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Abstract—Recent experimental demonstrations of quantum 
key distribution (QKD) have caught worldwide attention for 
their ability to transmit encryption keys. Current commercial 
QKD typically uses discrete optical components, resulting in 
systems which are typically sized to fit within 
telecommunications racks. Widespread deployment of QKD 
systems will require low-SWaP (i.e., Size, Weight, and Power) 
QKD systems, thus Photonic Integration is seen as a key enabler 
of widespread adoption. QKD post-processing systems play a 
significant role in the distillation and high-speed generation of 
secure keys for discrete variable (DV) or continuous variable 
(CV) QKD protocols. Interest in using heterogeneous computing 
techniques for QKD post-processing is growing, owing to the 
emergence of domain-specific hardware accelerators for 
efficient quantum information processing applications. We 
hence discuss in a tutorial manner the principles and techniques 
of QKD post-processing. Characteristics of representative 
heterogeneous platforms for QKD post-processing 
implementations are compared, along with a review of the state-
of-the-art QKD post-processing accelerators.  

Keywords—QKD, Post-processing, reconciliation, privacy 
amplification, hardware acceleration 

I. INTRODUCTION 

Quantum key distribution (QKD) meets the desire for 
cryptography that is more resistant to attack by tomorrow’s 
quantum computers. A large-scale quantum computer will be 
able to tackle the mathematical complexity challenges that 
underpin public key cryptography, which is commonly used 
today for secure communications. QKD uses the principle that 
the quantum state of a single photon cannot be cloned, i.e. if 
an eavesdropper intercepts our signal, she will change the 
quantum state of the photon. QKD enables this change of state 
to be detected and thus action to be taken to keep our 
communication secure [1]. 

However, the cost, size, weight and power consumption of 
QKD equipment must be decreased to allow quantum 
cryptography to be competitive in future networks and a real 
alternative to the quantum safe algorithms being proposed 
today, which rely on computational complexity for their 
security. This is especially true when it comes to expanding 
QKD and quantum random number generators (QRNG) into 
new areas like the last-mile link to the consumer or the Internet 
of Things (IoT). The development of chip-based solutions is 
essential for allowing mass market applications, which are 
critical for realizing a quantum-ready economy [2]. For 
example, various companies have established solutions for 
shrinking the optical circuits used in QKD and QRNG down 
to the size of a single semiconductor chip. Not only are they 
smaller and lighter than their discrete component equivalents, 
but they also use less power. Most importantly, multiple 
modules can be fabricated on the same semiconductor wafer 

using industry-standard procedures, allowing them to be 
mass-produced in considerably higher quantities [3].  

QKD systems consist of two main stages: quantum signal 
generation, transmission and detection through a quantum 
channel and post-processing through a classical channel.  
Development of QKD systems is difficult, owing to the 
combination of quantum physics, quantum information theory 
and computer engineering required to produce a successful 
QKD system. In particular, specialist skills are required to 
integrate different hardware components into a homogenous 
computing system. To address this issue, in this paper, we 
provide a tutorial for the design of full-stack QKD 
postprocessing systems, in a step-by-step procedure able to 
produce final keys. Three main steps in post-processing are 
discussed: 1) basis sifting for discrete variable QKD 
(DVQKD) protocols, or bit conversion from continuous 
variables to binary bit strings for continuous variable QKD 
(CVQKD) protocols, 2) error correction and 3) privacy 
amplification. To achieve high-speed QKD systems, efficient 
post-processing accelerations have been investigated by 
employing algorithmic and architectural optimisations on 
different hardware platforms including graphics processing 
units (GPUs) and field-programable gate arrays (FPGAs) [4]–
[6]. We review the state-of-the-art post-processing designs 
and discuss their design features which will be beneficial for 
potential users.  

The main contributions made in this paper are as follows: 

• We give an overview of the physical processes of QKD 
systems and the subsequent processing required to 
produce secure keys. 

• We then present a full-stack tutorial for efficient 
implementations of QKD post-processing, with 
principles and step-by-step procedures. 

