
On Measuring the Quality of a Network Community
Structure

Mingming Chen
Department of Computer Science
Rensselaer Polytechnic Institute
110 8th Street, Troy, NY 12180

Email: chenm8@rpi.edu

Tommy Nguyen
Department of Computer Science
Rensselaer Polytechnic Institute
110 8th Street, Troy, NY 12180

Email: nguyet11@rpi.edu

Boleslaw K. Szymanski
Department of Computer Science
Rensselaer Polytechnic Institute
110 8th Street, Troy, NY 12180

Email: szymab@rpi.edu

Abstract—Modularity is widely used to effectively measure
the strength of the community structure found by community
detection algorithms. However, modularity maximization suffers
from two opposite yet coexisting problems: in some cases, it tends
to favor small communities over large ones while in others, large
communities over small ones. The latter tendency is known in
the literature as the resolution limit problem. To address them,
we propose to modify modularity by subtracting from it the
fraction of edges connecting nodes of different communities and
by including community density into modularity. We refer to the
modified metric as Modularity Density and we demonstrate that it
indeed resolves both problems mentioned above. We describe the
motivation for introducing this metric by using intuitively clear
and simple examples. We also discuss the results of applying this
metric, modularity, and several other popular community quality
metrics to two real dynamic networks. The results imply that
Modularity Density is consistent with all the community quality
measurements but not modularity, which suggests that Modularity
Density is an improved measurement of the community quality
compared to modularity.

I. INTRODUCTION
Communities are basic structures in sociology intensively

studied since 1950’s [1], [2]. Social media enabled online com-
munities that link people regardless of their physical location.
Thus, computational methods are needed to analyze and detect
such large communities. Formally, communities are defined
as groups of nodes within which connections are denser than
between them [3] and community detection became one of the
fundamental issues in network science. Community detection
has been shown to reveal latent yet meaningful structure not
only for groups in online and contact-based social networks,
but also in functional modules in protein-protein interaction
networks, groups of customers with similar interests in online
retailer user networks, groups of scientists in interdisciplinary
collaboration networks, etc. [4].

In the last decade, the most popular community detection
method, proposed by Newman [5], has been to maximize
the quality metric known as modularity [3], [6] over all the
possible partitions of a network. This metric measures the
difference (relative to the total number of edges) between the
actual and expected (in a randomized graph with the same
number of nodes and the same degree distribution) number
of edges within a given community. It is widely used to
measure the strength of the community structures detected
by the community detection algorithms. However, modularity
maximization has two opposite yet concurrent problems. In
some cases, it tends to split large communities into smaller
communities. In other cases, it tends to form large communi-
ties by merging communities that are smaller than a certain
threshold which depends on the total number of edges in the

network and on the degree of inter-connectivity between the
communities. The latter problem is known as the resolution
limit problem [7].

To solve these two problems simultaneously, we propose
a new community quality metric, that we termed Modularity
Density, as an alternative to modularity. First, we show that
modularity decreased by Split Penalty, defined as the frac-
tion of edges that connect nodes of different communities,
solves the problem of favoring small communities. Next, we
demonstrate that including community density into modularity
addresses the problem of favoring large communities. We refer
to the resulting metric as Modularity Density.

We discuss our experiments with Modularity Density,
modularity, and other popular community quality metrics,
including the number of Intra-edges, Contraction, the number
of Inter-edges, Expansion, and Conductance [8], on two real
dynamic networks. The results show that Modularity Density
is different from original modularity, but consistent with all
those community quality measurements, which implies that
Modularity Density is effective in measuring the community
quality of networks.

The rest of the paper is organized as follows. First, in
Section II we discuss some related works. Then, we briefly
introduce modularity and illustrate our motivation to propose
the new metric with examples in Section III. Section IV
presents the experiments that demonstrate Modularity Density
solves the two problems of modularity simultaneously. Finally,
we conclude and discuss the future work in Section V.

II. RELATED WORK

Several metrics for evaluating the quality of community
structure have been introduced. The most popular and widely
used is modularity [3], [6]. It is defined as the difference
(relative to the total number of edges) between the actual and
expected (in a randomized graph with the same number of
nodes and the same degree sequence) number of edges inside
a given community. Although initially defined for unweighted
and undirected networks, the definition of modularity has
been subsequently extended to capture community structure
in weighted networks [9] and then in directed networks [10].

