
Reusing Risk Analysis Results
An Extension for the CORAS Risk Analysis Method

Johannes Viehmann

Fraunhofer Institut FOKUS (MOTION)

Kaiserin-Augusta-Allee 31

D-10589 Berlin, Germany

Johannes.Viehmann@Fokus.Fraunhofer.de

Abstract — This paper shows how the results of CORAS risk

analysis can be reused and combined. It introduces new models,

diagram types and procedures as an extension of the CORAS

method. Taking risk analysis artifacts generated for the individ-

ual base components as input, probability values for unwanted

incidents of complex systems can be calculated if the relations

between these artifacts are modeled correctly. Initially developed

for the S-Network, a trustworthy repository, this extension is

predestined for analyzing large scale systems consisting of heter-

ogeneous components, which no single analyst team could handle.

Risk analysis, CORAS, fault tree analysis, trust, S-Network

I. INTRODUCTION

In many applications in varying market sectors, including
eCommerce, eGovernment, and eHealth, perfect security can-
not be achieved. Trust allows people to use such applications
though there are remaining risks. Before taking risks, it is rea-
sonable to carefully analyze the chances, the potential benefits
and the potential losses. Those offering security critical appli-
cations or services can use risk analyzes to treat potential
weaknesses in their products. Communicating the identified
remaining risks honestly can be important to create trust. How-
ever, risk analyzes might be difficult and expensive. This paper
introduces new concepts to reuse and combine results of the
CORAS method for risk analysis.

These concepts were created during the still ongoing devel-
opment process for a large-scale trustworthy repository called
the S-Network (http://Surn.net). The S-Network is going to
provide guarantees for the long term preservation and for the
permanent secure non-repudiation accessibility of its content.
Requiring all users to agree on a user contract, the S-Network
will offer legal validity for its content, including verifiable
metadata values (e. g. who stored what and when) with stand-
ardized legal implications for all participants. The S-Network is
intended to become a universal platform for applications that
have most stringent requirements, e.g. fair contract signing.
Indeed, it must be resistant to both manipulation attempts and
censorship. However, since it will not be possible to develop a
perfectly secure solution, remaining risks have to be analyzed
and communicated in order to create trust in the S-Network.

Instead of the S-Network itself, a service for generating
time-stamps is analyzed in the scope of this paper as a more
compact example. It is a relatively small, but often security
critical component. For instance, the S-Network requires relia-

ble time-stamps for its publications and deposits because it
must be possible to determine when these were stored. This
smaller example is used to argue why the suggested extension
of CORAS was created for the development of the S-Network.

II. NOTATION, PROBLEMS AND STATE OF THE ART

A. Risk analysis with FTA, FME(C)A and probability theory

Fault tree analysis (FTA) [15] is widely used in the process
of risk analysis for critical systems like airplanes or nuclear
power plants and hence well-studied [6]. It is a deductive, top-
down approach to study how faults can be triggered by sets of
other faults. FTA considering temporal effects is called dynam-
ic FTA. Analyzing potential failure paths, FTA makes it possi-
ble to determine the probability that a single top level fault
occurs. All possible paths have to be taken into consideration
by the analysts. Starting at the top level fault, it might be very
difficult to recognize all initiating faults that could somehow
cause the top level fault.

In contrast, failure modes and effects (and criticality) analy-
sis FME(C)A [4] is commonly used as an inductive, bottom-up
approach. FME(C)A is better for identifying initial failures
than FTA, but not for getting a complete analysis of a complex
failure. It can be beneficial to do both, FME(C)A and FTA
because they have complementary strengths. In [1], a combina-
tion of both is suggested as “Bouncing Failure Analysis (BFA):
The Unified FTA-FMEA Methodology”.

Based upon [12], for calculating probability values, the fol-
lowing notations and equations/formulas will be used in this
paper: The probability of some incident X is noted as P(X). The
conditional probability for incident X given that it is known
that incident Y occurs is noted as P(X | Y). The probability
P(X ∩ Y) that both incidents X and Y occur can be calculated
with P(Y) and P(X | Y):

 |

The probability that at least one of two incidents
X, Y occurs is:

If X and Y are statistically independent (i.e. P(X | Y) = P(X)
and P(Y | X) = P(Y)), then:

Integrated Graduate Program H-C3 (IGP H-C3, http://www.h-c3.org) of
the Berlin Institute of Technology (Technische Universität Berlin).

Going to be presented at PASSAT 2012 in Amsterdam and published in
the conference proceedings (http://www.ieee.org), © Copyright IEEE

If P(X | Y) = 1 and P(Y | X) = 1, then:

The probability value V for an incident that has to be trig-
gered by at least threshold Ψ of n statistically independent
incidents each having the probability p can be calculated using
the following binomial formula [13]:

 ∑ (

)

Multiple algorithms are known for calculations in FTA –
including the binary decision diagram based (BDD) algorithm
presented in [11] and DIFtree [7] using both BDD and Markov
chains. Various software tools support FTA, e.g. Galileo [5].

B. Risk analysis with the CORAS method

In contrast to the pure failure analytic methods FTA/
FME(C)A, the model based CORAS method [8] supports the
entire process of risk analysis “from asset identification to risk
treatment” [10].

