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Abstract- Analyzing behavioral patterns of workloads is critical 
to understanding Cloud computing environments. However, 
until now only a limited number of real-world Cloud 
datacenter tracelogs have been available for analysis. This has 
led to a lack of methodologies to capture the diversity of 
patterns that exist in such datasets. This paper presents the 
first large-scale analysis of real-world Cloud data, using a 
recently released dataset that features traces from over 12,000 
servers over the period of a month. Based on this analysis, we 
develop a novel approach for characterizing workloads that for 
the first time considers Cloud workload in the context of both 
user and task in order to derive a model to capture resource 
estimation and utilization patterns. The derived model assists 
in understanding the relationship between users and tasks 
within workload, and enables further work such as resource 
optimization, energy-efficiency improvements, and failure 
correlation. Additionally, it provides a mechanism to create 
patterns that randomly fluctuate based on realistic parameters. 
This is critical to emulating dynamic environments instead of 
statically replaying records in the tracelog. Our approach is 
evaluated by contrasting the logged data against simulation 
experiments, and our results show that the derived model 
parameters correctly describe the operational environment 
within a 5% of error margin, confirming the great variability 
of patterns that exist in Cloud computing. 
 

Keywords—Cloud computing workload patterns; MapReduce 
analysis; resource usage patterns; workload characterization. 

I.  INTRODUCTION 
Gaining an understanding of Cloud system environments 

is increasing in importance as well as complexity due to a 
Cloud's ability to elastically scale-up and down provisioned 
resources on-demand. Additionally, such systems need to 
meet expected Quality of Service (QoS) requirements to 
fulfill the diverse business objectives demanded by 
consumers [1]. This diversity of objectives results in a 
complex workload imposed by users’ behavior and task 
resource consumption patterns. As a consequence, it is a 
crucial requirement to characterize the workloads running 
within a Cloud environment. In this context, we define 
workload as the amount of work computed or processed 
within the Cloud datacenter that is mainly driven by two 
principal elements: tasks and users. A task is defined as the 
basic unit of computation assigned or performed in the Cloud 
e.g. MapReduce operations. A user is defined as the actor 
responsible for creating and configuring the volume of tasks 
to be computed.  

As a result of business and confidentiality concerns, there 
has been a lack of available data from real Cloud operational 
environments to analyze. Recently, due to the publication of 
limited traces from Google [2] and Yahoo! [3], there has 
been an increasing effort to provide mechanisms to 
characterize workload dynamicity. However first efforts 
were strongly constrained by traces with very short 
observational periods [4]. Analyses and methodologies 
derived from just a few hours of production data are 
diminished by the uncertainty generated from the lack of 
realistic scenarios. Others that have had access to private 
large datasets introduce methodologies of analysis based on 
coarse-grain statistics [4, 5], which are appropriate to reveal 
general characteristics of the operational environment but not 
sufficient to describe and characterize the workload diversity 
that is generated in Cloud environments. Finally, more recent 
approaches [6, 7] have attempted to capture this diversity by 
classifying the different types of tasks discovered in the data.  

Presently there is a lack of research that deeply analyses 
and models the relationship between users, tasks and their 
associated characteristics as an integrated concept of a 
workload in the Cloud environment. This is an extremely 
important factor to consider, as the volume and the behavior 
of tasks that exist within Cloud environments are driven by 
the demand of the users, and the resource consumption of 
these workloads is dependent on the users’ estimation 
patterns and are subject to change over time. The 
establishment of methodologies to derive realistic models for 
highly diverse and dynamic environments such as Cloud 
computing datacenters is critical, as Cloud providers are 
required to understand the supply and demand of 
computational resources in order to outline inefficiencies and 
set up improvement goals. The methodologies and derived 
models need to identify general common characteristics but 
also specific behavioral patterns across different analyzed 
periods in order to capture such dynamicity. 

The aim of this paper is to present a novel approach for 
characterizing Cloud datacenter workloads that creates a 
reusable generation model based on real operational data. To 
tackle this issue, we have analyzed the latest version of the 
Google Cloud tracelog [8], which spans a period of 1 month 
and contains information about over 25 million tasks and 925 
users. The proposed approach differs from previous work in 
three main aspects. Firstly, it considers workload as a 
compound element not only integrated by task, but also by 
user behavioral patterns and the relationship between the two 
elements. This is critical to analyze how overall datacenter 
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utilization levels are affected by users’ behavior and how 
datacenter efficiency can be improved as long as the Quality 
of Service offered to the users is maintained. Secondly, it 
provides a mechanism to create patterns that randomly 
fluctuate based on realistic parameters instead of statically 
replaying the records in tracelog. This is important to 
emulate dynamic environments and analyze their intrinsic 
variability of patterns. Finally, to feed the proposed model 
not only coarse-grained analysis was conducted but also a 
detailed study of user and task pattern distributions was 
performed. This allows extracting the general characteristics 
from the entire tracelog and modeling the behavioral patterns 
from specific scenarios at the same time. Initial simulation 
experimentation demonstrate that the derived model 
parameters reflect the real measurements in the tracelog 
within a 5% of error margin in most of the cases, and 
confirms the diversity of patterns that exist in Cloud 
computing environments for both tasks and users.  

The primary contribution of this paper is to provide a 
reusable approach for characterizing the Cloud workload 
based on the patterns of both users and tasks. The objective 
is to derive models which can be used by providers and other 
researchers to capture the behavior of Cloud environments 
and support the analysis of Cloud computing problems based 
on realistic workload characteristics from large-scale 
commercial environments.  

