
On the Viability of using LLMs for SW/HW Co-Design:
An Example in Designing CiM DNN Accelerators

Zheyu Yan‡ Yifan Qin Xiaobo Sharon Hu Yiyu Shi†
University of Notre Dame, {‡zyan2, †yshi4}@nd.edu

Abstract—Deep Neural Networks (DNNs) have demonstrated
impressive performance across a wide range of tasks. However,
deploying DNNs on edge devices poses significant challenges due to
stringent power and computational budgets. An effective solution
to this issue is software-hardware (SW-HW) co-design, which
allows for the tailored creation of DNN models and hardware
architectures that optimally utilize available resources. However,
SW-HW co-design traditionally suffers from slow optimization
speeds because their optimizers do not make use of heuristic
knowledge, also known as the “cold start” problem. In this study,
we present a novel approach that leverages Large Language
Models (LLMs) to address this issue. By utilizing the abundant
knowledge of pre-trained LLMs in the co-design optimization
process, we effectively bypass the cold start problem, substantially
accelerating the design process. The proposed method achieves a
significant speedup of 25x. This advancement paves the way for
the rapid and efficient deployment of DNNs on edge devices.

I. INTRODUCTIONS

Deep neural networks (DNNs) have made extraordinary
advancements, exceeding human performance across numerous
perception tasks. The recent emergence of deep learning-
based generative models, including DALL-E [1] and the
GPT family [2], have significantly transformed our workflows.
Currently, there is a clear trend toward embedding on-device
intelligence into edge platforms such as mobile phones, watches,
and cars, revolutionizing various aspects of daily life [3].
However, these edge platforms, with their limited computational
resources and stringent power constraints, pose significant
challenges in DNN deployment. These conditions call for the
development of more energy-efficient DNN hardware, going
beyond general-purpose CPUs and GPUs.

Application-Specific Integrated Circuits (ASICs) and Field-
Programmable Gate Arrays (FPGAs) are potential solutions for
achieving energy-efficient DNN inference on edge devices,
given their ability to be specifically tailored to accelerate
DNN operations. Additionally, Compute-in-Memory (CiM)
DNN accelerators [4]–[7] emerge as strong contenders to
replace CPUs and GPUs for DNN inference acceleration.
Unlike traditional von Neumann architecture platforms, which
necessitate frequent data transfers between memory and com-
putational components, CiM DNN accelerators lower energy
consumption by facilitating in-situ computation right at the
data storage location. Furthermore, the advent of emerging
non-volatile memory (NVM) devices, such as ferroelectric
field-effect transistors (FeFETs) and resistive random-access
memories (RRAMs), allows NVCiM accelerators to reach
superior memory density and improved energy efficiency,
surpassing conventional MOSFET-based designs [3].

However, focusing solely on the hardware aspect is insuf-
ficient to attain high-efficiency DNN inference. The software
aspect, i.e., DNN models, must also be specifically designed to
optimize the underlying hardware. To address this, a hardware-
aware Neural Architecture Search (NAS) approach [8] has
been proposed. This approach automatically explores DNN
topologies and pinpoints the optimal design that balances
high DNN performance with low hardware cost. Taking
a step further, Software-Hardware (SW-HW) co-design of
DNN accelerators [9] has emerged, where DNN topology and
underlying hardware are simultaneously designed. This results
in superior performance and reduced hardware cost, since
the optimal solution across both design spaces is co-explored,
rather than being designed separately as in hardware-aware
NAS. The NAS-based SW-HW co-design provides state-of-the-
art performance in balancing between DNN performance and
hardware cost.

However, NAS-based SW-HW co-design is immensely time-
consuming, often requiring hundreds of GPU hours. This is
due to the need to explore hundreds, if not thousands, of design
candidates.