The CORAS method consists of eight steps. Following this
guided step by step procedure, it is possible to identify, analyze
and evaluate assets, threats, risks and possible treatments. Dur-
ing that process, different types of diagrams with intuitively
understandable graphic symbols are generated as results.
CORAS diagrams can be translated to English paragraphs [3].
Besides the completeness, the easy comprehensibility of the
CORAS artifacts makes the CORAS method a good choice for
analyzing the risks of the S-Network because communicating
the risks is essential for creating trust in the S-Network.

In this paper, the CORAS terminology will be used. Threat
diagrams and risk diagrams will be used and extended.

C. CORAS risk analysis complexity and difficulty

Many computer programs and services are composed of
different components – developed, produced and operated by
different entities. There is no need to reinvent the wheel or
recreate things that already exist. Often, it seems that the inter-
nals of existing components do not have to be studied in detail
to be able to utilize them because public interfaces and their
documentation typically describe the functionality.

However, each single component might eventually have
certain risks. For the risk analysis of an entire complex system,
to identify the risks inherited from the components it consists
of, it would be necessary to get a deep understanding about the
internals of these base components. Probably only the produc-
ers or operators of each base component will have the required
knowledge. Additionally, it would be inefficient to analyze the
same base component which is used in many systems over and
over again for each system containing that component.

If risk analysis results for individual components were re-
usable and if they could be composed along with the compo-

nents to get the risks of complex systems consisting of these
components, there would be no need to analyze them again and
again. In [2] “Dependent CORAS Diagrams” are suggested to
deal with dependencies of different components. But these
diagrams are only appropriate to hide some complexity from
the “context scenario”. Hence, in [10] chapter 16, “Dependent
CORAS” is only mentioned for dealing with assumptions
about the environment, which could then be replaced with risk
analysis results about the environment. There is not yet a satis-
fying solution for composing CORAS risk analysis results in
not trivial ways.

III. COMPOSITION OF RISK ANALYSIS ARTIFACTS

The idea presented here to make the risk analysis for com-
plex systems more feasible is to use the conventional CORAS
method only for the relatively small individual components the
system consists of. Composing the resulting artifacts of such
analysis along with the combination of the components should
allow to detect and to evaluate the risks of the complex system.
Combining components, their risks could be reduced; increased
or even new risks might arise.

In the scope of this paper, the conventional CORAS risk
analysis process will not be presented in detail. Instead, just
some results are given. The risk analysis artifacts shown here
are exemplary excerpts – they are not meant to be complete.
Figure 1 shows a threat diagram for the exemplary time-stamp
service that will be used as the base for all further risk analysis
throughout this paper.

Figure 1. CORAS threat diagram

In step four of the CORAS method the scales for express-
ing likelihoods, consequences and the functions to calculate
risk values are defined by those who do the risk analysis. This
freedom makes it eventually difficult to reuse results of the risk
analysis for different components if they use deviating scales
and risk functions. Eventually, it might be necessary to define
and apply proper conversion functions.

In this example, absolute likelihoods of threat scenarios and
unwanted incidents to occur within a time period of ten years
are noted within square brackets as probability values accord-
ing to the Kolmogorov axioms [9], i.e. as real numbers be-
tween zero (will not happen) and one (will definitely happen).
Relative likelihoods on relations are noted as percent values.
For example if someone exploits “software errors”, Figure 1
indicates that there is a relative likelihood of 32% that this is a
denial of service attack and there is a relative likelihood of 75%
that this attack manipulates the timer. Note that attackers can
try to do both simultaneously with a single attack, so the sum
of the relative likelihoods for the consequences may be above
100%.

A. Creating reusable threat interfaces for components

A threat interface describes how an individual component
could be influenced by the unwanted incidents of other compo-
nents and how it could itself affect the security of other com-
ponents or the entire system. It should hide internal details. But
it must be detailed enough to model and to evaluate the threats
of a complex system composed of multiple components.

A threat interface consists of a descriptive name for the
component and three lists: The first list contains vulnerabilities
that are exposed to other components. The second list contains
unwanted incidents that might be a threat for other components
or for the entire system. The third list contains directed rela-
tions, each having a vulnerability from the first list as starting
point and an unwanted incident of the second list as end point.

The threat diagrams created in step five and six of the con-
ventional CORAS method contain all the information required
to define a threat interface: These diagrams give a detailed
picture by distinguishing between vulnerabilities, threat scenar-
ios and unwanted incidents.

The vulnerabilities and the unwanted incidents from the
threat diagram can directly be used within the threat interface.
The threat scenarios are somehow internal. They are hidden in
the threat interface: Each relation path in the threat diagram
leading from a vulnerability to a threat scenario and further to
an unwanted incident is replaced in the threat interface by a
direct relation between the corresponding vulnerability and the
corresponding unwanted incident. The relative likelihood val-
ues of the replaced relations are multiplied to get the relative
likelihood for each new direct relation.

Threat interfaces for components have a graphic represen-
tation as a box with vulnerabilities on the left hand side and the
unwanted incidents on the right hand side. Arrows with dashed
lines represent the relations. Relative likelihood values are
written under the arrows. The threat interface for the time-
stamp service is shown in Figure 2.

Figure 2. Threat interface

B. Threat composition diagram

In the example, it is more likely that the time-stamp service
becomes unavailable, but the threat diagram (Figure 1) shows
that if the service generates a bad (i.e. wrong or weak) time-
stamp, the consequences are expected to be more serious. In
step seven and eight of the conventional CORAS method, both
unwanted incidents are therefore evaluated as high risks and
both should be treated.