A secondary contribution of significance in this paper is 
the description of the statistical properties of the Google 
tracelog that will help further the research community’s 
understanding of the utilization and performance of a large-
scale commercial Cloud environment. Both of these 
contributions are essential to address further research 
challenges related to the improvement of Cloud datacenter 
operations. 

The rest of this paper is organized as follows: Section II 
presents the background. Section III discusses related work. 
Section IV describes the analyzed dataset and the 
assumptions made. Section V presents the proposed 
workload model specification. Section VI presents the 
approach to derive the model parameters. Section VII 
presents the model evaluation and discusses the obtained 
results. Section VIII describes examples of the model’s 
applicability.  Finally, Section IX and X discuss the 
conclusions and further research directions respectively. 

II. BACKGROUND 

A. MapReduce and Cloud Computing 
Defined by Google [9] “MapReduce is a programming 

model and associated implementation for processing and 
generating large datasets”. It is commonly used for dividing 
work across a large distributed system since it enables 
automatic parallelization and distribution of large-scale 
computations. In this context, Cloud computing offers a 
unique opportunity for batch-processing and analyzing 
terabytes of data that would take considerable time to finish. 
Most Cloud providers such as Google, Amazon and Yahoo! 
have adopted MapReduce to build multi-tenant computing 
environments. 

B. Available Cloud Computing Tracelogs 
At the present time, there are a limited number of real-

world Cloud computing tracelogs available. Tracelogs that 
are of sufficient observational period and system size to 
perform in-depth analyses are even more limited. This is 
mostly due to the business and confidentiality concerns of 
users and providers in commercial Clouds. These limitations 
restrict research regarding the Cloud model, as researchers 
face increased difficulty in justifying their work without 
realistic data and models derived from production 
environments. Recently, Google has contributed by releasing 
two versions of tracelogs from their Hadoop MapReduce 
clusters. The first version spans over a period of 7 hours with 
normalized processor and Memory usage metrics collected 
every 5 minutes. The trace describes the resource 
consumption for approximately 176,174 tasks grouped in 
9,174 jobs. The trace has been public from December 2009 
and is available in [2]. The second version of this trace spans 
30 days and 12,583 servers in operation, providing 
information on 25 million tasks grouped in 650,000 jobs. 
The work presented in this paper is based on this tracelog, 
that has been public since November 2011 and is available in 
[8]. Additionally more information about the data structure, 
monitoring, and normalization process can be found in [10]. 

The other vendor that has provided data about their 
Cloud computing clusters is Yahoo! which was made 
available for selected universities from their M45 Hadoop 
cluster [3]. There is limited detail about the type and 
structure of the data provided except for [5]. Here, it is 
mentioned that M45 data spans a period of 10 months and 
comprises of 171,079 Hadoop jobs including large-scale 
graph mining, text and Web mining, and large-scale 
computer graphics. 

C.  Importance of Workload Models in Cloud Computing 
The importance of workload models in Cloud computing 

cannot be understated. For researchers, they provide a way to 
not only simulate Cloud environments but also to manipulate 
the workload variables within those environments. 
Furthermore, it is of great benefit if these models are derived 
from production tracelogs, as this enables subsequent 
research involving simulation to be based on realistic 
scenarios. Additionally, these models can be used to support 
a wide variety of research domains, including resource 
optimization, energy-efficiency, and failure-analysis. For 
providers, workload models enable them to simulate their 
Cloud environments whilst being able to control the 
variables to study emergent system-wide behavior. Such 
models support the estimation of accurate forecasts under 
dynamic conditions to improve the QoS offered to 
customers. 

III. RELATED WORK 
The analysis of behavioral patterns and deriving models 

for Cloud Computing environments has been addressed 
previously [11-14]. In this section, the most relevant 
approaches are described. Furthermore, their flaws and gaps 
are also discussed. 
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Wang, et al. [15] present an approach to characterize the 
workloads of Cloud Computing Hadoop ecosystems, based 
on an analysis of the first version of the Google tracelogs [2]. 
The main objective of this work is to obtain coarse-grain 
statistical data about jobs and tasks to classify them by 
duration. This characteristic limits the work’s application to 
the study of timing problems, and makes it unsuitable to 
analyze other Cloud computing issues related to resource 
usage patterns. Additionally, the model focuses on tasks and 
ignores the relationship with the users.     

Mishra, et al. [6] describe an approach to construct Cloud 
computing workload classifications based on task resource 
consumption patterns. It is applied to the first version of 
Google tracelogs [2]. In general terms, the proposed 
approach identifies the workload characteristics, constructs 
the task classification, identifies the qualitative boundaries of 
each cluster, and then reduces the number of clusters by 
merging adjacent clusters. The approach presented is useful 
to create the classification of tasks; however it does not 
perform intra-cluster analysis to derive a detailed workload 
model. Finally, it is entirely focused on task modeling, 
neglecting the user patterns which are as important as the 
tasks in the overall workload model.  

Kuvalya, et al. [5] present a statistical analysis of 
MapReduce traces. The analysis is based on ten months of 
MapReduce logs from the M45 supercomputing cluster [3]. 
Here, the authors present a set of coarse-grain statistical 
characteristics of the data related to resource utilization, job 
patterns, and source of failures. This work provides a 
detailed description of the distributions followed by the job 
completion times, but only provides very general 
information about the resource consumption and the user 
behavioral patterns. Similar to [15], this characteristic limits 
the proposed approach mainly to the study of timing 
problems.  

Aggarwal, et al. [7] describe an approach to characterize 
Hadoop jobs. The analysis is performed on a dataset 
spanning 24 hours from one of Yahoo!’s production clusters 
comprising of 11,686 jobs. This dataset features metrics 
generated by the Hadoop framework. The main objective is 
to group jobs with similar characteristics using clustering to 
analyze the resulting centroids. This work is only focused on 
the usage of the storage system, neglecting other critical 
resources such as CPU and Memory. 