• We summarise the characteristics of CPU, GPU and 
FPGA hardware platforms for QKD post-processing 
implementations.  

• We review the state-of-the-art QKD post-processing 
implementations with a focus on recent architectural 
optimisations and hardware acceleration. 

 We will now describe the operational principles of QKD 
systems, which will then enable us to describe their 
optimisations, both in terms of integration and computation in 
more details. 

II. QUANTUM KEY DISTRIBUTION PRINCIPLES 

QKD technology can be divided into two main families: 
DVQKD and CVQKD. The main distinctions between 
DVQKD and CVQKD protocols lie in the optical 
transmission and detection techniques used. DVQKD takes 
advantage no-cloning properties of single photons, while 
CVQKD employs coherent states of light and their excess 
noise upon detection [1]. 



A. Discrete-variable QKD 
 A DVQKD system performs the data communication by 
encoding the discrete bit values into the polarisation or phase 
of single photons. To decode the discrete data, a single photon 
detector is needed at the Bob side. The de facto DVQKD 
protocol is called BB84 proposed by Bennett and Brassard in 
1984 [7], where a binary bit is encoded into photon 
polarisations using two non-orthogonal basis pairs (usually 
horizontal/vertical and diagonal/anti-diagonal, each pair 
represents 0 and 1). Alice and Bob each apply a sequence of 
randomly assigned bases at the transmit and receive modules. 
Only after Bob detects photons, does she tell Alice when they 
arrived and what basis she used to detect them, she does not 
disclose their values. Alice then tells Bob which of these 
detections correspond to a transmission event where they both 
used the same basis pair. If an eavesdropper (Eve) listened to 
this quantum channel she would have to randomly choose an 
basis pair herself for eavesdropping. This random choice of 
detection and retransmission by Eve, would result in an 
increased Quantum Bit Error rate (QBER) as her random 
choice of basis will result in a 50% QBER for each instance 
where she chooses wrongly. High QBERs in QKD systems 
are always attributed to eavesdropping attacks. Steps are taken 
to reduce the information which Eve can recover, by hashing 
the received error corrected signal to a smaller size secure key, 
effectively reducing Eve’s recovered information to an 
arbitrarily small level. 

 As a key hardware device in DVQKD systems, a stable 
and accurate single photon source is required for security 
proof assumptions. However, high cost and technological 
difficulties still exist, making these single photon sources 
impractical. Consequently, researchers typically employ 
highly attenuated weak coherent pulses (WCPs) to reduce the 
average number of photons per pulse below 1 in most physical 
DVQKD systems (to limit the probability of transmitting 
multiple photons). Even so, some pulses can contain more 
than one photon, resulting in a potential photon-number 
splitting attack (PNS) [2]. To avoid the PNS attack, the decoy 
state BB84 protocol was proposed by using multiple intensity 
levels at the transmitter’s source (one signal state and several 
decoy states), resulting in varying photon number statistics 
throughout the quantum channel. Alice announces publicly a 
specific intensity level that has been used for the transmission 
of each qubit. By monitoring QBERs associated with each 
intensity level associated with the decoy state protocol, Alice 
and Bob can detect a PNS attack. Furthermore, realistic 
implementations of QKD systems now face a new class of 
practical security issues, referred to as side-channel attacks 
such as detector blinding and control attack [9]. Many 
countermeasures against these have been proposed by adding 
either additional hardware to the system or using information 
processing to reveal side-channel attack events [9], [10]. 