A significant contributor to this time consumption is the “cold
start” issue. Regardless of whether Reinforcement Learning
(RL) or Genetic Algorithms-based methods are used, the design
optimizer starts from random guesses among all possible de-
signs, gradually converging to the optimal solution. Essentially,
the design optimizer learns the attributes of an optimal design
from scratch. Yet, in reality, there is an abundance of heuristic
knowledge that could be utilized in training the optimizer. For
instance, given the same underlying hardware, a DNN model
with more channels in each layer generally achieves higher
accuracy, albeit at a higher hardware cost. Regrettably, such
information cannot be used to train RL or Genetic Algorithm-
based methods, as there is no clear way to generate rewards
utilizing such information.

In response to this challenge, we propose to employ Large
Language Models (LLMs) as the design optimizer1. LLMs,
trained on extensive human language corpora, can comprehend
content such as research papers and codes. They can, therefore,
be fine-tuned by incorporating the latest research outcomes
in DNN topology design, DNN accelerator design, and HW-
SW co-design. In doing so, LLMs become specialists in these
fields and can utilize the heuristics in the process of suggesting
candidate designs, thereby circumventing the “cold start” issue.

1This research was partially supported by ACCESS , sponsored by InnoHK
funding, Hong Kong SAR.

ar
X

iv
:2

30
6.

06
92

3v
1 

 [
cs

.L
G

] 
 1

2 
Ju

n 
20

23



In this work, we implement such a framework that adopts
LLMs to perform SW-HW co-design and validate its efficiency
via experiments. The contributions of this work are multifold:

• We introduce LCDA, the first-ever framework that utilizes
Large Language Models for the hardware-software Co-
Design of Accelerators for deep neural networks.

• We validate the efficacy of LCDA by co-designing the
DNN topology and Compute-in-Memory (CiM) DNN
accelerators.

• Our experimental results indicate a substantial 25X
speedup compared to the state-of-the-art (SOTA) NACIM
method [10], all while maintaining similar performance
levels.

II. RELATED WORKS

A. Neural Architecture Search and SW-HW Co-Design

Neural Architecture Search (NAS) has emerged as a game-
changer in various machine learning applications such as
image classification, image segmentation, and video action
recognition. By autonomously discovering high-performing
neural architectures, NAS obviates the need for expert manual
design. A standard NAS system encompasses a controller
and a trainer. The controller generates neural architecture
parameters, or child networks, which are subsequently trained
and assessed for accuracy. Feedback from this process informs
updates to the controller. The search procedure continues until
a pre-set limit of predicted child networks is achieved, with
the highest accuracy architecture ultimately selected. While
past research has demonstrated that automatically discovered
neural architectures can rival the accuracy of those designed
by humans, they often come with complex structures that
can hinder their practical application, such as necessitating
excessive bandwidth for secure inference.

In the specific domain of software-hardware (SW-HW) co-
design, researchers [8], [10] have advocated a co-exploration
methodology that amalgamates the exploration of neural archi-
tecture and hardware design spaces. This approach, contrasting
with those focused solely on fixed hardware, accommodates
various hardware platforms, resulting in viable hardware
solutions that deliver higher accuracy without breaching time
constraints. Through this integrative approach, co-exploration
enables the identification of highly efficient solutions. For
instance, the authors of [11] present the FNAS framework,
which concurrently determines the FPGA accelerator design
and computation schedule during the child networks’ search.
Additionally, in [12], the authors expand the methodology
to include quantization considerations during FPGA design,
thereby further boosting system performance.

B. Compute-in-Memory DNN Accelerators

The core computational engine of NVM-based CiM DNN ac-
celerators is the crossbar array structure. Capable of performing
matrix-vector multiplication in a single clock cycle, crossbar
arrays store matrix values (for example, weights in DNNs) at
the intersecting points of vertical and horizontal lines using
NVM devices such as RRAMs and FeFETs. Vector values,

XBar

XBarXBar

XBar XBar

XBarXBar

XBar

Shift & Add

Pooling Activation

eDRAM Buffer
Output Register

(a) CiM DNN accelerator.

DAC

DAC

DAC

DAC

ADC ADCADC

Mux

Synapse

(b) Crossbar array.

