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Abstract—Bulk-bitwise processing-in-memory (PIM), an emerging

computational paradigm utilizing memory arrays as computational units,
has been shown to benefit database applications. This paper demonstrates
how GROUP-BY and JOIN, database operations not supported by
previous works, can be performed efficiently in bulk-bitwise PIM for
relational database analytical processing. We extend the gem5 simulator
and evaluated our hardware modifications on the Star Schema Bench-
mark. We show that compared to previous works, our modifications
improve (on average) execution time by 1.83×, energy by 4.31×, and
the system’s lifetime by 3.21×. We also achieved a speedup of 4.65× over
MonetDB, a modern state-of-the-art in-memory database.

Index Terms—Processing-in-memory, Database, OLAP, Memristors

I. INTRODUCTION

Processing-in-memory (PIM) is an emerging computing paradigm
that mitigates the latency and energy associated with data movements
by computing where the data reside. In this paper, we focus on
a specific PIM technique called bulk-bitwise PIM [1–6], in which
the memory arrays also act as bit-vector processing units operating
on their stored data. Previous works on bulk-bitwise PIM showed
that database applications, specifically relational database online
analytical processing (OLAP) [7], can be substantially accelerated by
bulk-bitwise PIM [1, 2, 4–6]. OLAP database queries process many
records, often summarizing information from multiple requested
records subgroups. The database operations accelerated by previous
works, however, are limited to filtering and aggregation operations.
Those works did not support additional database operations such as
GROUP-BY and JOIN needed to perform entire OLAP queries. JOIN
operations combine several database relations (tables) and allow their
combined information to be queried. GROUP-BY operations divide
the records into subgroups and then summarize each subgroup.

This paper presents bulk-bitwise PIM techniques that support
GROUP-BY and most JOIN operations for relational database OLAP.
To the best of our knowledge, this is the first work that supports such
operations with bulk-bitwise PIM. Supporting JOIN requires heavy
data movement. As bulk-bitwise PIM support in data movement is
limited, JOIN is supported by storing pre-joined relations in the
PIM memory. Pre-joining, as denormalization [8] or as materialized
view [9], is a known method to accelerate query execution. Pre-
joining, however, adds maintenance complexity and storage over-
heads. We argue that pre-joined relations are suitable for OLAP on
bulk-bitwise PIM, and we show how bulk-bitwise PIM can mitigate
the drawbacks of pre-join. To support GROUP-BY, we adopt an in-
cloud processing GROUP-BY technique [10] to bulk-bitwise PIM,
where the work is divided between the host processor and PIM. To
efficiently adapt this GROUP-BY technique to bulk-bitwise PIM, we
add a circuit to the PIM memory, accelerating PIM aggregation and
improving memory cell lifetime.

We implement our proposed methods on a gem5 [11] full-system
simulation (including an operating system) and measure their per-
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formance using the Star Schema Benchmark (SSB) [12], a relational
database analytic processing benchmark. We are unaware of any other
work that has designed and evaluated a complete database benchmark
on a bulk-bitwise PIM system. We compare the query execution time
to MonetDB [13], a modern in-memory database system, and achieve
a geometric mean (geo-mean) speedup of 7.46× and 4.65× over the
standard and pre-joined versions of the SSB benchmark, respectively.

In summary, this paper makes the following contributions:
• We show how bulk-bitwise PIM can mitigate the drawbacks of

pre-joined relations.
• We adapt a GROUP-BY algorithm for bulk-bitwise PIM.
• We add an aggregation circuit to the memory arrays’ peripherals

to accelerate aggregation operations, improving previous work
with an average speedup of 1.83×, improving energy by 4.31×,
and improving the systems’s lifetime by 3.21×.

• We evaluate our solutions using a gem5 full-system simulation of
an RRAM-based PIM system and the SSB benchmark, showing
runtime improvements of 4.65× and 7.46× over a modern
in-memory database with and without pre-joining relations,
respectively.

II. BACKGROUND

A. Relational Databases and Analytical Processing

A relational database is a data model that organizes data in
relations (tables) [7]. Each relation in the database holds multiple
records, viewed as the rows of the relations. Each relation has several
attributes, viewed as the relations columns, where each record has a
value for each attribute. A relation has one attribute or a combination
of attributes designated as its key, uniquely identifying its records.