B. Continuous-variable QKD 
As an alternative approach to DVQKD, CVQKD employs 

coherent states of light and modulates both quadratures of the 
electromagnetic field in a similar way to those that used in 
classical high-speed optical communications [11]. The de 
facto standard of CVQKD protocol is GG02, proposed by 
Grosshans and Grangier [12]. A breakthrough of GG02 is the 
elimination of single-photon generation, detection and photon 
counting techniques, which allows CVQKD to be compatible 
with commercial off-the-shelf optical communication 
components. However, there are also several challenges that 

CVQKD has to face, such as dedicated post-processing 
algorithms and finite-size security analysis to decode final 
secure keys [13]. In comparison with DVQKD, CVQKD still 
has some open questions in both theory and experiments [13]. 
The security proof of the Gaussian modulation protocol has 
been established against collective attacks [14] and general 
attacks [15]. Recently, a finite-size analysis of a binary phase 
modulated CVQKD protocol is proposed to prove its security 
against general coherent attacks, based on proof techniques of 
DVQKD [13]. Finite-size analysis for other modulation forms 
of CVQKD is still an open research question in the QKD 
community. In practical systems, however, imperfections in 
transmitted Local oscillator (LO) CVQKD systems may result 
in loopholes which compromise their secure key [16]. The 
Local Oscillator enables coherent detection of the CVQKD 
signal. To overcome the weakness of transmitting the Local 
Oscillator from Alice, some have suggested using a Local 
Local Oscillator (LLO) or reference free CVQKD to nullify 
any possible side-channel attacks on LO CVQKD [16]. Table 
I illustrates the principal technical differences between 
DVQKD and CVQKD systems. 

TABLE I.  COMPARISONS BETWEEN DVQKD AND CVQKD SYSTEMS 

Technical 
features   

QKD physical setups 
DVQKD CVQKD 

Detection tech. 
Single photon detector/ 

photon counting 
Coherent detectors (e.g., 

Homodyne detector) 

Parameter 
estimation 

QBER 
Excess noise, 
trasnmittance 

Max. distance >300km [17] ~100km[18] 

Max. data rate 
(distance) 

~10 kbps  
(100km) [17] 

~1Mbps 
(25km) [19] 

III. QKD POST-PROCESSING TUTORIAL 

DVQKD post-processing systems receive random bit 
sequences from the detection system, establish frame 
synchronization and extract a sifted key referring to these 
random bits. An alternative step is needed for CVQKD 
postprocessing to convert transmitted continuous variables 
into discrete or binary strings. The data transmission rate is of 
the order of Gb/s and thus the transmitter must be able to 
handle Gb/s of random input, therefore FPGAs promise an 
appropriate platform for this task. In CVQKD the symbol rates 
are generally lower, but they are transmitted and received in 
the analogue domain, requiring the use of high-speed digital-
to-analog and analog-to-digital converters, with efficient 
processing at the receiver to convert these complex symbols 
into binary data sequences, another application for FPGAs. 

After this initial step, we need to correct errors in the keys. 
Two types of error correction methods have been used: 
interactive and forward error correction code based [5]. 
Interactive error correction needs interactive communication 
between Alice and Bob, leading to throughput degradation 
when Alice and Bob are separated by long distances. Modern 
error correction utilises low-density parity-check (LDPC) 
code for high-speed QKD systems. Error correction exposes 
some data to Eve, but this is eliminated through privacy 
amplification (PA) to obtain a smaller, yet secure key. To 
obtain high throughout EC and PA process, accelerations via 
coprocessor, GPU and FPGAs have been widely investigated, 



which will be discussed in Section IV. Table II lists the choice 
hardware  platforms for each postprocessing step. 

TABLE II.  QUANTUM INFORMATION PROCESSING PLATFORMS 

A. Sifting in DVQKD 

The first process in DVQKD postprocessing is called 
sifting. Modern DVQKD systems use optical phase rather 
than polarization, as it is more resistant to perturbation when 
transmitting signals along optical fibres. In typical phase 
encoded BB84, Alice transmits random encoded data by one 
of four phases 0, π, π/2 and 3π/2 for each pulse. {0, π} and 
{π/2, 3π/2} correspond to two non-orthogonal bases. Bob 
receives Alice’s signal and randomly chooses which basis he 
measures with (0 or π/2) [20]. The 0 and π/2 phases in the 
Mach-Zehnder interferometer correspond to {0, π} and {π/2, 
3π/2} basis selections, respectively, and the detectors 
characterise the bit information {0,1}. Fig. 1 illustrates a step-
by-step tutorial of sifting implementation. 

