
Does the duration of rapid release cycles affect the
bug handling activity?

Thorn Jansen∗, Zeinab Abou Khalil†, Eleni Constantinou∗, and Tom Mens†
∗ Eindhoven University of Technology, Netherlands, Email: t.k.h.g.jansen@student.tue.nl, e.constantinou@tue.nl

† University of Mons, Belgium, Email: {zeinab.aboukhalil,tom.mens}@umons.ac.be

Abstract—Software projects are regularly updated with new
functionality and bug fixes through so-called releases. In recent
years, many software projects have been shifting to shorter
release cycles and this can affect the bug handling activity.
Past research has focused on the impact of switching from
traditional to rapid release cycles with respect to bug handling
activity, but the effect of the rapid release cycle duration has
not yet been studied. We empirically investigate releases of 420
open source projects with rapid release cycles to understand
the effect of variable and rapid release cycle durations on bug
handling activity. We group the releases of these projects into
five categories of release cycle durations. For each project, we
investigate how the sequence of releases is related to bug handling
activity metrics and we study the effect of the variability of
cycle durations on bug fixing. Our results did not reveal any
statistically significant difference for the studied bug handling
activity metrics in the presence of variable rapid release cycle
durations. This suggests that the duration of fast release cycles
does not seem to impact bug handling activity.

I. INTRODUCTION

Many contributors to open source software (OSS) projects
work on a volunteer basis [1], making it challenging to attract
and retain developers and users [2]. To keep users interested,
it is important to release new functionalities and avoid having
bugs that detriment users’ overall experience with the software.
New versions of the software are delivered periodically in so-
called releases that provide new user functionality and aim to
resolve as many bugs as possible [3].
Large organizations like Google and Facebook, and founda-
tions like Mozilla and Eclipse have migrated from traditional
long release cycles to more rapid release cycles [4] to provide
users with bug fixes and new functionality more frequently.
Regardless of the release cycle duration, developers seek to
deliver software with as few bugs as possible. However, the
adoption of rapid releases may result in less time for the
community to address bugs [5].
While switching to rapid release cycles has shown to be benefi-
cial for mature projects with large developer communities such
as Eclipse [5], [6] and Firefox [4], [7], it remains unknown
whether and how such a switch impacts projects with different
characteristics. The optimal release cycle duration for different
projects may differ depending on the size of the developer
community, project size, development processes used and level
of automation. Moreover, the rapid release cycle duration
differs across projects (e.g., Eclipse follows a 13-week cycle
while Firefox follows a 4-week cycle), and even within the
same project the cycle duration may fluctuate. It therefore

becomes important to investigate how varying release cycles
within a project can affect its software development processes.
Nonetheless, projects that switch to rapid cycles of fixed or
variable duration aim to sustain or improve the bug handling
performance of their developer community.
To understand the effect of rapid release engineering on
bug handling, we carry out an empirical investigation. More
specifically, we focus on the effect of the duration of rapid
release cycles on the fixing, triaging, and survival of bugs. To
do so, we rely on the RapidRelease dataset [8] that contains
994 GitHub projects with over 3 million issue reports and with
an average release cycle duration between 5 and 35 days. We
group releases in five categories of release duration, and treat
the releases of each project as a sequence of release categories.
This allows us to use the Gandhi-Washington Method (GWM)
implemented by Nayebi et al. [9]. The GWM tool allows us
to test if there is a statistically significant difference in a given
metric w.r.t different release cycle durations. Our investigation
is guided by four research questions:
RQ1 : How does release cycle duration affect the bug fixing
process? This question focuses on bug fixing, which is the
main concern of the bug handling process. To investigate
how bug fixing is affected by the release cycle duration, we
operationalize bug fixing in terms of fixing duration and fixing
ratio and apply GWM on these metrics.
RQ2 : How does release cycle length affect bug survival
over multiple releases? The longer a bug is present, the more
costly it becomes to fix it [10]. Therefore, in presence of
rapid release cycles it is relevant to examine the likelihood
for a bug to survive over releases. We hypothesize that with
shorter release cycles developers have less time for new feature
implementation and bug fixing, making it more likely for bugs
to “survive” over releases until they are handled.
RQ3 : How does release cycle duration affect bug triaging?
The step of assigning bug reports to developers is called bug
triaging [11]. Bug triaging can affect the bug handling activity,
e.g., multiple re-assignments impact how long a bug stays
unfixed [12], [13]. Therefore, we investigate the effect of the
release cycle duration on bug triaging, operationalised in terms
of triaging duration and ratio. A short triaging duration and
a high triaging ratio would benefit the overall bug handling
performance.
RQ4 : How do variations in the release cycle duration of a
project affect the bug handling process? Although the average
or median release cycle duration describes the general behavior

ar
X

iv
:2

10
3.