Database queries are questions about the database records, i.e.,
returning records, or a function on records that fulfill a particular con-
dition on their attributes. Analytical processing, used in applications
such as business decision support processes, has dedicated database
structures and is characterized by specific types of queries [7, 12].
Such queries usually have the form select-from-where-group by,
which means that queries search for records satisfying a certain
condition (where) on one or more relations (from), and return an
aggregation (e.g., sum, average, max) on some attribute for these
records (select). Frequently, an aggregation is required per subgroup
of the selected records, classified according to some attributes, which
is referred to as GROUP-BY.

A JOIN operation between relations is required when a query
involves more than a single relation. The JOIN operation connects
records of the different relations according to a condition on their
attributes, allowing to check attributes from several relations together.
A JOIN operation can comprise over 90% of execution time in
analytical processing [14], but the partition into relations is kept to
maintain flexibility in execution, avoid data duplication, and simplify
database maintenance [8].

B. Bulk-Bitwise PIM

Bulk-bitwise PIM uses the memory arrays and their peripherals
(e.g., decoders, sense amplifiers, and voltage drivers) as processing
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Fig. 1: (a) A 3×4 memory crossbar array performing a bitwise column logic
operation (e.g., NOR). The operation inputs and output are the two left column
cell values (green) and the right column cells (blue). Bitwise row operations
can be performed similarly. (b) A bulk-bitwise PIM module connected as a
memory rank to a host.

elements. Processing is done within the memory array, accessing
input and output data directly from and to the memory cells,
eliminating data movement out of the memory array. The basic
operations supported by these memory crossbars are logic operations
(e.g., NOR [1,3]). Because of the regular structure of memory arrays,
these logic operations can be performed concurrently on numerous
cells with the memory array. Furthermore, many memory arrays can
operate concurrently, resulting in a wide logic operation, i.e., bulk-
bitwise operations. An example of bulk-bitwise operation using a
memory crossbar array is shown in Fig. 1a. More complex operations
(e.g., addition, multiplication) can be constructed using sequences of
the basic logic operations. DRAM [2, 4] and emerging nonvolatile
memory technologies [1, 3, 5, 6] have been suggested to implement
such bulk-bitwise PIM.

Bulk-bitwise PIM memory can be used as the main memory of a
host processor [1, 2, 4]. The PIM module is constructed and serves
as a memory rank with PIM-enabled memory chips in addition to
standard non-PIM (e.g., DRAM) memory ranks (Fig. 1b). In this
case, the host can read and write to/from the PIM memory using
standard loads and stores. To perform a PIM computation, the host
sends a memory command, named PIM request, to the PIM module.
PIM requests are sent with an address and data, similar to store
instructions, detailing the computation, operands, and result location.
Virtual memory is supported by restricting PIM requests to use and
modify data only within a single memory page [1]. The address of
the PIM request specifies this page. When issuing a PIM request,
user-level programs send PIM requests with a virtual address. The
virtual address is translated into a physical address using the standard
translation methods and forwarded to the relevant memory location.

To enable pages to operate independently in memory, each page has
a dedicated controller, named PIM controller, on each memory chip.
When a PIM request arrives at a memory chip, the PIM controller for
the targeted page manages the required basic logic operation sequence
to all crossbars of that page. To maintain high parallelism, huge pages
(e.g., 2MB or 1GB) are used, operating concurrently with the same
operation on all crossbars belonging to that page.

When mapping databases to bulk-bitwise PIM memory, each rela-
tion has its pages where the relation’s records are stored. Each record
is set as a single crossbar row, where the attributes of all the records
are aligned on crossbar columns [1,2,4,5]. To filter records according
to some condition, the condition is implemented by column-wise PIM
operations on the same attributes on all the relation’s records. The
filter result is a single bit per record, indicating whether the record
satisfied the filter condition. Hence, reading the filter result requires
reading a single bit per record instead of the filtered attributes.
Aggregation is done by concurrently aggregating the same attribute
in all the relation’s crossbars. This concurrent aggregation is followed
by reading the aggregated values from each crossbar and combining
them at the host. Consequently, for aggregation, only a single value
is read from each crossbar rather than the entire relevant attribute
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Fig. 2: A star schema example for storing sales information. The database
contains a single fact relation storing sales data (a record per sale) and two
dimension relations storing data about customers and suppliers.
per record. Due to the reduction in read operations, the substantial
reduction in data movement is the main benefit of bulk-bitwise PIM
and can reach 99% of the reads without bulk-bitwise PIM [1].