However, recently, Fortunato and Barthélemy [7] presented
a resolution limit problem of modularity, essence of which is
that optimizing modularity will not find communities smaller
than a threshold size, or weight [11]. This threshold depends on
the total number, or total weight, of edges in the network and
on the degree of interconnectedness between the communities.
Moreover, Good et al. [12] shown that the range of modularity
values computed over all possible partitions of a graph has a
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(a) Two very well separated communities. (b) Two well separated communities. (c) Two weakly connected communities.

(d) Ambiguity between one and two communities. (e) One well connected community. (f) One very well connected community.
Fig. 1. Six simple network examples that have two different community structures, one with a single big community containing all eight nodes and the other
with the two small communities each containing four different nodes.

structure in which the maximum modularity partition is typi-
cally concealed among an exponentially large (in terms of the
graph size) number of structurally dissimilar, high-modularity
partitions. To address this resolution limit problem, multi-
resolution versions of modularity [13], [14] were proposed to
allow researchers to specify a tunable target resolution limit
parameter and identify communities on that scale. Typically, it
is not clear how to choose the correct value for this parameter.
Furthermore, Lancichinetti and Fortunato [15] stated that even
those multi-resolution versions of modularity as well as its o-
riginal version are not only inclined to merge the smallest well-
formed communities but also to split the largest well-formed
communities. In contrast, the Modularity Density metric we
propose here solves those two problems of modularity without
the trouble of specifying any particular parameter.

III. MODULARITY DENSITY

In this section, we first formally introduce Newman’s
definition of modularity and then illustrate the motivation for
modifying modularity with several simple network examples.
Next, we propose a new community quality metric, called
Modularity Density, as an alternative to modularity by com-
bining modularity with Split Penalty and community density
to avoid the two coexisting problems of modularity. Finally,
we define Modularity Density for different kinds of networks,
including unweighted and undirected networks, weighted net-
works, and directed networks, based on the corresponding
formulas of modularity.

A. Newman’s Modularity
Modularity [3], [6] for unweighted and undirected networks

is defined as the ratio of difference between the actual and
expected (in a randomized graph with the same number of
nodes and the same degree sequence) number of edges within

the community. For the given community partition of a network
G = (V,E) with |E| edges, modularity (Q) [3] is given by

Q =
∑
ci∈C

[
|Ein

ci |
|E|

−
(
2|Ein

ci |+ |Eout
ci |

2|E|

)2
]
, (1)

where C is the set of all the communities, ci is a specific
community in C, |Ein

ci | is the number of edges between nodes
within community ci, and |Eout

ci | is the number of edges from
the nodes in community ci to the nodes outside ci.

The definition of modularity [9] for the weighted networks
has precisely the same formula, Equation (1), as for the
unweighted and undirected networks. However, for weighted
networks, |E| is the sum of the weights of all the edges in
the network, |Ein

ci | is the sum of the weights of the edges
between nodes within community ci, and |Eout

ci | is the sum of
the weights of the edges from the nodes in community ci to
the nodes outside ci.

The formula of modularity for directed networks [10] is as
follows

Q =
∑
ci∈C

[ |Ein
ci |

|E|
−

(|Ein
ci |+ |Eout,ci |)(|Ein

ci |+ |Eci,out|)
|E|2

]
,

(2)
where |Eout,ci | is the number of edges from the nodes outside
community ci to the nodes in community ci and |Eci,out| is the
number of edges from the nodes in community ci to the nodes
outside ci. For undirected networks, it is clear that |Eout,ci | =
|Eci,out| = |Eout

ci | and thus the directed modularity is reduced
to undirected modularity.

B. Motivation for Introducing Split Penalty
In this subsection, we demonstrate the motivation for intro-

ducing Split Penalty into modularity by using seven intuitively
clear and simple network examples, six of which are presented



TABLE I. METRIC VALUES OF THE EXAMPLE: TWO VERY WELL
SEPARATED COMMUNITIES.

