
A Decentralized Online Social Network with
Efficient User-Driven Replication

Rammohan Narendula, Thanasis G. Papaioannou, and Karl Aberer

School of Computer and Communication Sciences, EPFL, Switzerland

Email: firstname.lastname@epfl.ch

Abstract—Unprecedented growth of online social networks
(OSNs) increasingly makes privacy advocates and government
agencies worrisome alike. In this paper, we propose My3,
a privacy-friendly decentralized alternative for online social
networking. The My3 system exploits well-known interesting
properties of the current online social networks in its novel
design namely, locality of access, predictable access times,
geolocalization of friends, unique access requirements of the
social content, and implicit trust among friends. It allows users
to exercise finer granular access control on the content, thus
making My3 extremely privacy-preserving. Moreover, we propose
different replication strategies that users may independently
choose for meeting their personalized performance objectives.
A detailed performance study evaluates the system regarding
profile availability, access delay, freshness and storage load. By
using real-world data traces, we prove that My3 offers high
availability even with low average online time of users in the
network.

Keywords-privacy; trust; decentralized social networks

I. INTRODUCTION

Online social network paradigm has taken the Web 2.0

into unprecedented scales by offering innovative tools for

networking among users and distributing the user-generated

content. The conventional social networks (e.g. Facebook.com,

Google Plus) have recently seen an explosive growth. Face-

book has currently nearly 900 million users active on the

service at least once in a month. As a result, these OSNs

have become store houses of unprecedented amount of data in

the form of messages, photos, links, and personal information.

Online social network portals continue to evolve towards one-

stop hubs for content in a way that influences the future

of the Internet [1]. However, social networking portals that

are operated in a cloud infrastructure maintained by a single

authority (e.g., Facebook or Google) will strategically have

greater stakes in protecting the interests of the advertisers

than addressing the privacy requirements of the users. During

sign-up time, users consciously or unconsciously permit the

organizations to share their personal information with third-

parties in whatever form the organizations choose to [2]. In

addition, the leakage of personal information from OSNs can

be associated with the user activity on non-OSN sites as

well [3]. Moreover, as social information owned by a single

authority grows, so does its financial power. Even if we trust

that the provider is motivated to protect user data, large-scale

data breaches are still possible as reported recently. In order to

address privacy concerns of OSN users, research community

has resorted to the decentralized (often P2P-based) paradigm

for OSN content management. Replacing the big-brother with

a community of users, enables OSN users to have more control

on their profile content.

In this paper, we present My3, a decentralized online social

network that operates based on the resources contributed by

its users. We briefly outline the system architecture originally

described in [4] and mainly focus on the distributed storage

layer. Specifically, we propose a number of profile replication

algorithms that can be independently employed by users to

meet different performance objectives of their choice, namely

high profile availability, high data freshness (i.e., low delay

for data consistency), low access delay, low storage overhead

or a certain combination of them. The design of the My3

system exploits several properties of the conventional online

social networks: (1) a user’s friends are clustered in a few

geographical locations and almost all the content accesses are

initiated from these locations (2) access patterns and times of

content accesses can be approximated with high precision to

a large extent. By employing real data traces from Facebook

and Twitter, we experimentally prove the effectiveness of our

replication algorithms towards their respective goals when

jointly or independently chosen by users. According to our

results, a total -not necessarily continuous- online time of 40

minutes by a user, is enough for achieving availability higher

than 90% with 4-5 profile replicas.

The remainder of this paper is organized as follows: In

Section II, we discuss the background behind the My3 system

design. The storage layer is discussed in Section III, followed

by replication algorithms. In Section VI, we evaluate the

performance of the My3 design w.r.t. several criteria. In

Section VII, we discuss the related work and, finally in Section

VIII, we conclude and outline our future work.

II. MOTIVATION

In this section, we explain the properties of the conventional

social networks that drive the design of My3 and its replica

selection algorithms.

We observe that every user in an OSN has friends scattered

over a limited set of geographical locations (e.g. his home

town, working location, home country, location of previous

institute etc.) as shown in Fig. 1. This fact can be exploited

to choose replicas located in one or more of these locations

so that content stays in the proximity of the friends.

2012 ASE/IEEE International Conference on Social Computing and 2012 ASE/IEEE International Conference on Privacy, Security,

Risk and Trust

978-0-7695-4848-7/12 $26.00 © 2012 IEEE

DOI 10.1109/SocialCom-PASSAT.2012.127

166

Fig. 1: Geo-clustering of a user’s friends in Facebook.

Moreover, users in an online social network exhibit certain

online time patterns [5], [6] which can be exploited in choosing

the replication points so that replicas’ online time patterns

overlap with that of friends of a user. Note that, in a typical

OSN, most of the user’s profile content is accessible only to his

friends, unlike typical web content which is world-accessible.

The My3 system exploits the trust relationships among friends

to improve the availability. We assume that a user of My3 runs

the client on his office or personal laptop/computer. Hence, we

use the terms user and node interchangeably.

We consider optimizing at a single user level in all our

algorithms and not system-level optimization, as each user

runs these algorithms independently from others in a dis-

tributed setting. My3 allows users to personalize their profile

configuration in several dimensions such as availability, re-

sponsiveness, privacy risk, etc. We believe that a single global

configuration policy for all the users in the system offered by

typical conventional social networks like Facebook, deprive

the users their autonomy on their own data.

A user u’s profile content is hosted only on a set of self-

chosen trusted nodes, which enforce access control on the

content on behalf of the user. This set of trusted nodes for

a user is referred to as his trusted proxy set (TPS). The

TPS members for a user are selected so as to fulfill certain

performance goals.

III. STORAGE LAYER

In this section, we discuss the storage mechanism of the

My3 system which is an enhancement from [4], and mainly

address the construction of the set TPS(u) for a user u
from his social graph. For completeness, we revisit briefly

the storage mechanism presented in [4].

The social network graph is denoted as G(U,R), where U
is the set of users represented by the vertices in the graph and

R is the set of friendship relations represented by edges. For

example, an edge between two vertices u1 and u2 models the

fact that users u1, u2 are friends. We assume that friendship

relationships are symmetric. This is the default assumption in

current OSN applications, e.g. Orkut, Facebook. We use the

notation NG(u) to represent the set of neighbors (i.e. friends

on the OSN) of user u in the social graph G, and NG[u] to

represent NG(u) ∪ {u}.
We assume that each user u in the social network is

characterized with two parameters: his geographical location

and online time period. For instance, the location can be set to

the country/city where the user is currently located. We exploit

location information of friends of a user, in order to place data

as close as possible to the nodes that most frequently access

the data for getting profile updates etc.

