
Precursors and Laggards: An Analysis of Semantic
Temporal Relationships on a Blog Network

Telmo Menezes
CREA & ISCPIF

CNRS
ISC - 57-59, rue Lhomond

F-75005 Paris, France
Email: telmo@telmomenezes.com

Camille Roth
CAMS & ISCPIF

CNRS-EHESS
54, bd Raspail

F-75006 Paris, France
Email: roth@ehess.fr

Jean-Philippe Cointet
INRA-SenS & ISCPIF
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Abstract—We explore the hypothesis that it is possible to obtain
information about the dynamics of a blog network by analysing
the temporal relationships between blogs at a semantic level,
and that this type of analysis adds to the knowledge that can be
extracted by studying the network only at the structural level
of URL links. We present an algorithm to automatically detect
fine-grained discussion topics, characterized by n-grams and time
intervals. We then propose a probabilistic model to estimate the
temporal relationships that blogs have with one another. We
define the precursor score of blog A in relation to blog B as
the probability that A enters a new topic before B, discounting
the effect created by asymmetric posting rates. Network-level
metrics of precursor and laggard behavior are derived from these
dyadic precursor score estimations. This model is used to analyze
a network of French political blogs. The scores are compared
to traditional link degree metrics. We obtain insights into the
dynamics of topic participation on this network, as well as the
relationship between precursor/laggard and linking behaviors.
We validate and analyze results with the help of an expert on
the French blogosphere. Finally, we propose possible applications
to the improvement of search engine ranking algorithms.

I. INTRODUCTION

For cultural anthropologists, understanding fads, trends, or,
generally, cultural similarity, essentially comes to explain-
ing “the capacity of some representations to propagate until
becoming precisely cultural, that is, revealing the reasons
of their contagiosity” [1]. This type of research programme
admittedly assumes the possibility of, on one hand, describing
representations in a consistent manner, and, on the other
hand, apprehending processes of social mediation. Defining
consistent cultural items is indeed crucial to describe adop-
tion of similar ideas, behaviors, opinions, topics, etc. — the
literature proposes here a large variety of concepts, such as
using same bags of terms, having identical opinion vectors,
duplicating references (for instance to digital content such as
online video or news articles, tagged by the same URL) or,
more loosely, being “infected” by spreading “memes”. Second,
describing social mediation requires to understand jointly
how some types of social network configurations and some
types of interactions may or may not favor the transmission,
reproduction or adoption of behaviors, ideas, etc. Again, a vast
amount of research has been concerned with normative models
or descriptive protocols aimed at understanding which kind of

individuals were more or less likely to pass on some pieces of
information, and which type of network positions could favor
the diffusion of some items.

By relying on large-scale datasets on which individuals
talk about what and when, specifically in online communi-
ties, social computing has recently contributed to this broad
research programme by intensively developing two pragmatic
streams of study: detection of “topics”, and characterization of
“informational cascades”. Studies focused on topic detection
explore bursts and regularities of behavior or term use [e.g.,
2], sometimes in order to infer trends in the general population
[3, 4]. In all these studies, cultural representations are assumed
to be extremely atomic, i.e. based on a single behavior (a vote),
item (a reference, a URL), apprehending cultural contagion
pretty much similarly to disease contagion — to the notable
exception of [5] who gather similar sentences into clusters
of quotes, getting closer to the polymorphism of cultural
representations emphasized by anthropologists.

On the other hand, studies on informational cascades cur-
rently adopt a structural stance, migrating from the “two-
step-model” to more recent arguments underlining the im-
portance of more horizontal, less hierarchical patterns [6, 7].
Importantly, in this persective, information flows and diffusion
paths are characterized along a given social network, available
a priori. In many cases however, and certainly in blogs
in particular, much of the information regarding the whole
underlying interaction infrastructure is simply missing (be it in
terms of news media readership, email exchanges and broadly
any type of non-blog-based online conversation, phone calls,
etc.).

In this paper, we aim at bridging these rather separate
streams by adopting (i) a looser view on representations, as
stories or cultural attractors [8, 9] rather than atomic items
and, (ii) by considering information sources, in our case
bloggers, as sensors in a social system – in particular as
representatives of topics discussed in the society – so as
to suggest possible/implicit information diffusion flows or,
at least, precedence relationships. As an aside, the current
contribution also considers observed social networks as effects
rather than just causes of information diffusion.