One possible treatment to improve the availability of time-
stamp generation is to use multiple time-stamp services. If
there are two alternative time-stamp services {A, B} and if it is
enough that just one of them is accessible, then the combined

service A ˅ B would still be accessible even if one base service
becomes unavailable. Client applications can directly contact
one of the two services {A, B}. Hence, the combined service
A ˅ B does not have to be implemented. It can be just a logical
service. Instead of doing a complete conventional CORAS risk
analysis for the logical service A ˅ B, the idea is to make a
threat composition with the threat interfaces for the base ser-
vices. Therefore, the threat composition diagram is introduced:

The threat composition diagram consists of two layers. The
component layer contains information about how the base
components themselves are combined to a complex compo-
nent. The second layer contains information about the vulnera-
bilities and unwanted incidents identified for each individual
component and about how these could affect one another. That
layer is called the directed graph of consequences.

In a threat composition diagram, each individual compo-
nent is represented by its threat interface. The relations be-
tween the components are modeled on the component layer as
relations between the entire threat interfaces using arrows with
dotted lines. If a simple arrow is not enough to make the rela-
tion understandable, description boxes may be used to infor-
mally explain relations. For the relations between the compo-
nents in the threat composition diagram in Figure 3 there is a
description box on the side of the threat interface for time-

stamp service A ˅ B having the value “1”. This means that the
new combined time-stamp service A ˅ B relies on the output of
at least one of its base services {A, B}.

Figure 3. Threat composition diagram with three components

For each component, the threat interface is generated from
a threat diagram produced in a conventional CORAS risk anal-
ysis processes. If a component is composed of other base com-
ponents, that analysis should not go into the details of the base
components. Instead, vulnerabilities corresponding to the un-
wanted incidents of the base components are identified. Nu-
meric values for the probability of unwanted incidents which
could be triggered by unwanted incidents of the base compo-
nents do not have to be estimated in the conventional CORAS
analysis process. These values can be calculated using the di-
rected graph of consequences.

While the threat interfaces themselves become a part of the
component layer in a threat composition diagram, their vulner-

abilities and unwanted incidents become nodes in the directed
graph of consequences. The internal relations of threat inter-
faces become edges in the directed graph of consequences.
Additionally, if an unwanted incident of some threat interface
could affect a vulnerability of another threat interface, that
relation is modeled as another edge in the directed graph of
consequences. In the threat composition diagrams, the graphic
representation for such a trigger relation is an arrow having a
continuous line.

Gates can be used to express complex trigger relations: For
example, multiple unwanted incidents might be required to
actually affect a specific vulnerability. Graphically, a gate is
represented by a small square with a label representing its func-
tion. In the example (Figure 3), the combined time-stamp ser-
vice A ˅ B becomes only unavailable if service A and service B
are unavailable. That is why the gate on the side of the “base
services unavailable” vulnerability has the label “=2”. But if
just one of base service A or base service B produces a bad
time-stamp, this will cause the combined service A ˅ B to pro-
duce a bad time-stamp, too. Therefore, the gate on the side of

the “bad base time stamp(s)” vulnerability has the label “1”.

The directed graph of consequences with its gates is similar
to a fault tree and it will allow doing similar calculations of
probability values. The unwanted incidents correspond to faults
in a fault tree. But in contrast to a fault tree, the directed graph
of consequences does not have to be a tree. It can have multiple
top level incidents, for example. With the vulnerabilities, the
directed graph of consequences contains significantly more
information than a fault tree. Furthermore, it is always integrat-
ed in a threat composition diagram, which contains infor-
mation about the components and their combination.

In particular, vulnerabilities are important for identifying
potential statistical dependencies not yet modeled in a threat
composition diagram. Knowing the statistical dependencies is
essential to calculate probability values accurately.

If two unwanted incidents can be triggered by the same
unwanted incident (i.e. they have a common trigger unwanted
incident in the directed graph of consequences) then they are
definitely somehow statistically dependent. In the threat com-
position diagram shown in Figure 3, there are no such obvious
dependencies. Unfortunately, if there is no common trigger in
the threat composition diagram, this does not necessarily mean
that the unwanted incidents are statistically independent.

For statistical independency, there are no such simple crite-
ria. Eventually, the threat composition diagram is not fine
grained enough and a more detailed analysis is required. Can
there possibly be some common trigger incidents that were not
yet modeled? Looking at the incidents or faults without know-
ing further details about the components, it is impossible to
answer that question. Vulnerabilities are exactly the missing
information: they tell the analysts directly how a component
could be affected. A careful look at the vulnerabilities especial-
ly of the base components is crucial. In Figure 3 the two base
services have vulnerabilities with identical labels. That is a
clear indicator that probably there could be some dependencies.
In such a case, additional threat interfaces for more base com-
ponents have to be added and their relations must be modeled.
Thereby, the threat composition diagram gets finer grained.

Figure 4. Threat composition diagram with additional base components

For the time-stamp service base components A and B, there
are several base components taken into consideration here: the
server room, the operating system, the service program and a
hash algorithm. Figure 4 shows the threat composition diagram
with the threat interfaces for these components.

