
A Novel Approach to Solve K-Center Problems
with Geographical Placement
Peter Hillmann, Tobias Uhlig, Gabi Dreo Rodosek, Oliver Rose

Universität der Bundeswehr München
Neubiberg, 85577, GERMANY

Email: {peter.hillmann, tobias.uhlig, gabi.dreo, oliver.rose}@unibw.de

ABSTRACT

The facility location problem is a well-known challenge
in logistics that is proven to be NP-hard. In this paper we
specifically simulate the geographical placement of facilities to
provide adequate service to customers. Determining reasonable
center locations is an important challenge for a management
since it directly effects future service costs. Generally, the
objective is to place the central nodes such that all customers
have convenient access to them. We analyze the problem and
compare different placement strategies and evaluate the num-
ber of required centers. We use several existing approaches and
propose a new heuristic for the problem. For our experiments
we consider various scenarios and employ simulation to eval-
uate the performance of the optimization algorithms. Our new
optimization approach shows a significant improvement. The
presented results are generally applicable to many domains,
e.g., the placement of military bases, the planning of content
delivery networks, or the placement of warehouses.

I. INTRODUCTION

The typical geographical facility placement problem orig-
inates from the application area of logistic and transportation.
Locations of central warehouses have to be determined with
a short distance to customers to provide adequate service and
convenient access. An example is shown in Figure 1. The left
side shows the initial state with the geographical locations of
customers. The scenario on the right side includes the opti-
mized locations of ten warehouses with short distances to the
customers. The edges represent the assignment of a customer
to its nearest warehouse. The underlying theoretical problem
is of importance in many different application areas [1, 2],
for example, the strategic placement of fire stations, hospitals,
and military bases; as well as in content delivery networks
for storage server allocation; and in telecommunication for
improvements on the network infrastructure. Numerous further
application areas with the same problem can profit from a good
solution.

Once a facility is set up at a specific location, it is very
complex to change it. Facility location decisions are costly
and have a strong long-term effect. Often only the set up costs
and the capacity at a possible location of a facility is taken
into account for the decision. The distance of a facility to
its customers often receives less consideration, since existing
placement strategies offer modest performance. The planning
of the facility placement is very important and shall be well
elaborated. Generally a facility should be placed close to the
customers to reduce transportation time and cost. A well-
planned facility improves the overall supply with service and

goods. Therefor, the focus of this work is the geographical and
infrastructural placement of facilities with a short distance to
the customers. The facility location problem is based on the
classic k-center and clustering problem. In the uncapacitated
version, it is assumed that a facility can provide service
to as many customers as related to them [3]. Nevertheless,
the customers shall be more or less equally assigned to the
facilities to obtain an equal load balancing. In the more
complex version, the facilities have a predefined capacity to
satisfy a limited number of customers [4].

We identified three fundamentally different constraints for
the placement of facilities in relation to the infrastructure.
These are:

• Free placement: The location can be determined com-
pletely free and without any restriction.

• Infrastructural placement: Existing infrastructure should
be used for the placement.

• Node placement: Only a limited amount of given locations
are viable to place a facility.

Case one offers the largest degree of freedom, while the
last case is the most restrictive approach. We analyze these
constraints to illustrate the differences between them.

In this article, we present a deterministic heuristic that finds
optimized geographical locations of multiple, central locations.
The approach is used for all three constraints. We compare the
performance of our solution using benchmark scenarios as well
as realistic scenarios. We discuss the influence of management
decisions, regarding the placement restrictions and the number
of available facilities. To this end, we use simulation based
optimization to analyze the necessary amount of facilities for
an effective supply.

Fig. 1. Example scenario for placement of warehouses in Germany.

ar
X

iv
:2

00
6.