Modularity (Q) Split Penalty (SP ) Qs Qds

Two communities 0.5 0 0.5 0.5
One community 0 0 0 0.245

TABLE II. METRIC VALUES OF THE EXAMPLE: TWO WELL SEPARATED
COMMUNITIES.

Modularity (Q) Split Penalty (SP ) Qs Qds

Two communities 0.357 0.143 0.214 0.339
One community 0 0 0 0.25

TABLE III. METRIC VALUES OF THE EXAMPLE: TWO WEAKLY
CONNECTED COMMUNITIES.
Modularity (Q) Split Penalty (SP ) Qs Qds

Two communities 0.3 0.2 0.1 0.263
One community 0 0 0 0.249

TABLE IV. METRIC VALUES OF THE EXAMPLE: AMBIGUITY BETWEEN
ONE AND TWO COMMUNITIES.
Modularity (Q) Split Penalty (SP ) Qs Qds

Two communities 0.25 0.25 0 0.188
One community 0 0 0 0.245

TABLE V. METRIC VALUES OF THE EXAMPLE: ONE WELL
CONNECTED COMMUNITY.

Modularity (Q) Split Penalty (SP ) Qs Qds

Two communities 0.167 0.333 -0.167 0.0417
One community 0 0 0 0.23

TABLE VI. METRIC VALUES OF THE EXAMPLE: ONE VERY WELL
CONNECTED COMMUNITY.

Modularity (Q) Split Penalty (SP ) Qs Qds

Two communities 0.0455 0.455 -0.409 -0.239
One community 0 0 0 0.168

TABLE VII. METRIC VALUES OF THE EXAMPLE: ONE COMPLETE
GRAPH.

Modularity (Q) Split Penalty (SP ) Qs Qds

Two communities -0.0714 0.571 -0.643 -0.643
One community 0 0 0 0

in Figure 1. The seventh example is a complete graph with
eight nodes and one big community containing all eight nodes
while the alternative partition consists of the two small com-
munities each containing four different nodes. We could easily
judge that for the first, second, and the third examples, the
community structure with two small communities is better than
the community structure in which they are merged together.
For the fourth example, the two different community structures
are nearly of the same quality. However, for the fifth, sixth,
and the seventh examples, the community structure with one
big community is of better quality than the alternative.

Tables I-VII show the metric values of the seven network
examples described above. Tables I-III, and Table VII demon-
strate that modularity succeeds in measuring the quality of the
two different community structures in those four examples.
However, from Tables IV-VI, we could observe that modularity
actually fails to measure the community quality of those three
examples because it implies that the community structure with
two small communities is better. In contrast, for the fifth and
the sixth examples, the community structure with one big
community is of better quality. Yet, in this case modularity
gives preference to the community structure with two separated
small communities, demonstrating that modularity has the
problem of favoring small communities.

To address the drawback of favoring small communities,
we propose that the quality of the community structure should

take into account the edges between different communities. We
introduce Modularity with Split Penalty (Qs) by subtracting
from modularity the Split Penalty (SP ) which is the fraction
of edges that connect nodes of different communities. More
formally,

Qs = Q− SP. (3)

The intuition here is clear. Modularity measures the positive
effect of grouping nodes together in terms of taking into
account existing edges between nodes while Split Penalty mea-
sures the negative effect of ignoring edges joining members of
different communities. Enlarging community eliminates some
Split Penalty but if there are only a few edges across current
partition, modularity of the merged community could be lower,
negating the benefit of merging. Splitting a community into
two or more communities introduces some Split Penalty but
if there are only a few edges between those separated com-
munities, an increase of modularity can make such splitting
beneficial. Tables I-VII demonstrate that Qs can correctly
measure the quality of the community structures of all seven
network examples.

C. Modularity with Split Penalty
In this subsection, we extend the formula of Qs to dif-

ferent kinds of networks, such as unweighted and undirected
networks, weighted networks, and directed networks, based
on the corresponding formulas of modularity presented in
Subsection III-III-A.