From the analysis of the related work it is clear that there 
are limited production tracelogs to analyze the workload 
patterns in Cloud environments available. Previous analyses 
present some gaps that need to be addressed in order to 
achieve more realistic workload patterns. Firstly, it is 
imperative to analyze large data samples as performed by [4, 
5]. Small operational time frames as those used in [6, 7, 15] 
could lead to unrealistic models. Secondly, the analysis 
needs to explore more than coarse-grain statistics and cluster 
centroids. To capture the patterns of the clustered individuals 
it is also necessary to conduct intra-cluster analysis and study 
the trends of each cluster characteristic. Finally, the 
workload is always driven by the users, therefore realistic 
workload models must include user behavioral patterns 
linked to tasks.   

IV. DATASET OVERVIEW  
As mentioned previously, the data used in this work was 

collected from the second version of the Google MapReduce 
Cloud tracelog that spans a period of approximately one 
month [8, 10]. The log contains tens of millions of records 
for tasks, jobs, and server events. Furthermore, it provides 
the normalized CPU, Memory, and disk utilization per task 
in a timestamp every 5 minutes. The majority of our analysis 
is focused on two data structures: “tasks events” and “task 
resource usage”. While the former provides information 
about the submission times and the link between users and 
tasks, the latter provides detailed information about the 
consumption of resources. The total size of the data is 
approximately 250GB.  

A. Dataset Assumptions 
In order to produce a fair and comprehensive analysis, it 

is necessary to rely on realistic assumptions to overcome the 
lack of context information and normalized data. These 
assumptions are listed and justified as follows: 

� A task is considered the basic element that consumes 
resources. As the resource consumption is logged by 
tasks, the analysis is focused on them and jobs are 
considered just as grouping element. 

� The task duration is considered from the last 
submission event to successful completion. This is 
because the total execution time is normally affected 
by other factors, such as resubmission events caused 
by task evictions and failures. 

� Task length is calculated based on the duration and 
the average CPU utilization and is measured in 
Millions of Instructions (MI). Duration depends on 
the architectural characteristics of the server where 
the task is allocated [16]; describing the task in terms 
of length in MI allows us to perform an architecture-
agnostic workload analysis.  

� To calculate the task length we consider the 
processing capacity of the Primergy RX200 S7 
architecture, as it is described in SpecPower2008 
benchmark results [17]. Because the data that 
describes the servers’ capacity is masked in the 
tracelog we are assuming characteristics from real 
operational systems based on the provided 
capacities.  

� Tasks that start before or finish after the tracelog 
time frame are not considered in the analysis. It is 
impossible to derive the length parameter for 
“incomplete-tasks” where the start or finish time is 
unknown. 

� Every time a task fails, is evicted or killed we assume 
that it is restarted from the beginning. A task failure 
is an interruption on a running task, requiring the 
system to re-execute the interrupted task [10, 18]. 

� Disk usage is not considered due to uniform usage 
patterns. As observed in the data, 98% of tasks 
present similar disk usage patterns [6, 10] which 
makes this dimension unsuitable for classification 
purposes.  
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B. General Tracelog Statistical Analysis 
An overview of the statistics derived from the trace based 

on the prior assumptions is presented in Table I. One 
interesting observation about the data from this table is the 
average number of tasks per user, which is 3,981.06. This 
number is high and misleading due to the non-uniform 
distribution of submitted tasks per user as shown in Fig.1. A 
small portion of the users constitute a significant proportion 
of the submitted tasks, while the majority of users 
individually contribute less than 0.1 % of the total number.    

TABLE I.        DATASET OVERVIEW. 

Trace span  29 Days  Num of servers 12,532 
Num of tasks 17,752,951 Avg tasks / day 612,170.72 
Num of users 430 Avg users / day 153.20 
Avg task length 61,575,043.48 Avg tasks / user 3,981.06 

 
We also observe that the number of tasks per day varies 

significantly from the average, as is shown in Fig. 2(a); 
ranging from 313,927 to 950,449. In contrast, the variation in 
the number of users per day shown in Fig. 2(b) is more 
discrete. This suggests a loose correlation between the 
number of users and the number of tasks submitted per day 
at a coarse-grain analysis. Fig. 2(c) depicts the average 
length of tasks on a daily basis. An observation of interest is 
that when the task length is contrasted with the number of 
submissions per day, there is no clear correlation between 
them. The statistical properties of the average CPU and 
Memory utilized by a task per day are shown in Fig. 2(d). It 
is observed that resource utilization levels are very similar 
across all the analyzed days. This suggests a strong 
correlation to the number of users, but a very loose one to the 
number of tasks and their average length. This presentation 
of the statistical properties of the tracelog is important for 
two reasons. Firstly, it shows that the resource consumption 
and task completion behavior is not homogenous across the 

observation period. Secondly, at such a high level of 
analysis, there appear to be loose correlations between tasks, 
users, task length and task resource consumption. These 
observations are important, as they demonstrate that coarse-
grained analysis is insufficient for modeling the behavior of 
tasks and users realistically.  

V. MODEL DESCRIPTION 
To provide a more precise workload description and 

reduce the gaps found during the coarse-grained analysis, our 
proposed workload model comprises of the concepts of users 
and tasks and their relationship in matters of amount work 
and utilization of resources.  

Users are responsible for driving the volume and 
behavior of tasks based on the amount of resources requested 
for their execution. Therefore, three important characteristics 
that we will refer to as dimensions are fundamental to 
describe the users’ shape: the submission rate (� ) and the 
estimation ratios for CPU ( � ) and Memory (� ). While the 
submission rate is the quotient of dividing the number of 
submissions by the time span, the resource estimation ratio is 
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the result of dividing the difference in the amount of resource 
utilization by the original amount of requested resources.   

