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Abstract—StackOverflow is a popular on-line programming
question and answer community providing its participants with
rapid access to knowledge and expertise of their peers, especially
benefitting coders. Despite the popularity of StackOverflow, its
role in the work cycle of open-source developers is yet to
be understood: on the one hand, participation in it has the
potential to increase the knowledge of individual developers thus
improving and speeding up the development process. On the other
hand, participation in StackOverflow may interrupt the regular
working rhythm of the developer, hence also possibly slow down
the development process.

In this paper we investigate the interplay between Stack-
Overflow activities and the development process, reflected by
code changes committed to the largest social coding repository,
GitHub. Our study shows that active GitHub committers ask
fewer questions and provide more answers than others. Moreover,
we observe that active StackOverflow askers distribute their work
in a less uniform way than developers that do not ask questions.
Finally, we show that despite the interruptions incurred, the
StackOverflow activity rate correlates with the code changing
activity in GitHub.

I. INTRODUCTION

Developers create and maintain software by standing on the
shoulders of others [1]: they reuse components and libraries,
and go foraging on the Web for information that will help
them in their tasks [2]. For help with their code, developers
often turn to programming question and answer (Q&A) com-
munities, most visible of which is StackOverflow1 (SO) [3].
To engage its participants to contribute more, StackOverflow
employs gamification [4]: questions and answers are voted
upon by members of the community; the number of votes is
reflected in a person’s reputation and badges; in turn, these
can be seen as a measure of one’s expertise by potential
recruiters [5] and are known to motivate users to contribute
more [4]. By asking questions on StackOverflow, developers
can seek help and advice from their peers, e.g., about their own
code snippets or about undocumented technology features [6].
By answering questions posed by others, developers can share
their knowledge and expertise, help and educate others, or
compete in the “game” to achieve higher reputation.

1http://stackoverflow.com

The analogy of StackOverflow as an effective educational
institution asserts itself then. The extended effect of education,
beyond the immediate edification, is to accelerate or catalyse
societal advances. Does StackOverflow have the same effect on
software development communities? The connection between
developer productivity and their using of StackOverflow is not
well-understood. On the one hand, StackOverflow is known
to provide good technical solutions [6] and to provide them
fast [3], to the extent that closer integration between Q&A
websites and modern IDEs is now advocated [7], [8]. On
the other hand, as an exponent of social media, using Stack-
Overflow may lead to interruptions impairing the developers’
performance [1], especially when gamification is factored in.

In this paper we investigate the interplay between asking
and answering questions on StackOverflow and committing
changes to open-source GitHub2 repositories. GitHub is ar-
guably the largest social coding site [9], hosting more than
three million software projects maintained by over one mil-
lion registered developers. The two platforms overlap in a
knowledge-sharing ecosystem: GitHub developers can ask for
help on StackOverflow to solve their own technical challenges;
similarly, they can engage in StackOverflow to satisfy a
demand for knowledge of others, perhaps less experienced
than themselves. By identifying GitHub users active on Stack-
Overflow and studying their activities on both platforms, we
can study if a connection exists between their participation in
StackOverflow and their productivity on GitHub. That is,

Goal: Is participation in StackOverflow related to
productivity of GitHub developers?

Here, following Adams et al. [10], we look at only one, but
representative, facet of developer productivity: the number of
commits made by developers in a given time period. Clearly,
commits can be of different length and quality, and thus their
number is insufficient to quantify the total contribution of a
developer to a project, or even to quantify their energy expendi-
ture while doing so. However, it is a reasonable representative,
or sample, of the overall activities a developer undertakes while
working on a project.