Fig. 1: Illustration of the NVCiM DNN accelerator architecture
for (a) architecture overview and (b) crossbar (XBar) array. In
a crossbar array, the input is fed horizontally and multiplied
by weights stored in the NVM devices at each cross point.
The multiplication results are summed up vertically and the
sum serves as an output. The outputs are converted to the
digital domain and further processed using digital units such
as non-linear activation and pooling.

like inputs for DNNs, are introduced via horizontal data lines,
or word lines, in voltage form. The resultant output is then
conveyed through vertical lines (bit lines) in the form of current.
While the crossbar array executes computations in the analog
domain following Kirchhoff’s laws, ancillary digital circuits
are required for other fundamental DNN operations such as
shift & add, pooling, and non-linear activation. Intermediate
data storage requires additional buffers, and digital-to-analog
as well as analog-to-digital conversions are necessary between
different domain components.

However, NVM-based crossbar arrays are prone to several
variations and noise sources, including both spatial and
temporal variations. Spatial variations stem from manufacturing
defects and can manifest on both local and global scales.
Moreover, NVM devices are subject to temporal variations
resulting from random fluctuations in the device material.
These variations in conductance can arise when the device is
programmed at varying instances. Contrary to spatial variations,
temporal variations are generally device-independent but may
be influenced by the programmed value [13]. For this research,
we consider the non-idealities to be uncorrelated amongst the
NVM devices. Nonetheless, our framework can be adjusted to
account for other variation sources with suitable modifications.

III. PROPOSED METHOD

In this section, we present LCDA, our novel framework
utilizing Large Language Models for the hardware-software Co-
Design of Accelerators for deep neural networks. LCDA seeks
to identify the optimal pairing of DNN topology and hardware
design within a user-provided design space, balancing high
DNN performance with low hardware cost. Like existing co-
design frameworks, LCDA comprises four core components: (1)
design optimizer, (2) design generator, (3) DNN performance
evaluator, and (4) hardware cost evaluator. In contrast to prior
works, our approach innovatively incorporates large language
models in the design optimizer, while the other components
remain unchanged. To elucidate our proposed methodology, we
use the co-design of DNN topology and Compute-in-Memory



(CiM) DNN accelerators as an illustrative example, providing
a detailed overview of the implementation of these four major
components.

A. Design Optimizer

The design optimizer serves as a crucial component in auto-
mated hardware-software co-design. It processes all historical
information about previously explored designs during the co-
design process and generates a fresh DNN topology-hardware
specification pair believed to deliver optimal performance and
minimum hardware cost. Existing methods using reinforcement
learning (RL) [9], or genetic algorithms [14], have demonstrated
effectiveness in generating such optimal design pairs. However,
these methods necessitate the exploration of hundreds of diverse
designs and are thus notably time-consuming, often requiring
hundreds of GPU hours.

This time consumption issue largely arises from the “cold
start” problem. Whether utilizing RL or genetic algorithm-
based methods, the design optimizer commences from a
random selection among all possible designs and incrementally
converges toward the optimal solution. Consequently, the design
optimizer learns the characteristics of an optimal design from
scratch. This process overlooks a wealth of heuristic knowledge
that could be harnessed to train the optimizer.

To tackle this problem, we propose leveraging large language
models (LLMs) as the design optimizer. LLMs, trained on
extensive human language corpora, possess the ability to
understand diverse content such as research papers and code.
This allows them to be fine-tuned using recent research
findings in DNN topology design, DNN accelerator design,
and hardware-software co-design. Consequently, LLMs become
proficient in these domains and can draw upon these heuristics
during candidate design generation, thereby circumventing the
“cold start” issue. In this work, we employ GPT-4 [2], pre-
trained on the aforementioned content, as the design optimizer.

The application of LLMs necessitates meticulously crafted
prompts (inputs) to elicit desired behaviors. We follow the
approach demonstrated by GENIUS [15]. An exemplary prompt
template is presented in Algorithm 1.

