology to a semiconductor chip’. 2021. [Online]. Available:
https://www.toshiba.eu/pages/eu/Cambridge-Research-
Laboratory/toshiba-shrinks-quantum-key-distribution-technology-to-
a-semiconductor-chip

[4] M. Zhu, K. Cui, S. Li, L. Kong, S. Tang, and J. Sun, ‘A Code Rate-
Compatible High-Throughput Hardware Implementation Scheme for
QKD Information Reconciliation’, J. Light. Technol., pp. 1–1, 2022.

[5] Z. Yuan et al., ‘10-Mb/s Quantum Key Distribution’, J. Light.
Technol., vol. 36, no. 16, pp. 3427–3433, Aug. 2018.

[6] D. Guo, C. He, T. Guo, Z. Xue, Q. Feng, and J. Mu, ‘Comprehensive
high-speed reconciliation for continuous-variable quantum key
distribution’, Quantum Inf. Process., vol. 19, no. 9, p. 320, Sep. 2020.

[7] C. H. Bennett and G. Brassard, ‘Quantum cryptography: Public key
distribution and coin tossing’, in International Conference on
Computers, Systems and Signal Processing, 1984, vol. 1, pp. 175–179.

[8] M. Alhussein and K. Inoue, ‘Differential phase shift quantum key
distribution with variable loss revealing blinding and control side-
channel attacks’, Jpn. J. Appl. Phys., vol. 58, no. 10, p. 102001, Oct.
2019.

[9] M. Alhussein, K. Inoue, and T. Honjo, ‘Monitoring coincident clicks
in differential-quadrature-phase shift QKD to reveal detector blinding
and control attacks’, Jpn. J. Appl. Phys., vol. 58, no. 1, p. 012006, Jan.
2019.

[10] A. R. Dixon et al., ‘Quantum key distribution with hacking
countermeasures and long term field trial’, Sci. Rep., vol. 7, no. 1, p.
1978, Dec. 2017.

[11] T. Hirano, ‘Introduction to Continuous Variable Quantum Key
Distribution’, in Optical Fiber Communication Conference (OFC)
2022, San Diego, California, 2022, p. Tu3I.1.

[12] F. Grosshans and P. Grangier, ‘Continuous Variable Quantum
Cryptography Using Coherent States’, Phys. Rev. Lett., vol. 88, no. 5,
p. 057902, Jan. 2002.

[13] T. Matsuura, K. Maeda, T. Sasaki, and M. Koashi, ‘Finite-size security
of continuous-variable quantum key distribution with digital signal
processing’, Nat. Commun., vol. 12, no. 1, p. 252, Dec. 2021.

[14] M. Navascués, F. Grosshans, and A. Acín, ‘Optimality of Gaussian
Attacks in Continuous-Variable Quantum Cryptography’, Phys. Rev.
Lett., vol. 97, no. 19, p. 190502, Nov. 2006.

[15] A. Leverrier, R. García-Patrón, R. Renner, and N. J. Cerf, ‘Security of
Continuous-Variable Quantum Key Distribution Against General
Attacks’, Phys. Rev. Lett., vol. 110, no. 3, p. 030502, Jan. 2013.

[16] S. Ren, S. Yang, A. Wonfor, I. White, and R. Penty, ‘Demonstration
of high-speed and low-complexity continuous variable quantum key
distribution system with local local oscillator’, Sci. Rep., vol. 11, no.
1, p. 9454, Dec. 2021.

[17] B. Korzh et al., ‘Provably secure and practical quantum key
distribution over 307 km of optical fibre’, Nat. Photonics, vol. 9, no.
3, pp. 163–168, Mar. 2015.

[18] D. Huang, P. Huang, D. Lin, and G. Zeng, ‘Long-distance continuous-
variable quantum key distribution by controlling excess noise’, Sci.
Rep., vol. 6, no. 1, p. 19201, May 2016.

[19] D. Huang et al., ‘Continuous-variable quantum key distribution with 1
Mbps secure key rate’, Opt. Express, vol. 23, no. 13, p. 17511, Jun.
2015.

[20] M. Lucamarini et al., ‘Efficient decoy-state quantum key distribution
with quantified security’, Opt. Express, vol. 21, no. 21, p. 24550, Oct.
2013.

[21] G. VanAssche, J. Cardinal, and N. J. Cerf, ‘Reconciliation of a
Quantum-Distributed Gaussian Key’, IEEE Trans. Inf. Theory, vol. 50,
no. 2, pp. 394–400, Feb. 2004.

[22] A. Leverrier, R. Alléaume, J. Boutros, G. Zémor, and P. Grangier,
‘Multidimensional reconciliation for a continuous-variable quantum
key distribution’, Phys. Rev. A, vol. 77, no. 4, p. 042325, Apr. 2008.

[23] D. J. C. MacKay and R. M. Neal, ‘Near Shannon Limit Performance
of Low Density Parity Check Codes’, Electron. Lett., vol. 32, no. 18,
pp. 1645–1646, Aug. 1996.

[24] M. Tomamichel, C. C. W. Lim, N. Gisin, and R. Renner, ‘Tight finite-
key analysis for quantum cryptography’, Nat. Commun., vol. 3, no. 1,
p. 634, Jan. 2012.

[25] A. R. Dixon and H. Sato, ‘High speed and adaptable error correction
for megabit/s rate quantum key distribution’, Sci. Rep., vol. 4, no. 1, p.
7275, May 2015.

[26] S.-S. Yang, Z.-G. Lu, and Y.-M. Li, ‘High-Speed Post-Processing in
Continuous-Variable Quantum Key Distribution Based on FPGA
Implementation’, J. Light. Technol., vol. 38, no. 15, pp. 3935–3941,
Aug. 2020.

[27] R. Takahashi, Y. Tanizawa, and A. R. Dixon, ‘High-Speed
Implementation of Privacy Amplification in Quantum Key
Distribution’, in 6th International Conference on Quantum
Cryptography, 2016.

[28] B.-Y. Tang, B. Liu, Y.-P. Zhai, C.-Q. Wu, and W.-R. Yu, ‘High-speed
and Large-scale Privacy Amplification Scheme for Quantum Key
Distribution’, Sci. Rep., vol. 9, no. 1, p. 15733, Dec. 2019.

[29] B. Yan, Q. Li, H. Mao, and X. Xue, ‘High-Speed Privacy
Amplification Scheme Using GMP in Quantum Key Distribution’,
IEEE Photonics J., vol. 12, no. 3, pp. 1–13, Jun. 2020.

[30] J. Constantin et al., ‘An FPGA-Based 4 Mbps Secret Key Distillation
Engine for Quantum Key Distribution Systems’, J. Signal Process.
Syst., vol. 86, no. 1, pp. 1–15, Jan. 2017.

[31] S.-S. Yang, Z.-L. Bai, X.-Y. Wang, and Y.-M. Li, ‘FPGA-Based
Implementation of Size-Adaptive Privacy Amplification in Quantum
Key Distribution’, IEEE Photonics J., vol. 9, no. 6, pp. 1–8, Dec. 2017.

[32] X. Wang, Y. Zhang, S. Yu, and H. Guo, ‘High-Speed Implementation
of Length-Compatible Privacy Amplification in Continuous-Variable
Quantum Key Distribution’, IEEE Photonics J., vol. 10, no. 3, pp. 1–
9, Jun. 2018.