2http://github.com



As complex relationships are best understood when looked
at from different angles and at a range of resolutions, we ex-
amine the relationship between StackOverflow and GitHub at
three different levels. At the macro-level, we look at the time-
aggregate (overall) activities over the two platforms (questions,
answers and commits) of developers active on both. At this
level we would like to identify differences between GitHub
contributors in terms of their involvement in StackOverflow,
and understand whether some groups of developers benefit
more from participation in SO than others. Indeed, GitHub
users are a mix of novice and professional programmers [11].
While it is known that foraging is common for novices and
experts alike [2], their diets are different [12], with potentially
different impact on their performance. Similarly, different roles
can be identified among StackOverflow participants based
on the quantity and quality of their questions, answers, and
comments [13]. However, for both platforms, such roles are
identified using only information about the activities of con-
tributors within each platform. We would like to understand
how such groups of developers relate across platforms, and to
which extent activity (expertise) on one platform can be used
as a proxy for activity (expertise) on the other. For example,
such relations become immediately important when evaluating
the reliability of social signals for career advancement [5].

RQ1: (Macro level) How are the overall activity levels
of developers related across the two platforms? E.g., do
active GitHub committers ask more or fewer questions on
SO? Are more active answerers also committing more?

At the intermediate level, we attempt to capture the distri-
bution of work units over time vis-a-vis people’s participation
on StackOverflow. We are interested in understanding how
developers distribute their time over commits, given their
amount of Q&A activity. Do different groups of developers
exhibit different working rhythms (e.g., do active SO answer-
ers, presumably more experienced, work differently than less
active ones)? Bursts of intense commit activity followed by
long periods of inactivity would suggest more focused attention
at any given time, while a more egalitarian distribution of inter-
commit time intervals would suggest a more steady but less
focused working rhythm, where attention at any given time is
divided between the two platforms. Working rhythms of devel-
opers are known to influence the quality of the software [14].
Specifically, we answer the following research question:

RQ2: (Intermediate level) Are the commit (work)
patterns on GitHub of developers more active on SO
different than the commit patterns of those developers less
active on StackOverflow?

Lastly, at the micro-level, we associate GitHub commits
and StackOverflow questions and answers over time. We wish
to understand whether activities in the two platforms show
signs of coordination, i.e., whether the rate of asking or
answering questions on SO is related to the rate of commit
activities in GitHub. Specifically, we ask:

RQ3: (Micro level) Is there a functional interaction,
or coordination between commit and question/answer ac-
tivities? I.e., when commits are close to Q&A in time, are
they more frequent? How about vice-versa?

The remainder of this paper is organised as follows. After
reviewing the related work in Section II, in Section III we
discuss how the data has been obtained and prepared. We
distinguish between the macroscopic (e.g., are heavy GitHub
committers also heavy StackOverflow users?), intermediate
(e.g., how do StackOverflow activities affect the working
rhythm of the developers?) and microscopic (e.g., are Stack-
Overflow activities occurring in lockstep with GitHub com-
mits?) views and discuss them in Sections IV, V and VI,
respectively. Finally, we summarise our contribution and sketch
directions for further research in Section VII.

II. RELATED WORK

The abundance of information to which developers are
exposed via social media is changing the way they collaborate,
communicate, and learn [1], [5], [11], thus ultimately impact-
ing the way they write software. Specifically, StackOverflow
is known to cover numerous software engineering topics and
attract numerous software developers. Popularity of Stack-
Overflow among software developers has lead to increased
interest from the research community as well [15]. However,
the productivity implications of StackOverflow remain unclear.

On the one hand, it can be argued that participating in
StackOverflow leads to interruptions that could impair a
developer’s performance [1]. Indeed, Bacchelli et al. [7] and
Cordeiro et al. [8] argue that the current lack of integration
between Q&A websites and modern IDEs forces developers to
interrupt their flow and change context every time they need
to deal with them, thus delaying their activity. Xuan et al. [16]
argue that social communication activities (such as asking or
answering StackOverflow questions) may delay programming
activities, since both of these activities compete for the time
resources of developers. Indeed, it is well known that “a wealth
of information creates a poverty of attention and a need to
allocate that attention efficiently among the overabundance of
information sources that might consume it” [17].