Tasks are defined by the type and amount of work 
dictated by users, resulting in different duration and resource 
utilization patterns. Consequently, essential dimensions to 
describe tasks are: length ( � ), average resource utilization 
for CPU (� ) and Memory (� ). While the length is defined 
as the total amount of work to be computed, the average 
resource utilization is the mean of all the consumption 
measurements recorded in the tracelog for each task.  
Therefore, the Cloud workload can be described as a set of 
users with profiles U submitting tasks classified in profiles T, 
where each user profile ui is defined by the probability 
functions of � , �  and � , and each task profile ti by � ,�  
and �  determined from the tracelog analysis. The 
expectation E(ui) of a user profile is given by its probability 
P(ui), and the expectation E(ti) of a task profile is given by its 
probability P(ti) conditioned to the probability of P(tj). The 
model components and their relationship are formalized in 
Equations 1 to 6. 

 
 
 
 
 
 
 
 
 
 

 
 

VI. MODEL PARAMETERS 
The objective of our approach is to characterize user and 

task behavior to derive the statistical parameters that define 
the workload model described in the previous section. This is 
performed in two steps: determine the set of profiles U and T 
defined in Equations 1 and 2, and derive the probabilistic 
functions for � , � , � , � , �  and �  required in 
Equations 3 - 6. 

A. Sampling Process 
We select a sample size of 24 hours from the overall 

tracelog population to attain the classification for tasks and 
users. We decided to use sampling because of the fact that 
performing the analysis on a per day basis allows us to 
contrast the behavioral pattern results from different days.  
Additionally, from our coarse-grain statistical analysis that 
included the entire dataset, we identified that some days are 
representative of the overall average tracelog behavior due to 
the balance between submissions and task length.  The 
selection of the sample population was calculated by 
comparing the variance between the average task length and 
number of submitted tasks per day against the entire tracelog. 
Using this technique, day 18 was selected as the sample 
population. 

To determine the set of profiles for users and tasks we 
use k-means clustering [19] on a sample population from the 
tracelog to classify tasks and users based on to their 
respective dimensions. To derive the probabilistic functions 
of each profile we perform intra-cluster analysis to study the 
internal data distribution of each dimension. Moreover, 
before applying the described steps, we perform a sampling 
strategy to conduct the analysis on per day basis.  

B. Cluster Analysis 
Using the sample population, we used a clustering 

algorithm to classify tasks and users composed by the 
dimensions described in section 5. The k-means clustering is 
a popular data-clustering algorithm to divide n observations 
into k clusters, in which values are partitioned in relation of 
the selected dimensions and grouped around cluster centroids 
[19]. One critical factor in such an algorithm is determining 
the optimal number of clusters. For our analysis, we use the 
method proposed by Pham et al. [20]. This method shown in 
Equations 7 and 8 allows us to select the number of clusters 
based on quantitative metrics avoiding qualitative techniques 
that introduce subjectivity. This clustering method considers 
the degree of variability among all the elements within the 
derived clusters in relation to the number of analyzed 
dimensions. A number of clusters k is suggested when this 
variability represented by f(k) is lower than or equal to 0.85 
according to the observations presented by the authors. ��  is 
the sum of cluster distortions, ��  is the number of 
dimensions within the population and �� is the weight factor 
based on the previous set of clusters.  

 

 

 

 

 

 

 

 

 
We run the k-means clustering algorithm for k ranging 

from 1 to 10. For each value of k we calculate f(k) using 
Equations 7 and 8. Based on the results we were able to 
determine the number of clusters for � and 	 (Equations 1 
and 2) respectively. The plots of the determined clusters for 
users and tasks are shown in Fig. 3(a) and Fig. 3(b) 
respectively. An observation of interest in these two figures 
is that the values for some dimensions such as submission 
rate for cluster u6 and length for cluster t1 are widely spread 
and can deviate significantly from the centroid. Visually, it 
appears that  
�  contains the smallest number of elements 
compared to the other clusters. However, as Table II shows, 

�  in fact contains 72.56% of the task population. 
Additionally, Table II shows that 77.40% of users are 
clustered together in �
. 
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To evaluate whether the derived user and task types are 
consistent across other periods of time in the same tracelog, 
the clustering process was repeated on another sample 
population. Day 2 was chosen as the statistical properties 
described in Fig. 2. Principally because it has the highest 
number of submissions and the number of users is lower than 
that of Day 18. This is helpful to determine whether the 
variation of submissions and users can affect the number of 
clusters derived from the “average” day.  

We found that it was possible to create the same number 
of k clusters as Day 18 that satisfies f(k) < 0.85 for both users 
and tasks; as shown in Fig. 3(c) and Fig. 3(d) respectively. 
An observation of interest is that the general shape of the 
clusters for Day 2 are comparable to that of the cluster 
shapes for day 18 even though the workload for the two 
sampled days is different. When comparing the centroid 
values for the two analyzed days as shown in Tables III and 
IV, there is marginal difference of centroid values for tasks, 
which suggest a consistent resource utilization patterns 
during the two analyzed days. User centroid dimensions 
however experience a slightly increased discrepancy, 
especially for submission rate. The variability is clearly 
introduced by a larger number of submissions in day 2 being 
performed by a lower number of users in comparison to day 
18. This increases the average submission rate per user close 
to 15% in day 2.  

From our cluster analysis, we are able to make three clear 
observations. First, tasks and users exhibit similar behavioral 
patterns across the two different observational periods. 