III. SUPPORTING PRE-JOINED RELATIONS

JOIN operations require matching records from two or more
relations, frequently in a many-to-many or one-to-many manner.
Since the matched records from different relations cannot be assumed
to reside on the same PIM crossbar, data must be moved to perform
a JOIN operation. Furthermore, the match (or matches) for a record
depends on the record data, requiring data-dependent movement. Al-
though data movement within the memory is possible for bulk-bitwise
PIM [3], it has not been shown to support virtual memory; moreover,
it is not data dependent. Therefore, it cannot trivially support JOIN
operations. On the other hand, operations performed locally within
a crossbar, i.e., operations on a single relation, will benefit from the
high parallelism of bulk-bitwise PIM [1]. Consequently, we propose
to keep pre-joined relations in the PIM module, enabling full queries
to be performed on a single relation.

Pre-joined relations can appear as a result of denormalization [8]
or materialized views [9], both of which are known methods to
accelerate query execution by compromising on other aspects. These
aspects are: (1) Limited flexibility – pre-joining relations is only
sometimes helpful since there are many possible JOIN operations,
and the selected pre-joined relation may not be the one required by
a query. (2) Additional storage – the JOIN output can be larger than
the sum of the input relations. (3) Complicated maintenance – as
JOIN operations often duplicate a single datum to multiple locations,
operations such as UPDATE become more complicated.

Regarding the limited flexibility aspect, we note that for the star
schema, an OLAP database structure common in business support
processes [7,12], there are only a few frequently used JOIN options.
A star schema contains a single large central relation and multiple
smaller relations, called fact and dimension relations, respectively.
Fig. 2 shows an example of a star schema. A record in the fact
relation represents a single event with its quantitative details (e.g.,
a purchase with its price). Some of the fact relation attributes are
keys of the dimension relations (i.e., foreign keys), connecting events
to their additional information (e.g., customer information). Queries
often require a JOIN operation between a dimension relation and the
fact relation using an equality condition on the dimension keys [7],
i.e., an equi-JOIN on the dimension keys. Hence, most queries in a
star schema for OLAP will benefit from keeping a pre-joined relation.
The dimension relations will be pre-joined to the fact relation by equi-
JOIN on dimension keys, and the flexibility will not be impeded. For
example, this kind of JOIN satisfies all queries of the Star Schema
Benchmark (SSB) [12].

Regarding the additional storage aspect, since the JOIN operation
is on the dimensions’ keys, and keys are unique, the JOIN connects
a fact relation record with a single dimension relation record. Hence,
the fact relation’s records are not duplicated, and the JOIN’s output
relation has the same number of records as the fact relation. However,
dimension information is added to each record from the fact relation
(e.g., a customer’s information is attached to all of his purchases),



Algorithm 1: PIM controller algorithm for MUX between an
in-memory and immediate values, using an in-memory select.

Input : vn−1...v0 - in-memory attribute bits to update
cn−1...c0 - update value bits as immediate
s - in-memory select bit

Result: For all i: vi ← ci if s = 1, else vi is unchanged.

1 foreach i ∈ [0, .., n− 1] do
2 if ci = 1 then
3 InMemory(vi ← vi OR s)
4 else
5 InMemory(vi ← vi AND NOT (s))

increasing the record size. For bulk-bitwise PIM, relations are stored
in dedicated pages, usually underutilizing the crossbar row for each
record [1]. This unused row memory can be exploited if more
information for each relation record is stored there. Hence, if bulk-
bitwise PIM is used for the fact relation, storing the pre-joined
relation of the fact and dimension relations can use the unused
memory, as it has the same number of records as the fact relation.
This results in no additional memory requirements.