In the example, both base time-stamp services rely on the
SHA-1 algorithm. If that algorithm is broken and collisions can
be found easily, both services will produce weak time-stamps.
In the directed graph of consequences the “generates bad time-
stamp” incident of service A and the “generates bad time-
stamp” incident of service B can both be triggered by the same
unwanted incident “collisions are found” of the “SHA-1” com-
ponent. Clearly, having a common trigger node, they are statis-
tically dependent. In a fault tree, it would be necessary to mod-
el two separate nodes having the same name for the two trig-
gers. Else, it would not be a tree. The directed graph of conse-
quences can model dependencies more directly end intuitively.

The “generates bad time-stamp” incidents of the base ser-
vices can also be triggered by other incidents obviously not
having the same dependency. The probability values for un-
wanted incidents caused by triggers of different dependencies
must be kept separately to make a correct probability value
calculation possible. Therefore, an unwanted incident can have
multiple different dependency sets, each representing only
those incidents caused by triggers that have the same depend-
ency throughout the entire directed graph of consequences. In
the threat composition diagram, the dependency sets are repre-
sented as rows in the box representing the incident. Dependen-

cy sets should have a description indicating the cause of de-
pendency if there is any dependency. In the example, the de-
scription for the dependency set triggered by the “collisions are
found” incident is SHA.

Vulnerabilities can be affected by unwanted incidents hav-
ing multiple different dependencies. In order to support the
correct calculation of probability values for the possible conse-
quences, information about different dependency sets of the
“input” unwanted incidents must be preserved in vulnerabili-
ties. Therefore, the vulnerabilities in the threat composition
diagram can have multiple rows representing different depend-
ency sets, too. Relations between an unwanted incident and a
vulnerability (or vice versa) both having the same dependency
sets are modeled directly between the dependency sets. That
way, probability values for different dependency sets can be
propagated through the directed graph of consequences with-
out mixing them up. In the example, the “bad base time-
stamp(s)” vulnerability of time-stamp service A ˅ B preserves
the dependency sets of the incidents which can affect it.

For the dependency set named SHA, the kind of dependen-
cy is visible in the directed graph of consequences in the com-
mon trigger “collisions are found”. For the other dependency
set, Figure 4 does not show any common triggers. Does that
mean that these parts of the “generates bad time-stamp” inci-
dents of the two base services are statistically independent?
The “service unavailable” unwanted incidents of base time-
stamp service A and of base time-stamp service B do not have a
common trigger, too. The graph shows no dependency between
them. Is the diagram fine grained enough to decide whether
they are statistically independent?

The only way to figure that out is to look carefully at the
vulnerabilities. For all the vulnerabilities that could eventually
have a common trigger, a closer look at a finer grained threat
composition diagram is required.

One of the vulnerabilities by which both unwanted inci-
dents of time-stamp service A could be affected is called “pow-
er supply server room α”. For time-stamp service B, there is a
similar vulnerability called “power supply server room β”. If
both server rooms are connected to the same electricity net-
work with the same power plants, then these can definitely be
affected by the same unwanted incidents. A closer look with
more fine grained components and risk interfaces is required
here to decide about statistical independency. Figure 5 shows a
detailed threat composition diagram excerpt just for the two
power supplies.

The two incidents X (EG1 fails to produce power) and Y
(EG2 fails to produce power) are statistically dependent. They
are an example for mutual dependency, they can affect each
other. If both electric generators EG1 and EG2 work within
normal parameters, each has to produce 10 KW. If one of these
generators fails, then the other generator has to produce up to
20 KW (the maximum capacity). A generator which has to
produce 20 KW needs more cooling. It becomes more likely
that it will overheat. Though the cooling systems themselves
are independent – their vulnerabilities will not be affected by
the same incident – the failure of one generator increases the
likelihood that the other generator will overheat.

Figure 5. Threat composition diagram for power supply

As long as EG2 works, EG1 needs to produce only 10 KW
and for air cooling i a cooling capacity of 8 KW is sufficient.
The probability P(X1) that EG1 will fail under such conditions
is 0.24. The conditional probability P(Y | X1) that EG2 will fail
if EG1 has already failed is 0.2 because that is the probability
that the cooling capacity of “water cooling ii” will drop below
18 KW. Once EG2 has to produce the entire 20 KW, it needs at
least that cooling capacity.

With the formula from equation (1), it is possible to calcu-
late the probability that both electric generators will fail if EG1
fails first: P(Y ∩ X1) = 0.048.

The probability P(X ∩ Y1) that both electric generators will
fail if EG2 fails first can be calculated the same way. P(Y1) is

0.16, P(X | Y1) is 0.6 and P(X ∩ Y1) = P(X | Y1) P(Y1) = 0.096.

Only if both generators fail at the same time, there will not
be enough power for server room α. Each of the two incidents
X ∩ Y1 and Y ∩ X1 alone can trigger the “power shortfall for
server room α” incident Sα. Figure 5 indicates that if X1 occurs,
Y1 will not occur and vice versa. X1 and Y1 are mutually exclu-
sive. Therefore, X ∩ Y1 and Y ∩ X1 are mutually exclusive, too,
i.e. P((X ∩ Y1) ∩ (Y ∩ X1)) = 0. The probability P(Sα) that the
power supply for server room α fails can be calculated using
the formula from equation (2): P(Sα) = 0.144.

This dependency affects transformer station Tα and server
room α, but neither transformer station Tβ nor server room β.
The threat composition diagram in Figure 5 shows no depend-
encies between the two transformer stations Tα and Tβ. It is
detailed enough to see that the base vulnerabilities do not have
any common trigger incidents with a relevant likelihood. The
two “power shortfall” incidents are statistically independent.
The power supply for server room α is indeed completely sepa-
rated from the power supply for server room β. There are no
statistical dependencies between the two power supplies that
have to be taken into consideration in order to calculate proba-
bility values correctly for the threat composition diagram given
in Figure 4.