 
Fig. 1 A step-by-step procedure of sifting process. 

B. Bit Conversion in CVQKD 

Since DVQKD is based on a binary channel, sifting 
methods cannot be directly applied to CVQKD owing to 
continuous variables transmitted in the QKD link [11]. 
Consequently, before performing reconciliation in CVQKD 
schemes, conversion of continuous variables to discrete or 
binary strings is needed. Slice-based and multidimensional 
conversion methods are normally used for this task. The slice-
based method can distil more than 1 bit per pulse and allows 
processing slices in parallel, even though, its transmission 
distance is limited to about 30 km [21]. Multidimensional 
method can extend the distance up to about 50-100 km [22], 
however, this method results in larger amounts of 
communication traffic through the classical channel. Fig. 2 
illustrates how slice-based bit conversion works in CVQKD. 
The continuous variables at Bob and Alice are quantised and 
converted to slices.  

  
Fig. 2 A flowchart of slice-based conversion. 

C. Error Correction 

Prior to reconciliation, Alice has already sent her original 
message x over the quantum channel. Alice and Bob must 
undergo photon statistics evaluation at the end of the quantum 
exchange. Any baseline error rate is indistinguishable from the 
presence of an eavesdropper and must be treated as such. 
Therefore, an error estimation must be done and compared 
against a bound in order to ensure confidentiality. The most 
widely used error correction scheme, LDPC, is uniquely 
defined by its m´n matrix of sparse 1s, known as a parity-
check matrix, where the original message has m bits, and the 
coded data has n bits, augmented with n-m parity bits. The 
coded data, if correctly received, will satisfy n-m parity 
checks, conventionally as even parity. The code rate in this 
error correction scheme is defined as m/n, satisfying the 
Shannon’s channel coding theorem 

        !" = 1 − ℎ#(&),                (1) 

where e is the error rate and ℎ#(&)  is the binary entropy 
function 

ℎ#(&) = & log# +$%, + (1 − &) log# +
$
$&%,.  

 

Fig. 3 Block diagram of LDPC-based reconciliation process. 

Fig. 3 shows the general protocol for LDPC-based 
reconciliation process. Alice and Bob will have already agreed 
on what parity-check matrices to use for various QBERs, the 
value of QBER determines the dimensions of the LDPC 
matrix used (the higher the QBER, the larger the LDPC matrix 
required to correct it). Due to the channel noise, Alice receives 
a vector y similar to x but with some bits flipped. Bob first 
computes the syndrome of the original message as s =Hx, 
where H is the m´n parity-check matrix, and x is a size n 
column vector. She then sends s to Alice over a public 
channel, which Alice receives as a soft-decision vector. Using 
a decoding procedure, Alice then attempts to use H to produce 
an estimate ./ such that H./ = s. As highlighted in Fig. 4, there 
are necessary modifications to the decoding algorithm for 

Name Simulation Acceleration 

Sifting CPU FPGA 

Bit conversion CPU FPGA 

EC CPU Co-processor, GPU, FPGA 

PA CPU GPU, FPGA 



LDPC-based error correction in QKD. The sign of computed 
value of 01!" in the original LDPC decoding algorithm [23], 
when the parity bit is 1. Consequently, the decoding 
termination is determined by comparing newly calculated 
parities with those from the other side, rather than expecting a 
zero vector in the traditional LDPC decoding [23]. 