On the other hand, it can be argued that participating
in StackOverflow speeds up development activities as quick
solutions to technical challenges are provided, thus saving the
developers precious time. Mamykina et al. [3] show that most
StackOverflow questions are answered in a median time of 11
minutes. Parnin et al. [6] argue that StackOverflow is a better
source of API documentation, while Brandt et al. [2] propound
that by relying on information and source code fragments from
the Web, developers more effectively distribute their cognition,
allowing them to devote more energy to higher-level tasks.

Moreover, both StackOverflow participation and software
development in public GitHub repositories can be seen as
social activities. StackOverflow evaluates the participant’s con-
tribution in terms of reputation points and badges, that allow
participants to access new features and gain more control
on others’ postings. In this way, StackOverflow encourages



the participants to ask “good” questions and to give “good”
answers [5]. Similarly, heavy GitHub users are aware of being
watched by their peers, and this awareness influences how they
behave and construct their actions, for example, by making
changes less frequently [11].

III. DATA PREPARATION: STACKOVERFLOW AND GITHUB

To study the interplay between communication and code
commit activities we integrate information extracted from two
sources: StackOverflow and GitHub. In this section we discuss
how the data has been obtained and merged. All data used
in this study as well as the tools developed are available for
replication on http://www.win.tue.nl/mdse/stackoverflow/.

A. Extraction

All public data in StackOverflow, including the list of
members and the history of their activity, can be downloaded
in XML format as part of the Stack Exchange data dump3.
Data dumps are released every three months under the Creative
Commons license. Here we explore the one released in August
2012, containing information about 1,295,622 registered users
since July 2008 until August 2012.

The GitHub data comes from GHTorrent [18], a service
that gathers event streams and data from GitHub and provides
that data back to the community in the form of incremental
MongoDB data dumps4. The GitHub dataset contains informa-
tion about 397,348 users and 10,323,714 commits, most from
the July 2011 to April 2012 period.

B. Preprocessing

Git commits contain information about both the author (the
person who originally changed the code) and the committer
(the persons who last applied the change), each with their
own timestamp. The two are not necessarily one and the same
person (e.g., they can differ when someone rebases5 or cherry
picks6 a commit). In this paper we consider only the commits
which record the same person as both author and committer
(97.8% of the commits in our dataset), and record the date at
which a commit was authored (rather than committed).

In addition, git allows commit metadata, including the
authorship date, to be overwritten. For instance, we conjecture
that commits with the 1969-12-31 or 2050-07-18 timestamps
underwent such a history rewriting process. Therefore, we
restrict our study to the period July 2011 to April 2012
(depicted in Figure 1) which contains the bulk of the commits
in GHTorrent (approximately 99%).

Finally, the GHTorrent authors acknowledged that bugs in
their extraction process led to some duplicate commits being
recorded. We ignore duplicate commits, i.e., commits authored
by the same person and having the same timestamp.

3http://www.clearbits.net/torrents/2076-aug-2012
4Accessible via https://github.com/gousiosg/github-mirror
5http://www.kernel.org/pub/software/scm/git/docs/git-rebase.html
6http://www.kernel.org/pub/software/scm/git/docs/git-cherry-pick.html
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Fig. 1: Number of commits per day in the GitHub dataset
between July 2011 and April 2012.

TABLE I: Sizes of the original and intersection datasets.

Dataset Number of users (in intersection; active)
GitHub 397,348 (23.6%; 11.8%)
StackOverflow 1,295,622 (7.2%; 3.6%)
Intersection 93,771
Intersection (active) 46,967

C. Intersecting the two datasets

A key step in our process is merging the GitHub and Stack-
Overflow datasets, i.e., identifying those contributors which
are active on both platforms. Merging aliases used by the
same person in different software repositories is a well-known
problem [19]–[21]. For example, Bird et al. [19] try to match
full names or email addresses shared by different aliases, and
use heuristics to “guess” email prefixes based on combinations
of name parts (e.g., jsmith and John Smith). Kouters et al. [21]
use Latent Semantic Analysis (LSA), a popular information
retrieval technique, and report better results in presence of
very noisy data. However, all existing approaches are known
to produce false positives and false negatives [20].