01
59

8v
1 

 [
cs

.D
C

] 
 2

8 
M

ay
 2

02
0



II. SCENARIO AND REQUIREMENTS

The management of a large company intends to expand
their business in another country and wants to distribute their
products. The small supply chain in our example consists of
three parts. Goods are produced in a factory overseas. From
there, these products are transported to intermediate storages
close to the distributor locations, where they are distributed
to local stores for selling. The geographical location of the
stores to be supplied and the precise infrastructure is known
beforehand. To implement this supply chain, multiple small
warehouses need to be set up to provide a continuous supply
of goods to the stores. Generally, the company aims for short
transportation paths from their warehouses to the customers
to reduce transportation costs and transportation times. These
costs are balanced against the operational costs of multiple
warehouses. The placement of the warehouses and the assign-
ment of stores to their closest warehouse have to be simulated
and optimized automatically. For the initial planning phase, we
consider only the uncapacitated geographical facility location
problem. According to the scenario and various application
areas, we need to answer the following important questions:

• Where should new warehouses be placed geographically
in order to obtain short and efficient transportation paths?

• Which consumer is assigned to which warehouse?
• What is the necessary amount of warehouses to minimize

the cost of operation and transportation?
• How large is the performance difference between the

constraint-free and the node placement scenario?

III. PROBLEM DESCRIPTION

The scenario described in Section II is based on the
k-center or k-median problem, depending on the objective
function. The uncapacitated facility location problem was
first described in [5]. For a given amount of V locations, a
predefined amount of K central locations have to be found.
The k-center problem considers the minimization of the max-
imum distance between a location and its nearest center [6].
In contrast, k-median problem uses the median as objective
criterion [4]. Both problems are NP-hard [7]. The problem
can be specified using a strongly connected graph topology
G(V,E) with vertices (vi ∈ V with i := {1, ..,n}) and edges
(ep ∈ E with p := {1, ..,m}). The k-center problem is defined
on a complete, undirected graph. The objective function d
defines the fitness value d(vi,v j) for an edge e(vi,v j) between
two vertices (vi,v j), satisfying the triangle inequality. The
objective function d selects the best edge from a vertex vi
to one of the calculated locations of a center node (ku ∈
K with u := {1, .., l} and l ≤ n). A center node ku can be
a vertice, dependent on the placement constraint from Section
I. The amount of all fitness values d from every vertice vi is
defined as D.

We intend to place the amount K of center nodes to
minimize the maximum d(vi, ku) from a vertex vi to its
closest ku. This objective criterion belongs to the typical k-
center problem according to Equation 1, the objective criterion
of the similar k-median problem correspond to Equation 2:

Dcenter(K) = min max
vi=1,...,n

min
ku∈K

d(vi,ku) (1)

Dmedian(K) = min
n

∑
vi=1

min
ku∈K

d(vi,ku) (2)

Regarding our case, we set up a predefined amount K of
warehouses and minimize the maximum distance D from the
stores V to its nearest warehouse k. The objective function d
defines the distance between a warehouse ku and a store vi.

IV. RELATED WORK

Over the past years, many solutions for the facility location
problem have been proposed. We focus on the most recent
approaches and heuristics for comparison. Most approaches
analyzed the problem from the perspective of the k-center or
clustering point of view with the objective to minimize the
maximum distance [6, 8]. The papers of Rana and Garg [9]
and Arthur and Vassilvitskii [10] propose multiple heuristic
approaches for the problem. Other important but more general
work are from Potikas [11], Jamin et al. [12], and Hochbaum
and Shmoys [13]. One of the current best solutions are from
Resende and Werneck [14]. The adapted greedy randomized
adaptive search procedure (GRASP) meta heuristic combines a
greedy initialization with a local search strategy. Besides these
strategies there is a model of the node placement problem with
mathematical relaxations [15], which can be solved by a linear
programming (LP) solver. We use the proposed approaches
as benchmarks. Additionally, we use evolutionary algorithms
like Simulated Annealing [16] and a genetic algorithm [17].
The books of Klose [18], Mayer [19], and Fischer [20]
present a comprehensive analysis of the logistical problem.
But their focus is more on the economic aspects and the entire
modeling process than on the adequate geographical placement
of facilities.