This is quantified by the metric access cost Cu2
u1

between

two geographical locations/users/nodes u1 and u2, which is

defined as the IP latency between those two locations, for

example, a measured in [7].

Online time period represents the usual time that the user

is online in the social network. This is a continuous/discrete

time period, with a predefined granularity (e.g., minutes,

hours), during which the user is active on the network and

contributes bandwidth, storage, etc. through his OSN client.

This parameter can be either a user input to the client or

approximated by the client from the user’s online history (for

example, as done in the later part of the paper). Beyond

this time window frame, the user is offline. We denote the

location and online time period parameters for a user u as Lu

and OTu respectively. Given two users u1 and u2’s locations

and online time settings, we argue that they can contact each

other and thus exchange data if and only if their online time

intervals overlap, which we represent by the condition that

OTu1
∩OTu2

�= ∅.
A. Trusted Proxy Set

Each user u selects some of his neighbors as trusted nodes.

The user trusts these nodes both for storing his profile content

and for enforcing access control on the access requests. We

believe leveraging mutual trust relationships for access con-

trol enforcement, in place of encryption-based-access control

simplifies the system to a great extent, especially given that

a typical user in any OSN has millions of data objects but

of very small size. We envision that users mutually cooperate

for hosting content and delegating access control with some

social contracts, even though My3 design does not assume that

trust is mutual between friends. However, the intuition is that

users do not breach the delegation responsibilities because of

social pressure and monitoring. Alternative solutions, which

employ encryption mechanisms for access control and content

storage [8], not only involve complicated key management

issues, but also, are highly inefficient in terms of storage

overhead, as the same data item may need to be encrypted

multiple times for different users with different access rights.

However, trust in a user, may not translate to trust in his

machine/ node. We acknowledge that detecting compromised

nodes is a research problem in itself and assume that any of

the existing mechanisms [9] can be deployed for this purpose.

Let T (u) ⊆ NG(u) be the set of trusted users/nodes for

a user u. T [u] also includes the user u himself in the set of

trusted nodes. The user selects a subset of these trusted users

for hosting his content. We call this set as trusted proxy set
(TPS) (TPS(u) ⊆ T (u)). The content of u is stored on the

members of the set TPS[u] (= TPS(u) ∪ {u}).
Next, we describe several algorithms for the computation of

the set TPS[u]. These algorithms build an online time graph

167

u1

u2
u4

u6

T[u1]={u1,u2,u4,u6}

u7
u5

u3

Fig. 2: The graph OGu1

for each user and compute the above set from this graph.

Definition 1: Online time graph: for a user u (denoted by

OGu) is defined as (NG[u], E) where NG[u] is the set of

vertices and E is the set of edges, such that

∀v1, v2 ∈ NG[u], ∃ an edge(v1, v2) ∈ E iff

(v1 ∈ T [u] ∨ v2 ∈ T [u]) ∧ (OTv1
∩OTv2

�= ∅)
Next, we specify the following two conditions on the graph

OGu, which are necessary and sufficient in order to compute

a valid storage configuration.

1) OGu must be connected. Only then, every user in the

set NG[u] can access u’s content.

2) The sub-graph induced by the set T [u] i.e., the graph

OGu[T [u]] must also be connected, in order to al-

low content synchronization across TPS members pass

through only trusted nodes1.

We suppose that each user constructs OGu offline locally

from online time (OT) specifications of his friends. The

construction of OGu is explained with the following example.

Assume a user u1 with neighbors in the OSN u2 to u7 and their

locations set as follows: Lu1 is Switzerland, Lu2 and Lu3 are

India, and finally the rest are US-West. Assume OT set to 8am

to 5pm local time for all users. Let T [u1] = {u1, u2, u4, u6}.
The resulting OGu1

is shown in Figure 2.

We found that, in the case of real-world datasets (explained

in Section VI, such a graph OGu[T [u]] is connected for a

realistic online time model for more than 95% of the users.

We skip the discussion of handling the modifications in the

social graph, for brevity reasons.

IV. REPLICATION STRATEGIES

In this section, we describe several algorithms used by My3

for replica selection, which compute TPS optimizing a certain

objective function, as explained below.

A. Maximizing the availability

In this approach, the trusted friends that maximize the

availability of the user profile are chosen as replica locations.

The maximum achievable availability for a user u is limited

by | ∪f∈T [u]OTf |. Hence, the replica selection algorithm

should choose the minimum number of replicas/friends that

jointly achieve this availability. We model this problem as the

conventional set cover problem with the set to be covered (the

universe) chosen as ∪f∈T [u]OTf . Since finding an optimal

solution for the set cover problem is NP-hard, we solve the

problem with a greedy algorithm as follows: Initially, the node

u is added to the TPS. At each step, a trusted friend that has

1However, as long as the first condition is met, nodes from the set T [u] can
be removed one by one until the resulting induced graph becomes connected.

the longest non-overlapping (i.e. uncovered) online time as

compared to the current TPS members is added to the TPS[u]
until no improvement is observed in the achieved availability.

Only the friends that are connected in the online time graph

to any of the current TPS[u] members are considered in each

step. The availability of TPS is the fraction of sum of its

member’s online times over a day (i.e., 24 hours).

B. Minimize the number of replicas (MNR)

The MNR approach minimizes the number of replicas to

be maintained for a user, so as to minimize the storage and

replica management overhead. This approach exploits the fact

that the set TPS can be modeled as the minimum connected
dominating set (MCDS) on the graph OGu, with the additional

constraint that the members of the MCDS must belong to T [u].
Hereby, we modify a greedy algorithm from [10] to solve this

variant of the MCDS problem.

Algorithm 1 The MNR algorithm.