B. Design Generator

The design generator derives a DNN topology and a hardware
instance from each design candidate proposed by the design
optimizer. For the parsing of GPT-4 outputs and subsequent
generation of DNN topologies, we adopt the method presented
by [15]. We use the approach detailed in [10] to generate
hardware design specifications for Compute-in-Memory (CiM)
DNN accelerators.

C. DNN Performance Evaluator

To evaluate the performance of the DNN topology produced
by the design generator, the topology first needs to be trained
using the target dataset, and then tested in the target environ-
ment. As DNN models deployed on CiM DNN accelerators are
susceptible to the influence of device variations, we employ the
noise injection training method [10] for each DNN topology.

Algorithm 1 GPT-Prompts (ldes, lperf , Model, Choices)

// Input: a list of explored design ldes, the corresponding nor-
malized performance of each design lperf , design backbone
Model, and design space Choices.
// Output: a prompt to the GPT model;
prompts =“You are an expert in the field of neural
architecture search.”;
promptu = “‘Your task is to assist me in selecting the best
rollout numbers for a given model architecture. The model
will be trained and tested on CIFAR10, and your objective
will be to maximize the model’s performance on CIFAR10.
The model architecture will be defined as the following.
{Model}
For the ‘rollout’ variable to design the model, the available
number for each index would be: {Choices}
Your objective is to define the optimal number of rollouts for
each layer based on the given options above to maximize
the model’s performance on CIFAR10.
The model’s performance is a combination of hardware
performance and model accuracy. If the hardware is invalid
(e.g., too large in area), the performance I give you will
be -1. After you give me a rollout list, I will give you the
model’s performance I calculated.
Your response should be the rollout list consisting of 6 num-
ber pairs(e.g. [[32,3],[32,3],[64,3],[64,3],[128,3],[128,3]]).
Here are some experimental results that you can use as a
reference: {ldes, lperf}
Please suggest a rollout list that can improve the model’s
performance on CIFAR10 beyond the experimental results
provided above. Please do not include anything else other
than the rollout list in your response.”’
return prompts + promptu;

The performance of the DNN under the effects of device
variations is evaluated using the Monte Carlo simulation-based
method [16].

D. Hardware Cost Evaluator

Following the method in NACIM [10], we leverage the open-
source simulation tool, DNN+NeuroSIM [17], to evaluate the
hardware cost of each design candidate proposed by the design
generator. DNN+NeuroSim is a comprehensive framework
that simulates deep neural network (DNN) inference and on-
chip training performance on hardware accelerators based
on near-memory or in-memory computing architectures. It
is compatible with various device technologies, including
SRAM and emerging non-volatile memory (NVM) like RRAM,
PCM, STT-MRAM, and FeFET. As a circuit-level macro
model, it serves to benchmark neuro-inspired architectures by
evaluating circuit-level performance metrics such as chip area,
latency, dynamic energy, and leakage power. With PyTorch
and TensorFlow wrappers, the DNN+NeuroSim framework
supports a hierarchical organization from device-level properties
to circuit-level modules, chip-level structures, and algorithm-
level evaluation.



E. Framework Overview

The LCDA framework executes up to a user-specified
maximum of EP episodes, exploring EP design candidates
in the process. In each iteration, a prompt is generated by
Alg. 1 that encompasses the design space description and
results of past explorations, and this prompt is fed to the
LLM model. The responses from the LLM model are parsed
by the design generator to produce a DNN model and a
hardware design instance. These outputs are subsequently
assessed by the DNN Performance Evaluator and Hardware
Cost Evaluator for performance and cost, respectively. The
DNN model performance and hardware cost are consolidated
into a single performance score through a reward function. This
candidate design and its corresponding performance score are
then documented for historical reference. Subsequently, LCDA
advances to the next iteration.