08
64

8v
1

 [
cs

.S
E

]
 1

5
M

ar
 2

02
1

of the release engineering within a software project, it does not
explain any variance in the release cycle duration of a project.
Two projects can have a similar average release cycle duration
but a different sequence of release cycle durations. Alternating
between different periods of time to publish a new release,
can require additional time to carry out other development
activities within a given release, thus leaving less time for
bug handling compared to a sequence of releases of the same
duration. Therefore, an interesting factor to evaluate is if and
what effect the variability of release cycle durations within a
project has on the bug handling activity.
The remainder of the paper is organized as follows. Sec-
tion II describes the research methodology and data extraction
process, while Section III presents the quantitative results.
Section IV discusses our findings and Section V reports on
the threats to validity. Section VI discusses the related work.
Finally, Section VII concludes and presents future research.

II. METHODOLOGY

This section presents the selected dataset and data extraction
process, the definitions of the metrics used, and the method-
ology used to address the research questions. The datasets
and scripts used for the analysis are available in a replication
package on Zenodo [14].

A. Datasets

To perform our empirical analysis, a set of projects has
to be chosen to analyze the relation between bug handling
and release cycle duration. We selected the 994 software
repositories in the RapidRelease dataset [8], [15] because this
dataset explicitly contains repositories with a short duration
between releases (5 to 35 days on average). Secondly, the
repositories combined have over three million issue reports.
Although GitHub issues do not always represent actual bug
reports, a very large sample of issue reports increases the
probability of a large dataset of bug reports. The RapidRelease
dataset contains information about the project releases, but this
does not include information on the issues present, and event
information like when developers are assigned to an issue, or
when a commit is attached to an issue. Therefore, based on the
repository names provided in the dataset, we used the GitHub
API to enhance the metadata of each project in three ways:
• Releases: we collect all project releases and their at-

tributes, such as the date the release was published.
• Issues: we fetch information on all issues (both open

and closed), including information about the opening and
closing date, the labels used by the reporter to categorize
the issue, and whether a developer was assigned to the
issue.

• Issue events: for each issue, we collect the date when
developers are assigned (if assignment took place).

As mentioned earlier, GitHub issues do not necessarily corre-
spond to bug reports. For example, they may be used to request
new functionalities or to ask questions to developers [16].
To differentiate between bugs and other types of issues, we
collected the labels of all issues of the selected repositories.

We found a total of 3,520,016 issues where 1,784,735 issues
had at least one label out of a total of 5,532 unique labels.
However, labelled issues are not evenly distributed between the
projects. The boxenplot [17] in Figure 1 provides an overview
of the ratio of issues labeled per project.

Fig. 1: Boxen plot showing the distribution of the ratio of
labeled issues per project.

Because projects with a low rate of labeled issues could bias
the results, we decided to filter out projects that have labels
in less than 40% of their issues. This leaves 420 projects to
be analyzed. Figure 2 shows the distribution of the number
of releases in each project of this filtered dataset and Table I
shows the general statistics about the number of releases of
the 420 projects. As all projects have at least 15 releases with
a median of 65 releases, we ensure a sufficient number of
releases per project.

Average number of releases 79.767
Median number of releases 65
Minimum number of releases 15
Maximum number of releases 475
Standard deviation number of releases 57.073

TABLE I: Descriptive statistics of the number of releases in
the 420 repositories analyzed.

Furthermore, Table II contains general statistics of the number
of issues present in the 420 projects. As all projects have at
least 57 issues with a median of 3099.5 issues, we ensure
a sufficient number of issues per project to investigate bugs
handling activity.

Total number of issues 1,493,393
Average number of issues 3555.698
Median number of issues 3099.5
Minimum number of issues 57
Maximum number of issues 41,904
Standard deviation number of issues 6289.336

TABLE II: Descriptive statistics of the number of issues in the
420 repositories analyzed.

To determine which labels represent bugs, the four authors of
this paper independently and manually classified which labels
concern bugs; the inter-rater agreement (IRR) was measured
using Cohen’s κ [18]. At least 2 authors categorized each label,
and in case of disagreement, all authors discussed to reach a
consensus. On the first round of manual labeling, an agreement
of κ = 0.52 was obtained. Most of the disagreements were

Fig. 2: Boxen plot showing the distribution of the number of
releases per project.

caused by a different perception between authors of labels
containing the word “triage”. After closer inspection and
discussion, the raters decided that this label did not concern
bug triaging exclusively, and thus it was excluded from the
set of bug-specific labels. After the second round of manual
labeling, a perfect agreement of κ = 1 was obtained.
The manual labeling resulted in a total of 183 labels rep-
resenting bugs found in 327,579 labeled issues. Although
the bug labels correspond to only 3% of all unique labels,
they correspond to 22% of all labeled issues (327,579 out of
1,493,393). This is caused by bug relating labels occurring
often, e.g. “bug” is one of the commonly used bug-related
labels in different repositories. On the contrary, a large number
of labels are only used a few times, but not representing a large
number of issues, e.g., “version/1.1”.