Second, by comparing similar clusters it is possible to 
observe that although the patterns are close, they present 
differences evidently introduced by changes in the 
environment. Finally, the cluster analysis depicts in general 
terms the individual user and tasks patterns but does not 
provide the fine-grained parameters required to characterize 
realistic utilization models. This makes necessary to perform 
intra-cluster analysis to capture the fine details of 
individuals’ (tasks and users) behavior. 

 

 

TABLE IV.  CENTROID COMPARISON FOR TASKS. 

Day 2 
Cluster 3 1 2 

Length 0.0006 0.0244 0.075 
CPU 0.0147 0.1041 0.2841 
Memory 0.0115 0.0994 0.3849 
Day 18 
Cluster 2 3 1 

Length 0.0007 0.0038 0.0107 
CPU 0.0149 0.0810 0.2206 
Memory 0.0089 0.0585 0.2556 
Euclidean 
Dist 0.0026 0.0512 0.1577 

Day 2 
Cluster 2 3 1 6 5 4 

Sub Rate 0.0002 0.592 0.0152 0.0138 0.0124 0.0047 
Est. CPU  0.7444 0.9089 0.6024 0.7978 0.948 0.1854 
Est. Mem   0.0000 0.9624 0.9142 0.9057 0.9558 0.8557 
Day 18 
Cluster 1 6 3 5 4 2 

Sub Rate 0.0003 0.7901 0.0027 0.0113 0.1801 0.0000 
Est. CPU  0.8126 0.9838 0.7428 0.9718 0.9638 0.0000 
Est. Mem   0.0000 0.9974 0.9947 0.9888 0.9922 0.7178 
Euclidean 
Dist 0.0682 0.2147 0.1623 0.1928 0.1723 0.2311 

 

TABLE II.  PROPORTION OF ELEMENTS WITHIN CLUSTER FOR 
DAY 18. 

(a) (b) 

(c) (d) 
Figure 3. Clusterization results for (a) Users day 18, (b) Tasks day 18, (c) Users day 2 and (d) Tasks day 2. 

TABLE III.  CENTROID COMPARISON FOR USERS. 

Cluster Pop % Cluster Pop % Cluster Pop % 
u1 0.68 u4 77.40 t1 1.84 
u2 0.68 u5 15.75 t2 72.56 
u3 2.74 u6 2.74 t3 25.60 
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C. Intra-Cluster Analysis 
 The intra-cluster analysis consists of studying the data 

distributions for each one of the cluster dimensions. The 
process requires fitting the data from the logs to specific 
distributions using a Goodness of Fit (GoF) test to obtain the 
parameters of their Probabilistic Distribution Functions 
(PDF). The objective is to use these PDFs as components of 
the workload model as described in Equations 3 and 4. The 
following considerations have been made during the intra-
cluster analysis: 

� To analyze dimensions represented by non-averaged 
values such as submission rate and task length, the 
data is taken directly from the cluster. However, if 
the dimension is represented by averaged values 
such as CPU and Memory estimation the data needs 
to be taken from the detailed measurements to 
capture the existing variability. 

� Due to the large population of data for each 
dimension, we perform the GoF test over samples 
with a confidence interval of 95% and margin of 
error as +/- 5%. However, in cases where the 
number of records is small (<1000 records), the 
entire population is used to derive the statistical 
parameters.   

� Regarding to the behavioral patterns there are two 
special cases: resource estimation and consumption.  
While the latter depict the way on how tasks 
consume resources, the former outline how users 
request resources. This involves two possible 
scenarios: overestimation (OE) and underestimation 
(UE) which are treated as separated data 
distributions.  

� For CPU and Memory consumption within the task-
clusters, there are a substantial amount of records 
where utilization is equal to 0%. This makes 
impossible to fit the resource consumption to a 
continuous distributions. Therefore these especial 
cases are treated as “zero-inflated” distributions [21] 

where the analyzed data is divided in two sets:  
continuous  for values greater than zero and discrete 
for zero values.   

We have fitted the resulting data subsets from the 
previously described considerations to their closest 
theoretical distributions applying Anderson-Darling and 
Kolmogorov–Smirnov GoF tests. We have used Minitab [22] 
and R [23] statistical packages to efficiently perform such 
analyses due to the large amount of records. For each 
parameter we evaluated several distributions including 
normal, lognormal, exponential, weibull, gamma, logistic, 
loglogistic, and extreme value among others. To determine 
the best candidate in case that more than one distribution fit 
the data, we have selected the one with the highest above 
0.05 P-value that determinates the statistical significance 
according to the process described in [24]. The entire set of 
distributions obtained from this procedure is presented in 
Table V and Table VI for users and tasks respectively.  

Regarding to the user behavioral patterns, it is observed 
from Table V that the General Extreme Value (GEV) 
distribution best fits CPU and Memory overestimations in 
both analyzed scenarios. This indicates that users tend to 
highly overestimate both resources when tasks are submitted. 
On the other hand, resource underestimations generally 
follow distributions such as Lognormal, Weibull, and 
Gamma. This indicates that when users underestimate they 
do it in small proportions especially for Memory. According 
to [25], Memory requests are rarely underestimated by a 
large factor because tasks are killed when Memory requests 
greatly exceed enforced limits. Finally, submission rates 
follow distributions such as Lognormal, Gamma, and 
Weibull. This remarks the observations from coarse-grain 
analysis in Fig. 1 that indicates that most of the users have 
low submission rates in comparison to very few users having 
high submission rates. The diversity of distributions for user 
clusters across the analyzed days especially for 
underestimation of resources reveals the details of the 
differences between clusters measured in Table III.   