The aforementioned work covers our requirements only
partly or the proposed approaches show only a modest per-
formance. They provide less information about the necessary
amount of facilities to reach a specific objective.

V. REFERENCE ALGORITHMS

To compare our new approach with the existing strategies
we present the most important reference algorithms. For our
experiments, it is sufficient to consider the most restrictive
case (node placement) and the most flexible approach (free
placement). At the moment, we do not consider algorithms
for infrastructural placement, since all algorithms can easily
be adapted to generate appropriate solutions. The algorithms
in Table I are suitable for certain placement constraints.

TABLE I. OVERVIEW OF THE PRESENTED ALGORITHMS AND THEIR
USABILITY.

Node placement Node and Free placement
2-Approx k-Means
Greedy Evolutionary Algorithm
GRASP

A. 2-Approx

The 2-Approx choses a random vertice at the beginning,
which becomes the location of the first center node. After
that, the algorithm calculates for every placed center node the
distance to all vertices. It chooses the vertice with the largest
distance to their closest center node as the new location of the



next center node. This iteration runs until the specified amount
of center nodes is reached. This algorithm is 2-approximable.
Generally, β -approximable algorithm with factor β , guarantees
a solution with cost d where d ≤ β ·optimum. The algorithm
guarantees that the maximum value of a distance from a vertice
to its nearest center node is not larger than twice the maximum
considering the optimal placement location of the center node
[7, 13]. This bound is given without knowledge of the actual
optimum.

B. k-Means

The following group of clustering algorithms can be
adapted for the free placement and node placement constraints.
The main idea is to define k center nodes, one for each
cluster. In this case a cluster is a group of vertices. Already
placed nodes obviously influence the location of following
placed nodes. In contrast to the iterative approach, these
algorithms place all center nodes at the same time. This makes
backtracking unnecessary. Placement changes of a center node
have a direct effect to other center nodes.

Various approaches for clustering exist for a fixed number
of clusters, they differ mainly with regard to the initial place-
ment of center points. The MacQueen [21] algorithm is one
of the less complex k-Means algorithms. It relies on randomly
selected locations of the vertices, which are used as the initial
locations of the center nodes. Compared to the algorithm from
Lloyd [22], also known as Voronoi relaxation, it starts with
completely randomly placed center nodes in the area. Another
typical initialization is used in the k-Means++ algorithm [10].
Here, the location of the first center node is chosen randomly
at a vertice location. The other center nodes are also placed
randomly at vertice locations, however, the probability is
skewed to favor certain locations. The selection probability is
increased proportionally with their squared distances to already
selected locations.

After initialization, all vertices are assigned to their respec-
tive center nodes. For each group of vertices related to a center
node an updated location is calculated. The new center node is
the geometrical center of all vertices in a group. This process
is repeated until center node locations do no longer change.
During every iteration step, the vertices are reassigned to the
nearest center node. The algorithms are run multiple times due
to random initialization. To adapt these strategies for the three
constraints, the locations of the center nodes are mapped to
the nearest possible location either in every step or at the end
of the optimization.

C. Greedy and GRASP

The Greedy strategy Jamin et al. [12] initially places the
center nodes at the location of predefined vertices iteratively.
During each iteration it tries all possible placement combi-
nations for the next center node and ultimately selects the
location that provides the biggest benefit with respect to the
optimization criterion. The Greedy strategy repeats this process
until all center nodes are placed. To improve the quality further
they include backtracking, to test whether already placed center
nodes can be placed in a better way or may be removed
completely.

The advanced approach of GRASP tries several starting
locations as initialization for a greedy local optimization
[23]. A weighted greedy randomized strategy is used for the
initialization process. These starting locations are subsequently
iteratively improved using local search. It updates the location
of randomly chosen center nodes in a greedy manner.

D. Evolutionary Algorithm

Finally we use several evolutionary algorithms to optimize
the center node locations. The SEREIN framework [24] is used
to implement these algorithms. We employ the standard imple-
mentation of a genetic algorithm (GA) provided by SEREIN
and use a population with 25 individuals evolving over 80
generations. In addition, a Particle Swarm Optimization (PSO)
and Simulated Annealing (SA) approach is implemented as
well. The parameters for the algorithms were determined
experimentally using meta-optimization.