Generally, the resulting record of the pre-joined relation might be
larger than a single crossbar row. In that case, the pre-joined relation
can be vertically partitioned [1], storing the relation’s attributes on
multiple aligned pages. Such vertical partitioning, however, will add a
memory overhead and hurt performance, as intermediate results will
have to be transferred between the partitions. This partition should,
therefore, locate the commonly used attributes together in a single
crossbar, preventing intermediate result transfers in the common case.
For the SSB benchmark, however, the pre-joined relation record does
not exceed row size, not requiring such partitioning. Section V-A,
nevertheless, does evaluate this case as well.

Pre-joined relations, in general, inherently require complex mainte-
nance [8,9]. Specifically, UPDATE operations become slower due to
data duplication. With bulk-bitwise PIM, an UPDATE operation can
be performed using PIM by filtering the relations records according
to the to-be-replaced attribute value. The filter result is then used to
overwrite the attribute of only the desired records, i.e., the filter result
is used as the select bit for a PIM-implemented multiplexer (MUX).
The PIM MUX algorithm, inspired by [1], is described in Alg. 1.
This UPDATE operation requires only PIM operations and no read
operation, eliminating data movement almost entirely.

IV. SUPPORTING GROUP-BY
To support GROUP-BY operations, we adopt an algorithm de-

signed for in-cloud processing [10]. In-cloud processing and bulk-
bitwise PIM [1] support the same database primitives: filtering
and aggregation. Bulk-bitwise PIM, however, differs from in-cloud
processing in its characteristics (e.g., processing latency, data retrieval
latency), resulting in different behavior and parameters.

GROUP-BY Technique: After filtering the required records for a
query, each subgroup for the GROUP-BY can be aggregated using
two options. The first option aggregates each subgroup separately
using PIM operations. Each subgroup is further filtered and then
aggregated, both using PIM operations. We name this option pim-
gb. The pim-gb operates on the entire relation, making its latency
independent of the number of records in each subgroup but dependent
on the relation’s number of records and the number of subgroups.
Although PIM aggregation has low latency, there can be many
subgroups to aggregate, leading to high latency for pim-gb. The
second option uses the host to read the filter result and the records that
pass the filter. Each record is first read, and, according to its attribute
values, is assigned to a subgroup and aggregated at the host. This
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Fig. 3: Circuit added to the memory crossbars (blue). The circuit aggregates
the data read from the crossbar. The ALU supports the operations of SUM,
MIN, and MAX.
option handles many subgroups concurrently and does not require
PIM operations in addition to the filtering specified by the query. We
name this option host-gb. The host-gb’s latency mainly depends on
the number of required memory reads. The number of these reads
depends on the relation’s number of records, the total number of
subgroups’ records, and the size of attributes to be read from each
record.

In this work, the GROUP-BY technique exploits the fact that pim-
gb and host-gb depend on different parameters. Pim-gb depends
on the number of subgroups and is independent of the number
of records in the subgroups, while host-gb works the other way
around. Additionally, the GROUP-BY technique relies on the fact
that database data is not uniformly distributed [15] and the GROUP-
BY subgroups have non-uniform sizes. Thus, subgroups are divided
such that a few large subgroups are aggregated by pim-gb, leaving
the many small remaining subgroups (which might be empty) to
be handled by host-gb. The division of subgroups between pim-
gb and host-gb depends on the data distribution and the specific
query requirements. To decide how to perform this division, the host
samples a small fraction of the records selected by the query, and
using this sample, it estimates the size of each subgroup. According
to an empirical model (described later in this section), the host
decides which subgroups to aggregate by PIM and which subgroups
to aggregate at the host. This technique was suggested in [10] for
in-cloud processing and we adapt it here for bulk-bitwise PIM.

Accelerating PIM Aggregation: Previous work showed that bulk-
bitwise PIM aggregation operations are expensive in terms of ex-
ecution time, power, and cell endurance (for emerging nonvolatile
memory technologies) [1]. This cost is due to the high number of
basic operations required to perform aggregation. Hence, to enable
efficient GROUP-BY execution, we add an arithmetic circuit to
the periphery of each memory crossbar, supporting the required
aggregation operations (see [1]), as shown in Fig. 3. This approach
diverges from and complements a pure bulk-bitwise PIM architecture
to mitigate the weak points of aggregation in bulk-bitwise PIM.

