
Microvision: Static analysis-based approach to
visualizing microservices in augmented reality

Tomas Cerny
Department of Computer Science

Baylor University
Waco, Texas, United States

tomas cerny@baylor.edu

Amr S. Abdelfattah
Department of Computer Science

Baylor University
Waco, Texas, United States
amr elsayed1@baylor.edu

Vincent Bushong
Department of Computer Science

Baylor University
Waco, Texas, United States

vinbush@gmail.com

Abdullah Al Maruf
Department of Computer Science

Baylor University
Waco, Texas, United States
maruf maruf1@baylor.edu

Davide Taibi
CloudSEA.AI Group
Tampere University

Tampere, FI-33720, Finland
davide.taibi@tuni.fi

Abstract—Microservices are supporting digital transformation;
however, fundamental tools and system perspectives are missing
to better observe, understand, and manage these systems, their
properties, and their dependencies. Microservices architecture
leans toward decentralization, which yields many advantages
to system operation; it, however, brings challenges to their
development. Microservices lack a system-centric perspective to
better cope with system evolution and quality assessment. In
this work, we explore microservice-specific architecture recon-
struction based on static analysis. Such reconstruction typically
results in system models to visualize selected system-centric
perspectives. Conventional models are limited in utility when
the service cardinality is high. We consider an alternative
data visualization using 3D space using augmented reality. To
begin testing the feasibility of deriving such perspectives from
microservice systems, we developed and implemented prototype
tools for software architecture reconstruction and visualization
of compared perspectives.

Index Terms—Microservices, Software Architecture Recon-
struction, Visualization, Augmented Reality, System-centric view

I. INTRODUCTION

Cloud-native systems frequently use microservices archi-
tecture, which revolutionized how we design, develop, and
operate software systems. The primary goal of microservice
architecture is to facilitate the scalability of specific system
features, which means dividing the system into self-contained,
self-deployable, and easy to scale-out microservices. Best
practice guidelines for cloud-native systems, such as Heroku’s
twelve-factor app1, suggest practices to build high-quality
microservices along with system infrastructure leading to
simplified management, monitoring, microservice evolution,
resilience, robustness, etc.

This material is based upon work supported by the National Science
Foundation under Grant No. 1854049, grant from Red Hat Research, and
Ulla Tuominen (Shapit).

1https://12factor.net

With all benefits come drawbacks. Surveys on microservice
practices and challenges [1], [2] revealed common concerns
about microservice architecture, including no system-centric
view, problems with overall system evolution, inter-service
dependencies, and architectural complexity.

Each microservice resides in its own self-contained code-
base, isolated from the holistic system perspective. This iso-
lation promotes developers’ reasoning, they often base the
design decisions on the context they are familiar with, which
does not necessarily lead to an optimal solution for the overall
system. This is where the missing system-centric perspective
could help to broaden their reasoning context.

Recent technologies make it possible to determine system
communication paths across microservices using a centralized
log or call tracing (e.g., Spring Cloud Sleuth [3]). This could
partially determine the system-centric perspective. However, it
requires all microservices to be deployed and to operate first.
Typically, system endpoints are identified along with inter-
dependencies and the dynamic characteristics and metrics of
the overall system. However, these technologies are developed
for system operation and DevOps engineers. Moreover, they
expect user interaction or user simulation tests. Thus, addi-
tional efforts are needed to develop tests or wait for user in-
teraction before using these tools. Therefore, such approaches
might be challenging to adopt in development pipelines and
serve developers, especially considering microservices evolve
in an isolated codebase, and we want to reason about the most
recent system state, not necessarily the deployed version.

Moreover, to reveal the white (or at least gray) box system
architecture for the system-centric view, we must assess the
codebase. Suppose we could derive the microservice de-
pendencies solely using static analysis, aggregating results
across codebases. As a result, the holistic system reasoning
would be greatly simplified and closer to developer practices.
The first step to achieve this would require determining the
dependencies between microservices [4]. To address this, we

ar
X

iv
:2

20
7.