VI. OUR APPROACH DRAGOON

Based on the k-Means strategy, we developed a new
algorithm Dragoon (Diversification Rectifies Advanced Greedy
Overdetermined Optimization N-Dimensions). Most estab-
lished placement algorithms are very sensitive to the initial
placement of centers. Furthermore, the first center placed
usually serves a high amount of customers. This is possible
in the uncapacitated facility location problem, but it shows the
serious influence of the first placement decision. Nevertheless,
an even distribution would be desirable. After the initialization,
the vertices are assigned to the nearest center node location.
In an iterative optimization these locations are improved. Most
existing approaches try to find optimized locations only with
respect to these single groups. The influence to other groups
and the overall system is lost, which leads to suboptimal
solutions. With the knowledge of these problem properties
and weaknesses of current solutions, we designed our own
algorithm. The algorithm should avoid as much as possible
random decisions to prevent multiple runs and to reach stable
results.

To reduce the sensitivity to initialization, we designed a
new initialization process. In the preliminary stage of the
initialization phase, an orientation node is placed at the optimal
position comparable to the one center node case. To avoid
complete search, this can be simplified by calculating the
average value of the coordinates. Afterwards, the specified
amount of center nodes is placed using the 2-Approx strategy.
Thereby, we obtain a very specific solution of the 2-Approx
placement strategy. This guarantees the 2-approximable quality
of the result. After the initialization, the algorithm starts with
the iterative refinement. These newly designed optimization
steps are adaptable to different placement constraints.

The following description explains the general approach,
which is adaptable to all three placement constraints. In every
iteration step, the vertices are (re)assigned to their nearest
center nodes. Afterwards, an updated location is calculated
for every cluster of vertices related to a center node. This
is done with respect to the entire scenario. The algorithm
tests all possible locations around the current center restricted
by the current cluster. The new location is chosen after the
best improvement. This is done with respect to the specified



optimization criterion. In our case, it is the maximum distance.
If this value is unchanged, the algorithm will use another
additional criterion. To choose between two solutions and to
identify an improvement, we use an average or mean criterion.
In each iteration, every center node is allowed to shift its
location only once. This leads to a stepwise improvement and
avoids a too fast stagnation in a local optimum. The order of
the cluster selection has mostly no influence on the final result.
This is due to the global view. For our simulations, the clusters
are chosen with respect to their worst performance first. This
iterative optimization is repeated until all center node locations
do not change any more. Usually, only a few iteration steps are
necessary until the algorithm terminates due to the described
initialization. The algorithm accepts only improved locations in
every iteration step. Therefore, the 2-approximable condition
holds and it will always terminate.

For the free placement constraint, our algorithm tests all
points on a grid with a defined distance (ε). If one of the
tested locations results in a better performance for the overall
scenario, it will be accepted. This location is used for the next
iteration step. If no location leads to an improvement, we suc-
cessively increase the granularity of the grid (εnew := εold/2).
This process is repeated until the grid distance ε is smaller
than the maximal accepted deviation. It is necessary to define
a limit for the maximal deviation to terminate the optimization
process. The processing steps of the iterative optimization are
shown in Figure 2. The left side illustrates the movement to an
improved spot. The right side shows the increased granularity
of the grid by bisection.

Fig. 2. Iterative optimization stage of the algorithm Dragoon by free
placement constraint.

For the node placement constraint, the algorithm simply
tests all locations of grouped vertices for a center. To identify
an improved location, the algorithm evaluates the overall sce-
nario. All actual center locations are used in every evaluation
including reassignment except of the observed center node.
The possibilities of better center node location are limited to
the group in each iteration step. To improve the performance,
the tested capabilities can be further restricted to locations
with a defined distance to the current center. The algorithm
optimizes the center locations iteratively until no changes
occur. According to the divide and conquer principle, the one
center problem is solved optimal for each group of vertices
with respect to the overall scenario. This optimization is
calculated in polynomial runtime.