We thus propose to identify topic classes, exhibit temporal
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precedence relations between sources based on significant
plausibility for an individual to address a topic before others
do, and eventually compare this structure with the partial
network of interactions constituted by explicit links among
bloggers. Classical authority measures are found to have only
a weak correlation with our approach, which rather exhibits
potential online whistleblowers. The next section presents
an overview of the relevant literature, while Sec. III details
the empirical protocol used to identify topics. Sec. IV then
describes our approach to compute probable precedence rela-
tionships; results are discussed and reframed in Sec. V.

II. RELATED WORK

A. Temporal detection of topics/bursts.

Topic characterization from (online) text corpora generally
relies on terms, n-grams (i.e. a basic linguistic unit of n
terms) or sentence segments. Once basic text units have been
defined and extracted, topics are appraised both quantitatively
and temporally, essentially by describing “how much on
which period of time they are being discussed”. This led to
distinguishing bursts of interest (“spikes”) [2], as opposed
to continuous discussions (“chatters”) around topics [10].
Models of the temporal [11] or spatial [12] regularities in
the usage of topics have been subsequently developed, up
to infering and predicting accurate information regarding the
whole population behavior [3, 4].

Another stream of research has focused on improving the
qualification of topics: for instance, by detecting whether
issues are addressed in a positive light or not [the so-called
field of “sentiment analysis”, see 13, among others]; or, closer
to our issues, by managing to group portions of text into
classes of similar content [5] — thereby implicitly addressing
one common critique among social scientists regarding the
atomism of “memes” as cultural items.

B. Precedence and influence

Empirical studies of influence generally rely on interaction
networks, using relational information to characterize conta-
gion paths, and following a long tradition in mathematical
sociology of social network-based models of information
diffusion. As regards blogspace in particular, after initial
descriptions of the underlying social network structure [e.g.
14, who also discuss bursty behavior in link creation], [15]
has been one of the first studies to specifically focus on the
structure of link cascades. In a previous study, [16] describe
more precisely local influence patterns such as the relationship
between e.g. holistic patterns and the weakness of links, in
Granovetter’s sense. [17], on the other hand, use various social
network structures to show that possible influence of a given
blog is best described by strictly structural page-rank-style
measures.

Since influence is obviously related to precedence rela-
tionships, several papers focus rather on temporal behavioral
precedence. For instance, the authors of [18] exhibit explicit
temporal dependencies on a email transmission network by
characterizing possible shortcuts in information paths, because

a dyad (A,B) could communicate less quickly than (A,C) and
(C,B) separately do.

In terms of intertwining social network structure and prece-
dence/influence, the relationship between topology and pre-
cursors or laggards had also been explored in [19], but with
the assumption that the social network is known a priori, and
by monitoring the adoption of a unique yes-or-no behavior. As
said before, it is likely that a lot of information about the social
structure is missing in most of the above studies, which con-
sider the (given) social network as the substrate of information
propagation. By assuming that the social structure describes
only a non-significant fraction of all possible interaction links
and contagion paths in the context of (for instance) political
discussions, we basically wish to suggest that, here, the social
network could just be a secondary material in the study of
contagion.

Some studies do exactly so and exhibit influence relation-
ships from usage information only: for instance in [20] a
Markov Chain Model is used to characterize which topics are
most likely to transition into others, using data extracted from
scientific bibliographic databases. Back to blogs, “probable”
content diffusion paths could be exhibited in [21] by using
classifiers based upon blog features: for instance, having
similar citing and content posting patterns; however, the anal-
ysis does not seem to make use of topic dynamics per se.
Another reference [22] introduces an analysis which integrates
more semantics, essentially in order to design automatic feed
recommenders — which appears nonetheless to be still based
on structural features (in-degree statistics) even if a filter is
applied over general topics (politics vs. IT, etc.).

On the whole, and in the context of partial social network in-
formation, the issue of the detection of implicit, non-structural
influence flows using temporal precedence in addressing topics
remains a pending question.

III. UNIT OF ACTIVITY DETECTION

We are interested in identifying topics of discussion for
which we can later analyse the temporal relationships of their
participants. Such topics must have two characteristics to be
relevant to our analysis: to have well defined time boundaries
within our observation period and to be maintained by the
participation of several blogs. If these two constrained are
respected then we are observing what we will call a well
defined “unit of activity”. We empirically define a method that
identify bursty topics which meet these constraints.