Once this top-down analysis is completed and the threat
composition diagram is detailed enough to decide about statis-
tical independencies, a bottom-up analysis is required to prop-
agate any identified new dependencies with the help of de-

pendency sets throughout the entire directed graph of conse-
quences. Having finer grained components, analysts doing the
bottom-up analysis will eventually identify some vulnerabili-
ties and incidents in higher level components that have been
overlooked before. Eventually, further bouncing analysis going
multiple times top-down and bottom-up might be necessary to
get a complete picture. Because the directed graph of conse-
quences can have multiple top level incidents, it is possible to
do this bouncing analysis without changing the model. In a
fault tree, this would not be possible.

For the time-stamp service example, in the scope of this
paper, details of the finer grained analysis for other compo-
nents than the power supplies are omitted. Instead, just the
result is given: The fine grained component analysis reveals no
additional statistical dependencies between the unwanted inci-
dents of the two base time-stamp services.

Having a threat composition diagram with complete infor-
mation about the dependencies and absolute probability values
at least for all initial unwanted incidents, it becomes possible to
calculate the missing probability values. For each top level
incident, this calculation works like in a fault tree.

Figure 4 shows, that the incident ABS (i.e. the combined
time-stamp service A ˅ B becomes unavailable) occurs only if
both “service unavailable” incidents {AS, BS} of the two base
services {A, B} occur, i.e. P(ABS) = P(AS ∩ BS). The analysis
shows that {AS, BS} are statistically independent. Hence, it is
possible to apply the formula from equation (3) and P(ABS) is
simply .

The incident AS can be triggered by unwanted incidents that
affect the vulnerability physical server (AP) or by unwanted
incidents that affect the vulnerability software errors (AE).
There is no statistical dependency between any incident affect-
ing AP and any incident affecting AE. If AP is affected by some
incident, this will trigger in 90% of all cases AS. If AE is affect-
ed by some incident, this will trigger in 32% of all cases AS.
Therefore:

Both P(AP) and P(AE) can be calculated using the formula
from equation (4) and the absolute probability values of the
incidents that affect them as parameters. The results are:
 . P(BS) can be calcu-
lated the same way and has a numeric value of 0.4, too. Finally,
it is possible to calculate P(ABS), which is 0.16.

The combined time-stamp service A ˅ B will produce bad
time-stamps if at least one of the two base services produces a
bad time-stamp. For the unwanted incident ABG there are trig-
ger incidents belonging to two different dependency sets. ABG1
represents the vulnerability bad base time-stamp(s) being af-
fected by statistically independent incidents. ABG2 represents
the vulnerability bad base time-stamp(s) being affected by
incidents depending on the SHA-1 collisions found incident.
Any incident that could affect ABG1 is statistical independent
from any incident that could affect ABG2. To calculate P(ABG),
it is possible to apply the formula from equation (4) with
P(ABG1) and P(ABG2) as parameters. Using the same formula
several times and applying the relative likelihoods correctly, it

is possible to calculate P(ABG1). P(ABG2) can be trivially calcu-
lated using the formula from equation (5). The numeric values
are: P(ABG1) = 0.39, P(ABG2) = 0.1, P(ABG) = 0.45.

The probability that a bad time stamp will be generated has
been increased by taking one result of two different base ser-
vices. To improve both, the availability and the correctness, it
would probably be a good idea to use three different base ser-
vices and to require at least two of them to confirm the same
time-stamp value.

Figure 6. Threat composition diagram with three base services

In the example shown in Figure 6, given that all relevant
statistical dependencies that are shown in the diagram, it is
possible to apply the formula from equation (6) to calculate
P(ABCS) and P(ABCG1). The numeric results are: P(ABCS) =
0.352 and P(ABCG) = 0.212. For the logical time-stamp service
A ˄ (B ˅ C) ˅ (B ˄ C), both the availability and the correctness
are improved.

In the design of the S-Network, such or even higher redun-
dancy is widely used for many different aspects including bit
sequence preservation, meta-data generation and access con-
trol. Careful analysis for dependencies as shown here is re-
quired to estimate the effect of redundancy on the probability
values for the unwanted incidents. In complex systems, it is not
always obvious whether it is better to use identical or divergent
technologies and implementations. Threat composition dia-
grams are really helpful in this analysis for the S-Network.

C. Composition with external threats and assets

Just looking at the threat interfaces of the components
might eventually not be enough. External threats (especially
human threats) identified for different components in separate
threat diagrams could probably interact with one another.
There could be new combined threats, resulting in different
dependencies of unwanted incidents. Hence, the probability
values can only be calculated correctly if the potential combi-
nations of threats are modeled and composed correctly.

A real time-stamp service typically has a provider who is
responsible for the operation of the time-stamp service. The
provider owns the server room and he has the key offering easy
access to the physical server his service runs on. A dishonest
provider could use his privileged access to manipulate the ser-
vice he is responsible for. Therefore, the threat diagram shown
in Figure 1 contains a human threat “dishonest provider”.