B. Definition of metrics

To evaluate the effect of the release cycle duration on the bug
handling process, we need to compare the release information
to bug information. To do so, for a given project p we use
the notation Bp to refer to the set of all bugs reported for p.
Similarly, Bp

open refers to the subset of all open bugs, Bp
triage

to the subset of all triaged bugs, Bp
fix to all fixed bugs and

Bp
close to all closed bugs. Let Rp be the set of all project

releases of p. Given a release r ∈ Rp, Bp:r constrains the set
Bp to only those bugs targeting release r. For example, Bp:4.0

fix

contains all bugs fixed in release 4.0 of project p.
According to Liu et al. [19], a bug can be considered fixed
if there is at least one commit attached to the issue and the
issue has been closed on GitHub. Additionally, referencing
an issue in a commit if the commits addresses the issue is
the recommended GitHub behavior [20]. Additionally, Liu et
al. [19] define the bug fixing moment to be the point in time
when the issue was closed, not when the commit was attached.
This is important for defining the fixing duration. Moreover,
a bug is triaged when a developer gets assigned to the issue
representing the bug [6]. Therefore, we define the following
auxiliary functions:
• date: Rp → Date returns the publication timestamp of a

given release of project p.
• earlier: Rp → P(Rp) returns the set of earlier releases

of a given release of project p.

• prev: Rp → Rp returns the release immediately preceding
a given release of project p.

• Dopen : Bp → Date returns the timestamp when the bug
report was opened.

• Dtriage : B
p → Date returns the timestamp when the bug

report was triaged.
• Dclose : B

p → Date returns the timestamp when the bug
report was closed.

• d(r) = [date(prev(r)), date(r)] is the time interval be-
tween a release r ∈ Rp and the previous release.

• Bp
newlyClosed(r) =

⋃
e∈earlier(r){b ∈ Bp:e

open | Dclose(b) ∈
d(r)} is the set of bugs for a release r ∈ Rp that were
opened in an earlier release and that are closed in r.

• Bp
survive(r) =

⋃
e∈earlier(r){b ∈ Bp:e

open | Dclose(b) ≥
date(r)} is the set of bugs for a release r ∈ Rp that
are opened in an earlier release and not yet closed in r.

Using these notations, for RQ1 we define fixing ratio and
fixing duration of a project p as follows. The fixing ratio is
the ratio of fixed over open bugs:

fixingRatio(p) =
|Bp

fix|
|Bp

open|
(1)

The fixing duration is the average fixing duration of all fixed
bugs in a project. As the size of projects can vary, we
normalize the impact of project size by dividing the total
duration of fixed bugs by the number of fixed bugs in the
project:

fixingDuration(p) =

∑
r∈Rp

∑
b∈Bp:r

fix
Dclose(i)−Dopen(i)

|Bp
fix|

(2)
For RQ2 we define the bug survival ratio of a project p as the
number of surviving bugs (Bp

survive) over the closed bugs,
where bugs that are created and closed in the same release do
not count towards the number of closed bugs of that release.
Since such bugs have not survived over any release, they
should not be considered in the survival ratio:

survivalRatio(p) =

∑
r∈Rp

|Bsurvive(r)|∑
r∈Rp

|BnewClosed(r)|
(3)

For RQ3 we define two bug triaging metrics. The triaging
ratio for a project p is defined as the number of triaged bugs
for every release of p, divided by the number of open bugs
for every release of p:

triagingRatio(p) =
|Bp

triage|
|Bp

open|
(4)

The triaging duration is defined as the average triaging du-
ration of the triaged bugs in a project divided by the total
number of triaged bugs in the project:

triagingDuration(p) =
∑

r∈Rp

∑
b∈B

p:r
triage

Dtriage(b)−Dopen(b)

|Bp
triage|

(5)
RQ4 investigates how the variation in release cycle duration
within a project affects the bug handling process. It uses the
same metrics as RQ1, namely fixing ratio and fixing duration.

We use the interquartile range (IQR) instead of standard
deviation for measuring the amount of variation [21] as the
distributions are very skewed and not normally distributed;
the null hypothesis of the D’Agostino-Pearson test [22], [23]
that normality is met is rejected with p< 0.001. We answer
RQ4 by evaluating the effect of IQR on the bug fixing ratio
and bug fixing duration.