In [5], research related to the problem of topic detection
is classified into two main categories: probabilistic models to
identify long-range trends in general topics and the use of
rared named entities to study short information cascades. We
are not interested in long-range, general topics, nor in having
to rely on the occurrence of very specific, rare strings. Instead,
our goal is to identify topics that can identified by a set of n-
grams and a well bounded period of time, and that represent
simple, self-contained units of activity.

We propose a rather holistic approach, that takes advantage
of both the textual content of blogs posts, and the times at



which these posts where published.
The process of topic detection we propose consists of

a classical sequence of treatments that we perform on our
dataset:

1) Part-of-speech tagging and lemmatisation of each post’s
title and content in order to enumerate every relevant
n-grams in the corpus.

2) Detection and filtering of n-gram temporal bursts.
3) Merging of redundant n-gram bursts into unique topics.

A. linguistic treatment

We perform the first step using the TreeTagger tool [23].
In this step we generate a new version of each posts title and
textual content, where each word is lemmatised and augmented
with a part-of-speech tag.

We then divide the corpus of text generated by the previous
step into chunks, delimited by punctuation marks. Afterwords,
we find all the n-grams that occur in the chunks produced
by the previous step. This search is constrained by a set of
rules, as to not generate an intractable amount of n-grams, and
explore only cases we believe are likely to lead to meaningful
topics. The rules are the following:
• N-grams must have two or more words.
• An n-gram must contain at lease one noun.
• All words that are not nouns, verbs, adjectives or numbers

are discarded.
• All n-grams that contain words in a special set called

stop-words list are rejected.
These rules are empirical, having been obtained by experimen-
tation with real datasets. The word set in the last rule contains
words that have a strong temporal meaning, and that would
later on lead to the detection of meaningless temporal bursts
of usage. We used a set containing names of months, days of
the week and holiday seasons (like Christmas), in both French
and English.

B. Temporal bursts detection

In the second phase, we analyse the pattern of occurrence
of each n-gram, dividing the period of observation into bursts
of activity. For this purpose, we devised an algorithm that
iteratively divides the timeline into intervals, aiming at the
maximization of a value we will call the burst ratio. Let
us consider an ordered set T = {t0, t1, ..., tn} (in ascending
order), where each element is the time of an occurrence of the
n-gram. Furthermore, any two consecutive elements of T must
originate from different blogs. This guarantees that a burst can
only be maintained by the participation of multiple blogs.

We are interested in partitioning T into subsets which
correspond to temporal bursts. Let us consider the ordered
set Θ = {θ0, θ1, ..., θn} where θk = 1 if element tk is
the last element of a burst, and θk = 0 otherwise. Each
time θk equals 1 it means that the burst ends at tk. Given
a partition Θ of the sequence of a n-gram into bursts, it
is straightforward to compute the time-lag between the end
of a burst and the beginning of the next burst or the time-
lag between two occurrences inside the same burst. We can

time
T

Θ

t1 t2 t3 t4 t5 t6 t7

0 1 0 0 0 1 1

Figure 1. Example of a sequence of occurrences of a given ngram. The
ordered sets T and Θ are depicted. Inter-bursts and intra-burst intervals are
represented by arrows (respectively straight and curved).

compute the average time-lag between two consecutive bursts
or the average interval inside each burst on the whole timeline
as follows:

V7−→(T,Θ) =

∑|T |−1
i=1 (ti+1 − ti)θi∑|T |−1

i=1 θi
,

if
|T |−1∑
i=1

θi > 0, 0 otherwise (1)

Vy(T,Θ) =

∑|T |−1
i=1 (ti+1 − ti)(1− θi)∑|T |−1

i=1 (1− θi)
,

if
|T |−1∑
i=1

θi > 0, 0 otherwise (2)

We also define the minimum inter-burst interval m 7−→(T,Θ)
as:

m7−→(T,Θ) = min{i<|T |,θi=1}(ti+1 − ti)

We then define the burst ratio, ρ(T,Θ) as:

ρ(T,Θ) =
V 7−→(T,Θ)

Vy(T,Θ)
, if Vy(T,Θ) > 0 , 0 otherwise

Simply put, ρ(T,Θ) is the ratio of the mean time interval
between bursts to the mean time interval between elements
inside bursts.

On algorithm 1 we present the pseudo-code that describes
the clustering method. The process is started with all the
elements of Θ initialized to 0, meaning that in the initial state,
all n-gram occurrences are considered to belong to a single
burst. The algorithm iteratively tries to add new divisions to
Θ, keeping the ones that increase the burst ratio, until no
further improvement is possible.