To limit the number of false positives7, we follow a
more conservative approach and make use of email addresses.
In the GitHub dataset email addresses are present. In the
StackOverflow dataset email addresses are obscured, but their
MD5 hashes are available. Therefore, we decide to merge (i.e.,
link) a GitHub and a StackOverflow user if the computed MD5
hash of the former’s email address is identical to the MD5
email hash of the latter. Table I presents basic statistics about
the two datasets, before and after intersecting. More advanced
approaches to identity merging, e.g., that also take into account
names or email prefixes [22], are considered as future work.

As a result of this process, approximately one quarter of
the GitHub users (23.6%, or 93,771) are linked to Stack-
Overflow. However, it is possible that not all users in the
GitHub & StackOverflow intersection have authored at least
one commit on GitHub between July 2011 and April 2012
(see the discussion above). Similarly, it is possible that not

7The accuracy of the identity merging algorithm cannot be estimated in the
absence of an “oracle” (i.e., the absolute truth) against which to compare the
results. Such an oracle does not exist for the two datasets.



all users in the GitHub & StackOverflow intersection have
actively participated in StackOverflow by asking or answering
during the same period. Therefore, we further require users to
have been active on both platforms, hence we filter out those
users that neither authored any commits, nor asked or answered
any question between July 2011 and April 2012. This further
reduces the size of the intersection dataset to 46,967 users (or
11.8% of the GitHub dataset).

IV. MACROSCOPIC VIEW

To study how GitHub committing reflects StackOverflow
activities we start by taking the macroscopic view and studying
distributions of the number of events of each type (C for
commit, Q for question, A for answer). For each ordered pair
of event types (e.g., (C,Q)), with the data sorted along one of
the dimensions (e.g., C), we split the other dimension (e.g., Q)
into multiple groups and compare the resulting distributions.
We performed experiments with our groups being quartiles and
deciles but report only the results obtained for quartiles, since
splitting into deciles yielded similar results.

This “split-and-compare” approach was chosen over the
traditional statistical approaches of comparing correlation, like
the correlation coefficient and regression modeling, because
the latter are only capable of detecting monotonic relations
(e.g., “high number of commits corresponds to high num-
ber of questions and low number of commits corresponds
to low number of questions”, or “high number of commits
corresponds to low number of answers and vice versa”). The
“split-and-compare” approach, when used with an appropriate
statistical testing procedure, as we do below, can also detect
non-monotonic relationships (e.g., “both the low and the high
number of commits correspond to high number of questions,
while if the number of commits is neither too high nor too
low, the number of commits is low”).

A. Comparing multiple distributions

Traditionally, comparison of multiple groups follows a two-
step approach: first, a global null hypothesis is tested, and then
multiple comparisons are used to test sub-hypotheses pertain-
ing to each pair of groups. The first step is commonly carried
out by means of ANOVA or its non-parametric counterpart,
the Kruskal-Wallis one-way analysis of variance by ranks. The
second step uses the t-test or the rank-based Wilcoxon-Mann-
Whitney test, with Bonferroni correction. Unfortunately, the
global test null hypothesis may be rejected while none of
the sub-hypotheses are rejected, or vice versa [23]. Moreover,
simulation studies suggest that the Wilcoxon-Mann-Whitney
test is not robust to unequal population variances, especially
in the case of unequal sample sizes [24]. Therefore, one-
step approaches are preferred: these should produce confidence
intervals which always lead to the same test decisions as the
multiple comparisons.

To this end, we employ the recently-proposed multiple
contrast test procedure T̃ [25] using the traditional 5%
family-wise error rate. T̃ is robust against unequal population
variances and is applicable to different types of contrasts,
including comparisons of all pairs of distributions, the so
called Tukey-type contrasts. For Tukey-type contrasts, we
summarise the results of T̃ by means of T̃-graphs [22].

A

D

C B

Fig. 2: Exam-
ple T̃-graph.