The algorithm can also be adapted to upgrade an existing
scenario with partly fixed centers from the beginning or other
constraints. A typical application area for this algorithm is the
clustering of data.

VII. SIMULATION AND ASSESSMENT

The evaluation of the algorithms is based on experiments
using a prototypic implementation in Java We use classic
geo-coordinates in the 2-dimensional space and the euclidean
distance as metric. We use more than 10 scenarios with
equally weighted vertices and edges. The test set consists of a
randomly generated and realistic scenarios without hierarchical
topologies or other particular conditions. For the evaluation,
the calculated distances of the different scenarios are nor-
malized for comparability. As fitness function we calculated
the distance parameter: maximum, 95% quantile, median and
average. To guarantee statistical significance we repeated sim-
ulations using multiple scenarios with an amount of vertices
from 600 to 1200. The achieved results are accumulated for
each algorithm.

Initially, a Monte Carlo approach for node placement serves
as a basic benchmark. It shows that the 2-Approx algorithm on
average returns much better and stable results. So we use the
2-Approx as reference. Based on the results s of the 2-Approx
we define a theoretical limit for the optimum:

s≤ 2 ·Optimumreal =⇒ Optimumtheoretical ≥
1
2
· s (3)

The solutions of 2-Approx vary because of the random initial-
ization. Nevertheless, the 2-approximable condition is valid
every run.

Figure 3 shows the results of the algorithm comparison. For
small center node amounts, our improved Dragoon algorithm
is close to the theoretical optimum. For larger center node
amounts the algorithms stagnate with their performance nearly
at the same level, referring that we are already very close to
the actual optimum. Our approach performs significantly better
than 2-Approx and is much faster than a brute force approach.

Fig. 3. Deviation between 2-Approx and our best algorithms for maximum
distance.

Figure 4 presents the difference between free placement
and node placement for our improved algorithm Dragoon. The
distance deviations between the different placement constraints



are on average 4% and in the worst case 11%. We observe that
the node placement approach needs on average 2 centers more
to compensate the more flexible positioning of the free place-
ment. In the worst case, 6 centers more are required. While
additional center nodes have a positive effect, increasing the
overall capacity and load balance, the added benefit decreases
significantly for large amounts of center nodes. We observe a
saturation effect for high ratios of center nodes in relation to
vertices.

Fig. 4. Deviation between free and node placement for maximum and
average distance.

Based on the maximum distance of a vertex to its nearest
center node, Table II and Figure 5 show that it is sufficient
to set up about 6% of the vertices as center nodes. After we
placed 58 center nodes in the normalized scenarios, the average
improvement of maximum distance for an additional center
node is less than 1% with the 2-Approx or Dragoon algorithms.

TABLE II. IMPROVEMENT OF MAXIMUM DISTANCE IN RELATION TO
NUMBER OF CENTER NODES (2-APPROX).

Center Nodes 1 2 5 10 20 30 40 50 60 70 80
Max Distance 112.6 76.3 46.8 29.8 19.8 14.7 12.6 11.0 9.9 8.9 8.1

Improvement in % - 32.2 38.7 36.4 33.5 25.9 14.3 12.5 10.4 9.6 8.8

Figure 5 and Table III present the general performance
of the different algorithms. The performance of the SEREIN
framework with an evolutionary algorithms is remarkable.
SEREIN is not customized for this problem but achieves
good solutions in comparison to other algorithms specially
developed for this task. The performance of the algorithms
MacQueen, Lloyd and k-Means++ are nearly the same, so
we took MacQueen, the best of the three. The complexity of
the algorithms is considerably different, but all optimizations
finished after a couple of minutes in every used scenario except
LP. It took a much longer time, especially for large scenarios.

In line with our initial intention, to set up warehouses
for a specific scenario, the costs for transportation as well
as operating and setup costs have to be respected. With an
increasing amount of center nodes, the transportation distance

Fig. 5. Performance overview for maximum distance. The red vertical line
marks the amount of center nodes (57), after which the average performance
improvement is less than 1%.