Parameters α and β determine, respectively, the minimum
burst ratio and interval between bursts (in days) that are ac-
cepted. These parameters allow us to prevent the formation of
bursts that are not sufficiently separated, both in relation to the
average interval between n-gram occurrences and in absolute
value. For our purposes, we experimentally determined α = 5
and β = 5 to be good values.

We devised our own burst detection algorithm instead of
using one of the available ones, due to the specific require-
ments of our approach. For example, the weighted automaton



Algorithm 1 Pseudo-code of algorithm to perform temporal
clustering of n-gram occurrences into bursts.
stop← False
while stop = False do
best burst ratio← −1
best postion← −1
for pos = 1 to |T | do

if Θ pos = 0 then
aux Θ← Θ
Θpos ← 1
burst ratio← ρ(T, aux Θ)
min inter interval← m 7−→(T, aux Θ)
if burst ratio < α or min inter interval < β then
burst ratio← 0

end if
if burst ratio > best burst ratio then
best burst ratio← burst ratio
best pos← pos

end if
end if

end for
if best pos > 0 then

Θbest pos ← 1
else
stop← True

end if
end while

model described in [2] is very suitable for detecting bursts
at quantifiable levels of intensity, but does not lend itself
to the detection of bursts with well defined limits. For the
probabilistic model we are going to describe in the following
section, it is crucial that we consider bursts with well defined
limits, as not to lose initial or late arrivals. Our algorithm
detects cases where the activity on a certain n-gram set can
be characterized by intervals with a sufficient level of activity,
separated by large enough intervals of no activity.

Finally we filter the n-gram bursts, only accepting the ones
that meet the following criteria:
• A minimum number of blogs participating in the burst of

4.
• A minimum average time between posts participating in

the burst of 1 hour.
• A maximum average time between posts participating in

the burst of 1 day.
• A minimum burst duration of 3 days.
• A maximum total duration of all the bursts of the n-gram

of 1 month.
The purpose of these rules is to end up with n-gram bursts

that are more likely related to a real topic. We discard bursts
that are too sparse, too dense, too short lived or defined by an
n-gram that is too common.

C. Merging n-gram bursts into topics

Finally, on the last phase, we extract a set of topics from
the set of n-gram bursts that resulted from the previous
step. We define a topic as a tuple ({g0, g1, ..., gn}, t, t′),
consisting of a set of n-grams occurring between times t
and t′. Topics are defined with the minimum possible set
of n-grams for maximum generality. Figure 2 illustrates on

apporter contribution débat

contribution débat

time

contribution débat identité

contribution débat national

contribution débat identité nationale

région avoir apporter contribution 
débat

Tue Oct 27 
19:51:02 2009

Sat Oct 29 
10:11:02 2009

Figure 2. Example of selection of n-gram bursts to define a topic. Bursts in
sold line are selected for the topic definition, while bursts in dashed lines are
discarded.

a real example how the n-gram bursts are selected to define
a topic. The underlying idea is the following: consider two
n-gram bursts, defined by n-grams ga and gb, occurring over
time intervals [ta, t

′
a] and [tb, t

′
b]. Furthermore, consider that

the sequence of words in n-gram gb is a sub-sequence of
the sequence of words in n-gram ga, and that ta ≥ tb and
t′a ≤ t′b. Referring to figure 2, this could be exemplified
by ga = “région avoir apporter contribution débat′′ and
gb = “apporter contribution débat′′. We assume that, in this
kind of situation, it is very likely that both bursts belong to the
same topic. gb is more general than ga, because it includes all
the cases covered by ga, while the opposite is not necessarily
true.

We transverse the entire set of n-gram bursts, in descending
order of the number of words contained in their n-gram. For
each burst, we look for bursts ahead in the set with n-grams
that are a sub-sequence of the first one, and with time intervals
that contain the interval of the first one. If such bursts are
found, the original burst is discarded. If one of the bursts found
is already assigned to a topic, we also assign the other bursts
found to that topic, otherwise we assign all bursts found to a
new topic.

IV. PROBABILISTIC PRECEDENCE SCORING

After the process described in the previous section, we now
have a set of topics, and know which blogs participated in
each topic and at what time. We are now in the position of
defining a probabilistic model that estimates the tendency that
blogs have to participate in topics before other blogs.