TABLE V.          SET OF DATA DISTRIBUTIONS DERIVED FROM USER CLUSTERS. 

 Day 2 Day 18 
Cluster Dimension Best Fit Distribution Best Fit Distribution 

u1 Submission Rate 
CPU UE / OE 
Memory UE / OE 

-Lognormal 
-Gamma / General Extreme Value 
- Lognormal / General Extreme Value 

-Uniform 
- Lognormal / General Extreme Value 
-Gamma /  NA 

u2 Submission Rate 
CPU UE / OE 
Memory UE / OE 

- Uniform 
-NA / Normal 
-Normal /  NA 

-Uniform 
-NA 
-NA 

u3 Submission Rate 
CPU UE / OE 
Memory UE / OE 

- Uniform 
-Weibull / General Extreme Value 
-NA / General Extreme Value 

-Uniform 
-Weibull / General Extreme Value 
-Gamma / General Extreme Value 

u4 Submission Rate 
CPU UE / OE 
Memory UE / OE 

- Lognormal 
-Weibull  / NA 
-NA / General Extreme Value 

-Uniform 
- Lognormal / General Extreme Value 
- Lognormal / General Extreme Value 

u5 Submission Rate 
CPU UE / OE 
Memory UE / OE 

- Lognormal 
-LogLogistic / General Extreme Value 
-NA / General Extreme Value 

-Gamma 
- Lognormal / General Extreme Value 
- Lognormal / General Extreme Value 

u6 Submission Rate 
CPU UE / OE 
Memory UE / OE 

-Weibull 
-Gamma  / Normal 
-Loglogistic / General Extreme Value 

-Uniform 
-Weibull / General Extreme Value 
- Lognormal / General Extreme Value 
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In the case of tasks consumption patterns, it is observed 
from Table VI that the length generally follows a lognormal 
distribution indicating that even within the clusters most of 
the tasks have a short length. The same occurs with CPU and 
Memory consumption where lognormal, loglogistic, and 
Weibull distributions indicate a high proportion of tasks 
consume resources at lower rates. The homogeneity of 
distributions across the two days for task clusters confirms 
that the consumption patterns are very similar in both 
scenarios as was measured in Table IV.  As observed, the 
context of the two analyzed days is different and affects the 
workload patterns. Day 2 presents a higher number of 
submissions with a lower number of users and considerable 
reduced amount of work computed in comparison to day 18 
as illustrated in Fig. 1. Nevertheless, the approach proposed 
in this paper allows us to abstract the same general types of 
users and tasks for both scenarios and at the same time 
outline the specific contextual behavioral patterns for each 
one.     

VII. MODEL EVALUATION 
To assess the quality of the models derived with the 

proposed approach we have performed simulation 
experiments and contrasted the results against the production 
data from Google traces. To perform these simulations we 
have develop a workload generator that extends the 
capabilities of the CloudSim simulator [26-29].  The 
workload generator takes as input the model parameters for 
users and tasks and produces as an output a set of 
instructions to be executed by the simulator to mimic the 
operational environment behavior. 

A. Workload Generator 
The workload generator is integrated by 5 modules: User 

Profiles, Task Profiles, User Generator, Task Generator, and 
Workload Coordinator. The interaction of these components 
to produce the Cloud workload is described in Fig. 4. 

The User and Task Profiles describe respectively each 
one of the user and task types identified during the clustering 
process and encapsulate the behavior outlined through the 
intra-cluster analysis. The User Generator creates the 
CloudSim user instances and links them with a specific 
profile determined by their associated probabilities as 
described in Equation 5. The Task Generator creates the 
CloudSim task instances and links them with a specific task 
profile determined by the conditional probability in Equation 

6. Each one of the task parameters, including the resources 
requested by the users is obtained by sampling the inverse 
CDFs of the distributions defined in Equation 3 and Equation 
4. Finally, the coordinator controls the interactions between 
the workload generator and CloudSim framework.  

B. Simulation Environment 
We have simulated a datacenter composed by 12,583 

servers based on the capacities described in the Google 
tracelog. The simulation time is set up to emulate 29 days 
and contains 153 users per day. The user and task profiles are 
configured using the statistical parameters derived for day 2 
and described in Section VI. Day 2 is preferred over day 18 
due to the irregularity of the data distributions found during 
the analysis. The results of the simulation are compared 
against random selected data from the same day in the 
tracelog. It is important to mention that although we are 
simulating the execution of tasks, we are not comparing the 
task duration against the real measurements registered in the 
tracelog. This is because the duration of tasks can be affected 
by other factors such as scheduling priorities, performance 
interference, or failure occurrence which are out of the scope 
of this paper.  

C. Results Analysis 
The results from the simulation experiment show the 

accuracy of the derived model to represent the operational 
characteristics within the Cloud computing datacenter for the 
selected scenario. The proportions of users, tasks and the 
task per users classified by cluster membership 

Figure 4. Workload Generator Components Interaction. 

TABLE VI.          SET OF DATA DISTRIBUTIONS DERIVED FROM TASK CLUSTERS. 