In such a directed acyclic graph, nodes
correspond to the different groups being
compared, and edges to the results of the
pairwise comparisons. There is an edge
from A to B if A tends to have higher
values for a given metric than B (i.e., for
the comparison A–B, T̃ reports p < 0.05).
Since T̃ respects transitivity, in a T̃-graph
we omit direct edges between A and B
if there is a path from A to B passing
through at least one other node. Consider
the example T̃-graph from Figure 2, sum-
marising the results of the T̃ procedure applied to four groups
of values A, B, C and D: D tends to have higher values than
both B and C, but lower than A; A tends to have higher values
than all other groups (D directly, B and C transitively).

B. Results

Are heavy committers also heavy question askers?: With
the data sorted along the C dimension in decreasing order, we
split the Q dimension into quartiles and compare the resulting
groups pairwise. The results (Figure 3a) reveal that the most
active 25% of the committers (Q1) ask fewer questions on
StackOverflow than any of the other quartiles, but Q2, Q3 and
Q4 are virtually indistinguishable from each other in terms of
their Q activity. This suggests that active GitHub committers
are experienced developers that do not need much technical
advice: they perform numerous commits without asking much
for help on StackOverflow.

Active GitHub committers ask fewer questions on
StackOverflow than others.

Are heavy committers also heavy answer givers?: With
the data sorted along the C dimension in decreasing order, we
split the A dimension into quartiles and compare the resulting
groups pairwise. The results (Figure 3b) reveal a perfect order-
ing: more active committers provide more answers (e.g., Q2
developers answer more questions than any of Q3 or Q4, but
fewer than Q1). This suggests that GitHub activity can be seen
as a proxy for one’s willingness to answer technical questions
on StackOverflow, or one’s level of expertise. When further
put into the context of gamification, this finding suggests
that top users on StackOverflow are “superstars” rather than
“slackers” [26]: they don’t just compete for reputation and
badges, but are actually active software developers.

More active GitHub committers provide more answers
on StackOverflow.

Are heavy question askers also heavy committers?: With
the data sorted along the Q dimension in decreasing order,
we split the C dimension into quartiles and compare the
resulting groups pairwise. The results (Figure 3c) reveal a
non-monotonic relation between Q and C that could not have
been revealed by traditional correlation techniques. One the
one hand, the least active askers (the Q4 users with the fewest
questions asked) author more commits than any of the others.
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(a) Q1 committers ask fewer ques-
tions on SO than any of the
others.
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(b) More active committers answer
more questions on SO.
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Q4
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(c) Q4 askers commit more than
any of the others. Q1 askers
commit more than Q2 ones.

Q2
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(d) More active answerers author
more commits on GitHub.

Fig. 3: Macroscopic view of activity levels of users active on both GitHub and StackOverflow [July 2011–April 2012].

This observation is in line with its complement above: the
most active committers ask the least. On the other hand, Q1
askers (most active) commit more than Q2 ones, suggesting an
active learning process in which seeking answers to technical
challenges is accompanied by experimenting with the proposed
solutions, and committing the changes to GitHub. However,
this conjecture will have to be further investigated.

The least active askers author more commits than oth-
ers. However, more active askers are not indistinguishable
in terms of their commit activity: the most active askers
commit more than the second most active ones.

Are heavy answer givers also heavy committers?: With
the data sorted along the A dimension in decreasing order,
we split the C dimension into quartiles and compare the
resulting groups pairwise. The results (Figure 3d) reveal an-
other perfect ordering: more active answerers commit more.
This observation is in line with its complement above: more
active committers provide more answers. This suggests that
answering questions on StackOverflow can be seen as a proxy
for one’s commit activity.

More active StackOverflow answerers make more
commits on GitHub.

Summary: We find a direct relationship between GitHub
commit activity and StackOverflow question answering activ-
ity: the more active a committer, the more answers she gives;
similarly, the more active an answerer, the more commits she
authors. In contrast, we find an inverse relationship between
GitHub commit activity and StackOverflow question asking
activity: active GitHub committers ask fewer questions than
others; less active question askers produce more commits.
Overall, these findings suggest that an activity-based ranking
of StackOverflow contributors reflects one extracted from their
open-source contributions to GitHub, increasing the confidence
in the reliability of SO-based social signals (e.g., heavy SO
answerers tend to be also very active GitHub committers).