We will start by defining a dyadic precursor score from
blog b to blog b′. We will call this score γ(b, b′). Let us
define A as the set of all topics where both blogs participate,
and Y as the subset of A where the first participation of b
precedes the first participation of b′. We also define C as a
vector of probabilities. Each element of C is the probability
that b participates on a topic before b′ by chance. We will
detail later how these probabilities are computed. We know
define the likelihood of γ(b, b′) = p, given A, Y and C:



λ(γ(b, b′) = p|A, Y,C) =∑
Z∪R=Y
Z∩R=∅

λ(γ(b, b′) = p|A, Y,C, Z,R) (3)

The likelihood in equation 3 is defined as the sum of the
likelihoods for all possible hypothesis of the appearances of b
before b′ being caused by a temporal relationship or by chance.
The set Y of topics where the first participation of b precedes
the first participation of b′ can be decomposed as the union of
the set Z of topics where b is assumed to display a behavior
of precedence over b′, and the set R of topics where b is
assumed to precede b′ by chance. We define the likelihood of
each hypothesis as:

λ(γ(b, b′) = p|A, Y,C, Z,R) = PZ(A,Z, p) · PR(A,R,C)
(4)

PZ(A,Z, p) is the probability that b precedes b′ in the topics
in Z and not in the topics in A \ Z, given a probability of a
precedence relationship of b over b′ of p. PR(A,R,C) is the
probability that b precedes b′ by chance for the topics in R,
and not for the topics in A \ R, given C. These probabilities
are defined as:

PZ(A,Z, p) = p|Z|(1− p)|A|−|Z| (5)

PR(A,R,C) =
∏
r∈R

Cr
∏

r∈A\R

1− Cr (6)

Now we have to define how to compute the probabilities Cr
that topic r is mentioned by b before b′. We compute these
probabilities by taking into account the total number of posts
published by each blog during the time interval of the topic,
in the following way:

Cr =
Np(b, [ts(r); te(r)])

Np(b, [ts(r); te(r)]) +Np(b′, [ts(r); te(r)])
(7)

ts(r) is the time of the beginning of topic r and te(r) is the
time of its end. Np(j, t, t′) gives the number of posts published
by blog j between times t and t′. Simply, this expression
reflects the idea that, the higher the number of posts of blog
b as compared to the total number of posts from both blogs
in the time interval, the more likely b is to publish the first
post on the topic by chance. We do not consider the overall
posting rates of the blogs, as these change over time.

The computation of the likelihood expressed in 3 suffers
from combinatorial explosion. In fact, the number of com-
putations that have to be performed to calculate λ(γ(b, b′) =
p|A, Y,C, Z,R) scales exponentially with |Y |. For this reason,
when |Y | is above 15, we resort to an estimation based on
sampling.

Finally, we estimate γ(b, b′) by calculating the mean of the
possible values it can take (γ(b, b′) → [0, 1]), weighted by
their likelihood:

γ(b, b′) =

∫ 1

0
l(γ(b, b′) = p|A, Y,C) · p · dp∫ 1

0
l(γ(b, b′) = p|A, Y,C) · dp

(8)

Not having an analytical solution for equation 8, we use
Monte Carlo integration.

Having a way to compute dyadic precursor scores, we are
now interested in scoring the blogs according to their overall
precursor/laggard behaviors over the entire network. For this
purpose, we will define two metrics: the global precursor score
(P ) and the laggard score (L).

A dyadic precursor score γ(b, b′) can be interpreted as the
probability that a post from blog b′ participates in a topic
under a temporal relationship with blog b, where b precedes
b′, given that both blogs are known to participate in that topic.
We can remove the topic co-participation assumption using
Bayes’ theorem. Considering M to be the event of the post
participating in the topic under the temporal relationship, and
H to be the event of the post for blog b′ participating in a
topic where blog b also participates:

γ(b, b′) = Pr(M |H) (9)

Pr(M |H) =
Pr(H|M)Pr(M)

Pr(H)
(10)

ω(b, b′) = Pr(M) = Pr(M |H)Pr(H) = γ(b, b′)Pr(H)
(11)

We will call ω(b, b′) the adjusted dyadic precursor score.
Notice that Pr(H|M) = 1, because if the post participates in
a topic under a temporal relationship with the other blog, the
blogs will necessary co-participate in that topic.