02
97

4v
2 

 [
cs

.S
E

] 
 2

3 
Ju

l 2
02

2

https://12factor.net


could focus on microservices’ bounded contexts [5], recognize
the underlying microservice data models, and then determine
data model overlaps based on the similarity of data entities
(fields, names, types, etc.) across distinct microservices [6].
In addition, we can identify remote calls with their specific
parameters and bind them to other microservice endpoints that
match [6], [7].

No matter the used approach to reconstruct the software
architecture [8], the aggregated information must be presented
to practitioners in an understandable way, as the quantity of
information can be exhaustive. For example, the Software
Architecture Reconstruction process [9] recognizes multiple
views for different needs; however, the interplay of microser-
vice systems can still be overwhelming. Thus, we must ask a
question about the appropriate visualization strategy.

Current approaches that apply dynamic analysis to sup-
port the system-centric perspective and seek opportunities in
established visual models, typically rendering in the two-
dimensional space. We use static analysis to demonstrate it
is feasible to derive a system-centric perspective highlighting
inter-service dependencies. Moreover, we believe that a more
efficient visualization direction should use three-dimensional
space to render the system model since it copes better with the
ever-growing size requirements of cloud-native systems. We
propose static code analysis performed on cloud-native system
codebase and its visualization in augmented reality rendered
in three-dimensional space. We build on the prototype tool
Prophet using static analysis which provides input to the
Microvision visualization prototype tool.

The main contribution of this article details how a static
analysis-based method for software architecture reconstruction
of microservices can be utilized for their visualization. Our
approach is with a proof of concept tool tested on a large third-
party system testbench. Such reconstruction products can be
used for system reasoning. We use it to address the missing
system-centric view in these systems that would outline inter-
service dependencies. In order to utilize such a reconstruction
product, we sought an appropriate presentation suitable for
practitioners to easily interpret microservice system details to
address common tasks and locate quality aspects. Given the
potentially large scale of microservice systems, we research
three-dimensional visualization approaches and construct a
proof-of-concept visualization in augmented reality, which we
compare with conventional two-dimensional representation for
the service view. There are benefits and drawbacks to the three-
dimensional approach.

The organization of this article is as follows: Section II
discusses related work. Section III outlines the Software
Architecture Reconstruction (SAR) process. This is followed
by Section IV, with conventional and augmented visualization
assessed on a third-party large testbench system. We assess
conventional visualization and augmented visualization in Sec-
tion V through the use of a small case study. Finally, Section
VI draws conclusions and outlines future work.

II. BACKGROUND AND RELATED WORK

Software architecture is the central focal point of the
system’s development and design. Since systems evolve we
must often reconstruct the architecture from the actual system.
Software Architecture Reconstruction (SAR) is the process
by which the architecture of an implemented system is ob-
tained from the existing system [9]. Once we have such
architecture reconstructed we can reason about the system (i.e,
conformance checking, verification, evolution, modification,
extensions, documentation generation, etc.), or visualize the
system. Since software architecture is complex and interpreted
differently for various system aspects, it can be described by
architectural views [10], [11]. These views capture certain
system qualities or aspects. The foundation for successful SAR
is the ability to reconstruct effective architectural views of a
system [5]. Existing SAR work related to microservices by
Rademacher et al. [12] has considered four views as their
outcome. In particular, it operated with domain, technology,
service, and operation views. Each of these views considered
a specific perspective and related concerns within the system.
However, each also relates to other views. As an example,
consider the service view overlapping with the domain view
to detail which data entities are involved in endpoints. The
technology and domain view will then show where the data
entities persist.

A. Static and Dynamic Analysis Visualization

The process of Software Architecture Reconstruction can
be exhaustive with manual efforts or involve automation [12].
Given that microservices are decentralized, the whole process
becomes even more complicated since multiple codebases
can be involved. Rademacher et al. [12] manually collected
architecture-related artifacts, constructed a canonical represen-
tation of the data model, and based on that fused module
views. They then performed architecture analysis on the results
to answer hypotheses about architecture implementation from
the reconstructed architecture information.