 Day 2 Day 18 
Cluster Dimension Best Fit Distribution P(0) Best Fit Distribution P(0) 

t1 Length 
CPU 
Memory 

-Lognormal 
-Normal 
-Lognormal 

-NA 
-16% 
-22% 

-Loglogistic 
-Lognormal 
-Loglogistic 

-NA 
-20% 
-37% 

t2 Length 
CPU 
Memory 

-Lognormal 
-Weibull 
-Normal 

-NA 
-18% 
-22% 

-Lognormal 
-Lognormal 
-Loglogistic 

-NA 
-13% 
-30% 

t3 Length 
CPU 
Memory 

-Lognormal 
-Lognormal 
-Lognormal 

-NA 
-41% 
-60% 

-Lognormal 
-Lognormal 
-Loglogistic 

-NA 
-13% 
-30% 
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are contrasted as presented in Fig. 5. It is important to 
highlight the similarity that in all cases the data obtained 
from the simulation (S) presents in comparison to the real 
data logged in the traces (R). The discrepancies in most of 
the cases lie between the error margins of +/- 5%. The less 
precise cases are illustrated in Fig. 5(b) for 
� and 
� where 
the differences have been measured as 6% and 8% 
respectively. This behavior can be explained by the 
stochastic nature of the model and the coefficient of variation 
(CV) of users per day calculated as 12.2 from the data 
analysis. Nevertheless, this seems to have a negligible impact 
in the distribution of tasks per user where the differences are 
no greater than +/- 0.6% as shown in Fig. 5(c). The 
behavioral patterns of simulated users and task were also 
evaluated. Fig. 6 illustrates the patterns of the 3 dimensions 
for ��  that composes just under 60% of all the individual 
users in the Cloud environment for the selected day. From 
the presented plots, it is observed that the distributions for 
the user dimensions during the simulation match closely the 
patterns observed from the logged data. In this case, the 
percentage of error was calculated as 1.68%, 2.0%, and 
1.03% for submission rate, CPU and Memory estimation 
ratio respectively.  

Table VII focuses on the evaluation accuracy for all the 
user clusters. It is based on the calculation of the percentage 
of error between the locations of observed and simulated 
data distributions. It is observed that the percentage of error  

 

is considerably low for CPU and Memory estimation, 
calculated on average as 2.14% and 1.41% respectively. 
However, in the case of submission rate with an average of 
4.38%,  �� introduces a moderately high error value. This is 
due to a lower number of cluster elements (4 users) therefore 
making it impossible to determine the data distribution. In 
this case we use a uniform distribution to select with equal 
probabilities any of the 4 possible values resulting in a 
percentage of error approximately 13.42%. If instead of 
using a uniform distribution we fit the data to a normal 
distribution, the percentage of error is minimized to 6.05% 
resulting in an average error of 3.15% for the submission 
ratio. This suggests the use of normal distribution to 
characterize clusters with few elements. Fig. 7 shows the 
comparison of patterns for t�  which describes just under 
80% of all the tasks in the tracelog. The plots calculated 
describe a very accurate simulation of the task patterns. The 
percentage of error was determined as 0.19%, 0.55%, and 
2.5% for task length, CPU and Memory consumption 
respectively.  The error measurements for the complete list 
of task clusters are presented in similar to users, Table VIII 
compares the locations of the logged and simulated data 
distributions for task length, CPU and Memory usage.  

It is noticeable that the average percentage of error is low 
for length and Memory usage, calculated as 0.24% and 
3.33% respectively. However, for CPU usage the average 

Figure 5. Comparisons of the proportions between logged data and 
the outcome from the simulation. (a) Proportions of user per cluster 
membership, (b) Proportions of task per cluster membership, and (c) 

illustrates the comparison of task per user. 
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Figure 6. Comparison of user patterns between real and simulated data 
for �� (a) estimation ratio for CPU, (b) submission rates,  and (c) 

estimation ratio for Memory requests. 
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error percentage is approximately 10.97% caused by a very 
highly-inaccurate simulated CPU usage pattern within  
� . 
The root cause of this irregularity is a result of a multimodal 
distribution of the data in this cluster as is shown in Fig. 8(a). 
Initially, following the proposed approach we attempted to 
fit the data to the closest distribution. However, this produces 
very imprecise results as was discussed previously and 
presented in Fig. 8(b). To improve the accuracy of our model 
we applied multi-peak histogram analysis for region splitting 
[30] and fitted the sub-regions to new distribution 
parameters. As a result we minimized the error percentage 
from 24.66% to 0.95%. The comparison between the 
improved simulated distribution and the logged data is 
presented in Fig. 8(c).  

VIII. MODEL APPLICABILITY 
 As previously mentioned, the workload model presented 

in this paper enables researches and providers to simulate 
realistic request and consumption patterns. This is critical in 
order to improve resources utilization, reduce energy waste 
and in general terms support the design of accurate forecast 
mechanisms under dynamic conditions to improve the QoS 
offered to customers. Specifically, we use the proposed 
model to support the design and evaluation of two energy-
aware mechanisms for Cloud computing environments. 

 

The first is a resource overallocation mechanism that 
considers customers’ resource request patterns and the actual 
resource utilization imposed by their submitted tasks. The 
main idea is to exploit the resource utilization patterns of 
each customer for smartly underallocating resources to the 
requested Virtual Machines. This reduces the waste 
produced by frequent overestimations and increases the 
datacenter availability. Consequently, it creates the 
opportunity to host additional Virtual Machines in the same 
computing infrastructure improving its energy-efficiency 
[31]. 

 The second mechanism considers the relationship 
between Virtual Machine interference due to competition for 
resources and energy-efficiency. Therefore, a model to 
reduce the energy waste by exploiting the workload 
heterogeneity that exists in Cloud environments is proposed. 
The core idea is to co-allocate different types of workloads 
based on the level of interference that they create to reduce 
the resultant overhead and consequently to improve the 
energy-efficiency of the datacenter. The approach classifies 
the incoming workloads based on their resource usage 
patterns, pre-selects the hosting servers based on resources 
constraints, and makes the final allocation decision based on 

TABLE VIII.     EVALUATION OF THE ACCURACY OF TASK PATTERNS. 