D. Privacy Amplification 
 The purpose of privacy amplification is to compress the 
error corrected data between Alice and Bob, so that Eve no 
longer has any information about the final key. This is 
performed by applying a one-way function, which produces a 
completely different output if any input bit is changed. Thus, 
unless Eve has the entire error corrected key, she cannot 
generate the final secure key after privacy amplification. Fig. 
4 shows the flow of privacy amplification. Alice and Bob 
share a random t-bit binary string T, called the corrected key 
in QKD. Eve may learn a correlated random string Q with q 
bits, where q is smaller than p. Alice and Bob wish to publicly 
choose a compression function 2(3, 5):	{0, 1}' → {0, 1}( , 
such that Eve can only obtain very little information of the 
secure key. To model the security of a QKD protocol, a tight 
finite-key security analysis has been provided by using two 
criteria, i.e., correctness (<) and secrecy (=) [24]. A QKD 
protocol is < -correct, if Pr(./ ≠ .) ≤ 	< . In some realistic 
applications, an incorrect decoding of the transmitted data 
would be detected. We could aim an extremely low decoding 
failure rate in reconciliation process with < approaching to 0. 
A QKD protocol is =-secret, if it outputs B-secure keys with 
(1 − C)*+,')B ≤ =, where C)*+,'  is the probability that the 
protocol aborts [24]. The derivation of final secure key length 
B has been presented in detail in [24].  

 
Fig. 4 A step-by-step procedure of privacy amplification.   

IV. QKD POST PROCESSING ON HETEROGENEOUS  

HARDWARE PLATFORMS  
A. Characteristics of QKD Post Processing on Different 

Hardware Platforms 
The characteristics of representative platforms such as 

CPU, GPU and FPGA for QKD post-processing are 
summarized as shown in Table 3.  

1) Development cost and difficulty: We first compare the 
development difficulty, development cycle and device cost 
for a QKD system implementation. A CPU is the most user 
friendly platform, as the x86 architecture is fully supported 
by various algorithm libraries, programming evironment, 
compilers, APIs and design manuals from the community. 
Therefore, its development cost is the lowest. The GPU has 

its own special architecture for parallel programming, 
however, users also need specialized design skills to make the 
most advantage of the GPU’s parallel computation ability. 
Compared to CPUs and GPUs, the development cost and 
difficulty using an FPGA is the highest and longest, because 
users have to use a hardware description language (HDL) to 
design basic operations, instructions, and APIs, etc. Even 
though FPGA vendors, such as AMD (Xilinx) and Intel 
(Altera) have built their high-level synthesis (HLS) 
toolchains, dedicated design optimisations are needed to 
implement common post-processing algorithms e.g. FFT and 
large integer multiplication, using HLS. 

2) Integration control for a complete QKD system: In the 
post-processing stage, there are two main tasks to address: 
signal control and calculation. An FPGA can complete both 
the system control and calculation tasks in an efficient 
manner, therefore, by the use of an FPGA it is easy to 
integrate optical and electronic devices into a system. 
However, the CPU, as a general-purpose processor can only 
complete the calculation task, and is difficult to use for 
system control tasks. Similarly, GPUs are designed for 
parallel computing accelerators, therefore system control 
tasks still require CPUs. Therefore, high speed system control 
is optimised with an FPGA, and CPUs should be used for 
complex, non time critical tasks.  

3) Power consumption: GPUs can produce very high data 
throughputs, but at the cost of relatively low energy 
efficiency. FPGA implementations demonstrate high power 
efficiency [30], but are less flexible. 

TABLE III.  CHARACTERISTICS OF DIFFERENT PLATFORMS 

Platform CPU GPU FPGA 

Development cost 

and difficulty 
Low Medium High 

Integration control 

for a complete QKD 

system 

Fair Hard Easy 

Power efficiency High Low High 

B. Hardware Acceleration for Error Correction 

For high-speed quantum key distribution (QKD) post-
processing, error correction is one of the most 
computationally intensive steps and is usually the system 
speed bottleneck. As the mostly used error correction method 
in the reconciliation process, LDPC linear codes demonstrate 
high throughput reconciliation, because LDPC codes have 
very low communication complexity and only require a 
single unidirectional message between Alice and Bob. 
Communication latency thus does not reduce the throughput, 
unlike Cascade reconciliation requiring many round-trip 
messages and performing poorly at long distances [4]. The 
structure of the decoding algorithm, combined with the 
simple communication complexity, also allows for the EC 
process to be readily parallelized. This is an important factor 
for achieving high decoding throughput, and also makes 



LDPC decoders suitable for implementing using GPUs and 
FPGAs for very high throughput. 