C. Gandhi-Washington Method

The Gandhi-Washington Method (GWM) aims to analyze the
impact of recurring events in software projects. To investigate
the effects of event sequences, called treatments, on the
dependent variable, called outcome, GWM uses three stages:
encoding, categorization and synthesis.
The encoding stage receives the different event sequences
together with their respective outcome value. The analyst
encodes each event into a character of an alphabet, allowing
to represent the event sequences as strings in this alphabet. In
our work, each encoded event corresponds to a single project
release, and the character used to encode the event reflects the
release duration. For example, a project with three consecutive
releases with a very short duration of only 3 days each will
be encoded as AAA; the chosen duration encodings will be
detailed later in this section. The outcome value attached to
each project will be different for each research question. For
example, the outcome value for RQ2 will be the project’s bug
survivalRatio.
The categorization stage receives the encoded sequences of
events with their outcome values. The first step consists of
translating each encoding sequence into a regular expression.
For example, AABBB and AAAABBBBB are both repre-
sented by the same regular expression A*B*. The second step
is to group the outcome values for which the regular expres-
sions are equal. For example, AABBB and AAAABBBBB
belong to the same group since they both correspond to the
same regular expression A*B*. In the context of our work,
this means that we will group projects with release sequences
that are similar in terms of encoded release durations.
The synthesis stage builds a hierarchy of regular expressions
where items at the bottom of the hierarchy represent the most
specific regular expressions while at the top we find the most
general regular expressions. The synthesis iteratively applies
the Mann-Whitney test [24] to the outcome values of two
regular expressions to determine if they are statistically dif-
ferent with significance level α = 0.05 after having applied a
Bonferroni error correction to adjust for multiple comparisons.
If the two regular expressions are not statistically different,
they are merged. When there are only regular expressions
left with statistically significant different outcome variables,
the testing stops. The remaining regular expressions indicate
which sequences of events have an impact on the outcome
variable. In our work, the outcome of the synthesis step will
reveal if the release cycle durations impact the bug handling
activity.
GWM will be used to answer RQ1 to RQ3. Each sequence
of events corresponds to the successive release durations for

a single GitHub repository. Each release is represented as an
integer encoding the days until the subsequent release, where
releases within two days of each other will be considered
the same release [8]. These integers are grouped into release
duration ranges as follows: A: 2-5 days; B: 6-20 days; C:
21-35 days; D: 36-365 days; E: ≥ 366 days until subsequent
release.
This grouping is inspired by Joshi et al. [8] who defined three
release cycle groups: ≤ 5 days, between 6 and 35 days, and
≥ 36 days. Given that 69% (44,303 out of 63,956 releases)
of the release cycle durations in our dataset belong to the
[6..35] group, we decided to split it into [6..20] (group B) and
[21..35] (group C). This will allow us to differentiate between
different types of short release cycles more carefully. Similarly,
we separated out group E of ≥ 366 days until subsequent
release, as such release cycles are extreme outliers (0.1% of
the total releases, i.e., 96 out of 63956). Figure 3 shows the
release duration distribution of all releases in all 420 projects.
With a median release duration of 10 days it can be noted
the releases are rapid releases and the majority of the releases
falling within groups B and C.

Fig. 3: Boxenplot of the release durations distribution (in days)
of all releases of all 420 investigated projects.

The type of outcome value accompanying every release se-
quence will differ per research question. For RQ1, GWM will
be applied twice, with as outcome values the fixing ratio and
the fixing duration, respectively. For RQ2, the outcome value
is the survival ratio. For RQ3, GWM will be applied twice,
with the triaging ratio and the triaging duration as outcome
values.

III. RESULTS

RQ1 How does release cycle duration affect the bug fixing
process?
To analyze the bug fixing process, we will use GWM to answer
two sub-questions: RQ1

1 How does release cycle duration
affect bug fixing duration? and RQ2

1 How does release cycle
duration affect the bug fixing ratio? To do so, we use the
encoding of release cycle durations presented in Section II.
We evaluated different encodings, presented in Table III, to
ensure that the findings do not solely depend on the encoding
chosen. All settings were tested to find the optimal encoding
to be used in our experiments. Since we did not observe any

group Setting1 Setting2 Setting3 Setting4 Setting5 Setting6 Setting7 Setting8
A 2-5 2-10 2-10 2-5 2-5 2-15 2-15 2-15
B 6-20 11-30 11-20 6-35 6-25 16-35 16-35 16-35
C 21-35 31-50 21-30 36+ 26-50 36-75 36-75 36+
D 36-365 51+ 31+ - 51-100 76-365 76+ -
E 366+ - - - 101+ 365+ - -

TABLE III: Different encodings for release cycle duration in the GWM tool. Cell contents indicate the range of release duration
(lower to upper day limits) of the encoding w.r.t. the character in the first column of the respective row, while “-” indicates
that this character is not used in the encoding.

difference in the results, we decided to stick to the default
Setting1 of Section II.
For RQ1

1 we used average fixing duration as outcome value of
GWM for each project, and for RQ2