V. INTERMEDIATE VIEW

In the macroscopic view we have ignored when commits,
questions and answer occur, restricting our attention solely to
the number of events. Next we refine the approach and include
information about the time intervals separating subsequent
events. Following Xuan et al. [16], we define a working
rhythm of an individual in a given activity (committing,
asking/answering questions) as determined by a series of
interactivity times: ∆ti = ti+1 − ti, where ti is a time-
stamp of the i’th activity instance (commit, question, answer).
Specifically, in this section we focus on committing rhythms.

A. Methodology

We are interested in understanding how developers dis-
tribute their time over commits, i.e., whether or not they
are following a steady working rhythm. To evaluate the
committing rhythm of a developer, we calculate the Gini
index over the lengths of her inter-commit time intervals.
The Gini index is a popular econometric measure designed
to study inequality of income or wealth distributions; it is
often being used to aggregate software metrics, e.g., [27],
[28]. The Gini index values range over [0; 1 − 1

n ], where n
is the number of values being aggregated: Gini index equal to
zero would indicate an egalitarian distribution of developers’
time over commits, i.e., developers following a steady working
rhythm; Gini index close to the maximum would correspond
to one big inter-commit time interval and numerous small
inter-commit time intervals. Since the number of inter-commit
intervals significantly varies from one developer to another, we
normalise the Gini index values by dividing them with 1− 1

n .

Similarly to Section IV, we split the individuals into quar-
tiles depending on the number of questions asked or answers
given on StackOverflow. Then, we compare the normalised
Gini values computed for the time series of GitHub inter-
commit intervals, for the individuals associated with each
quartile. This helps us understand whether different groups
of developers exhibit different working rhythms. For example,
active StackOverflow answerers (shown above to be also active
committers), presumably more experienced, might work differ-
ently than less active ones. To compare multiple distributions



(each quartile generates a distribution of Gini index values),
we follow the methodology described in Section IV-A.

B. Results

We have first used the number of questions as a basis for
grouping the developers into quartiles. However, the median
equals 0, i.e., half of the developers did not ask any questions,
and we can no longer distinguish between Q1 and Q2. Hence,
we compare three distributions of GitHub inter-commit time
intervals: normalized Gini index values of the individuals that
do not ask questions Q12, that ask few questions Q3, and
that ask the most questions Q4. Using the T̃ procedure we
conclude that the normalized Gini index values are higher for
active askers than for developers that do not ask questions
(p = 0.013), i.e., active askers distribute their effort in a
less egalitarian way than developers that do not ask ques-
tions. In other words, developers who ask many questions on
StackOverflow commit changes to GitHub in bursts of intense
activity followed by longer periods of inactivity, i.e., they focus
their attention at any given time. Specialization (or focus) of
developers has also been noted previously in the context of
activity types (e.g., coding versus translating) or files touched
as part of a shared project [22], [29].

On the other hand, no differences can be observed between
the normalised Gini index values for individuals grouped into
quartiles based on the number of answers given on StackOver-
flow. Therefore, asking questions on StackOverflow influences
how developers distribute their time over commits on GitHub,
while answering questions does not seem to have the same
effect. This observation is in line with our previous conjecture
on developers learning from StackOverflow and committing
their experiences to GitHub, as well as the literature on the
impact of social media on software development [1], [11].

Active StackOverflow askers distribute their work in a
less egalitarian way (i.e., focus their attention more) than
developers that do not ask questions.

VI. MICROSCOPIC VIEW

So far we have ignored the ordering between commits,
questions and answers. The microscopic view takes this tem-
poral aspect into account by considering committing, asking
and answering as time-series. To study the interaction between
activities we follow the approach proposed by Xuan et al. [16].