From Subsection III-III-B, we know that Split Penalty (SP )
is the fraction of edges that connect nodes of different com-
munities. Thus, for undirected networks, no matter unweighted
or weighted, Split Penalty is defined as

SP =
∑
ci∈C

[ ∑
cj∈C
cj ̸=ci

|Eci,cj |
2|E|

]
. (4)

where |Eci,cj | is the number of edges from community ci to
community cj for unweighted networks or the sum of the
weights of the edges from community ci to community cj
for weighted networks. For directed networks, Split Penalty is
given by

SP =
∑
ci∈C

[ ∑
cj∈C
cj ̸=ci

|Eci,cj |
|E|

]
. (5)

Therefore, for undirected networks, both unweighted and
weighted, from Equations (1), (3), and (4), Qs is defined as

Qs =
∑
ci∈C

 |Ein
ci |

|E|
−
(
2|Ein

ci |+ |Eout
ci |

2|E|

)2

−
∑
cj∈C
cj ̸=ci

|Eci,cj |
2|E|

 .

(6)
For directed networks, using Equations (2), (3), and (5), Qs

can be expressed as

Qs =
∑
ci∈C

[ |Ein
ci |

|E|
−

(|Ein
ci |+ |Eout,ci |)(|Ein

ci |+ |Eci,out|)
|E|2

−
∑
cj∈C
cj ̸=ci

|Eci,cj |
|E|

]
.

(7)



Fig. 2. A ring network example made out of thirty identical cliques, each
having five nodes and connected by single edges.

D. Motivation for Introducing Community Density
Modularity has the resolution limit problem that Qs makes

even worse. This problem is illustrated in Figure 2. It displays
a ring network comprised of thirty identical cliques, each of
which has five nodes and they are connected by single edges.
In this case, the modularity of the community structure with
each clique forming a different community, totally thirty com-
munities, should be larger than that of the community structure
in which two consecutive cliques form a different community,
totally fifteen communities. However, Table VIII shows that
the relation is reversed since the community structure with
fifteen communities has larger modularity than that of the
community structure with thirty communities. Moreover, as
pointed out in [7], when m(m − 1) + 2 < n, where n is
the number of cliques and m is the number of nodes in
each clique, modularity is higher for the large community
with two consecutive cliques instead of the small community
with a single clique. Moreover, Table VIII demonstrates that
the difference of Qs for these two community structures is
larger than the corresponding difference of modularity. More
specifically, ∆Qs = (0.8424 − 0.7848) = 0.0576 > ∆Q =
(0.8879− 0.8758) = 0.0121, which means that Qs makes the
resolution limit problem even worse.

To address the resolution limit problem above, we propose
and it is also quite intuitive to introduce community density
into modularity, incorporating both the number of edges and
the number of nodes in the communities and also Split Penalty.
The corresponding new metric is called Modularity Density
(Qds). Table VIII shows that the Qds of the community
structure in which two consecutive cliques form a different
community is almost half of the Qds of the alternative in which
each clique forms a different community. Hence, in this case,
Qds avoids the resolution limit problem. Furthermore, Tables
I-VII and Figure 1 demonstrate that Qds correctly measures
the quality of the community structures of all seven network
examples. Even for the network example of Figure 1(d) in
which there is ambiguity which community structure is of
higher quality, the Qds of the one big community is only
slightly larger than the Qds of the two small communities as
shown in Table IV.

E. Modularity Density
In this subsection, we will give the formulas for Qds for

different kinds of networks, including unweighted and undi-
rected networks, weighted networks, and directed networks,
based on the corresponding formulas of Qs presented in
Subsection III-III-C.

TABLE VIII. METRIC VALUES OF THE EXAMPLE: A RING OF THIRTY
CLIQUES, EACH HAVING FIVE NODES AND CONNECTED BY SINGLE EDGES.

Modularity (Q) Split Penalty (SP ) Qs Qds

Thirty communities 0.8758 0.09091 0.7848 0.8721
Fifteen communities 0.8879 0.04545 0.8424 0.4305

For undirected networks, regardless whether unweighted or
weighted, we define Qds using Equation (6) as follows

Qds =
∑
ci∈C

[ |Ein
ci |

|E|
dci −

(
2|Ein

ci |+ |Eout
ci |

2|E|
dci

)2

−
∑
cj∈C
cj ̸=ci

|Eci,cj |
2|E|

dci,cj

]
,

dci =
2|Ein

ci |
|ci|(|ci| − 1)

,

dci,cj =
|Eci,cj |
|ci||cj |

.