1: Mark all v ∈ OGu as white
2: Mark u as black
3: Mark all neighbors of u in OGu as grey
4: while ∃ a white node in OGu do
5: Select a grey v′ ∈ T (u) such that v′ has the highest

number of white neighbors in OGu

6: Mark v′ as black and its neighbors as grey
7: end while
8: TPS[u] is the set of all black nodes in OGu

C. Minimizing update propagation delay (MPD)

This algorithm minimizes the update propagation delay
among replicas, which is the delay in time between the time

instance, an update occurs on a user profile at one of the

replicas and the instance, the update reaches all the other repli-

cas. We explain the calculation of this delay in the example

of Fig. 3. We assume three replicas of a certain user’s (say

user v) profile residing at nodes v1, v2, and v3 with different

continuous online times represented with begin (ts) and end

(te) times as OTv1
= [t

(v1)
s , t

(v1)
e], OTv2

= [t
(v2)
s , t

(v2)
e],

OTv3
= [t

(v3)
s , t

(v3)
e], for which the replica time connectivity

graph is also shown in the figure. Let an update event happen at

replica v1 at time t. Then, this update would be communicated

to v2 at time t′, which would take 24− d1 hours, where d1 is

number of overlapping hours between v1 and v2. Furthermore,

since at time t′ node v3 is not online, in order for the update to

reach the replica v3, it would take an additional 24−d2 hours,

where d2 is the gap between t′ and t
(v2)
s in hours. Thus, in

total the update propagation delay between v1 and v3 would

take 48− d1 − d2 hours, which is the worst possible case for

communicating a profile replica update at node v1 to node v3.

Given this, the Update Propagation Delay for a user is

the maximum of propagation delays between all pairs of the

replicas. It is the weight of the longest of the shortest paths

168

Fig. 3: Propagation of an update from replica v1 to v3.

among all pairs of replicas in the above graph. Hence, in

above example, the update propagation delay for the user v is

48− d1 − d2 hours. This metric captures the maximum/worst

case update propagation delay for transferring updates among

replicas of a given user profile. This metric directly impacts

the data freshness.

This algorithm minimizes the worst case propagation delay

for the user u. We compute a modified weighted online time

graph OG′′ from OG by assigning weights to edges between

trusted nodes, equal to the propagation delay between the

corresponding end nodes. Then the problem of the TPS
computation is finding the MCDS in graph OG′′ such that the

weight of the longest shortest path between any two nodes in

TPS in OG′′ is minimum. The WP (S) function returns the

weight of the longest shortest path in the sub-graph induced

by the set S on OG′′.

Algorithm 2 The MPD algorithm.

1: Mark all v ∈ OG′′
u as white

2: Mark u as black
3: add u to TPS
4: Mark all neighbors of u in OG′′

u as grey
5: while ∃ a white node in OG′′

u do
6: Select a grey v′ ∈ T (u) such that WP (TPS ∪ v′) is

the minimum

7: Mark v′ as black and its neighbors as grey
8: add v′ to TPS
9: end while

D. Minimizing the access cost (MAC)

The MAC approach prioritizes only the access cost for each

friend in a user’s social network. Hence, for every user v
in OGu, it chooses the nearest (i.e., with minimum access

cost) trusted node into the set TPS[u]. This algorithm always

chooses all the trusted nodes into the TPS set. Thus, it uses

all the possible replicas resulting in extensive replication.

E. Maximizing the replication gain

This approach quantifies the replication gain of a given

subset of trusted nodes set (x) and, explores the entire solution

space to pick the right set with the minimum effective cost

as TPS. The storage cost is measured in terms of the total

cost incurred for accessing and updating the profile content by

friends, in addition to that of replica synchronization among

all TPS members.

Replicating a user’s profile increases the availability of

the profile, reduces the average access cost per friend in

accessing the profile. But it induces an overhead in the form

of update propagation delay among replicas. All these three

factors are merged into a weighted objective function with

tunable weights to each of the factors. The algorithm initializes

TPS (i.e. set x) to node u to begin with. Then it adds one

member (i) at a time, from the trusted set which maximizes

the following objective function, until the resulting TPS is a

minimum connected dominating set over the graph OGu.

[
w1 · availability(x ∪ {i})− availability(x)

availability(x)

+w2 ·
∣∣∣ avg({Cx

v })
avg({Cx∪{i}

v })− avg({Cx
v })

∣∣∣

−w3 · WP (x ∪ {i})−WP (x)

WP (x)

]
where-v ∈ NG(u)

The access cost between a node (v) and a set of nodes (x)

is the access cost between v and its nearest node in x. The

function WP is explained above. This algorithm is referred

to as Hybrid in the evaluation (Section VI).

V. DATA CONSISTENCY

As different replicas of the profile accept update requests

from the friends of the user in an asynchronous way, there

is a need for synchronizing the profiles on all replicas. We

propose that after every update, the concerned replica pushes
the update to other TPS members during their online time

frame. Note that OGu[T [u]] is connected. Assume that each

TPS member is informed of other members by the user u
during TPS creation. Until recent updates reach a replica,

it continues to serve access requests with out-dated content,

which is acceptable, as My3 aims for eventual consistency

among replicas with tolerable temporary inconsistencies.

My3 views the content of a profile as a collection of data

objects e.g., a status message, user’s metadata, a photo album,

a photo. A data object (say, a photo album) can be further

decomposed into another collection of objects (resp. photos).

My3 employs vector clocks of size the number of TPS
members in the system. It maintains one vector clock per

object. A vector clock of an object is updated when there

is an update in the object and however, they are not updated

when its constituting objects’ vector clocks are updated. For

example, when a comment is posted on a photo, thus the photo

object is updated, the corresponding vector clock of the photo

is updated and that of the photo album object is kept intact. If

the photo is deleted by the owner user, then the vector clock

of the album object is updated as this deletion is an update on

the album as such.

Updates on a profile are pushed immediately by a replica

to all other replicas. In addition, when a replica comes online,

it announces itself to all other online replicas and pulls any

buffered updates, as explained below.