A. Interaction between the activities

Consider the timeline of GitHub and StackOverflow activ-
ities of a particular developer (Figure 4a). Let A and B be two
activities we would like compare (e.g., C and Q). For every
event tAi of A we measure the evaluation latency8 εBi as the
difference between the earliest event of B following tAi and tAi ,
and the response latency ρBi as the difference between tAi+1 and
the latest event of B preceding tAi+1 (Figure 4b). The sequences
εB and ρB characterise the relationship betweenA and B. Next,
to study whether the sequence of B events for this particular

8For the sake of readability we use a lightly different notation than in the
original paper [16].
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Fig. 4: The steps to generate a simulated time-series of
StackOverflow activities.

developer could have occurred by chance, we create m random
permutations of B events9 (B1, . . . ,Bm). Reshuffling is done in
such a way that the durations of the “idling periods” between
two consecutive events of activity B are preserved, but the
order of the “idling periods” is randomised (Figures 4c,d).
Let εB1 , . . . , εBm and ρB1 , . . . , ρBm be series of evaluation and
response latencies corresponding to B1, . . . ,Bm (Figure 4e).

Finally, we aggregate all the sequences εB for the different
developers into EB, all ρB into PB, etc. Then, we compare
EB with each one of EB1 , . . . , EBm and PB with each of
PB1 , . . . , PBm . However, as opposed to Section IV-A, we are
no longer interested in performing all pairwise comparisons
between different groups, but in comparing one of the distri-
butions (“control”) against multiple alternatives (“treatments”).
This kind of comparisons is known as a Dunnett-type contrast,
and it is also supported by T̃. Hence, we apply T̃ for Dunnett
type contrasts with EB and PB as control groups, and the
traditional 5% family-wise error rate:

• If A and B are independent from each other, EB and
PB will be statistically indistinguishable from their
simulated counterparts.

• If A delays B, EB will be statistically longer than the
simulated evaluation latencies. Similarly, if B delays
A, PB will be statistically longer than the simulated
response latencies.

• If A accelerates B, EB will be statistically shorter
than the simulated evaluation latencies. Similarly, if
B accelerates A, PB will be statistically shorter than
the simulated response latencies.

To address the potential inconsistencies between the T̃ results
for the m randomisations, we apply the following schema. We
say that two activities do not influence each other (denoted
“none”) if at most one of the simulations resulted in a
statistically significant comparison. Otherwise, we speak of

9In our experiments we chose m = 10.



TABLE II: Mutual influence of StackOverflow activities and
GitHub committing, for different committers (from least active
Q1, to most active Q4).

Q Influence of
asking committing answering committing
on on on on
committing asking committing answering

Q1 none none none none
Q2 none inconclusive inconclusive inconclusive
Q3 accelerates accelerates accelerates accelerates
Q4 accelerates accelerates accelerates accelerates

acceleration (delay) if at least 80% of the simulations have
been found to indicate acceleration (delay). In all other cases
we say that the influence is inconclusive.

Since we focus on the impact of StackOverflow activities
(Q, A) on GitHub committing (C) and vice versa, we always
choose GitHub committing as one of the activities and vary a
different StackOverflow activity as the other one.

B. Results

To investigate whether StackOverflow activities impact
only specific groups of committers (e.g., those very active),
we split the committers into quartiles based on their total
number of commits (as in the previous sections). Results of
our investigation are summarised in Table II. First of all, we
observe that the results are consistent. Moreover, for the most
active half of the committers (Q3 and Q4), the real latencies
consistently tend to be lower than the simulated ones. This
suggests that for these developers, committing and asking
questions accelerate each other, as well as committing and
answering questions accelerate each other.

For active committers, asking questions on Stack-
Overflow catalyses committing on GitHub. Similarly, for
active committers, answering questions on StackOverflow
catalyses committing on GitHub.