(8)

In the above, dci is the internal density of community ci, dci,cj
is the pair-wise density between community ci and community
cj . Note that |Ein

ci | in dci and |Eci,cj | in dci,cj are unweighted
for both unweighted and weighted networks, so that those two
community densities are always less than or equal to 1.0.

For directed networks, using Equation (7), Qds is given by

Qds =
∑
ci∈C

[ |Ein
ci |

|E|
dci −

∑
cj∈C
cj ̸=ci

|Eci,cj |
|E|

dci,cj

−
(|Ein

ci |+ |Eout,ci |)(|Ein
ci |+ |Eci,out|)

|E|2
d2ci

]
,

dci =
|Ein

ci |
|ci|(|ci| − 1)

,

dci,cj =
|Eci,cj |
|ci||cj |

.

(9)

IV. EVALUATION AND ANALYSIS

In this section, we first introduce two real dynamic datasets
and various other popular community quality measurements.
Then, we show the experimental results that validate Modu-
larity Density (Qds) ability to address the two problems of
modularity (Q) simultaneously. Formal proofs that Qds solves
the modularity shortcomings are presented in the extended
version of this paper [16].

A. Real Dynamic Datasets
In this subsection, we introduce two real dynamic datasets

on which we conduct experiments in order to validate that Qds

avoids the two problems of modularity.
Senate Dataset [17], [18]. The Senate dataset is a time-

evolving weighted network comprised of United States sen-
ators where the weight of an edge represents the similarity
of their roll call voting behavior. This dataset was obtained
from website voteview.com and the similarities between a
pair of senators were calculated following Waugh et al. [18]
as the number of bills for which the senators of the pair
voted the same way, normalized by the number of bills for
which they both voted. The dataset totally consists of 111



TABLE IX. THE AVERAGE METRIC DIFFERENCES BETWEEN LABELRANKT WITH DIFFERENT VALUES OF CONDITIONAL UPDATE PARAMETER q AND
ESTRANGEMENT ON SENATE DATASET.

LabelRankT conditional update q 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95
Q -0.0534 -0.0462 -0.0408 -0.0538 -0.0714 -0.0848 -0.083 -0.0897 -0.0897 -0.0848 -0.08
Qs -0.166 -0.0802 0.0468 0.0808 0.0969 0.112 0.116 0.115 0.115 0.111 0.106
Qds -0.1638 -0.0787 0.04847 0.08297 0.0995 0.1145 0.1182 0.1183 0.1183 0.1135 0.1083

# Intra-edges -159.102 -32.444 234.296 387.38 510.645 616.855 615.123 624.764 624.764 602.627 580.733
Contraction -6.806 -3.023 2.481 4.553 5.937 7.033 7.065 7.227 7.227 6.927 6.622

# Inter-edges -75.962 -54.098 -123.898 -187.99 -245.198 -299.356 -300.108 -303.043 -303.043 -292.782 -282.442
Expansion 6.448 2.91 -2.428 -4.416 -5.737 -6.847 -6.878 -7.009 -7.009 -6.724 -6.431

Conductance 0.213 0.0851 -0.0886 -0.148 -0.186 -0.214 -0.216 -0.224 -0.224 -0.213 -0.201

TABLE X. THE AVERAGE METRIC DIFFERENCES BETWEEN LABELRANKT WITH DIFFERENT VALUES OF CONDITIONAL UPDATE PARAMETER q AND
ESTRANGEMENT ON REALITY MINING BLUETOOTH SCAN DATA.