Considering current practices in microservice development
and operations (DevOps), dynamic analysis can be used
involving tracing. Tracing adds a tracing identifier to log
messages generated throughout the system interaction, which
allows us to centralize these messages via centralized logging
and interpret their content in the holistic context by observ-
ing inter-microservice dependencies. It is common to extract
dependency graphs such as directed acyclic graphs [13]. The
advantage of this approach is platform independence. How-
ever, received log messages and their origins only lead to
an abstract reconstruction providing more or less a black-box
view. The industry practice provides monitoring, tracing, and
metrics tools to capture data about the microservices [3] (i.e.,
OpenTelemetry, Zipkin, or Jaeger 2). These tools seamlessly
integrate with enterprise frameworks and utilize existing mech-
anisms such as method call interception or instrumentation.
Mayer and Weinreich use the Spring framework’s interceptors

2https://opentelemetry.io; https://zipkin.io; http://jaegertracing.io

http://jaegertracing.io


to monitor runtime calls between services to generate an
architectural view of a microservice system [14]. However,
it is also possible to use API gateway [15]. Granatelli et al.
[16] approached the challenge by querying the containerization
framework to retrieve calls between microservices at runtime.

The static analysis perspective can be constructed from
artifacts available before deployment. Analyzing a program’s
codebases has played a part in the formal verification of a
system’s correctness [17], [18] and other fields. However, the
major challenge is the decentralized codebase. In the realm
of microservices, it has been used to identify calls between
microservices to generate security policy automatically [19].
Also, it has been used to analyze monolithic applications to
recommend splits for converting to microservices [20]–[22].
In generating a service dependency graph, Esparrachiari et
al. [23] posit that source code analysis is not sufficient since
the deployment environment may impact the actual depen-
dencies a given deployed module has. Pigazzini et al. [24]
reconstructed the architecture of microservices-based systems
parsing Java source files and Docker/Spring configuration files,
with the goal of identifying cyclic dependencies between
microservices. However, related works mainly focused on
the identification of the anti-patterns [25], [26] proposing
a visualization for the system architecture. Rahman et al.
[27] followed a similar approach to parse the code, never-
theless, they developed a tool named ”MicroDepGraph”3 to
visualize the call-graph between microservices. Ibrahim et
al. used a project’s Dockerfiles to search for known security
vulnerabilities of the container images being used, which
they overlay on the system topology extracted from Docker
Compose files to generate an attack graph showing how a
security breach could be propagated through a microservice
mesh [28]. In preliminary work [6] we used the approach
proposed by Rademacher et al. [12] and demonstrated that
automated merge of microservices data models or detection
of inter-service communication is feasible. In our recent work,
we highlighted the power of static and dynamic analysis for
detecting microservices API Patterns [29].

B. Architecture Visualization

Zhou et al. [30] sought common visualizations for enter-
prise architectures. The most common directions are Archi-
Mate, UML, Business Motivation Model (BMM), and BPMN,
among others. The Open Group Architecture Framework (TO-
GAF) is the most frequently used framework for enterprise
architecture, further extended by the Architectural Develop-
ment Method using ArchiMate. It is typically modeled at four
levels with different specializations: Business, Application,
Data, and Technology, which to some extent correspond to
the architectural views described by Rademacher et al. [12],
with the exception of business architecture levels which rather
drives the motivation for the implementation.

The C4 model (Context, Containers, Components, and
Code) is a practical approach for modeling software archi-

3MicroDepGraph https://github.com/clowee/MicroDepGraph

tecture [31] given a hierarchical model consisting of four
levels of abstraction, ranging from the high-level system
context to individual code elements. Alternative visualization
practices have emerged for software architectures [32], [33].
Shahin et al. [32] categorize alternative visualization as graph-
based visualization involving graphs showing nodes and links
similar to ontologies. Another approach is a notation-based
visualization, such as UML or SysML, or Matrix-based ap-
proaches. Quite common is a metaphor-based visualization
that uses familiar physical world contexts (e.g., cities, islands,
or landscapes). To make the system more understandable using
a visual metaphor, Virtual and Augmented Reality (VR/AR)
methods have been explored for software architecture visual-
ization. One example is a ”software city”; software packages
are represented as buildings and their dependencies as streets,
which is an example of virtual reality [34]–[36]. Schreiber et
al. proposed to show individual software modules as ”islands”
in an ocean displayed in AR. Software packages and classes
in each module are represented as regions and buildings
on the module island, and, importantly, module imports and
exports are displayed as ports that connect the different islands.
The VR-EA tool from Oberhauser et al. [37] is an attempt
to visualize larger enterprise applications. However, it uses
modeling tools as inputs to generate a 3D VR view in the
virtual reality of business processes and their relationships
with enterprise resources. While it can show a large group
of interconnected components, it depends on a set of models
that must be manually created.