The arithmetic circuit receives data read from the memory crossbar.
The aggregated values, specified by the PIM request, are read one
by one serially, and aggregated in the arithmetic circuit. The circuit
is designed with standard CMOS logic, performing only the required
logic for aggregation [1]: SUM, MIN, and MAX, and controlled by
the PIM controller. Since crossbar reads have a fixed bit length [16]
(16 bits in our evaluation), supporting aggregation of larger word
lengths requires the ALU to support the shifting and masking of
its operands. The final aggregation result is then written from the
arithmetic circuit to the crossbar, using a modified write control
logic [6]. The location where to write the result is specified by the
aggregation PIM request sent by the host. The host can then access
the final aggregation result using standard memory reads.

Empirical Modeling: As stated above, the GROUP-BY technique
requires deciding which subgroups to assign to pim-gb and which
to host-gb. A latency model for each option is needed to make
a quantitative decision. To obtain such a model, we performed
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Fig. 4: Empirical latency modeling, showing both empirical measurements
(dots) and fit (dashed lines). For brevity, only subsets of measurements are
shown. (a) Thost-gb vs. page count (M ) for different reads per record (s) and
read record ratio (r). (b)

∂Thost-gb
∂M

vs. r for different s. (c) Tpim-gb for a
single subgroup vs. page count for different aggregation attribute reads (n).

latency measurements (on the system described in Section V-A,
using synthetic databases) and fit the results of each option into a
mathematical expression (as described below). This fitting process
can be automated by the database management software [17]. In all
the expressions below, M is the number of 2MB pages required to
store the relation.

The host-gb latency, Thost-gb, includes the filtering of relevant
subgroups using PIM, reading the filter result (bit-vector), and reading
the selected records. The filter PIM operation latency is dominated by
the filter result reads [1], whose latency depends only on the relation
size. When reading the selected records, the latency depends on the
number of selected records and the required reads per record. We
mark with r the ratio of the selected records to the total records in
the relation, and with s the required number of reads per record
(composed of the subgroup identifiers and aggregated attributes).
Hence, host-gb depends on three parameters: relation size (M ), the
ratio of records to read (r), and the number of reads per record (s).
Fig. 4a shows that Thost-gb, for specific r and s values, is linear in
M . The slope ∂Thost-gb

∂M
as a function of r for a given s is shown

in Fig. 4b. For a given s, the slope exhibits a relation of the form
a
√
r+b, where a and b are constants. Since reads from crossbars have

a fixed length (16 bits in our evaluation), s can have a few discrete
values. Hence, we express a and b as lookup tables for values of s,
receiving the following expression:

Thost-gb(M, s, r) = M ·
(
a(s) ·

√
r + b(s)

)
. (1)

The pim-gb latency for a single subgroup (Tpim-gb) depends on the
relation size (M ) and the number of reads to retrieve the aggregated
attribute from a single crossbar (marked by n); it is independent of the
number of aggregated records. We measure aggregation latency on
varying relation and operand sizes. The results are shown in Fig. 4c.
The aggregation latency is linear in the relation size, with coefficients
depending on n. As with s above, n can have a few discrete values.
Hence, the coefficients ∂Tpim-gb

∂M
and Tpim-gb,0 (the free coefficient)

are expressed as lookup tables for values of n. The resulting latency
fit for a single subgroup PIM aggregate is:

Tpim-gb(M,n) = M · ∂Tpim-gb

∂M
(n) + Tpim-gb,0(n). (2)

To perform the GROUP-BY operation, we decide how many
subgroups are assigned to pim-gb. We mark this number as k. By
definition, these are the k largest subgroups. The ratio of remaining
records for host-gb to total records depends on k and the data
distribution, and is marked as r(k). The function r(·) is estimated
by the record sampling mentioned previously. The total GROUP-BY
latency, Tgb, is, therefore:

Single RRAM PIM Module
Total Capacity 32GB Huge pages size 2MB
Memory ranks 1 PIM Chips 8
Crossbar rows 1024 Crossbar columns 512

Crossbar read 16 bit Bulk-bitwise
logic cycle 30 ns [5]

Crossbar
read/write energy

0.84\6.9
pJ/bit [5]

Bulk-bitwise
logic energy

81.6 fJ/bit
[20]