LabelRankT conditional update q 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95
Q -0.161 -0.121 -0.0783 -0.0744 -0.0724 -0.0699 -0.0702 -0.0724 -0.0742 -0.0755 -0.0774
Qs -0.379 -0.244 -0.107 -0.0802 -0.0538 -0.0497 -0.0382 -0.0405 -0.0521 -0.0634 -0.0713
Qds -0.191 -0.0984 -0.0222 -0.017 -0.0116 -0.0116 -0.00318 -0.00826 -0.011 -0.0115 -0.0134

# Intra-edges -1450.893 -956.006 -479.377 -331.371 -230.263 -183.536 -102.94 -78.93 -155.183 -242.287 -333.419
Contraction -86.909 -69.914 -52.543 -46.371 -43.176 -40.567 -35.948 -36.425 -38.006 -41.277 -45.425

# Inter-edges -39.949 -76.524 -159.74 -167.333 -190.947 -190.865 -196.098 -193.123 -188.708 -179.653 -178.96
Expansion 52.529 25.829 6.289 5.76 5.664 7.07 4.881 6.799 6.916 6.117 5.669

Conductance 0.23 0.176 0.114 0.1 0.0934 0.0933 0.0843 0.0955 0.102 0.107 0.104

snapshots corresponding to Senate’s activities over 220 years
and includes 1916 unique senators.

Reality Mining Bluetooth Scan Data [19]. This dataset
was created from the records of Bluetooth Scans generated
among the 94 subjects in Reality Mining study conducted
from 2004-2005 at the MIT Media Laboratory. In the network,
nodes represent the subjects and the directed edges correspond
to the Bluetooth Scan records while the weight of each edge
represents the number of direct Bluetooth scans between the
two subjects. In the experiments, we only used the records
from August 02, 2004 (Monday) to May 29, 2005 (Sunday)
and we divided them into weekly snapshots, so each snapshot
represents scans collected during the corresponding week.
There are total of 43 snapshots.

B. Community Quality Measurements
In the discussion of the experimental results we use various

community quality metrics, including the number of Intra-
edges, Contraction, the number of Inter-edges, Expansion,
and Conductance [8], which characterize how community-like
is the connectivity structure of a given set of nodes. All of
them rely on the intuition that communities are sets of nodes
with many edges inside them and few edges outside of them.
Now, given a network G = (V,E) and given a community
or a set of nodes c, let |c| be the number of nodes in the
community c and let |Ein

c | denote the total number of edges
in c for unweighted networks or the total weight of such edges
for weighted networks. We denote the total number of edges
from the nodes in community c to the nodes outside c for
unweighted networks or the total weight of such edges for
weighted networks as |Eout

c |. Then, the definitions of the five
quality metrics are as follows:
The number of Intra-edges: |Ein

c |; it is the total number of
edges in c or the total weight of such edges. The larger the
value of this metric is, the better the community quality is.
Contraction: 2|Ein

c |/|c| for undirected networks or |Ein
c |/|c|

for directed networks; it measures the average number of edges
per node inside the community c or the average weight per
node of such edges. The larger the value of Contraction is,
the better the community quality is.
The number of Inter-edges: |Eout

c |; it is the total number of
edges from the nodes in community c to the nodes outside c
or the total weight of such edges. The smaller it is, the better

the community quality is.
Expansion: |Eout

c |/|c|; it measures the average number of
edges (per node) that point outside the community c or the
average weight per node of such edges. The smaller the value
of Expansion, the better the community quality is.
Conductance: |Eout

c |
2|Ein

c |+|Eout
c | for undirected networks or

|Eout
c |

|Ein
c |+|Eout

c | for directed networks; it measures the fraction
of the total number of edges that point outside the community
for unweighted networks or the fraction of the total weight of
such edges for weighted networks. The smaller the value of
Conductance is, the better the community quality is.

C. Experimental Results
In this subsection, we report the results of performing

community detection on the two real dynamic datasets intro-
duced in Subsection IV-A by using the dynamic community
detection algorithms, LabelRankT [20] and Estrangement [17].
LabelRankT [20] detects communities in large-scale dynamic
networks through stabilized label propagation. Estrangement
[17] detects temporal communities by maximizing modularity
in a snapshot subject to a constraint on the estrangement
from the partition in the previous snapshot. We chose these
two algorithms because the second algorithm relies on the
modularity optimization while the first one does not. In the
experiments, we adopted the best parameter of Estrangement
but varying the conditional update parameter q ∈ [0, 1] of
LabelRankT from 0.05 to 0.95. As seen in the results, in most
cases, the best q is around 0.7 in agreement with the best value
reported in [20]. For the community structures found by the
two algorithms, we calculated the values of modularity (Q),
Qs, Modularity Density (Qds), and the five metrics described
in Subsection IV-B.