If a logical time-stamp service is composed of multiple real
time-stamp services, no single entity should provide more than
one of the real base services. Consequently, no single entity
would have easy access to more than one of the servers used
for a base time-stamp services (Figure 7). Manipulating just
one base service would then not be enough to manipulate the
logical combined service A ˄ (B ˅ C) ˅ (B ˄ C). The easy ac-
cess to a single server of a base service becomes less critical.

Figure 7. Difficulties to physically access the server rooms for the different

human threats

However, this does not mean that having multiple services
with different providers is automatically more secure: Two
providers could agree to cooperate with one another to cheat
successfully. For those who collaborate, it does not matter that
each of them only has the key to exactly one single server
room: Two or more allied providers working together do have
at least two keys and therefore easy access to at least two dif-
ferent server rooms. Access to two server rooms is enough to
manipulate the combined logical service successfully.

In the threat composition diagram, potentially manipulative
coalitions can be represented by threat interfaces as shown in
Figure 8. Each manipulative collaboration incident of these
interfaces can trigger direct hardware misuse incidents in two
or more different server rooms. Incidents triggered by the same
initial manipulative collaboration incident are statistically de-
pendent. The different dependencies have to be modeled as
separate dependency sets. In the example, each direct hardware
misuse incident has four different dependency sets. These dif-
ferent dependencies have to be propagated forward through the
directed graph of consequences as shown in Figure 9.

Figure 8. Threat composition diagram with coalitions (excerpt 1)

Figure 9. Threat composition diagram with coalitions (excerpt 2, containing

only the service unavailable top level incident, with probability value results)

In general, all threats identified in the threat diagram for
any individual involved component have to be added to the

threat composition diagram. Each threat should appear only
once. For each relation from a threat K’ to some vulnerability
M’ in the threat diagram of an individual component it is nec-
essary to make sure that there is a relation between the corre-
sponding threat K and the vulnerability M in the threat compo-
sition diagram, too. Eventually, it is not necessary to insert a
direct relation: If there is a relation leading from the threat K to
another vulnerability N, and if there is a path between N and M
in the directed graph of consequences having a relative likeli-
hood of 100%, then this indirect relation is sufficient.

For the actual composition analysis process of external
threats (e.g. the process of finding potentially harmful coali-
tions of human threats), there is no simple algorithm. Those
threats that can affect some of the involved components, but
not all of them (at least not in the same way) are candidates for
composition analysis. If there can be any interaction between
these threats which could affect the new composed system,
these interactions and the resulting dependencies must be mod-
eled in the threat composition diagram.

The threat composition diagram is not yet complete until
the consequences of unwanted incidents for the assets are taken
into consideration, too. All consequences and assets identified
in the threat diagrams for individual components have to be
included in the threat composition diagram. Let T’ be an asset
identified in the threat diagram for the component D’. If there
is not yet an asset T corresponding to T’ in the threat composi-
tion diagram, then T must be added.

For each unwanted incident E’ identified for component D’
that has the consequence Q’ for T’, it is necessary to make sure
that this consequence is also modeled correctly as a conse-
quence relation Q between E (i.e. the incident corresponding to
E’ in the threat interface for D’) and T in the threat composi-
tion diagram. The consequence value of Q’ is assigned to Q.

Threats and their influence relations are added to the threat
composition diagram to support the analysis of dependencies
and to enable the correct calculation of probability values.
Consequences and assets are basically added to the threat com-
position diagram because these are required for the further
steps in the risk analysis process.

For the S-Network, manipulative coalitions have been iden-
tified as a major threat using the risk analysis method shown
here. Having effective treatments that prevent such collabora-
tion of human threats is considered to be crucial. A detailed
analysis of the coalition threats with measures for preventing
these is presented in [14].

IV. DERIVING AND COMPARING RISKS

For identifying and evaluating risks, it would be possible to
define another composition process. But there is no need to do
the composition twice. The differentiation between vulnerabili-
ties and unwanted incidents is probably more helpful for the
composition than just having risks. For that reason, composi-
tion should be done only at threat analysis level.

A threat composition diagram with assets and consequence
estimations can be used as the base to immediately identify and
evaluate the risks without further need for component based
composition. Hence, it is possible to create a conventional

CORAS risk diagram for the entire system – without worrying
about individual components anymore.

Just like in a conventional threat diagram, in a threat com-
position diagram each consequence relation Q leading from an
unwanted incident E to an asset T is a risk R. The probability
value of that unwanted incident E and the consequence value of
Q are the parameters for the risk function, which is used to
calculate the risk value for R. The risk value is necessary for
applying the risk evaluation criteria. Risk functions, risk values
and evaluation criteria are defined by the risk analysts in step 4
of the conventional CORAS method.

Figure 10. Threat composition diagram with assets and consequences

Typically, risks should be identified at a certain level of ab-
straction. For example, in the threat composition diagram
shown in Figure 10, it would be possible to identify the risks at
the high level of time-stamp component A or it would be possi-
ble to identify them at the low level of the base components.
Only the unwanted incidents of the risk interfaces representing
the components at the chosen level of abstraction are translated
to risks for all possible consequences.

A consequence relation of some unwanted incident E can
be indirect: If there is a path in the directed graph of conse-
quences leading from E to some unwanted incident W having
the consequence Q for asset T, then incident E can have the
consequence Q for T, too. Hence, a risk can be identified for
(E, W, Q, T) and the risk value can be calculated using the
product of the absolute probability value for E and the relative
likelihood for the path between E and W (i.e. |)
as the first parameter and the consequence value of Q as the
second parameter for the risk function.