Error correction efficiency and operation throughput are 
the two most important performance parameters, but they are 
often compromised in actual realization due to the available 
hardware resources. Dixon et al. have previously realized a 
GPU implementation of LDPC-based reconciliation, where 
the authors presented an optimized memory access model 
with flood scheduling in GPUs, resulting in better 
performance [25]. Guo et al. employed the framework of 
open computing language (OpenCL) to accelerate the speed 
of reconciliation algorithms on a heterogeneous computing 
structure (GPU with a general-purpose CPU). Computation 
kernels that can be accelerated in parallel processing are 
assigned to GPUs, while other signal controlling tasks are 
performed by the CPU [6]. Yang et al. developed an LDPC-
based EC accelerator employing FPGA’s deep pipeline 
parallelism characteristics [26]. With careful design space 
exploration, multiplexing and non-multiplexing strategies 
have been investigated to achieve the trade-off between area 
and performance, leading to an up-to 100 million symbols per 
second throughput on a Xilinx Virtex-7 FPGA [26]. 

Another characteristic in QKD error correction lies in its 
time-varying quantum channel. In order to guarantee high 
error correction efficiency, rate compatible reconciliation 
scheme should be adopted. Recently, Zhu et al. have 
proposed a rate-compatible reconciliation algorithm based on 
quasi-cyclic (QC) low-density parity-check (LDPC) codes. 
Prototyping tool of high-level synthesis (HLS) is used 
targeting Zynq Ultrascale+ ZCU102 development board [4]. 
Experimental results show that the maximum throughput rate 
of the implemented reconciliation module can reach 136 
Mbps, while the efficiency factor is kept lower than 1.32 
across the error rate range of 1.7% and 10.6% [4]. However, 
in their method, a particular set of IEEE 802.16E standard 
LDPC codes are used because these LDPC matrices have 
regular structure leading to an easy mapping using on-chip 
memory blocks on FPGAs. 

C. Hardware Acceleration for Privacy Amplification 

 Hardware accelerators for privacy amplification largely 
focus on algorithmic and architectural optimisations by 
employing the modern hardware architectures provided by 
GPUs and FPGAs. The simplest approach for PA is direct 
matrix multiplication, which has computational complexity of 
D(E#). To reduce the computational complexity from D(E#) 
to D(E log# E), Takahashi et al. first speeded up the Toeplitz 
matrix in PA with number theoretical transform (NTT), 
achieving a PA throughput of 28.22 Mb/s at a dataset size of 
108 bits on CPUs [27]. Further improvement of PA throughput 
has been demonstrated by exploiting massive parallelism 
offered by Intel Xeon PhiTM co-processors. This co-processor 
is able to perform fast matrix multiplication due to several 
programming techniques, such as vectorization for matrix 
transpose, butterfly computation of NTT, suitable instruction 
set regarding cache hit ratio, loop unrolling to butterfly 
computation for reducing the number of iterations and 
parallelization by multi-thread processing of data input and 
output [5]. Another algorithmic optimization is to use an FFT-
based PA algorithm, which is also performed in the 
computational complexity of D(E log# E). An FFT enhanced 

high-speed and large-scale PA scheme was first evaluated on 
a commercial CPU platform [28]. When input scale is 
128Mbits, the speed can reach at least 39.15Mbps. Except for 
a Toeplitz hash, other universal hash families, such as modular 
arithmetic hash which is suitable for low-cost CPU platform 
have been investigated [29]. Yan et al.’s research focus on the 
acceleration of large module multiplication in this hash 
computation by using the GNU multiple precision arithmetic 
library (GMP) in CPU, and 69 Mbps at the block sizes of108 
has been achieved [29]. 