Each replica buffers a transaction record of an update on

its copy of a user’s profile until a time period (e.g., twice

169

the maximum propagation delay for the user). This record

holds all the meta information corresponding to the update

so that other replica, on receiving the record, can replicate the

update exactly. Two replicas when come in contact, exchange

all the records in the buffer and apply the records on the cor-

responding data objects. When concurrent events are detected

on an object (using the vector clocks stored in the records),

the two replicas have to decide on ordering the events. Even

though any ordering of these events results in a valid profile

only (as typical updates on an object will be append-only

updates), we propose the events to be ordered according to the

replica identifiers in order to achieve a total order of events

among all the replicas. This results in a consistent view for the

users when they access the profiles across replicas. In order to

achieve this, the transaction record should contain the replica

id of the replica which originally received that corresponding

update event as a replica may receive a transaction record from

multiple replicas because of asynchronous update propagation

and nodes’ intermittent online connectivity.

However, this ordering resolution does not take the actual

semantics of the updates into account and hence may lead to

semantically incorrect profile objects occasionally. We expect

the owner of the profile to inspect his profile updates time to

time and fix such semantic incorrectness, though we believe

that such an intervention is needed very rarely. The resulting

ordering of the events must be forced onto other replicas

which should replace corresponding object parts with the one

received from the owner. Thus, the owner replica can be said

to the leader of all other replicas. For brevity, additional details

of the consistency mechanism are skipped.

VI. EVALUATION

In this section, we illustrate the performance evaluation of

the proposed My3 storage in detail, using real-world datasets

of Facebook and Twitter social networks. First, we present

description of the datasets and then layout the criterion for

evaluating the performance by introducing the metrics, fol-

lowed by analysis of the results.

A. Dataset description

In order to model the essential parameter of My3 algo-

rithms, the online times of users in a social network, we

needed, apart from the social network graph, a dataset with

users’ usual activities on the social network including the

timing of the activities information [11] and their geographical

locations. Two datasets- a Facebook dataset [12] and a Twitter

dataset [13] met our requirements. The user degree distribution

of both the datasets is presented in Fig. 4, which is the number

of friends (resp. followers) in the social network Facebook

(resp. Twitter). The activity considered were the wall posts

(for Facebook dataset), the user’s tweets (for Twitter dataset).

1) Facebook dataset: The Facebook dataset employed is

the NewOrleans Network dataset [12], which has a total of

63,731 users creating a total of 876,994 wall-posts. A wall-

post has a receiver, a creator, and a timestamp.

 0

 100

 200

 300

 400

 500

 600

 50 100 150 200 250

n
u
m

b
e
r

o
f
u
s
e
rs

user degree

Facebook
Twitter

Fig. 4: Distribution of user

degree distribution.

 0
 10
 20
 30
 40
 50
 60
 70
 80

<
1
0

1
1
-3

0

3
1
-6

0

6
1
-9

0

9
1
-1

2
0

1
2
1
-1

5
0

1
5
1
-1

8
0

>
1
8
0

%
 o

f
to

ta
l
u
s
e
rs

Online Time Length (in minutes)

Facebook
Twitter

Fig. 5: Distribution of de-

rived user online times.

In a decentralized Facebook realized using the My3 system,

a user’s profile is accessed (by his friends) from any of the

profile replicas which are online at that instant and a wall-

post/update made should be sent to the corresponding replica.

2) Twitter: We employed a simplified version of the Twitter

dataset of [13], which originally included 158,324 tweets made

by a total of 23,162 users in Twitter between 10-Sep-2009

and 24-Sep-2009. From this dataset, we excluded all the users

whose followers are not present in the dataset. A tweet has

a receiver, a creator, and a timestamp, similar to a wall-post

described before. The dataset contains users from a wide range

of geographical locations.

In a decentralized Twitter over the My3 storage, a user’s

profile can be replicated on his followers. This is a natural

choice as the majority of the information flow in Twitter is

from the user to his followers. When a user is offline, his

replicas are used by his followers to access his tweets and by

his followees (users followed by him) to communicate their

tweets to him from (i.e., tweets of followees) are communi-

cated to his replicas when he is offline. Moreover, followers

of the offline user can access his past tweets from his profile

replicas.

We filtered out users with very little activity (less than 10
wall-posts or tweets) from the above datasets. We ended up

with a total number of 13884 users for Facebook, with the

average degree 41 (i.e. friends) and an average number of 50
activities per user. For Twitter, the filtered dataset contains

14, 933 users with average degree of 76 (i.e. followers).

B. Methodology

We built a Java-based My3 simulator for the evaluation. All

the users in the datasets are modeled inside the simulator and

the activity stream present in the datasets is replayed among

the user objects, separately for Facebook and Twitter. The

proposed performance metrics are quantified at the end.

However, the My3 algorithms need two important inputs:

one, the online times of users in the network and second, the

trusted friends to be used as replicas for a user’s profile. We

modeled the two inputs as follows:

1) Modeling user online times: In order to approximate

typical users’ online durations, two possibilities exist for the

context of My3, a decentralized social network. One possibility

is to position My3 as an alternative to the conventional social

170

networks like Facebook and emulate the online behaviors

of the users on Facebook [6] or Orkut [5] in the My3

system for the evaluation. Alternatively, position the My3

clients as analogous to P2P clients for communication, like

Skype and emulate typical Skype nodes’ session times [14] to

approximate the My3 client’s online times.

In this paper, we model My3 client’s online times as

follows: from the study of user session times in Facebook,

we derive an online time distribution for My3 clients. During

the beginning of the simulation, we choose an online time

for a user from this distribution and the user runs his client

for this amount of time, every time he is active on the social

network. From this online time distribution, we plot percentage

of users in the system that have a particular online time for

both Facebook and Twitter cases, which is shown in Fig. 5.

Once the length of a user’s online times is chosen like above,

the actual online times (time-of-the-day) are computed as

follows: for each activity present in the input activity dataset,

the user is assumed to be online for the above duration with

the activity occurrence positioned at a random instance in this

online window. This is done using the time stamp information

present with each activity in the datasets. For example, assume

that the online time length chosen for a user is 5 minutes. If the

user’s activity is found in the dataset to be done at 8:03am, the

user is said to be active on the social network from 8:00am

to 8:05am if the activity is positioned at 3rd minute of the

session. Likewise, a user is online during the day for a total

time equivalent to number of activities in the dataset times the

length of the online time associated with the user.

For the case of Facebook dataset, My3 clients are online

on average for 42 minutes with a minimum and a maximum

online time of 2 minutes and 194 minutes respectively. Corre-

sponding online times for the Twitter dataset case are: average-

9min, min-2min, and max- 156min. From Fig. 5, one can note

that for the case of Facebook, 80% (and for Twitter, 20%) of

the users are online in a day for a total of less than 10minutes.