1 we used fixing ratio as
outcome value. Fig. 4 presents the GWM results for RQ1

1 and
shows the tool in action. The bottom left panel labeled final
results contains the statistically significant regular expressions
with the average of each regular expression’s outcome value,
and the right panel shows a boxplot with the distributions
of the outcome values of the different statistically significant
regular expressions.
For both sub-questions, the results contains only a single
statistically significant regular expression (A*B*C*D*)* cov-
ering all possible sequences. This implies that there is no
difference in fixing duration or fixing ratio between projects
with different release cycle durations. For example, the results
for short releases (group A with durations of 2 to 5 days) are
not different from those for very long releases (durations in
group D between 35 and 365 days) or even an arbitrary mix-
ture of release durations. This goes against the intuition that
developers would treat bugs differently in release sequences
of very short duration compared to release sequences of very
long duration. A possible explanation might be that, while
developers will handle less bugs in shorter releases, they do
not handle individual bugs differently.

Different release cycle durations do not statistically signifi-
cantly impact the bug fixing duration/fixing ratio.

RQ2 How does release cycle duration affect bug survival
over multiple releases?
For RQ2 we apply GWM using the bug survival ratio of a
project as outcome value. Again, the result contains only a
single statistically significant regular expression (A*B*C*D*)*
that covers all sequences of release cycle durations. This
implies that the bug surviving ratio does not differ between
projects with different release durations. Again, this goes
against the intuition that bugs might be postponed to later
releases if there is less time to fix bugs in very short releases.
A possible explanation for why the observed results do not
confirm this intuition is that, when developers know there is
little time for each release, they plan the release such that bug
handling still receives enough resources to avoid having very
persistent bugs.

Difference release cycle durations do not statistically signif-
icantly impact the bug survival ratio.

RQ3 How does release cycle duration affect bug triaging?
To analyse the bug triaging process we will study two sub-
questions concerning the triaging duration and ratio: RQ1

3

How does release cycle duration affect bug triaging duration?
and RQ2

3 How does release cycle duration affect the bug
triaging ratio? We use GWM to answer both subquestions,
using as outcome values the triaging duration and triaging
ratio for each project, respectively. For both subquestions, the
results again indicate there is only one statistically significant
regular expression (A*B*C*D*)*. This implies that there is
no difference in triaging duration or triaging ratio between
projects with different release cycle durations.
With triaging taking the same amount of time for any duration
of a release, we observed that short duration releases have their
bugs triaged later into the release, ratio wise, compared to the
longer duration release. Additionally, at the same time the ratio
of triaged bugs stays the same.
This is counter intuitive as we expect more bugs to be triaged
and fixed near the end of a release due to the increased pressure
closer to the release deadline.

Difference release cycle durations do not statistically signif-
icantly impact the bug triaging ratio/duration.

RQ4 How do variations in the release cycle duration of a
project affect the bug handling process?

We compute the IQR of the release durations for all projects
in the dataset. Then, we find each project’s average fixing
duration and overall fixing ratio. Fig. 5 and Fig. 6 visualise
the distribution of the IQR versus the two metrics respectively.
We verify if the distribution of IQR values is normally
distributed by applying the D’Agostino-Pearson normality test
[22], [23] with null hypothesis that the data is normally
distributed. Since p = 3.01e − 23 we reject the hypothesis
and conclude that the distribution is not normally distributed.
To evaluate whether the variation in release cycle duration is
correlated to bug fixing, we use Spearman’s rank correlation
coefficient [25]. The null hypotheses H014 and H024 state that
there is no correlation between the variation in release cycle
duration and the fixing ratio (respectively, fixing duration).
We found no to a very low positive correlation between the
variability of the release cycle duration and a project’s fixing

Fig. 4: Figure showing the GWM tool and the results for RQ1
1 for Setting1 listed in Table III

Fig. 5: Comparing distributions of average fixing duration and
IQR of release duration

ratio or fixing duration; correlation values were 0.021 for H014
and 0.234 for H024. This means that we cannot reject the null
hypotheses, since the variability in release cycle duration does
not correlate well the bug fixing ratio and fixing duration.

We do not observe a statistical correlation between variation
in release cycle duration and bug fixing duration/ratio.

None of the research questions revealed any statistically
significant relation between different release cycle durations
and the respective metrics. Thus, we have not been able to
find any statistically significant correlation between the release
engineering process and bug handling activity.