III. STATIC ANALYSIS-BASED SAR OF MICROSERVICES

Microservice systems are by nature decentralized. The
Heroku’s 12-factor app methodology [3], [24], [38] recom-
mends that each microservice be self-contained with its own
codebase and database to facilitate and improve evolution,
scalability, and dependency management. However, microser-
vices are not isolated; they interact using interfaces or message
queues. Thus, there is a dependency between microservices;
however, it is typically a loose one. Since the interaction hap-
pens through interfaces, perhaps the most notable dependency
is on the endpoint names and the parameters that represent
data or transfer objects. Based on domain-driven development
[12], [39], each module considers a bounded context [3], which
includes a limited perspective of the system holistic data model
called context map, and often bounded contexts partially
overlap through certain data entities with other modules. We
can use this overlap as an ingredient to determine the system-
centric view. Apart from this, the inter-service interaction, such
as REST/RPC endpoint calls, is another ingredient we can
consider. These two strategies are illustrated in Fig. 2.

Our SAR process considers the static-code analysis of
individual microservice’s codebases. As suggested by Carnell
et al. [3], the codebase contains the source code and build and
deployment configuration files possibly relevant to the process.

Our process is illustrated in Fig. 1, it starts with the
extraction phase, operating with Abstract Syntax Trees (AST)
parsed from the code. Next, walking through the tree and

https://github.com/clowee/MicroDepGraph


Fig. 1: Microvision Construction Process

recognizing method calls we extract call-graphs. Top methods
are candidates for endpoints; in addition, frameworks typically
augment these endpoints with additional information (i.e.,
HTTP types, constraints, etc.) that indicate the endpoint (i.e.,
in the form of annotations or external files). With endpoints
detected, we assess their parameters and trace the calls down
through the controllers, services, and repositories to referenced
and involved data entities. We detect these components’ types
by assessing the associated properties in the AST and the call-
graph from the endpoint. This tracing also allows us to derive
dependencies between endpoints and involved data entities.
We determine which endpoints operate with specific data
entities in the reverse perspective. Walking through the call-
graphs, we can detect involved constraints, apparent policies,
conditions, branches, and loops. Specific attention is placed
on data entities. We assess their properties and methods to
detect relationships across the entities in a given microservice
codebase and extract the underlying data model.

Next, we continue with the construction phase and convert
the microservice-specific information into a graph format. This
phase operates with components identified when traversing
call-graphs. We further augment recognized components with
additional information that might co-exist at the component
definition level. For instance, REST controller endpoints might
enforce access rights [7], [40]. Paying attention to components
corresponds to the microservice development practice [3]. In
other words, the microservice will always process data and
provide endpoints. Therefore, aggregating components and
combining the call paths represents a graph, which we use as
an intermediate representation of the processed microservice.

The manipulation phase deals with the fusion of multiple
microservice intermediate representations. As depicted in the
previous discussion, we use two main ingredients: combin-
ing overlapping data entities and inter-microservice endpoint
interactions. This is highlighted on Fig. 2. However, these
strategies can be further extended, for instance, by information

En
dp

oi
nt

s
Ca

ll-
gr

ap
hs

Da
ta

en
tit

ie
s

Matching data entity

Remote
call

Microservice A Microservice B
Fig. 2: Microservice dependencies

from build and deployment scripts. Moreover, the event-based
approach with message brokers, such as Kafka or Messaging
Queues, could be integrated here.

We begin the fusion by entity matching, specifically by
looking for entities from distinct modules with a subset
match of properties, data types, and possibly names. For
this matching, we considered natural language processing
strategies (Wu-Palmer algorithm [41]). Then, combining all
involved microservices, we derive the canonical data model
(context map), and, through the matched entities, we promote
data and control dependencies.