2) Selecting trusted friends: We imagine a use case for

My3 where a user manually feeds the set of trusted friends

to the My3 algorithms. However, for the evaluation sake, we

model the trusted friends as the most active friends, friends

who made majority of the activity on a user’s profile: wallposts

in the case of Facebook and tweets in the case of Twitter. We

argue that this is a natural choice as friends with very close

acquaintance usually interact with a user the most, thus enjoy

high degree of trust.

In our evaluation, we choose top-k most active friends as

the trusted friends with k varied from 0 to 10.

3) Modeling access latencies: We model the network laten-

cies between two My3 clients as the network latency between

the corresponding geographic locations of the users as given

in the input datasets. For Facebook dataset, all users are based

in a single location and thus network latency between any two

users is the same and set to 1 in our experiments. For the case

of Twitter, we queried Twitter APIs to retrieve the locations of

the users appearing in the dataset. For actual network latency

statistics, we used Verizon [7] network latency dataset for the

month of April 2012. If a user’s (in Twitter dataset) location is

not found in the latency dataset, we chose a random location

from the dataset as his location. The problem of how latencies

can be approximated between two geo locations is beyond

the scope of the paper and the Verizon dataset is used for

exemplary purpose only. The My3 performance trends, as such,

are in general applicable to any other latency computation

techniques [15].

C. Performance metrics

We enumerate several metrics to evaluate the My3 system

[11].

1) Availability: is the fraction of time in a day, a user’s

profile is reachable through his replicas. For example, if a

user’s profile is available for 12 hours in a day, the availability

is 50%. Note that availability of a user’s profile in My3 is

limited to the union of online times of all of his trusted friends.

2) Availability-on-Demand: measures to what extent a

user’s profile is accessible to only his friends (in contrast to

the availability of a user described above). It is the fraction

of total time, a user’s friends are online (which is size of the

union of their online times), his profile is available through

his replicas. In a privacy-conscious social network, a user’s

profile is typically accessible only to his friends and hence

higher availability-of-demand (even with a lower availability)

is desirable.

3) Propagation Delay: is the delay in time between the

time instance an update occurs on a user profile at one of the

replicas and the instance where the update reaches the last

replica. The calculation of delay for a user is detailed in [11].

4) Access Cost: is the average network latency between

friends of a user and the nearest replica.

5) Load: of a given user is the number of profiles stored

on the user as part of whole social network level replication.

A popular and typically most active user in the social network

may end up being the trusted friend for a very high number of

users in the network, thus hosting all of their profiles. A good

storage algorithm should balance the load on the replicas in

order to ensure fairness and minimize the maximum load in

the system.

D. Results

We explore two scenarios where a single system-level

choice on replica placement is made and all the users run

same corresponding algorithm. In second case, each user

chooses locally the most preferred replica placement strategy

that meets his criterion. In the Hybrid algorithm case, all the

factors in the object function were given equal weight (i.e.,

w1 = w2 = w3).

1) System level replica placement choices: Here, we

present the observed results first, considering all the users

in the system and then, considering users with a particular

number of friends (i.e., degree). We considered a degree of 20
for this case.

As mentioned earlier, the number of trusted friends is varied

from 0 to 10. However, based on the objective of individual

171

replica selection algorithms, not all the trusted friends might

be used for replication. The actual number of replicas thus,

chosen is presented in Fig. 6a and 6b for the case of Facebook

and Twitter respectively (the number of replicas counts the

replica on the user client also). The system level averages are

shown. As expected, the MAC algorithm uses the highest

number of replicas. It grows linearly with the number of

trusted friends. Since some users may have a lesser degree than

the input number of trusted friends, the number of replicas is

lesser for MAC case (however, for the case of users with

degree 20 (Fig. 6c and Fig. 6d), we can see that number of

replicas chosen is same as that of number of trusted friends

counting the user himself in addition). All the other algorithms

show a flattened behavior after a point as no improvement in

their objective criterion is observed with increase in number

of replicas. In Fig. 7, the performance of the replica selection

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6 7 8 9 10

#
 r

e
p
lic

a
s

trusted friends

Hybrid
MAC
MNR
MPD

MaxAv

(a) Facebook

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6 7 8 9 10

#
 r

e
p
lic

a
s

trusted friends

Hybrid
MAC
MNR
MPD

MaxAv

(b) Twitter

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6 7 8 9 10

#
 r

e
p
lic

a
s

trusted friends

Hybrid
MAC
MNR
MPD

MaxAv

(c) Facebook

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6 7 8 9 10

#
 r

e
p
lic

a
s

trusted friends

Hybrid
MAC
MNR
MPD

MaxAv

(d) Twitter

Fig. 6: Number of replicas chosen: (a),(b): average of all users,

(c),(d): average of users with degree 20.

algorithm w.r.t the metrics described in VI-C. The metrics for

quantified for each user in the system and average of all users

is plotted in Fig. 7a to Fig. 7c for the Facebook case and

in Fig. 7d to Fig. 7f. It is to be noted that for each point in

the plots, the corresponding values for the metrics the achieved

performance with the corresponding number of replicas shown

in Fig. 6a and Fig. 6b. The MAC and MaxAv achieve the

highest availability (Fig. 7a). But MaxAv achieves the same

availability as MAC with much lesser replication degree, for

example at half of the replication for k = 10 as evident

from Fig. 6a. It is impressive to note that an availability of

90% is achieved in spite of a very less total online time of

users, an average of 40 minutes from Fig. 5 for the Facebook

case and mere 9 minutes for Twitter case. Similar availability

performance of the MNR and MPD algorithms can not

be explained alone with the fact that both choose the same

number of replicas as shown in Fig. 6a. Because they exhibit

differently in the case of other metrics. It is due to the chosen

replicas are together online for same time window. However,

the Hybrid algorithm makes a better selection of replicas and

results in better availability with reduced delay (Fig. 7c).

The average availability-on-demand reaches 1 for k = 6.