Algorithm 2 LCDA (Model, Choices, EP , f )

// Input: DNN and hardware design backbone Model, design
space Choices, number of maximum design choices to be
explored EP , and reward function f ;
// Output: best design candidate desopt
Initialize design list ldes;
Initialize normalized performance list lperf ;
for i in 0...EP do
prompt = GPT-Prompts (ldes, lperf , Model, Choices);
Send prompt to LLM;
Parse LLM respond and get desi;
Generate DNN topology and hardware instance using
Design Generator;
Set DNN Performance Evaluator result as acci;
Set Hardware Cost Evaluator result as hwi;
perfi = f(acci, hwi);
Add desi and perfi to ldes and lperf , respectively;

end for

IV. EXPERIMENTAL EVALUATION

In this study, we employ LCDA to design the pairs of DNN
models and CiM DNN accelerators, following the search space
outlined in NACIM [10]. We specifically concentrate on the
design of DNN models for image classification tasks using the
CIFAR-10 [18] dataset. The target DNN model consists of six
convolution layers and two fully connected layers. LCDA is
tasked with designing the kernel size and number of output
channels, while the hidden size between the fully connected
layers is set at 1024.

The target CiM DNN accelerator design follows the ISAAC
model [4]. LCDA determines the hyperparameters for hardware
specification within the same search space as NACIM [10].
Once the DNN models and hardware design hyperparameters
are established, LCDA uses NeuroSIM to produce a CiM DNN
accelerator tailored to this specific design.

In order to demonstrate LCDA’s effectiveness, we perform
two sets of experiments focusing on the multi-objective SW-
HW co-design of CiM DNN accelerators. The first experiment

seeks to strike a balance between DNN accuracy and energy
consumption during inference, while the second targets a trade-
off between DNN accuracy and inference latency. In both
experiments, we compare the performance of LCDA with the
state-of-the-art SW-HW co-design method, NACIM, which
employs reinforcement learning as its optimization strategy.

A. Design Trade-offs for DNN Accuracy and Energy

We use a reward function of

rewardae = Accuracy −
√

Energy

8× 107
(1)

where 8 × 107 is a normalization factor that normalizes the
energy of each design to the original ISAAC design. Note that
the energy is the lower the better.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Energy (pJ) 1e7

50

55

60

65

70

75

Ac
cu

ra
cy

 (%
)

Optimal
LCDA
NACIM

Fig. 2: Accuracy-energy trade-offs of different design candi-
dates provided by LCDA (blue square) and NACIM (orange
dot). The Y-axis represents accuracy and the X-axis represents
energy consumption in pJ.

In Figure 2, design candidates provided by both LCDA and
NACIM are demonstrated. Each point in this figure denotes one
design candidate. Its position on the Y-axis signifies the design’s
accuracy, while the X-axis indicates its energy consumption
(in pJ). Designs located nearer to the upper-left corner are
preferable. The blue dots correspond to design candidates
from LCDA, while the orange squares are those from NACIM.
When focusing on the upper-left region, LCDA and NACIM
exhibit similar optimal results, and the Pareto Frontiers of both
designs are alike. However, NACIM prioritizes candidates with
lower energy consumption, leading to designs with somewhat
diminished accuracy. Conversely, LCDA presents a spectrum
of candidate designs with various energy consumptions, all
yielding a reasonably high level of accuracy.

Digging deeper into each design candidate’s parameters
reveals varying strategies between LCDA and NACIM, even
though both explore a range of hardware design parameters.
NACIM typically maintains the channel size constant while
exploring diverse kernel sizes, often leading to less desirable
kernel sizes such as (1,7). It also ventures into designs with
fewer output channels than input channels. In contrast, LCDA
centers its exploration around different output channel numbers
while always maintaining logical design choices. For instance,
LCDA ensures that each layer’s output channel number is
greater than or equal to its input channel number, and never
increases the number of output channels by more than 4 times.