TABLE III. PERFORMANCE OVERVIEW WITH OBJECTIVE MAXIMUM
DISTANCE IN RELATION TO NUMBER OF CENTER NODES.

C
en

te
r

N
od

es

M
on

te
C

ar
lo

(n
od

e)

2-
A

pp
ro

x
(n

od
e)

G
re

ed
y

(n
od

e)

M
ac

Q
ue

en
(n

od
e)

M
ac

Q
ue

en
(f

re
e)

G
R

A
SP

(n
od

e)

G
A

(n
od

e)

D
ra

go
on

(n
od

e)

D
ra

go
on

(f
re

e)

1 85.7 112.6 76.0 76.9 77.0 76.0 83.0 76.0 75.3
2 63.6 76.3 74.8 52.0 51.1 48.2 62.0 47.9 47.1
5 48.4 46.8 47.1 41.4 40.1 36.0 46.9 35.0 34.0
10 36.9 29.8 33.3 28.4 26.2 24.5 35.6 22.0 21.2
20 27.8 19.8 21.9 22.6 20.5 17.7 27.3 15.5 14.7
30 24.0 14.7 17.2 19.9 18.1 14.0 23.5 12.8 12.1
40 21.3 12.6 14.4 17.8 15.9 12.1 20.8 10.9 10.1
50 19.8 11.0 12.6 16.4 14.3 10.5 19.3 9.4 9.1
60 14.7 9.9 11.5 15.2 13.3 9.6 18.0 8.7 8.3
70 13.8 8.9 10.4 14.2 12.0 8.6 16.6 8.0 7.7
80 12.9 8.1 9.6 13.5 11.5 8.0 15.3 7.5 7.1

and cost is reduced, whereas the set-up and operating cost is
increased. To find the optimal balance between these aspects,
we use simulation based optimization to calculate the optimal
amount and location of center nodes. Figure 6 shows the
operating costs for a specific scenario. This calculation has
to be made for every scenario individually. For this example,
we used abstracted cost function to show the objective of our
simulation based optimization.

VIII. CONCLUSION AND OUTLOOK

In this paper, we propose the novel algorithm Dragoon to
solve the k-center problem with geographical placement. Our
strategy outperforms the other approaches, reaches very good
results close to the global optimum in short time and is less
sensitive to random initialization. We calculated the distance
deviations between the different placement constraints (free vs
node). A slight difference on average of 4% is observed for



Fig. 6. Optimized operating costs with our algorithm Dragoon. We reached
the best relation of transportation costs and operating costs for warehouses by
setting up 26 warehouses.

the maximum distance. In the worst case, it can be up to 11%
distance difference between the most flexible case and most
restrictive case.

To optimize the supply chain and the delivery time, we ana-
lyzed the amount of recommended center nodes for predefined
scenarios. Our analyses show that even the best placement
strategy reaches less than 1% performance gain by adding an
additional center node after an amount of a center node ratio of
about 6% is reached. In the future, we intend to further enhance
the performance of the placement algorithms. Furthermore,
the inclusion of weights for customers and edges as well as
different fitness functions will be considered.

REFERENCES

[1] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko,
R. Silverman, and A. Y. Wu. An efficient k-means
clustering algorithm: Analysis and implementation. In
Proc. IEEE Pattern Analysis and Machine Intelligence,
pages 881–892, Piscataway, New Jersey, July 2002.

[2] S. H. Ganesh and C. Chandrasekar. A novel priority
based data mining algorithm using improved k-means
clustering for detecting protein sequence from dataset. In
Proc. IEEE Computational Intelligence and Computing
Research (ICCIC), Piscataway, New Jersey, December
2010.

[3] S. Khuller and Y. J. Sussmann. The capacitated k-center
problem. SIAM Journal on Discrete Mathematics, June
2000.