Table IX and Table X present the average metric differ-
ences between LabelRankT with different values of conditional
update parameter q and Estrangement on Senate dataset and
Reality Mining Bluetooth Scan data, respectively. That is, we
first computed the values of the eight metrics above for the
community detection results, detected by Estrangement, of
each snapshot. Then, we calculated the eight metrics values for
the community detection results, discovered by LabelRankT
for all q, of each snapshot. Next, we got the metric differ-
ences of all eight metrics by subtracting the metric values of



Estrangement from those of LabelRankT for all q’s over each
snapshot. Then, averaging those differences of each metric
over all the snapshots, we obtained the corresponding average
metric differences.

Table IX demonstrates that Q gets its largest value when
q = 0.2; Qs reaches the largest value when q = 0.6; Qds,
Intra-edges, and Contraction get their largest values at q = 0.7
and q = 0.8; also, Inter-edges, Expansion, and Conductance
reach their smallest values at q = 0.7 and q = 0.8. Thus, Qds is
consistent with the five metrics introduced in Subsection IV-B
on determining the best q for LabelRankT on Senate dataset
while Q and Qs are not consistent with them. Further, we
could observe that Q is always negative which indicates that
LabelRankT performs below Estrangement over all q’s because
the goal of Estrangement is to maximize modularity (Q). How-
ever, the other seven metrics imply that LabelRankT performs
better than Estrangement when q > 0.1. Therefore, we could
explicitly observe that maximizing Q to detect communities
has problems in measuring the community detection quality
correctly on Senate dataset.

Table X shows that six metrics get their best (largest or
smallest) values at q = 0.6 while the two exceptions, Q and the
number of Intra-edges, reach their largest values when q = 0.5
and q = 0.7, respectively. Thus, the six metrics, except Q and
the number of Intra-edges, are consistent on determining the
best value of q for LabelRankT on Reality Mining Bluetooth
Scan data. This indicates that on Reality Mining Bluetooth
Scan data, maximizing Q to detect communities has problems.

It is also interesting to observe that for q = 0.05 and
q = 0.1 in Table IX, Inter-edges metric implies that Label-
RankT performs better than Estrangement on Senate dataset,
which is not consistent with Qs, Qds, Intra-edges, Contraction,
Expansion, and Conductance metrics. Moreover, we could
learn from Table X that all metrics, except Inter-edges metric,
show that LabelRankT performs below the performance of
Estrangement over all q’s. Thus, Inter-edges metric has some
problems. Also, as mentioned in the paragraph above, Intra-
edges metric is not consistent with the other six metrics on
determining the best q for LabelRankT, which means that
Intra-edges metric has problems. We conjecture that the reason
for the shortcoming of Intra-edges and Inter-edges metrics
is the same as the case of Q which does not consider the
number of nodes in the communities. This reason also implies
the superiority of Qds over Q and Qs.

Based on the results presented in the above two tables,
we conclude that Qds solves the two problems of modularity.
We also conjecture that the difference between the best values
of q for LabelRankT determined by Q and Qs and the
difference determined by Qs and Qds on Senate dataset is a
manifestation of the two problems of modularity maximization,
namely favoring small communities and the resolution limit
problem. Moreover, the difference between the best values
of q for LabelRankT determined by Q and Qs on Reality
Mining Bluetooth Scan data indicates that maximizing Q has
the problem of favoring small communities. Thus, Qs and
Qds can be used for checking whether finding communities
by maximizing Q on a specific dataset will suffer any of the
two problems.

V. CONCLUSION
In this paper, we propose a new community quality metric,

called Modularity Density, which solves the shortcomings of

modularity of favoring small communities in some circum-
stances and large communities in others. We demonstrate with
experiments on real dynamic datasets that Modularity Density
is an effective alternative to modularity.
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