Building on the knowledge of DNN properties, DNN
accelerator characteristics, and SW-HW co-design principles,
LLMs in LCDA can efficiently sidestep offering unreasonable
design candidates. This significantly reduces the time and
effort required for evaluating such candidates, leading to a
markedly more efficient process of finding optimal designs. This
efficiency is highlighted in a comparison of required episodes:
while NACIM necessitates a minimum of 500 episodes (i.e.,
exploring 500 design candidates) to pinpoint the optimal
solution, LCDA can unearth comparable solutions within
just 20 episodes. This staggering difference translates into
a speedup of 25 times, a crucial achievement that underscores
the effectiveness and efficiency of the LCDA framework.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Episode number

0.2

0.0

0.2

0.4

0.6

Re
wa

rd

(a) Rewards in early episodes

LCDA
NACIM

25 50 75 100 125 150 175 200 225
Episode number

(b) Rewards in later episodes 
(zoomed out)

LCDA (Projected)
NACIM

Fig. 3: Rewards of different design candidates provided by
LCDA (blue line) and NACIM (orange line). Figure (a) shows
the results for the first 20 episodes and (b) shows the results
of the 21st to 500th episode. Note that we only perform 20
episodes of search in LCDA, so we use the maximum reward
of the first 20 episodes of LCDA to project its results in (b).

To further emphasize this remarkable advantage, Figure 3
presents the reward values of design candidates provided by
both methods across different search episodes. Notably, in
LCDA, we only conduct 20 search episodes, and so we project
the maximum reward from LCDA’s first 20 episodes into
later episodes in Figure 3 (b). Both NACIM and LCDA start
with designs that receive a high reward. LCDA consistently
explores designs with high rewards, while NACIM follows a
more random approach. In later episodes, NACIM gradually
approaches LCDA’s reward values, indicating that it’s slowly
learning the knowledge that LCDA has from the get-go. This
serves to further highlight that with prior SW-HW co-design
knowledge, LCDA effectively bypasses the ’cold start’ problem
typical of the RL-based NAS method that NACIM uses, leading
to a remarkable speedup. This 25-fold increase in efficiency
underlines the significant advantage offered by the LCDA
framework and its incorporation of large language models.

B. Design Trade-offs for DNN Accuracy and Latency

We use a reward function of

rewardal = Accuracy +
1

Latency
× 1

1600
(2)

where 1
Latency indicated frame per second (FPS) and 1600

FPS is a normalization factor that normalizes the FPS of each

design to the original ISAAC design. Note that the latency is
the lower the better.

0.5 1.0 1.5 2.0 2.5 3.0
Latency (ns) 1e6

50

55

60

65

70

75

Ac
cu

ra
cy

 (%
)

Optimal
LCDA
NACIM

Fig. 4: Accuracy-latency trade-offs of different design candi-
dates provided by LCDA (blue square) and NACIM (orange
dot). The Y-axis represents accuracy and the X-axis represents
latency in ns.

Fig. 4 presents the design candidates provided by LCDA
and NACIM. Each data point denotes a design candidate; its
Y-axis value indicates accuracy, and its X-axis value specifies
latency (in ns). Designs nearer to the upper-left corner are
more desirable.

In this scenario, however, LCDA falls short in providing
designs that surpass those provided by NACIM, except for
one outlier in the upper-left corner. LCDA struggles to deliver
designs with sufficiently low latency.

Upon delving into each design candidate offered by LCDA, it
became evident that LCDA’s shortcomings stem from incorrect
knowledge learned during GPT-4 pretraining. Specifically, GPT-
4, having been primarily trained on deep learning papers, is
deficient in understanding the behavior of DNN models de-
ployed on CiM accelerators. It relies on its general knowledge,
which can lead to errors when it conflicts with the unique
requirements of CiM accelerators.

Two fundamental misunderstandings by GPT-4 regarding
kernel sizes stand out. First, while it’s generally true that larger
kernel sizes enhance accuracy, this doesn’t always hold for
CiM accelerators, given larger kernel sizes also increase the
impact of device variations. Despite this, GPT-4 persistently
enlarges kernel sizes to improve accuracy, leading to failures.
Second, smaller kernel sizes typically imply lower latency in
generic cases, but this is not universally valid. With kernel
sizes of 3x3 and 7x7, the crossbar array is highly utilized,
improving efficiency. However, a kernel size of 5x5 can result
in a very low utilization rate and lower efficiency, potentially
increasing latency. Unaware of this, GPT-4 consistently makes
such mistakes.