Single agg.
circuit power 25.4 uW Single PIM

controller power 126 uW [1]

Evaluation System

Processor cores 6 cores, X86,
OoO, 3.6GHz Main memory 32GB DRAM,

DDR4-2400

L1 cache
Private, 16KB,

64B block,
4-way

L2 cache
Shared, 2MB,

64B block,
16-way

Coherence
protocol MESI RRAM PIM

modules 1

TABLE I: Architecture and system configuration
Crossbar peripherials
40.4%

Aggregation circuits
13.9%

Crossbars 19.24%

Bank peripherals
18.83% PIM controllers

6.84%

Wires 0.76%

Fig. 5: PIM chip area breakdown
T gb(M,n, s, kMAX , k, r(·)) =
k · Tpim-gb(M,n) + (1− δk,kMAX ) · Thost-gb (M, s, r(k)) ,

(3)

where kMAX is the total number of subgroups and δi,j is the Kro-
necker delta. The (1− δk,kMAX ) term indicates that if all subgroups
are aggregated using pim-gb, then host-gb is not performed. Using
(3), retrieving M , n, s, and kMAX , from the query and database
definitions, and estimating r(·), we find the optimal number of PIM
aggregated subgroups, k, to achieve the lowest Tgb.

V. EVALUATION
A. Methodology

Simulation: To evaluate our proposed methods, we developed a
gem5 simulation [11] based on the system from [1, 18] and avilable
at [19], having an RRAM bulk-bitwise PIM, running in a full-system
mode (running a Linux kernel), and including the gem5’s ruby cache
system. We take the coherency solution and scope consistency model
from [18]. The system parameters are listed in Table I.

Benchmark: We ran the SSB benchmark [12] with a scale factor of
ten (SF = 10) to evaluate the performance of our proposed methods.
SSB is an OLAP benchmark containing 13 queries, divided into four
query groups. We adopt the compiling procedure from [1]. Using
an offline in-house compiler, the SSB SQL queries are compiled
into a C++ code, which is then compiled with gcc. The query
execution divides the relation records into four equal groups (in page
granularity), and each group is assigned to a single thread. For a
GROUP-BY operation, the record sampling and estimation described
in Section IV are done once and shared among the four threads. The
sampling is performed over a single 2MB page, i.e., 32K records.

The relations of the SSB benchmark are stored as a single pre-
joined relation, the result of an equi-JOIN between the fact and
dimensions relations on the dimension keys. We populate the relation
according to [15] with non-uniform data. When required, we change
the parameters of the queries to retain similar query selectivity (the
ratio of filtered records out of the total records) as in the original
uniform data [12]. The pre-joined relation contains all the attributes
of the original relations, except the NAME and ADDRESS attributes of
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Q Selectivity Total
subgroups

Subgroups
in sample

PIM agg. subgroups
one-xb two-xb pimdb

1.1 2.3e-2 1 - 1 1 1
1.2 6.6e-4 1 - 1 1 1
1.3 8.4e-5 1 - 1 1 1
2.1 1.2e-2 280 121 4 0 0
2.2 1.6e-3 56 33 56 0 0
2.3 2e-4 7 4 7 0 7
3.1 3.4e-2 150 150 150 0 0
3.2 1.3e-3 600 27 27 0 0
3.3 4.7e-5 24 2 24 0 0
3.4 6.6e-7 4 0 4 0 4
4.1 2e-2 35 35 35 0 35
4.2 2.3e-3 50 29 50 0 0
4.3 9.1e-5 800 3 3 0 0

TABLE II: Query summary: Selectivity (the ratio of filtered records out of
the total records), the total number of potential subgroups according to query
and database details (total subgroups), subgroups found in the sampling for
the GROUP-BY estimation (subgroups in sample), and the number of PIM
aggregated subgroups. Q1.1–3 do not require a GROUP-BY and perform a
single aggregation using PIM.
the CUSTOMER and SUPPLIER dimension relations. These attributes
are long texts that are not used by the SSB queries. By not including
these attributes, we enable a single record of the pre-joined relation to
fit in a single crossbar row. Thus, the vertical partitioning described
in Section III is not required.