Given the average degree of 41 for Facebook and 76 for

Twitter, a replication degree of 6 is very promising. Note that

in a privacy-friendly OSN, the profile content should be more

available to friends of a user only and the actual availability

is of secondary importance. The update propagation delay

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10

a
v
a
ila

b
ili

ty

trusted friends

Hybrid
MAC
MNR
MPD

MaxAv

(a) Facebook

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10

a
v
a
ila

b
ili

ty
-o

n
-d

e
m

a
n

d

trusted friends

Hybrid
MAC
MNR
MPD

MaxAv

(b) Facebook

 0

 2

 4

 6

 8

 10

 12

 14

 0 1 2 3 4 5 6 7 8 9 10

d
e
la

y
 (

in
 h

rs
)

trusted friends

Hybrid
MAC
MNR
MPD

MaxAv

(c) Facebook

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10

a
v
a
ila

b
ili

ty

trusted friends

Hybrid
MAC
MNR
MPD

MaxAv

(d) Twitter

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10

a
v
a
ila

b
ili

ty
-o

n
-d

e
m

a
n
d

trusted friends

Hybrid
MAC
MNR
MPD

MaxAv

(e) Twitter

 0

 5

 10

 15

 20

 25

 30

 0 1 2 3 4 5 6 7 8 9 10

d
e
la

y
 (

in
 h

rs
)

trusted friends

Hybrid
MAC
MNR
MPD

MaxAv

(f) Twitter

Fig. 7: Average of all users.

(denoted as “delay” in the plots) performance is depicted in

Fig. 7c and Fig. 7f. Thanks to the highest number of replicas

chosen, the MAC incurs the worst update propagation delay

among replicas due to incomplete overlap among online time

windows of the replicas. Even though the MPD algorithm

shows up the least delay which is inline with its objective.

172

Note that MPD chooses same number of replicas as MNR,

but different ones that minimize the delay. In case of Twitter

also, the MPD shows the best delay performance (Fig. 7f).

The access cost performance for Twitter case is presented in

Fig. 8. Note that for the Facebook case, all the users are from

a single location (NewOrleans) and hence, this study is not

applicable. As the number of replicas grows in MAC, the

average access cost is significantly reduced because increased

number of replicas place the content in the close proximity

of many friends. This decreasing trend can be observed with

other algorithms as well. MaxAv stands as the next best

due to higher number of replicas chosen compared to other

algorithms (from Fig. 6a).

Given the system- level averages, the actual distribution of

different values of the metrics is illustrated in Fig. 9 for the

case of availability and load. We chose the case of 10 trusted

friends for these plots. For around 75% users in Facebook, the

availability touches 1 for MaxAv and MAC algorithms. For

the other algorithms, the availability is uniformly distributed.

Regarding the load metric, MAC typically increases the load

on users in the network because of extensive replication. There

are around 0.7% of users in the network hosting more than

100 profiles in Facebook case. In case of Twitter too, we can

see that MAC increases the load significantly compared to

other algorithms.

 200

 210

 220

 230

 240

 250

 260

 270

 0 1 2 3 4 5 6 7 8 9 10

ac
ce

ss
 c

os
t (

in
 m

s)

trusted friends

Hybrid
MAC
MNR
MPD

MaxAv

Fig. 8: Twitter average of all users.

In Fig. 10, we consider only the users for a particular degree

of 20 to see the trends in the performance for such users. They

exhibit trends comparable to the system-at-large as shown in

Fig. 7.

2) User level replica placement choices: Since My3 centers

the storage design around a single user, a user in the network

can locally decide the replica selection criterion based on his

objectives. To this end, we studied system level performance in

case of informed personal choices users make in the network.

The distribution of availability (for k = 10) is depicted in

Fig. 11. Other metrics are skipped for brevity. Users choose

one of the listed storage selection algorithms with a uniform

probability. It is interesting to note that users retain their

performance benefits of a particular replication choice, even

individual users in the system choose different algorithms

locally. The trends observed in Fig. 11 match exactly the

ones observed for the case of single system level algorithm

choice in Fig. 9a and Fig. 9b. The total load in the network is

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

%
 o

f
to

ta
l
u
s
e

rs

availability

Hybrid
MAC
MNR
MPD

MaxAv

(a) Facebook

 0

 10

 20

 30

 40

 50

 60

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

%
 o

f
to

ta
l
u
s
e

rs

availability

Hybrid
MAC
MNR
MPD

MaxAv

(b) Twitter

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

5
1

-8
0

8
1

-9
0

9
1

-1
0
0

>
1
0
0

%
 o

f
to

ta
l
u
s
e

rs

Load

Hybrid
MAC
MNR
MPD

MaxAv

(c) Facebook

 0
 0.02
 0.04
 0.06
 0.08

 0.1
 0.12
 0.14
 0.16
 0.18

5
1

-8
0

8
1

-9
0

9
1

-1
0
0

>
1
0
0

%
 o

f
to

ta
l
u
s
e

rs

Load

Hybrid
MAC
MNR
MPD

MaxAv

(d) Twitter

Fig. 9: Distribution of availability and load.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10

a
v
a
ila

b
ili

ty

trusted friends

Hybrid
MAC
MNR
MPD

MaxAv

(a) Facebook

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10
a
v
a
ila

b
ili

ty
-o

n
-d

e
m

a
n
d

trusted friends

Hybrid
MAC
MNR
MPD

MaxAv

(b) Facebook

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10

a
v
a
ila

b
ili

ty

trusted friends

Hybrid
MAC
MNR
MPD

MaxAv

(c) Twitter

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10

a
v
a
ila

b
ili

ty
-o

n
-d

e
m

a
n
d

trusted friends

Hybrid
MAC
MNR
MPD

MaxAv

(d) Twitter

Fig. 10: Average of users with degree 20.

observed to be less than 25 per each user which is several times

improvement over system-level choice (for example MAC
which has a maximum load of > 100).

E. Discussion

The MAC and MaxAv improve the availability at cost

of increased replication. An extremely privacy-conscious user

173

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

%
 o

f
to

ta
l
u

s
e

rs

availability

Hybrid
MAC
MNR
MPD

MaxAv

(a) Facebook

 0

 10

 20

 30

 40

 50

 60

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

%
 o

f
to

ta
l
u

s
e

rs

availability-on-demand

Hybrid
MAC
MNR
MPD

MaxAv

(b) Twitter

Fig. 11: Distribution of availability: User- level replica choices.

prefers to have as lesser replication as possible and thus

may choose MNR for replica selection. The availability can

be increased in such case only by increasing the span of

online window of the user himself or his trusted friends.