These findings indicate that, in certain scenarios, the pre-
trained GPT-4 model lacks the requisite knowledge for SW-HW
co-design of CiM accelerators. A specific fine-tuning tailored
to this task is necessary. Unfortunately, in this study, we don’t
have the privilege to fine-tune the GPT-4 model, hence we are
unable to present results for a fine-tuned optimizer.

C. Ablation Study: LLM Optimization without Knowledge
We propose to involve LLMs in SW-HW co-design to solve

the “cold start” problem. Here we show the result of using



LLMs to optimize the designs without using carefully generated
prompts that indicates that they are performing SW-HW co-
design as an ablation study. This method is named LCDA-naive
Here, we use trading off energy consumption and accuracy as
an example.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Energy (pJ) 1e7

50

55

60

65

70

75

Ac
cu

ra
cy

 (%
)

Optimal

LCDA
LCDA-Naive

Fig. 5: Accuracy-Energy trade-offs of different design can-
didates provided by LCDA (blue square) and LCDA-naive
(orange dot). The Y-axis represents accuracy and the X-axis
represents energy consumption in pJ.

Results in 5 clearly show that, without knowing it’s per-
forming co-design tasks for DNN accelerators, LCDA-naive
fails to provide efficient designs with optimal accuracy and
energy consumption. This further demonstrates the importance
of prior knowledge.

V. CONCLUSIONS

In this work, we propose the use of Language Models (LLMs)
as optimizers for SW-HW co-design, as an alternative to RL
or genetic algorithms. We introduce the LCDA framework
to facilitate this approach. As an example task, we apply
LCDA to co-designing DNN topology and CiM accelerators,
demonstrating that LCDA achieves up to a 25x speedup while
maintaining comparable performance to state-of-the-art co-
design frameworks.

Furthermore, we highlight some limitations of LCDA in
certain corner cases, which pave the way for future research
opportunities, including:

• Explainable NAS: The changes in design parameters be-
tween consecutive episodes are human-readable, allowing
users to request explanations by sending prompts to LLMs.
This transparency breaks the black box nature of RL-based
NAS and opens doors for leveraging the explainability of
LLMs.

• Open-source LLMs: Our experiments reveal that optimal
performance in co-design tasks often requires fine-tuning
LLMs, which is not possible with commercial LLMs that
function as black boxes. This presents opportunities for
developing open-source LLMs that can be customized and
tailored for co-design purposes.

• Design tools: While we hand-picked several hyperparam-
eters and utilized NeuroSIM as our design tool, future
exploration using AutoGPT [19] can unlock additional
design tool possibilities and advancements in the field.

Overall, our work demonstrates the potential of leveraging
LLMs and the LCDA framework for SW-HW co-design,

while also highlighting directions for future investigations and
advancements.

REFERENCES

[1] A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen,
and I. Sutskever, “Zero-shot text-to-image generation,” in International
Conference on Machine Learning, pp. 8821–8831, PMLR, 2021.

[2] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, et al., “Language models
are few-shot learners,” Advances in neural information processing systems,
vol. 33, pp. 1877–1901, 2020.

[3] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture
for energy-efficient dataflow for convolutional neural networks,” ACM
SIGARCH computer architecture news, vol. 44, no. 3, pp. 367–379, 2016.

[4] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P.
Strachan, M. Hu, R. S. Williams, and V. Srikumar, “Isaac: A convolutional
neural network accelerator with in-situ analog arithmetic in crossbars,”
ACM SIGARCH Computer Architecture News, vol. 44, no. 3, pp. 14–26,
2016.

[5] Z. Yan, X. S. Hu, and Y. Shi, “Swim: Selective write-verify for
computing-in-memory neural accelerators,” in 2022 59th ACM/IEEE
Design Automation Conference (DAC), IEEE, 2022.

[6] Z. Yan, X. S. Hu, and Y. Shi, “Computing-in-memory neural network
accelerators for safety-critical systems: Can small device variations
be disastrous?,” in Proceedings of the 41st IEEE/ACM International
Conference on Computer-Aided Design, pp. 1–9, 2022.