We ran our solution in two versions. The first version, named one-
xb, holds a record of the pre-joined relation in a single crossbar
row. The second version, named two-xb, implements the vertical
partitioning described in Section III, splitting records across two
crossbars, and evaluates cases where records are too large to fit
in a single crossbar. All attributes of the fact relation were placed
in a single crossbar; the attributes of the dimension relations were
placed in a second crossbar. The vertical partitioning changes the
latency of the PIM aggregation due to the required additional transfer
through the host of results between the partitions [1]. For all GROUP-
BY operations in SSB, the subgroup identifier attributes were from
the dimension relations, and the aggregated attributes were from
the fact relation, making two-xb the worst-case partitioning. To
perform aggregation in PIM, the filter results for each subgroup are
transferred between pages prior to the PIM aggregation, resulting
in a substantial overhead due to worst-case partitioning. If prior
knowledge of common subgroup identifiers is available, the most
common ones can be placed on the same crossbar with the attributes
from the fact relation, reducing the required data movement. From
this perspective, one-xb evaluates the best case for such a partition.
We repeated the pim-gb and host-gb empirical modeling described
in Section IV for the two-xb version.

Area and Power: To evaluate the area and power of the added
aggregation circuit from Section IV, we designed the circuit using
Verilog, synthesized it, and determined its area and power using
Synopsys Design Compiler and Cadence Innovus with TSMC CMOS
28nm technology. For the PIM module chip area, NVSim [21] was
modified to include the PIM controllers according to [1] and our
aggregation circuit per crossbar. The PIM module consists of eight
chips, and each occupying 346mm2. Fig. 5 shows the PIM module

1.1 1.2 1.3 2.1 2.2 2.3 3.1 3.2 3.3 3.4 4.1 4.2 4.3
Query

101

102

103

To
ta

l E
ne

rg
y 

[m
J]

one_xb two_xb pimdb

Fig. 7: PIM memory energy for the SSB benchmark.
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Fig. 8: Peak power for a single PIM chip for the SSB benchmark.
chip area breakdown, with the aggregation circuit consuming 13.9%
of the chip area. The area overhead of the aggregation circuit is
relatively high since it is added to each crossbar. To estimate the
PIM module power and energy on query execution, power and energy
parameters of the different parts of the PIM module are taken from [1]
(summarized in Table I) and summed by the gem5 simulation.

Comparisons: Our solution is compared against MonetDB, a
modern in-memory database management system for OLAP [13],
running on a server with two Intel Xeon processors (each has 16
cores at 2.1GHz), a total of 256GB DDR4-2400 memory, and running
Ubuntu. We ran two versions of MonetDB. The first version, named
mnt-reg, had the original SSB relation schema. A second version,
named mnt-join, was run with the pre-joined relation as in one-
xb. The reported latency for MonetDB only includes execution time
without SQL parsing and optimization latencies.

We also compared our aggregation circuit solution to PIMDB [1],
on which our system is based. We extend PIMDB to use the pre-
joined relation and GROUP-BY as in one-xb. PIMDB differs only in
its PIM aggregation, performing it purely with bulk-bitwise logic,
while our solution uses the aggregation circuit from Section IV.
PIMDB’s PIM aggregation is empirically modeled as in Section IV.
All other aspects of PIMDB and one-xb are identical.
B. Results

Execution Latency: Fig. 6 shows the execution latencies for the
SSB queries. The query execution summary is listed in Table II. One-
xb achieves the best execution latency, having a geo-mean speedup
of 7.46× and 4.65× over mnt-reg and mnt-join, respectively. If
the pre-joined relation is vertically partitioned across two crossbars
(two-xb), there is a geo-mean slowdown of 3.39× compared to one-
xb, which is, however, still 1.37× faster than mnt-join. PIMDB
has a 1.83× slowdown compared to one-xb, showing the latency
improvement achieved by our aggregation circuit. The improvement
in aggregation latency enables the GROUP-BY technique to assign
more subgroups for PIM aggregation, as shown in Table II.