[4] Kamal Jain and Vijay V. Vazirani. Approximation algo-
rithms for metric facility location and k-median problems
using the primal-dual schema and lagrangian relaxation.
Number 2, pages 274–296, New York, NY, USA, March
2001. ACM.

[5] M. L. Balinski. Integer programming: Methods, uses,
computations, 1965.

[6] S. Chaudhuri, N. Garg, and R. Ravi. The p-neighbor
k-center problem, 1998.

[7] T. Gonzalez. Clustering to minimize the maximum
inter-cluster distance. Theoretical Computer Science 38,
Elsevier Science B.V., 1985.

[8] Kamal Jain and Vijay V. Vazirani. Primal-dual approx-
imation algorithms for metric facility location and k-
median problems. In Approximation Algorithms for Com-
binatorial Optimization, Saarbrücken, Germany, Septem-
ber 2000. Springer-Verlag Berlin Heidelberg.

[9] R. Rana and D. Garg. Heuristic approaches for k-center
problem. Advance Computing Conference, 2009. IACC
2009. IEEE International on, March 2009.

[10] D. Arthur and S. Vassilvitskii. k-means++: the advan-
tages of careful seeding. SODA ’07 Proceedings of the
eighteenth annual ACM-SIAM symposium on Discrete
algorithms, 2007.

[11] P. Potikas. The k-center problem - approximation algo-
rithms. Spring, 2009.

[12] S. Jamin, C. Jin, A. R. Kurc, D. Raz, and Y. Shavitt.
Constrained mirror placement on the internet. INFOCOM
2001. Twentieth Annual Joint Conference of the IEEE
Computer and Communications Societies., April 2001.

[13] D. S. Hochbaum and D. B. Shmoys. A best possible
heuristic for the k-center problem. INFORMS: Mathe-
matics of Operations Research, May 1985.

[14] M. G. Resende and R. F. Werneck. A hybrid heuristic for
the p-median problem. European Journal of Operational
Research, 174(1):54–68, 2006.

[15] Joo Pedro Pedroso. Optimization with Gurobi and
Python. INESC Porto and Universidade do Porto,, Porto,
Portugal, 1 edition, September 2011.

[16] M. Alves and M. Almeida. Simulated annealing algo-
rithm for the simple plant location problem: A computa-
tional study. Revista Investigacao Operacional, 1992.

[17] J. Kratica, D. Tos̀ic, V. Filipović, and I. Ljubić. Solving
the simple plant location problem by genetic algorithm.
RAIRO-Operations Research, 35(01):127–142, 2001.

[18] Andreas Klose. Standortplanung in distributiven Syste-
men: Modelle, Methoden, Anwendungen. Physica-Verlag
Heidelberg, 2013.

[19] Gabrielle Mayer. Strategische Logistikplanung von
Hub&Spoke-Systemen. 2001.

[20] Kathrin Fischer. Standortplanung unter Bercksichtigung
verschiedener Marktbedingungen. Physica-Verlag Hei-
delberg, 1997.

[21] J. B. MacQueen. Some methods for classification and
analysis of multivariate observations. Proceedings of 5-
th Berkeley Symposium on Mathematical Statistics and
Probability, 1967.

[22] Stuart P. Lloyd. Least squares quantization in pcm. IEEE
Transactions on Information Theory 28, 1982.

[23] Leonidas Pitsoulis and Mauricio GC Resende. Greedy
randomized adaptive search procedures. Encyclopedia of
optimization, pages 1460–1469, 2009.

[24] T. Uhlig. Serein - a framework to model metaheuristics,
2013. URL: http://sourceforge.net/projects/serein/.


	I INTRODUCTION
	II SCENARIO AND REQUIREMENTS
	III PROBLEM DESCRIPTION
	IV RELATED WORK
	V REFERENCE ALGORITHMS
	V-A 2-Approx
	V-B k-Means
	V-C Greedy and GRASP
	V-D Evolutionary Algorithm

	VI OUR APPROACH DRAGOON
	VII SIMULATION AND ASSESSMENT
	VIII CONCLUSION AND OUTLOOK