We define the global precursor score for a blog b (P (b))
as the mean of all adjusted dyadic precursor scores where b
is the origin, and the laggard score (L(b)) as the mean of all
adjusted dyadic precursor scores where b is the target. Being
B the set of all blogs in the network:

P (b) =
1

|B| − 1

∑
b′∈B\{b}

ω(b, b′) (12)

L(b) =
1

|B| − 1

∑
b′∈B\{b}

ω(b′, b) (13)

V. RESULTS AND DISCUSSION

The protocol described in the previous sections was applied
to a dataset generated from a crawl of the French political
blogosphere, consisting of 916 blogs, between the days of
October 1st 2009 and February 11th 2010. During this period,
40, 191 posts were published, containing 16, 909 citation links
to other blogs in the network. We applied our topic detection
process on this data and identified 2, 619 different topics.

We then computed the global precursor and laggard scores
according to the process described in the previous section for
each blog that published at least 7 posts during the whole
observation period. We discarded nearly 300 blogs with very
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Figure 3. Scatter plot of precursor (P ) vs. laggard (L) scores for all blogs
in the network.

low posting rates because of the noise they may introduce into
the computation of the global scores.

Figure 3 shows a scatter plot of the blogs, positioned in the
plane according to their global precursor and laggard scores:
P and L. This plot gives us an overview of the structure of
the network in terms of precursor/laggard behaviors. It can be
observed that there is a dense cluster of blogs near the origin,
with the distribution of blogs rarefying in both the x and y
directions.

A blog may be situated in the low scores cluster for different
reasons. It could be that it does not tend to participate in
popular topics (which also means that the topics it discusses
are not spread through the network), or it could be that it
maintains relationships of influence with other blogs which are
close to being symmetrical. This type of relationship between
two blogs makes it approximately equally likely that each blog
influences the other to enter a topic. Our scores are not capable
of distinguishing a symmetrical influence relationship from an
indirect relationship1.

In the study of blog networks, it is common to establish
popularity metrics based on the URL links that point to a blog.
We compute the in-degree of a blog as the number of blogs
that link to it at least once during the observation period, as
well as the classical page rank. Our goal is to compare those
metrics based on the topology of the hyperlinks network with
our temporal semantic based scores.

Figure 4 shows box plots of in-linking and page rank per
interval of precursor score. The two plots present similar
shapes, showing an increase in both in-link degrees and page
ranks up to the third bar. On the fourth bar there is a clear
decrease, suggesting that the precursor behavior is positively
correlated with blog popularity only up to a certain point.

In figure 5 we plot in-linking per interval of laggard score.
This plot is more noisy and the pattern is less clear than

1Since the blog network is not a closed system, two blogs could have a
very similar set of external influences, leading to the same temporal patterns
they would display if influencing each other in a symmetrical way.

Table I
SIGNIFICANCE OF MEAN IN-DEGREE RELATIONSHIPS FOR CLASSES OF

BLOGS DETERMINED ACCORDING TO PRECURSOR AND LAGGARD SCORE
INTERVALS.

2.08 6.19 1.59 3.50

pl Pl pL PL

2.08 pl

6.19 Pl **

1.59 pL * ***

3.50 PL ***

the previous one. Higher laggard scores appear to have a
detrimental effect on link popularity. Although not shown,
a similar pattern was found when comparing page ranks to
laggard scores.

In order to derive general principles, we divided the blog
set into four classes. Each class is characterized by a high
or low precursor score and a high or low laggard score. A
precursor score is considered low if it is equal or lesser than
the mean precursor score for the entire set (P ∈ [0, P [), and
high otherwise (P ∈]P , 1]). Laggard scores are classified in
an analogous fashion. We use the notation p for low precursor,
P for high precursor and so on. The class Pl, for example, is
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Figure 4. Above: box plots of in-linking distributions for intervals of
precursor scores. Below: box plots of page rank distributions for intervals
of precursor scores.
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Figure 5. Box plots of in-linking distributions for intervals of laggard scores.

the one containing blogs with an high precursor score and low
laggard score.

In each cell of table I we perform a comparison between the
mean in-link degree of each class. The statistical significance
of the differences was determined using Wilcoxon rank sum
tests. We use a number of ∗ symbols to denote the level of
significance found. One ∗ if p − value < 0.05, two if p −
value < 0.01 and three if p − value < 0.001. The mean
in-degrees for classes are shown in row and column headers.