For example, the unwanted incident “executes malicious
code” of the “service program a” component in the example
threat composition diagram shown in Figure 10 does not have
direct consequences for any identified asset. But there are paths
in the directed graph of consequences indicating that the inci-
dent can indirectly affect assets: There is one moderate conse-
quence that the “executes malicious code” incident will have if
it triggers the “service unavailable” incident and there are two
consequences (one major, the other catastrophic) that it will
have if it triggers the “generates bad time-stamp” incident.

Each of these indirect consequence relations leading from
an incident to an asset is identified as an individual risk.

TABLE I. RISK FUNCTION FOR BASE INCIDENTS

 Consequences

 minor moderate major catastrophic

L
ik

el
ih

o
o

d

 0.03 very low very low low medium

[0.03-0.06[very low low medium high

[0.06-0.16[low medium high very high

 0.16 medium high very high very high

A common risk function defined for all base components in
step 4 of the conventional CORAS risk analysis process is
given in TABLE I. While the consequence value for a risk can
just be read from the graph, the likelihood value for a risk has
to be calculated along the path in the directed graph of conse-
quences. The probability that the “executes malicious code”
incident of component “service program a” occurs is 0.11, but
only 32% of these incidents lead to the “service unavailable”
incident. Therefore the probability for the risk “service pro-
gram a executes malicious code” (“service unavailable”) is
0.0352. Having a “moderate” consequence, this is a “low” risk.

Identifying and determining the risks in that way, it is pos-
sible to construct a flat conventional CORAS risk diagram
using a threat composition diagram as input. It probably makes
sense to summarize all the risks derived from the same un-
wanted incident in a compact structure as shown in Figure 11.

Figure 11. Risk diagram for a single time-stamp service

If only the unwanted incidents of risk interfaces for higher
level components should be analyzed for identifying risks,
caution is required if some base component incidents have
consequences for assets that have not been identified for the
higher level components. In the example shown in Figure 10,
there are no consequences from the unwanted incidents of the
“time-stamp service A” component for the “hardware infra-
structure” asset. But these unwanted incidents can be triggered
by the “direct hardware misuse” incident or by the “operating
conditions violated” incident of the risk interface for the “serv-

er room α“ component, which both have consequences for the
“hardware infrastructure” asset. If these consequences and
assets do not matter in the higher level context they may be
ignored. Otherwise, the risk analysis for the higher level com-
ponents was probably not complete and must therefore be re-
peated taking more assets into consideration.

A. Comparing the risks of components and architectures

Though it is possible to get completely rid of all the com-
ponent and composition information when deriving risks from
a threat composition diagram, it might also offer some benefits
to create a diagram that keeps some information about the
components. The idea is to make components or complex
combinations of components comparable in terms of risks.
Identifying the most critical components allows focusing
treatment efforts. Typically, for a complex system, there is not
only one single possible configuration. The system could prob-
ably be build using another combination of components or
using completely other base components, too. It should be
possible to choose the architecture with the fewest risks. There-
fore, the risk comparison diagram is introduced here.

Figure 12. Risk comparison diagram

In a risk comparison diagram, each component is modeled
as a risk table. Each risk table has a row for the component
name and rows for all the risk values that have been defined
during the risk analysis for that component. Relations between
the components can be modeled between the risk tables with
arrows having dashed lines and description boxes. A risk com-
parison diagram contains the risks and assets that can be iden-
tified for all involved components. In contrast to a risk dia-
gram, the risk value is not written down for each risk. Instead,
the consequence relations from risk R to asset T are made

through the risk table representing the component the risk was
identified for. More precisely, the relations have to pass
through the row representing the risk value of the risk R. That
way, all risks of a component and their values are summarized
in a risk table at a glance. Figure 12 shows a risk comparison
diagram for three alternative time-stamp service designs.

For a complex system, there are many difficult design deci-
sions, e.g. which individual components should be used and
how much redundancy is optimal so that the remaining risks
are acceptable. Risk comparison diagrams have proven to be a
valuable tool for making high level decisions for the S-Network
and they are helpful to communicate the decisions graphically.

V. CONCLUSION, RELATED AND FURTHER WORK

With the extension presented here, the CORAS method be-
comes practicable for the risk analysis of large scale systems
consisting of many different components like the S-Network.
Modeling the relations between risk analyses artifacts generat-
ed for individual components, the probability values of un-
wanted incidents for the complex system can be calculated.

The directed graph of consequences in threat composition
diagrams is similar to fault trees. It contains gates, which can
express relations that conventional CORAS diagrams cannot
model well. But in contrast to a fault tree, the directed graph of
consequences does not have to be a tree: there can be multiple
top level incidents. A single directed graph of consequences
can represent multiple fault trees. Nodes in the directed graph
of consequences modeling incidents can have relations leading
to more than a single consequence incident. Therefore, depend-
encies can be modeled directly as common trigger nodes. In a
fault tree, a fault triggering n other faults must be represented
by n nodes having the same name but no graphical connection
– which is less intuitive. Even more important, using the di-
rected graph of consequences, bouncing analysis becomes
feasible, going top-down and bottom-up with the same model.
Using FTA, bouncing analysis is only possible in combination
with other risk analysis methods like FMCA, which work on
other models than fault trees. Transitions between different
methods can cause problems and might be too difficult.