For the GROUP-BY queries with the highest selectivity, most
notably Q2.1, Q3.1, and Q4.1, the PIM solutions exhibit low speedup
and even a slowdown compared to MonetDB. Since a read from the
PIM memory spans several crossbars from a page [1] and a record is
in a single crossbar on a page, reading a single record brings many
records from the memory to the host, 32 records in our system. This
read amplification cancels out the read reduction achieved by the



PIM filtering. With the low to no read reduction for PIM, the read
reduction techniques of MonetDB (e.g., filtering, indexing) and the
stronger system used for MonteDB gives it the advantage in such
cases. Note that if there are sufficiently few subgroups, a pure pim-
gb can be performed and achieve speedup even with high selectivity,
as with one-xb in Q3.1 and Q4.1.

Energy and Power: The resulting energy used by the PIM module
and the peak power drawn by a PIM chip are shown in Figs. 7
and 8, respectively. All queries require less than 1J for the PIM
module and less than 44W peak power per PIM chip. When PIMDB
uses PIM aggregation (Q1.1–1.3, Q2.3, Q3.4, and Q4.1), it consumes
4.31× more energy in geo-mean than one-xb, and its peak power is
2.92× higher than one-xb. However, the situation is reversed in the
other queries since one-xb uses PIM aggregation and PIMDB does
not. As bulk-bitwise PIM performs wide operations, spanning many
crossbar rows concurrently, it requires more energy in less time than
read operations at the PIM module. Hence, by not performing PIM
aggregation, PIMDB trades-off energy for latency. For the two-xb,
the PIM and read operations on more crossbars increase the peak
power at Q1.1–1.3. In the other queries, the pure host-gb keeps its
energy and peak power low.

Endurance: Fig. 9 shows the required endurance for a single
memory cell when running each query back-to-back (100% duty
cycle) for ten years. The numbers in the figure assume that wear
leveling techniques are performed, and the operations are uniformly
distributed across the cells of each row [1]. For each query, the
cell usage is the maximum number of operations a single crossbar
row experiences, divided by the number of cells in a crossbar row.
Reported endurance for RRAM [22] shows 1012 writes per cell,
which is sufficient for all solutions for ten years. Comparing one-
xb and PIMDB, using the aggregation circuit in one-xb does not
always improve endurance. This is because one-xb might perform
PIM aggregation, whereas PIMDB does pure host aggregation. On
Q2.3 and Q4.1, where they both perform PIM aggregation, PIMDB
latency is longer and takes more time to carry out the operations. One-
xb can achieve the same effect by stalling. On Q1.1–1.3 and Q3.4,
where there are few PIM aggregations for both one-xb and PIMDB,
making the latency similar, the lifetime for one-xb is 3.21× better
in geo-mean. The number of writes per cell is even lower for two-xb
since the PIM operations are distributed across two pages.

VI. RELATED WORKS

Previous works on bulk-bitwise PIM [1,2,4–6] suggested database
applications, and specifically OLAP applications, for bulk-bitwise
PIM. These works, however, did not show how a full database
benchmark can be performed since they focus on architecture and
hardware rather than algorithms. Specifically, these works neither
showed how GROUP-BY operations can be performed nor how to
address JOIN operations.

PushdownDB [10] showed how to perform GROUP-BY using the
available in-cloud database primitives. These primitives are similar to
bulk-bitwise PIM primitive database operations: filter and aggregate.
Hence, techniques can be borrowed between the domains.

VII. CONCLUSION

This paper presented, for the first time, how bulk-bitwise PIM
can perform a full database benchmark, focusing on OLAP database
queries. We showed how to adapt a GROUP-BY operation to bulk-
bitwise PIM by adding an aggregation circuit and modeling the
latency of bulk-bitwise PIM operations. We also argue that using
pre-joined relations in bulk-bitwise PIM is efficient for OLAP ap-
plications. Bulk-bitwise PIM can substantially accelerate execution
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Fig. 9: Required cell endurance for the SSB benchmark queries, assuming
each query is performed back-to-back for ten years.
for single relations, hence storing common pre-joined relations can
accelerate the common cases.

Using GROUP-BY and pre-joined relations, we evaluated the per-
formance of bulk-bitwise PIM on the SSB benchmark and compared
it to MonetDB, a modern in-memory database. Bulk-bitwise PIM
demonstrates a geo-mean speedup of 7.46× and 4.65×, respectively,
over the standard and pre-joined MonetDB versions of SSB.
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