When comparing the two classes with low laggard scores,
the one with an high precursor score has a higher mean
in-degree. The same is true of the two classes with high
laggard scores. When comparing the two classes with a low
precursor score, the one with the low laggard score has the
higher mean in-degree. In the two cases where no significance
was found, the p-value was very close to 0.05, suggesting
that the relationships are likely true, but we have insufficient
data to be certain. This confirms that higher precursor scores
and lower laggard scores have a positive effect on in-linking.
These results also show that the two scores are not just
reflecting the effect of participating in discussions. In fact,
both scores require higher participation for higher values, but
have opposite effects.

It is clear, however, that these general principles do not tell
the whole story. The box plots show that, despite the general
principles, blogs with high precursor scores are not necessarily
rewarded with high in-link degrees.

This becomes more obvious by observing the hexagonal
binning plot, shown in figure 6. It displays the mean in-linking
per region of precursor and laggard scores. The darker the
color, the higher the in-linking mean. It clearly confirms for
example that higher precursor score does not guarantee higher
in-degree.

To validate our protocol and experimental results, we gen-
erated four lists of ten blogs. We determined the position of
each blog on a plane, where dimension x is the precursor
score, and y the link in-degree. Both axis were converted to a
logarithmic scale and normalized to [0, 1] intervals. From this
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Figure 6. Hexagonal binning plot displaying mean in-linking per region of
precursor and laggard scores. The darker the color, the higher the in-linking.

spatial distribution, list 1 contains the blogs closest to point
(0, 0) - low precursors, low in-degree; list 2 the blogs closest to
(0, 1) - low precursors, high in-degree; list 3 the blogs closest
to (1, 0) - high precursors, low in-degree and list 4 the blogs
closest to (1, 1) - high precursors, high in-degree.

We then provided these four lists to an expert on the French
blogosphere. She had no prior knowledge of our classification
process. We simply asked her if she could notice any signifi-
cant pattern inside groups. She described blogs of list 1, which
belong to the category of low precursor and low in-degree,
as very “small” blogs essentially concerned with regional or
local issues. According to her, list 2 (low precursors, high in-
degree) is typically composed of experienced bloggers who
emerged during the last presidential election in 2008 and now
gather together despite their political differences. As such their
pattern of linking is similar to a “rich-club” which may explain
their high in-degree in spite of their low precursor score. Blogs
which have high precursor score and low in-degree (list 3)
are exclusively made of copycats. These sites are basically
systematically relaying the media or making reviews of regular
papers on the web. The presence of such behavior in the
dataset incidentally explains the sharp decline of mean in-
degree and page rank among blogs with highest precursor
scores that we observed previously (Fig. 4). The fourth list
is composed of high precursors and high in-degree blogs. All
of them have been described by the expert as very active in
political contestation, both from the left and the extreme right,
against the government policy and, more broadly, against the
current political balance.

VI. CONCLUSIONS

In this work, we strived to extract quantifiable metrics from
the wealth of semantic information contained in blogs. We
presented a method for the detection of bursts of activity at the
semantic level, that was tested on a real data set and shown ca-
pable of identifying topics characterized by n-grams and time
intervals. We then described a probabilistic model to quantify



temporal relationships between blogs. Dyadic precursor scores
are able to quantify temporal relationships between pairs of
blogs, where one tends to enter a topic before the other,
discounting the effects of asymmetrical posting rates. From
these dyadic scores we derived two scores to classify blogs
according to their overall precursor and laggard behaviors.

The comparison of these semantic temporal metrics with
the more traditional in-link degree based popularity metrics
revealed non-trivial relationships between the two. The expert
assessment indicates that the scores we proposed lead to
relevant distinctions that could not be derived from classical
structural based methods only. Search engine ranking algo-
rithms, like the well-known PageRank [24] used by Google,
are more sophisticated than simple reliance on URL link in-
degrees. However, they are still based on structural aspects of
the web, deriving their estimations from the analysis of the
network of URL links. We found that the precursor/laggard
scores are able to identify blogs that have a high tendency to
be precursors in topics under discussion, but that would likely
not be distinguishable from other blogs with similar page ranks
or in-degrees by relying only on this later type of metric. It
is conceivable that search engine ranking algorithms could be
improved with the approach we propose. Including precursor
scores in ranking metrics could help improve the quality of
searches, for example the ones related to time sensitive events.
It could also reward blogs that generate influential content, but
that are not especially popular in the sense of receiving many
in-links.
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