IV. DISCUSSION

Previous research [6], [7], [26], [27] showed a difference in
bug handling activity when comparing traditional to rapid
release cycles. This lead to the hypothesis that different rapid
release cycles may reveal a difference in bug handling activity.
However, our results did not confirm this hypothesis. A

Fig. 6: Comparing distributions of bug fixing ratio and IQR
of release duration.

possible reason could be that the projects in the RapidRelease
dataset are not as popular or mature as large and mature
projects (such as Firefox or Eclipse) that have been studied
in previous research. In addition to this, there is anecdotal
evidence that compact, cross-functional and efficient teams are
needed to develop efficiently in the presence of rapid releases.1

Hence, one can assume that rapid release cycles are mostly
beneficial for mature projects and development teams. Once
the release cycle starts to become too short, however, the added
value it brings would be wasted, since it may lead to a reduced
code quality (due to time pressure), resulting in additional bug
handling activity.2 This could be another possible explanation
for the lack of difference in bug handling between the shorter
and longer rapid release cycles.
A different observation that grabs attention is the lack of

1https://techbeacon.com/devops/doing-continuous-delivery-focus-first-
reducing-release-cycle-times

2https://www.overops.com/blog/fast-release-cycles-wasting-developer-
time/

https://techbeacon.com/devops/doing-continuous-delivery-focus-first-reducing-release-cycle-times
https://techbeacon.com/devops/doing-continuous-delivery-focus-first-reducing-release-cycle-times
https://www.overops.com/blog/fast-release-cycles-wasting-developer-time/
https://www.overops.com/blog/fast-release-cycles-wasting-developer-time/

difference between the variability in releases and the fixing
ratio/ fixing duration. For projects with a fixed release plan,
one would expect better organization and clear development
goals, e.g., which functionality to implement for each release,
compared to projects with variable release duration. However,
the variability does not seem to affect the bug fixing activity
(see RQ4). We argue that neither a loose release schedule
necessarily negatively affects the bug handling activity nor a
strict release schedule necessarily improves it.
We rationalize that developers pick a release duration to
support providing the best quality software to users. This in-
cludes providing new functionality regularly and ensuring the
software’s quality with respect to bugs. This means developers
would pick a release duration which also helps bug handling
activity.
Thus, we hypothesize that a fixed release schedule combined
with other factors, e.g. community contribution, may have a
positive effect on bug handling activity. However, none of our
obtained results seem to point in this direction. RQ4 shows
that variability in the release cycle duration does not affect the
bug handling activity, suggesting that focusing extra resources
on obtaining a fixed release schedule does not necessarily
improve the project’s bug handling activity.
It can be noted that changing the encodings for the release
cycle duration groups does not affect the results for the
different research questions. If one of the encodings resulted
in more than one statistically significant regular expression, it
would indicate the reasoning behind the default release cycle
groups encoding is wrong. However, for all settings, there is
only one statistically significant regular expression for each
research question. This strengthens the observation that there
is no correlation between the rapid release cycle duration and
the respective bug handling performance metrics.
Overall, researchers investigating factors which may affect
bug handling activity between rapid releases, or building
frameworks of actionable factors that affect bug handling
activity, must be aware that while different works highlight
that the release cycle duration affects bug handling activity
when moving to more rapid release cycles, we have found no
such correlation between different rapid release cycles and bug
handling activity in the dataset of projects that were studied.

V. THREATS TO VALIDITY

Following the structure presented by Runeson et al. [28], we
address the threats that can affect the study’s validity and
highlight how we have tried to mitigate these threats.
A threat to the construct validity of our work concerns iden-
tifying bugs among the issues in the GitHub repositories. Not
all GitHub repository issues represent bugs, so we classified
labels assigned to issues into bugs and non-bugs, marking
issues as bugs if they had at least one bug label. This may have
caused some bugs to be labeled as non-bugs and vice-versa.
We have mitigated this risk by minimizing the bias stemming
from manual labeling: at least two of the authors labeled each
issue, and disagreements were discussed among all authors
until a consensus was reached.

A threat to the internal validity of the work is the fact that bugs
can be reopened when it turns out that the problem was not
adequately fixed. We opted to take the last fixing date in the
presence of multiple fixes as fixes prior to the last one were
not satisfactory. Another threat to internal validity stems from
considering the link between bugs and commit/pull requests to
consider a bug as fixed. Although not all fixed bugs are linked
to the fixing commits [29], this is the recommended behavior
in GitHub [19] and cannot be further mitigated. Finally, the
threat that not all issues are labelled on GitHub is addressed
by filtering out repositories with less than 40% labelled issues.
Regarding external validity, we cannot generalize our results
to repositories having non-rapid release cycles. Projects with
longer release cycles are likely to reveal different behavior
in their bug handling characteristics. Additionally, we only
consider projects using GitHub issues instead of dedicated bug
tracking platforms. As different bug tracking platforms might
affect how developers approach the bug handling activity, the
results cannot be generalized to projects using bug tracking
platforms other than GitHub. Finally, we cannot generalize our
findings to projects with different characteristics than the ones
in the RapidRelease dataset w.r.t. attributes like community
size, maturity, etc.