 Mirroring CPU software implementations, many GPU and 
FPGA-based PA accelerators have been investigated. 
Constantin et al. [30] and Yang et al. [31] both proposed 
improved block algorithm of PA with Toeplitz matrix on 
FPGAs, and achieved 41Mbps and 65.443Mbps, respectively. 
However, this architecture requires a large amount of on-chip 
storage. The computational power is limited by memory size, 
and cannot perform long-input-block-length privacy 
amplification directly. Thanks to the FPGA’s flexible 
adaptability, Walenta et al. optimised FPGA-based PA using 
pipeline and stored the data in off-chip memory instead of on-
chip block RAMs to be able to process enough bits following 
the finite-size security proof [25]. Moreover, Wang et al. 
proposed a attenuation-compatible method to satisfy the 
sufficient key length requirement of different attenuation [32]. 
This method is implemented by dividing the long input length 
into short block length, and then performing the privacy 
amplification separately, finally merging the corresponding 
results together. To make full use of the computing resources, 
the short blocks can be calculated in parallel leading to a speed 
around 1Gbps in PA process [32]. A review of FPGA-
accelerated EC and PA on different hardware platforms has 
been summarised in Table IV. 

TABLE IV.  REPRESENTATIVE IMPLEMENTATIONS OF POST 
PROCESSING ON HETEROGENOUS PLATFORMS 

Stage 
Authors 
(Year) 

Hardware 
platform 

Features 

EC 

Guo et al. 
(2020) [6] 

Intel CPU i7-
7700k & Nvidia 

Tesla K40C 

Heterogeneous system of 
CPU+GPU and the 

framework of OpenCL 

Dixon et al. 
(2014) [25] 

Nvidia M2090 
GPU 

Flood scheduling and 
fast floating-point 
arithmetic cores 

Zhu et al. 
(2022) [4] 

Zynq 
Ultrascale+ 

ZCU102 FPGA 

HLS for LDPC, and rate-
compatible EC 

Yuan et al. 
(2018) [5] 

Custom-made 
FPGA 

Integration of optics 
control, sifting, and 

LDPC EC. 
Yang et al. 
(2020) [26] 

Virtex-7 VC709 
FPGA 

Fully pipelined, non-
multiplexed and 

multiplexed LDPC 

Stage Authors 
(Year) 

Hardware 
platform 

Features 

PA 

Takahashi et al. 

(2016) [27] 
Intel Xeon E5-
2620v2 CPU 

NTT for Toeplitz matrix 
multiplication 

Yan et al. 
(2018) [29] 

Intel i9-9900k 
CPU 

Modular arithmetic hash 
with GMP 



Yuan et al. 
(2018) [5] 

Intel Xeon 

PhiTM co-

processor 

Vectorization for matrix 

transpose, butterfly 

computation and parallel 

computing insturctions 

Constantin et al. 
(2017) [30] 

Virtex-6 
LX240T FPGA 

Use of off-chip memory 
(DDR2 SDRAM) 

Yang et al. 
(2017) [31] 

Vertex-7 FPGA 
Rhomboid-block for 
matrix multiplication 

Tang et al. 
(2019) [28] 

Nvidia TITAN 
Xp GPU 

Length-compatible for 
differentlength 

requirement 

V. CONCLUSION. 

 In this paper, we provide a systematic tutorial for QKD 
post-processing with step-by-step procedures. We also review 
the state-of-the-art QKD post-processing implementations on 
heterogenous CPU, GPU and FPGA  platforms, with a 
particular focus on domain-specific hardware accelerators for 
LDPC-based error correction and privacy amplification. The 
user-friendly design environment of the CPU is helpful for 
software-based simulations, even though the use of CPU’s is 
inadequate in performing parallel computation. GPU’s 
provide parallel processing capabilities, however, high  power 
consumption hinders their potential deployment in embedded 
systems. FPGAs can fulfil a key role in QKD post-processing. 
They are ideally suited to the relatively simple, yet high speed 
tasks required at the first stages of post processing. Their 
outputs can be interfaced with general purpose CPUs and 
specialised co-processors to perform more mathematically 
complex functions such as error-correction and privacy 
amplification. 
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