The Hybrid algorithm should be preferred in general as it

exhibits increased availability over MPD still showing similar

performance for other metrics. In addition, its tunability of

different factors in the objective function offers additional

flexibility in replica selection. The update propagation delay

can be nullified by suitable 3rd party infrastructure (like a

cloud or DHT) for update propagation. One of ongoing works

to enhance My3 is to build an encryption based updated

propagation infrastructure using storage resources of users

in the social network alone. In the case of highly dynamic

unpredictable user online behaviors, such a storage can be

used to store profile content, in addition to update propagation

among replicas.

VII. RELATED WORK

There is significant related work on privacy issues in social

networks. The work in [16] highlights the disparity in the

desired privacy settings on OSNs and the actual settings

provided. It also quantifies the process of managing privacy.

In [17] authors show that configuring privacy settings in the

online social networks is a daunting task. The possibility

for involuntary personal information leakage in current social

networks is highlighted in [18], e.g., by means of certain OSN

features like annotating or tagging user photos, and its effects

are demonstrated in [3].

The Lockr system [19] improves the privacy of centralized

and decentralized content sharing systems. It allows users

to control their own social information by decoupling the

social networking information from other OSN functionality

using social attestations, which act like capabilities. However,

these social attestations are used only for authentication and

authorization is enforced using separate authorization policies.

Persona [20] uses attribute-based encryption to realize privacy-

preserving OSNs. The attributes a user has (e.g., friend, family

member, colleague) determine what data he can access. The

NOYB approach [2] adopts a novel approach for preserving

content privacy. They observe that if users address their privacy

issues themselves by hosting encrypted content on OSNs, they

could be expelled from the OSN by the OSN operator. Hence,

they propose to replace users profile content items with “fake”

items randomly picked from a dictionary. NOYB encrypts the

index of the user’s item in this dictionary and uses the ciphered

index to pick the substitute. On the other hand, flyByNight [21]

encrypts the users’ content that hosts on the OSN.

Recently, the issue of using decentralized infrastructures

for organizing OSNs in a privacy-preserving manner, was ad-

dressed by the research community [22], [8], [23]. In [24], the

authors perform an experimental evaluation of hosting OSN

content from homes as a possible decentralized OSN. PeerSon

[23] adopts encryption mechanisms for content storage and

access control enforcement. It uses a two-tier architecture in

which the first tier is a DHT, which is used as a common

storage by all participants. The second tier consists of peers

and contains the user data. The DHT stores the meta-data

required to find users. Peers connect each other directly,

exchange the content, and then disconnect. The work in [8]

addresses privacy in OSNs by storing profile content in a

P2P storage infrastructure. Each user in the OSN defines his

own view (“matryoshka”) of the system. In this view, nodes

are organized in concentric rings, having nodes at each ring

trusted by the nodes in its immediate inner ring, with the

user node being the center of all rings. The user’s profile data

is stored encrypted at the innermost ring, which is accessed

by other users through multi-hop anonymous communication

across this set of concentric rings. In the DHT, an entry for a

user with the list of nodes in the outermost ring is added.

Thus, [8] achieves both content privacy (using encryption)

and anonymity of searcher and hosting nodes, yet limited

content discovery and profile availability, as opposed to our

approach. DECENT [25] proposes a DHT based storage for

OSNs with a special focus on security and privacy using

encryption mechanisms.

A decentralized OSN, Vis-à-Vis is proposed in [22], where,

a user’s profile content is stored at his own machine called as

virtual individual server (VIS). VISs self-organize into P2P

overlays, one overlay per social group what has access to

content stored on a VIS. Three different storage environments

are considered: cloud alone, P2P storage on top of desktops,

a hybrid storage, and their availability, cost, and privacy

trade-offs were studied. In the desktop-only storage model,

a socially-informed replication scheme was proposed, where

a user replicates his content to his friend nodes and delegates

access control to them. However, normally, a uses trusts only a

fraction of his friends to the extent of delegating access control

enforcement, as considered in our My3 approach along with

online time information. Our earlier work [26] considered trust

based access control delegation in P2P systems.

Tribler [27] is a P2P file sharing application which exploits

friendship relationships, tastes and preferences of users to

increase the performance of file sharing. However, in Tribler,

users host their own profile and therefore profile placement

for high availability and low access or consistency cost are

not considered. Finally, LifeSocial [28] is a P2P-hosted OSN

where users employ public-private key pairs to encrypt profile

174

data that is stored in a distributed way and is indexed in a

DHT. Friends can read a user’s profile based on a symmetric

key that is encrypted with their public keys. However, data

privacy and profile availability are not considered in [28].
The authors in [29] pursue the notion of online times for a

P2P client in detail. Various replica placement strategies are

studied analytically. The Diaspora [30] project aims to build a

user- owned decentralized online social network. It consists

of independently owned pods (or servers) which host user

profiles and form the network. However, the Diaspora system

needs the pods to be online always. We believe that the My3
model for decentralized OSNs where users can run their clients

for a fraction of time compared to always-on availability of

Diaspora, is more amenable.
To the best of our knowledge, My3 is the first system

that uniquely identifies the availability of decentralized OSNs

as the critical concern for their adaptability and considers

user behavior characteristics on OSNs and exploit them in

its design.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we presented the design of My3, a privacy-

preserving decentralized OSN. We evaluated its performance

regarding different evaluation criteria using real world data

traces. As experimentally found, high availability is achievable

with a profile replication factor of 4-5. We demonstrate that

the system can meet personalized performance objectives.

Moreover, by employing the hybrid replication algorithm, a

combination of performance objectives can be met and thus

the My3 system could be a viable decentralized alternative to

centralized infrastructures. Our system also involves dealing

with access control policies, identity management and data

integrity; which we leave for future work. Moreover, we plan

to explore system behavior for richer online time models

especially considering the user degrees in the OSNs given that,

a high degree node tends to stay online longer.

ACKNOWLEDGMENT

This work was partially funded by the grant Reconcile:
Robust Online Credibility Evaluation of Web Content from

Switzerland through the Swiss contribution to the enlarged

European Union.