Length 

Cluster Real Simulation %Error 
��  11.07 11.1 0.27 
��  16.57 16.53 0.24 
��  15.46 15.43 0.19 

CPU 
Utilization 

��  0.029 0.036 24.66 
��  0.071 0.065 7.70 
��  6.56 6.596 0.55 

Memory 
Utilization 

��  4.294 4.294 0.00 
��  0.046 0.050 7.50 
��  6.196 6.041 2.50 

TABLE VII.          EVALUATION OF THE ACCURACY OF USER PATTERNS. 

Submission 
Rate 

Cluster Real Simulation %Error 
�� 5.248 5.107 2.69 
�� 0.006 0.006 0.00 
�� 1.543 1.336 13.42 
�� 6.171 6.318 2.38 
�� 6.648 6.760 1.68 
�� 5.600 5.943 6.13 

CPU 
Estimation 

�� 0.648 0.622 3.99 
�� 0.423 0.412 2.48 
�� 0.848 0.863 1.74 
�� 0.848 0.863 1.74 
�� 0.092 0.090 2.00 
�� 0.585 0.580 0.85 

Memory 
Estimation 

�� 0.906 0.901 0.54 
�� 1.148 1.146 0.17 
�� 0.968 0.963 0.54 
�� 0.488 0.461 5.59 
�� 0.941 0.931 1.03 
�� 0.889 0.894 0.60 

 

Figure 7. Comparison of task patterns between real and simulated 
data for �� (a) task length, (b) CPU consumption, and (c) Memory 

consumption. 
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the current servers’ performance interference level. In both 
cases the proposed workload model and the parameters 
derived from the presented analysis are used to emulate the 
user and tasks patterns required by the energy-aware 
algorithms. One big advantage is that the model does not just 
replay the data in the tracelog. Instead, it creates patterns that 
randomly fluctuate based on realistic parameters. This is 
important in order to emulate dynamic environments and to 
avoid just statically reproduce the behavior from a specific 
period of time. Another important benefit is that the model 
integrates the relationship between user demand and the 
actual resource usage which is essential in both scenarios 
where the aim is to achieve the balance between requests and 
utilization in order to reduce the waste of resources.  

IX. CONCLUSIONS 
An approach to derive realistic workload models that 

encompass user and task behavior has been presented in this 
paper. Furthermore, a 30 day tracelog from the Google 
Cloud has been analyzed to derive the statistical parameters 
to describe the proposed model. Our evaluation demonstrates 
that by following the approach described in this paper, it is 
possible to obtain the statistical parameters to emulate 
production environments in most cases within a margin of 
error of +/-5%. In this work, an exhaustive analysis of the 
data has been performed at three different levels: coarse-

grain, cluster, and intra-cluster from which a number of 
observations and conclusions can be made. These are listed 
as follows:  

� Modeling user behavior is a critical factor when 
characterizing Cloud workloads. Our analysis shows 
that user behavior affects workload characteristics and 
consequently the Cloud environment. Coarse-grain 
analysis suggests that there is a significant variation in 
the resource utilization and inferred submission rates of 
tasks within an observed time period. This indicates 
that resource utilization and number of tasks is 
dependent on user patterns, an element that has been 
overlooked in related works.  

� Workloads are highly variable across different 
observation periods [31]. Our analysis is the first to 
measure and model this heterogeneity to simulate 
realistic production environments. Our analysis has 
revealed that task and user dimensions differ 
significantly on a daily basis. Furthermore, performing 
cluster and intra-cluster analysis demonstrates the 
variance in behavioral patterns between different types 
of users and tasks. Distributions modeled for each 
dimension exhibit a variance in shape as well as scale, 
making evident the diversity between cluster 
characteristics. 

� The Cloud environment does not exhibit obvious cyclic 
behavior. In contrast to other models such as Grid 
Computing where seasonal patterns are detectable, the 
analyzed data does not provide strong correlation 
between the amount of work and specific periods of 
time. This confirms the dynamicity that exists in Cloud 
environments, where users are not tied to predefined 
schedules imposed by the system. Additionally, this 
indicates the diversity of users and their strong 
influence on the workload.    

� Users grossly overestimate the resources required to 
meet business objectives. The intra-cluster analysis 
reveals that in over 90% of cases, users tend to 
overestimate the amount of resources that they require, 
wasting in some cases near to 98% of the requested 
resource. This type of exhibited user behavior has been 
the focus of studies in [31, 32] but this is the first time 
that the phenomena has been modeled and quantified. 

� Performing analysis on large-scale tracelogs is 
fundamental to deriving realistic models. Although the 
analyzed tracelog is restricted to one month of 
operation, it is large enough to outline realistic 
workload patterns on per day basis.  It has been 
previously observed that the datacenter usage level is 
stable across the different days [25]. This provides a 
better understanding of the environment in comparison 
to the hourly analyses previously conducted. However, 
Cloud environments are very dynamic and in order to 
develop realistic models, providers require to 
continuously analyze their datacenter tracelogs. This 
remarks the importance of methodologies of analysis 
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such as the one presented in this paper which allows 
providers to outline general workload characteristics as 
long as specific behavioral patterns. 

X. FUTURE WORK 
Currently, only two independent days from the tracelog 

have been modeled; nevertheless, it is important to generate 
a model representative of the entire tracelog. As future work, 
our methodology will be applied to a dataset representative 
of the entire month, in order to compare the derived 
parameters with the preliminary results obtained in this 
paper. Future directions will also include extending the 
model to include tasks constraints based on server 
characteristics - this will allows us to analyze the impact of 
hardware heterogeneity on workload behavior. Other 
extensions include accurately emulating and analyzing 
workload energy consumption and reliability, enabling 
further research into energy-efficiency, resource optimization 
and failure-analysis of the Cloud environment.  
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