VI. RELATED WORK

da Costa et al. [26] showed that rapidly releasing projects
introduces delays in the integration of fixed issues. They
performed a comparative study of 72,114 issue reports from
the open source project Firefox before and after its switch to
a rapid release cycle. They found that issues are fixed faster
in rapid releases but, surprisingly, rapid releases take longer
than traditional releases to integrate fixed issues. Khomh et
al. [7] also investigated Firefox and observed that faster release
cycles improve software quality. The authors investigated crash
rates, median uptime, and the proportion of post-release bugs
of releases with a short cycle vs releases with a longer
“traditional” release cycle. They found that bugs are fixed
faster, and there are not more post-release bugs in releases
with a rapid cycle compared to releases with a traditional cycle
length. However, the users of the software run into critical
execution problems with the program sooner.
Abou Khalil et al. [5], [6] analyzed various aspects of bug
fixing in the open source project Eclipse. They investigated
how the bug handling process differs between the pre-release
and post-release periods after Eclipse switched from yearly
to quarterly release cycles. They observed that there is no
difference in bug fixing before or after a release, except for
triaging that is faster before the release. Additionally, they
observed that bugs were triaged and fixed faster after the
switch to the quarterly release cycle duration. They obtained
feedback from five Eclipse Core maintainers who confirmed
their findings.
To determine whether the release cycle duration affects the
app rating, Maleknaz et al. [9] analyzed 6,003 mobile apps
through the GWM method. They found seven unique release
sequences that significantly affect the app rating. Also, they

found that apps with consecutive long release cycles, followed
by consecutive short release cycles have the highest median
app rating. In our paper, we used GWM to analyze the effect
of release cycle duration on bug handling activity.
All the above studies are valuable in understanding how rapid
release impacted the bug handling process. In contrast, we
studied how the varying durations of rapid release cycles
impact the bug handling activity.

VII. CONCLUSIONS

In this work, we performed an empirical study on 420 projects
with a rapid release cycle. We investigated the effect of the
rapid release cycle duration and the variation of the release
cycle duration on the bug handing activity. The bug handling
activity was measured in terms of fixing duration, fixing ratio,
bug survival over releases, and bug triaging duration/ratio. We
used the Gandhi-Washington algorithm to evaluate whether
the effects of the release cycle duration on the bug handling
activity are statistically significant.
Contrary to our expectations, our findings did not reveal any
statistically significant impact of the release cycle duration
or its variability on the bug handling activity. These findings
suggest that differences within rapid release cycle duration do
not affect the bug handling activity.
Future research could enlarge the dataset of projects investi-
gated. Different bug trackers than GitHub can be investigated
to determine if the observed results are specific to the bug
tracking platform. Additionally, the dataset of the GitHub
projects investigated can be diversified. Adding larger, more
mature projects should be the priority in diversifying the
GitHub projects.

REFERENCES

[1] K. Crowston, Q. Li, K. Wei, U. Y. Eseryel, and J. Howison, “Self-
organization of teams for free/libre open source software development,”
Information and Software Technology, vol. 49, no. 6, pp. 564–575, 2007.

[2] C. Subramaniam, R. Sen, and M. L. Nelson, “Determinants of open
source software project success: A longitudinal study,” Decision Support
Systems, vol. 46, no. 2, pp. 576–585, 2009.

[3] B. Adams and S. McIntosh, “Modern release engineering in a nutshell:
Why researchers should care,” in International Conference on Software
Analysis, Evolution, and Reengineering (SANER), vol. 5. IEEE, 2016,
pp. 78–90.

[4] M. V. Mäntylä, B. Adams, F. Khomh, E. Engström, and K. Petersen, “On
rapid releases and software testing: a case study and a semi-systematic
literature review,” Empirical Software Engineering, vol. 20, no. 5, pp.
1384–1425, 2015.

[5] Z. Abou Khalil, E. Constantinou, T. Mens, and L. Duchien, “On the
impact of release policies on bug handling activity: A case study of
Eclipse,” Journal of Systems and Software, vol. 173, Mar. 2021.

[6] Z. Abou Khalil, E. Constantinou, T. Mens, L. Duchien, and C. Quin-
ton, “A longitudinal analysis of bug handling across eclipse releases,”
in International Conference on Software Maintenance and Evolution
(ICSME). IEEE, 2019, pp. 1–12.

[7] F. Khomh, B. Adams, T. Dhaliwal, and Y. Zou, “Understanding the
impact of rapid releases on software quality,” Empirical Software Engi-
neering, vol. 20, no. 2, pp. 336–373, 2015.

[8] S. D. Joshi and S. Chimalakonda, “RapidRelease: A dataset of projects
and issues on Github with rapid releases,” in International Conference
on Mining Software Repositories (MSR). IEEE, 2019, pp. 587–591.

[9] M. Nayebi, G. Ruhe, and T. Zimmermann, “Mining treatment-outcome
constructs from sequential software engineering data,” IEEE Transac-
tions on Software Engineering, vol. 47, no. 2, pp. 393–411, Feb. 2019.