[7] Z. Yan, Y. Shi, W. Liao, M. Hashimoto, X. Zhou, and C. Zhuo, “When
single event upset meets deep neural networks: Observations, explorations,
and remedies,” in 2020 25th Asia and South Pacific Design Automation
Conference (ASP-DAC), pp. 163–168, IEEE, 2020.

[8] B. Wu, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian, P. Vajda, Y. Jia,
and K. Keutzer, “Fbnet: Hardware-aware efficient convnet design via
differentiable neural architecture search,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 10734–
10742, 2019.

[9] W. Jiang, L. Yang, E. H.-M. Sha, Q. Zhuge, S. Gu, S. Dasgupta, Y. Shi,
and J. Hu, “Hardware/software co-exploration of neural architectures,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 39, no. 12, pp. 4805–4815, 2020.

[10] W. Jiang, Q. Lou, Z. Yan, L. Yang, J. Hu, X. S. Hu, and Y. Shi,
“Device-circuit-architecture co-exploration for computing-in-memory
neural accelerators,” IEEE Transactions on Computers, vol. 70, no. 4,
pp. 595–605, 2020.

[11] W. Jiang, X. Zhang, E. H.-M. Sha, L. Yang, Q. Zhuge, Y. Shi, and J. Hu,
“Accuracy vs. efficiency: Achieving both through fpga-implementation
aware neural architecture search,” in Proceedings of the 56th Annual
Design Automation Conference 2019, pp. 1–6, 2019.

[12] S. Han, H. Cai, L. Zhu, J. Lin, K. Wang, Z. Liu, and Y. Lin, “Design
automation for efficient deep learning computing,” arXiv preprint
arXiv:1904.10616, 2019.

[13] B. Feinberg, S. Wang, and E. Ipek, “Making memristive neural network
accelerators reliable,” in 2018 IEEE International Symposium on High
Performance Computer Architecture (HPCA), pp. 52–65, IEEE, 2018.

[14] Z. Lu, I. Whalen, V. Boddeti, Y. Dhebar, K. Deb, E. Goodman, and
W. Banzhaf, “Nsga-net: neural architecture search using multi-objective
genetic algorithm,” in Proceedings of the genetic and evolutionary
computation conference, pp. 419–427, 2019.

[15] M. Zheng, X. Su, S. You, F. Wang, C. Qian, C. Xu, and S. Al-
banie, “Can gpt-4 perform neural architecture search?,” arXiv preprint
arXiv:2304.10970, 2023.

[16] Z. Yan, D.-C. Juan, X. S. Hu, and Y. Shi, “Uncertainty modeling of
emerging device based computing-in-memory neural accelerators with
application to neural architecture search,” in 2021 26th Asia and South
Pacific Design Automation Conference (ASP-DAC), pp. 859–864, IEEE,
2021.

[17] X. Peng, S. Huang, Y. Luo, X. Sun, and S. Yu, “Dnn+ neurosim: An end-
to-end benchmarking framework for compute-in-memory accelerators
with versatile device technologies,” in 2019 IEEE international electron
devices meeting (IEDM), pp. 32–5, IEEE, 2019.

[18] A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of features
from tiny images,” 2009.

[19] Significant-Gravitas, “Auto-gpt.” https://github.com/Significant-Gravitas/
Auto-GPT, 2023.

https://github.com/Significant-Gravitas/Auto-GPT
https://github.com/Significant-Gravitas/Auto-GPT

	Introductions
	Related Works
	Neural Architecture Search and SW-HW Co-Design
	Compute-in-Memory DNN Accelerators

	Proposed Method
	Design Optimizer
	Design Generator
	DNN Performance Evaluator
	Hardware Cost Evaluator
	Framework Overview

	Experimental Evaluation
	Design Trade-offs for DNN Accuracy and Energy
	Design Trade-offs for DNN Accuracy and Latency
	Ablation Study: LLM Optimization without Knowledge

	Conclusions
	References