REFERENCES

[1] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B. Bhattachar-
jee, “Measurement and analysis of online social networks,” in Proc. of
the 7th Internet measurements conference, 2007.

[2] S. Guha, K. Tang, and P. Francis, “Noyb: privacy in online social
networks,” in Proc. of the WOSP, Seattle, WA, USA, 2008.

[3] B. Krishnamurthy and C. E. Wills, “On the leakage of personally
identifiable information via online social networks,” in Proc. of the
WOSN, 2009.

[4] N. Rammohan, T. G. Papaioannou, and K. Aberer, “Privacy-aware
and highly-available osn profiles,” in Proc. of Workshops on Enabling
Technologies: Infrastructures for Collaborative Enterprises (WETICE),
2010.

[5] F. Benevenuto, T. Rodrigues, M. Cha, and V. Almeida, “Characterizing
user behavior in online social networks,” in Proc. of the IMC, 2009.

[6] F. Schneider, A. Feldmann, B. Krishnamurthy, and W. Willinger, “Un-
derstanding online social network usage from a network perspective,”
in Proc. of the IMC, New York, NY, USA, 2009.

[7] “Ip latency statistics,” http://www.verizonbusiness.com/about/network/latency/.
[8] L. A. Cutillo, R. Molva, and T. Strufe, “Privacy preserving social

networking through decentralization,” in Proc. of the WONS, 2009.
[9] C. Fung, “Collaborative intrusion detection networks and insider at-

tacks,” vol. 2(1), pp. 63 – 74, 2011.
[10] L. Ruan, H. Du, X. Jia, W. Wu, Y. Li, and K.-I. Ko, “A greedy

approximation for minimum connected dominating sets,” Theoretical
Computer Science, vol. 329, no. 1-3, pp. 325 – 330, 2004.

[11] N. Rammohan, T. G. Papaioannou, and K. Aberer, “Towards the
realization of decentralized onlinesocial networks: an empirical study,”
in Proc. of the ICDCS Workshops: HOTPOST, 2012.

[12] B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi, “On the
evolution of user interaction in facebook,” in Proc. of the WOSN, 2009.

[13] W. Galuba, K. Aberer, D. Chakraborty, Z. Despotovic, and W. Kellerer,
“Outtweeting the Twitterers - Predicting Information Cascades in Mi-
croblogs,” in Proc. of the WOSN, 2010.

[14] S. Guha, N. Daswani, and R. Jain, “An experimental study of the skype
peer-to-peer voip system,” 2006.

[15] E. Katz-Bassett, J. P. John, A. Krishnamurthy, D. Wetherall,
T. Anderson, and Y. Chawathe, “Towards ip geolocation using
delay and topology measurements,” in Proceedings of the 6th ACM
SIGCOMM conference on Internet measurement, ser. IMC ’06.
New York, NY, USA: ACM, 2006, pp. 71–84. [Online]. Available:
http://doi.acm.org/10.1145/1177080.1177090

[16] Y. Liu, K. P. Gummadi, B. Krishnamurthy, and A. Mislove, “Analyzing
facebook privacy settings: user expectations vs. reality,” in Proceedings
of the 2011 ACM SIGCOMM conference on Internet measurement
conference, ser. Proc. of the IMC. New York, NY, USA: ACM, 2011,
pp. 61–70.

[17] M. Madejski, M. Johnson, and S. M. Bellovin, “The
failure of online social network privacy settings,” De-
partment of Computer Science, Columbia University, Tech.
Rep. CUCS-010-11, February 2011. [Online]. Available:
https://mice.cs.columbia.edu/getTechreport.php?techreportID=1459

[18] I.-F. Lam, K.-T. Chen, and L.-J. Chen, “Involuntary information leakage
in social network services,” in Proc. of the 3rd International Workshop
on Security, 2008.

[19] A. Tootoonchian, S. Saroiu, Y. Ganjali, and A. Wolman, “Lockr: better
privacy for social networks,” in Proc. of the CoNEXT, 2009.

[20] R. Baden, A. Bender, N. Spring, B. Bhattacharjee, and D. Starin,
“Persona: an online social network with user-defined privacy,” in Proc.
of the ACM SIGCOMM, 2009.

[21] M. M. Lucas and N. Borisov, “Flybynight: mitigating the privacy risks
of social networking,” in Proc. of the WPES, 2008.

[22] A. Shakimov, A. Varshavsky, L. P. Cox, and R. Cáceres, “Privacy, cost,
and availability tradeoffs in decentralized osns,” in Proc. of the WOSN,
2009.

[23] S. Buchegger, D. Schiöberg, L.-H. Vu, and A. Datta, “Peerson: P2p
social networking: early experiences and insights,” in Proc. of the ACM
EuroSys Workshop on Social Network Systems, 2009.

[24] M. Marcon, B. Viswanath, M. Cha, and K. P. Gummadi, “Sharing
social content from home: a measurement-driven feasibility study,”
in Proceedings of the 21st international workshop on Network and
operating systems support for digital audio and video, ser. NOSSDAV
’11. New York, NY, USA: ACM, 2011.

[25] J. Sonia, N. Shirin, M. Prateek, B. Nikita, and K. Apu, “Decent:
A decentralized architecture for enforcing privacy in online social
networks,” in Proc. of the SESOC, 2012.

[26] N. Rammohan, Z. Miklos, and K. Aberer, “Towards access control
aware p2p data management systems,” in Proc. of the 2nd International
workshop on data management in peer-to-peer systems, 2009.

[27] J. A. Pouwelse, P. Garbacki, J. Wang, A. Bakker, J. Yang, A. Iosup,
D. H. J. Epema, M. Reinders, M. R. van Steen, and H. J. Sips, “Tribler:
a social-based peer-to-peer system: Research articles,” Concurr. Comput.
: Pract. Exper., vol. 20, no. 2, pp. 127–138, 2008.

[28] K. Graffi, P. Mukherjee, B. Menges, D. Hartung, A. Kovacevic, and
R. Steinmetz, “Practical security in p2p-based social networks,” in Proc.
of the IEEE LCN, October 2009.

[29] K. Rzadca, A. Datta, and S. Buchegger, “Replica placement in p2p
storage: Complexity and game theoretic analyses,” in Proc. of the
ICDCS, June 2010.

[30] http://diasporaproject.org/.

175