Containing the vulnerabilities, the external threats, the con-
sequences and the assets, the directed graph of consequences
offers the analyst more useful information than a fault tree. As
a part of the threat composition diagram, the directed graph of
consequences is always integrated in a model for the combina-
tion and interaction of the components themselves – represent-
ed by their threat interfaces. Having such a complete picture
can help the analyst to identify all relevant risks.

However, diagrams can also get large and complex. High
level CORAS is suggested to hide details in conventional
CORAS diagrams [10]. A similar approach could be used for
hiding parts in the new diagram types suggested here. A Soft-
ware tool like the CORAS tool for the conventional CORAS
method (http://coras.sourceforge.net/coras_tool.html) can help
the analysts to deal with complex diagrams. Despite modeling
and visualizing, a software tool could also support the compu-
tation of probability values in the directed graph of conse-
quences.

Conventional risk diagrams can be created directly from the
threat composition diagram. The least risky components and
designs can be chosen using the risk comparison diagram.

Further research could try to add some information about
the life cycle of unwanted incidents to the extended CORAS
method. For how long does an unwanted incident last? Is the
unwanted incident detected? Will the unwanted incident be
repaired within a certain time-period once it was detected?
Such information is essential to calculate more precise proba-
bility values. Established in other analysis methods like dy-
namic FTA, these aspects should be captured by CORAS, too.

REFERENCES

[1] Zigmund Bluvband, Rafi Polak, Pavel Grabov: Bouncing Failure
Analysis (BFA): The Unified FTA-FMEA Methodology, ALD Tel-Aviv
2005, http://www.aldservice.com/en/ articles/bouncing-failure-analysis-
bfa-the-unified-fta-fmea-method.html (2012-04-15)

[2] Gyrd Brændeland, Heidi E. I. Dahl, Iselin Engan, Ketil Stølen: Using
dependent CORAs diagams to analyse mutual dependency, LNCS 5141,
Second International Workshop on Critial Information Infrastructures
Security (CRITIS'07) pp. 135-148, Springer 2008

[3] Heidi E. I. Dahl, Ida Hogganvik, Ketil Stølen: Structured semantics for
the CORAS security risk modelling language, 2nd International
Workshop on Interoperability solutions on Trust, Security, Policies and
QoS for Enhanced Enterprise Systems (IS-TSPQ'07). Report B-2007-3
pp. 72-92, University of Helsinki 2007

[4] Department of Defense: Procedings for Performing a Failure Mode,
Effects and Criticality Analysis, MIL-STD-1629, Washington
1949/1980, http://www.fmea-fmeca.com/milstd1629.pdf (2012-04-15)

[5] Joanne Bechta Dugan, Kevin J. Sullivan, David Coppit: Developing a
low-cost high-quality software tool for dynamic fault-tree analysis,
Transactions on Reliability 2000-03 pp. 49-59, IEEE 2000, ISSN: 0018-
9529, Digital Object Identifier: 10.1109/24.855536

[6] Clifton A. Ericson II: Fault Tree Analysis - A History, in Proceedings of
the 17th International System Safety Conference, System Safety Society,
Unionville 1999, http://www.fault-tree.net/papers/ericson-fta-history.pdf
(2012-04-15)

[7] Rohit Gulati, Joanne Bechta Dugan: A Modular Approach for Analyzing
Static and Dynamic Fault Trees, Proceedings of the 1997 Reliability and
Maintainability Symposium in Philadelphia, PA pp. 57-63, IEEE 1997,
Print ISBN: 0-7803-3783-2

[8] Ida Hogganvik, Ketil Stølen: A Graphical Approach to Risk
Identification, Motivated by Empirical Investigations, 9th International
Conference on Model Driven Engineering Languages and Systems 2006,
LNCS 4199 pp. 574-588, Springer Berlin Heidelberg 2006, DOI:
10.1007/11880240_40

[9] Andrei Kolmogorov: Grundbegriffe der Wahrscheinlichkeitsrechnung,
Springer Verlag Berlin 1933,

[10] Mass Soldal Lund, Bjørnar Solhaug, Ketil Stølen: Model-Driven Risk
Analysis, The CORAS Approach, Springer Verlag Berlin Heidelberg
2011, ISBN: 978-3-642-12322-1

[11] Antoine Rauzy: New algorithms for fault trees analysis, Reliability
Engineering and System Safety 40 (1993) pp. 203-211, Elsevier Science
Publishers 1993

[12] Michael Stamatelatos, Joanne Dugan, Joseph Fragola, Joseph Minarick,
Jan Railsback: Fault Tree Handbook with Aerospace Applications,
NASA, Washington 2002,
http://www.hq.nasa.gov/office/codeq/doctree/fthb.pdf (2012-04-15)

[13] W. E. Vesely, F. F. Goldberg, N. H. Roberts, D. F. Haasl: Fault Tree
Handbook, U.S. Nuclear Regulatory Commission, Washington 1981,
http://www.nrc.gov/reading-rm/doc-
collections/nuregs/staff/sr0492/sr0492.pdf (2012-04-15)

[14] Johannes Viehmann: The Theory of Creating Trust with a Set of
Mistrust-Parties, proceedings of PST 2012 in Paris, IEEE 2012

[15] H. A. Watson: Launch Control Safety Study, Section VII, Vol 1, Bell
Laboratories, Murray Hill 1961

http://coras.sourceforge.net/coras_tool.html