[10] B. W. Boehm and P. N. Papaccio, “Understanding and controlling
software costs,” IEEE Transactions on Software Engineering, vol. 14,
no. 10, pp. 1462–1477, 1988.

[11] H. Hu, H. Zhang, J. Xuan, and W. Sun, “Effective bug triage based
on historical bug-fix information,” in 2014 IEEE 25th International
Symposium on Software Reliability Engineering. IEEE, 2014, pp. 122–
132.

[12] R. K. Saha, S. Khurshid, and D. E. Perry, “Understanding the triaging
and fixing processes of long lived bugs,” Information and Software
Technology, vol. 65, pp. 114–128, 2015.

[13] ——, “An empirical study of long lived bugs,” in Software Evolution
Week - IEEE Conference on Software Maintenance, Reengineering, and
Reverse Engineering (CSMR-WCRE). IEEE, 2014, pp. 144–153.

[14] T. Jansen, “Replication package: Does the duration of rapid release
cycles affect the bug handling activity?” jan 2021. [Online]. Available:
https://doi.org/10.5281/zenodo.4446165

[15] S. Joshi, “Rapidrelease,” Feb 2019. [Online]. Available: https:
//doi.org/10.5281/zenodo.2561334

[16] T. F. Bissyandé, D. Lo, L. Jiang, L. Réveillere, J. Klein, and Y. Le Traon,
“Got issues? who cares about it? A large scale investigation of issue
trackers from GitHub,” in International Symposium on Software Relia-
bility Engineering (ISSRE). IEEE, 2013, pp. 188–197.

[17] H. Hofmann, H. Wickham, and K. Kafadar, “Letter-value plots: Boxplots
for large data,” Journal of Computational and Graphical Statistics,
vol. 26, no. 3, pp. 469–477, 2017.

[18] M. L. McHugh, “Interrater reliability: the kappa statistic,” Biochemia
Medica, vol. 22, no. 3, pp. 276–282, 2012.

[19] J. Liu, J. Li, and L. He, “A comparative study of the effects of
pull request on GitHub projects,” in Annual Computer Software and
Applications Conference (COMPSAC), vol. 1. IEEE, 2016, pp. 313–
322.

[20] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and
D. Damian, “The promises and perils of mining GitHub,” in Working
Conference on Mining Software Repositories (MSR). IEEE, 2014, pp.
92–101.

[21] L. Van Valen, “The statistics of variation,” in Variation. Elsevier, 2005,
pp. 29–47.

[22] E. S. Pearson, R. B. D’Agostino, and K. O. Bowman, “Tests
for departure from normality: Comparison of powers,” Biometrika,
vol. 64, no. 2, pp. 231–246, 1977. [Online]. Available: http:
//www.jstor.org/stable/2335689

[23] R. B. D’Agostino, “An omnibus test of normality for moderate and
large size samples,” Biometrika, vol. 58, no. 2, pp. 341–348, 1971.
[Online]. Available: http://www.jstor.org/stable/2334522

[24] Z. Birnbaum, “On a use of the Mann-Whitney statistic,” in Berkeley
Symposium on Mathematical Statistics and Probability: Contributions
to the Theory of Statistics, vol. 3.1, 1956.

[25] T. D. Gautheir, “Detecting trends using Spearman’s rank correlation
coefficient,” Environmental forensics, vol. 2, no. 4, pp. 359–362, 2001.

[26] D. A. da Costa, S. McIntosh, C. Treude, U. Kulesza, and A. E. Hassan,
“The impact of rapid release cycles on the integration delay of fixed
issues,” Empirical Software Engineering, vol. 23, no. 2, pp. 835–904,
2018.

[27] R. Souza, C. Chavez, and R. A. Bittencourt, “Do rapid releases affect
bug reopening? A case study of Firefox,” in Brazilian Symposium on
Software Engineering. IEEE, 2014, pp. 31–40.

[28] P. Runeson and M. Höst, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical Software Engineer-
ing, vol. 14, no. 2, p. 131, 2009.

[29] C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein, V. Filkov, and
P. Devanbu, “Fair and balanced? Bias in bug-fix datasets,” in European
Software Engineering Conference and the ACM SIGSOFT Symposium
on the Foundations of Software Engineering (ESEC/FSE), 2009, pp.
121–130.

https://doi.org/10.5281/zenodo.4446165
https://doi.org/10.5281/zenodo.2561334
https://doi.org/10.5281/zenodo.2561334
http://www.jstor.org/stable/2335689
http://www.jstor.org/stable/2335689
http://www.jstor.org/stable/2334522

	I Introduction
	II Methodology
	II-A Datasets
	II-B Definition of metrics
	II-C Gandhi-Washington Method

	III Results
	IV Discussion
	V Threats to Validity
	VI Related Work
	VII Conclusions
	References