Similar differences in influence of StackOverflow activities
on GitHub committing between more and less active develop-
ers can be observed after grouping by length of involvement
in GitHub (the catalysis is more visible for individuals who
have been involved in GitHub for sufficiently long time), or
number of questions asked on SO (the catalysis is more visible
for active askers).

Finally, when grouping is done according to the number
of answers given on SO, slightly different results are obtained
(Table III). By answering questions, there is a benefit only
for the most active answerers (Q4): answering questions on
StackOverflow and committing changes to GitHub accelerate
each other. In contrast, by asking questions, acceleration is
visible for both the active answerers (Q3 and Q4) as well
as for the developers that do not answer any questions at
all (exclusive askers or exclusive knowledge seekers; Q1):
asking questions on StackOverflow and committing changes
to GitHub accelerate each other.

TABLE III: Mutual influence of StackOverflow activities and
GitHub committing, for different answerers (from least active
Q1, to most active Q4). Individuals in Q1 do not give answers.

Q Influence of
asking committing answering committing
on on on on
committing asking committing answering

Q1 accelerates accelerates n/a n/a
Q2 none none none none
Q3 accelerates accelerates none none
Q4 accelerates accelerates accelerates accelerates

For the most active answerers as well as for developers
that do not answer any questions at all, their StackOver-
flow activities accelerate their GitHub committing.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we studied the relationship between question
& answer activities carried out by individuals on Stack-
Overflow and their contributions to GitHub repositories. Our
findings are based on the data for 46,967 users active both on
StackOverflow and GitHub.

First, we focussed on differences in StackOverflow in-
volvement of the GitHub developers (RQ1). We observed that
individuals who tend to ask few questions tend to have a high
number of commits, and individuals with a high number of
commits tend to ask few questions. Moreover, individuals that
tend to answer many questions tend to have a high number of
commits, and individuals that have a high number of commits
tend to answer many questions. This suggests that highly
productive (in terms of GitHub commits) individuals tend to
take the role of a “teacher” more actively involved in providing
answers rather than asking questions.

Next, we studied whether the working rhythm of the
GitHub contributors is related to their StackOverflow activities
(RQ2). We observed that individuals that tend to answer many
questions distribute their work in a less uniform way than
developers that do not ask questions at all. No differences
were observed between the work distributions for individuals
grouped based on the number of answers given.

Finally, we showed that despite interruptions incurred, for
active GitHub developers StackOverflow activities are posi-
tively associated with the social coding in GitHub (RQ3).
Similar observations hold for active askers as well as indi-
viduals who have been involved in GitHub for sufficiently
long time. Finally, StackOverflow activities accelerate GitHub
committing also for the most active answerers as well as for
developers that do not answer any questions at all.

To deepen our understanding of the impact StackOverflow
has on GitHub we intend to expand the research presented as
follows. First of all, we would like to refine the classification
of activities: we plan to distinguish between questions and
answers pertaining to different subjects (as expressed by Stack-
Overflow tags) and commits pertaining to different projects.
Then, using information retrieval techniques we intend to



classify questions and answers as being related, or not, to a
given commit. For instance, we expect to observe a closer
relation between commits and the topics of questions asked
compared to the relation between commits and the topics of
answers given, as answers are more likely to pertain to the
general knowledge of the individual. As a continuation of
our work on the impact of the number of questions on the
working rhythms, we intend to study to what extent can the
inequality in the inter-commit time intervals’ distribution be
explained by different aspects of the GitHub projects and their
developers (including StackOverflow activities of the latter
ones). To measure the explanation we intend to employ the
Theil index [30], [31]. Moreover, we plan to investigate the
impact of the committing rhythm of the individual on her
activity rhythm on StackOverflow: are questions being asked
or answered when no committing is done, or rather interleaved
with commits? We also would like to augment our study of
the intermediate view by applying further models of inter-
event time distribution [32], [33] to our data. Finally, to obtain
additional insights in the combined StackOverflow & GitHub
activities we would like to apply process mining techniques
originally developed for information systems [34] and suc-
cessfully applied to traditional software repositories such as
version control systems, mail archives and bug trackers [35].
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