The second ingredient considers inter-service interaction.
First, we identify all endpoints, parameter types, and metadata,
and then the remote procedure calls within the methods [7].
Next, we match them, generate a complete system service
overview, and augment the canonical model resulting from
the previous strategy.

Our manipulation phase results in a combined intermediate
graph representation for the holistic system. This broadens
the perspective for the consequent analysis with access to the
canonical data model, inter-service dependencies, and the over-
all system service endpoints. It also maintains the specifics of
each microservice, such as its bounded context with overlaps,
technology information, and aggregate list of the technologies,
broken up by layer, in the centralized perspective. Finally,
since each microservice contains the build, deployment, and
operation information, it allows the centralized perspective to
render a graph of connected deployments.

The final analysis phase of the SAR process is reasoning
about the whole system. This article limits the discussion to
our new overall architectural visualization process, described
next.

To perform SAR for microservices, we implemented the
Prophet tool4. It follows the steps detailed in this section and
performs static code analysis of Java-based source code. It
recognizes component-based constructs behind Spring Boot
and Enterprise Java. It utilizes the Java Parser library 5 and a
graph database (Neo4j)6 to store the microservice and system
holistic results.

The result is an intermediate graph representation of the
system accessible through REST API. This representation can
be used for system reasoning. In general, any kind of reasoning
could operate with the intermediate system representation. For

4The code for the Prophet utility can be found at GitHub
https://github.com/cloudhubs/prophet-utils,https://github.com/cloudhubs/
prophet-utils-app,https://github.com/cloudhubs/prophet

5https://javaparser.org
6https://neo4j.com

https://github.com/cloudhubs/prophet-utils
https://github.com/cloudhubs/prophet-utils-app
https://github.com/cloudhubs/prophet-utils-app
https://github.com/cloudhubs/prophet
https://javaparser.org
https://neo4j.com


instance, we could detect design smells or security policy
violations [7], [42]. However, overall system visualization is
best suited to facilitate reporting, facilitate navigation, and
improve comprehension.

The microservice codebase has the most up-to-date sys-
tem details. With an intermediate graph representation of
the system received from static analysis applied across the
decentralized codebases (i.e., through the continuous integra-
tion pipeline), any update can be reflected in a reconstructed
system-centric view.

IV. VISUALIZATION OF MICROSERVICES

Many means can be used to articulate the reconstructed
system architecture to stakeholders such as architects, de-
velopers, or DevOps. However, appropriate visualization can
speed up comprehension of the reconstructed system and
lead to expedited assessments of dependencies, bottlenecks,
architectural smells [42], [43] (i.e., poor design choices and
anti-patterns), or consistency errors.

This article considers two approaches: a conventional archi-
tectural visualization and a 3D visualization. We will assess
each approach based on the following capabilities: Visual-
ization ability, Comprehensibility, Navigation, and Interac-
tion of services.

The SAR process may result in multiple architectural views.
However, it is sufficient to limit our attention to a few views for
a proof of concept. Thus, we pick the most beneficial views for
microservices, those that support a system-centric perspective.

Mayer and Weinreich [44] identified that supporting a view
of service APIs and their interactions should be one of the
most important goals that a tool designed for microservice
analysis should achieve. When we consider Rademacher et al.
[12], focusing on the service view is well justified. The service
view defines the microservice’s APIs and the inter-service
calls between them. Furthermore, this view is also relevant for
developers seeking to understand how the system operates.

Rademacher et al. [12] also focused on the domain view.
This view defines the domain model used by the microservice
system, also known as the canonical model or context map.
This view is necessary because microservices do not depend
on a formal specification of a domain model, with each service
instead of operating on its own bounded context, where it
operates on the subset of entity attributes it needs [45].

Both service and domain views give a view of the system
architecture as-is, showing the communication between the
services and the state of the domain entities in use. These
views can be used as documentation for developers and De-
vOps. Architects can compare the current architecture against
the planned system architecture and detect deviations. They
can also use it as a first warning to detect if the architecture
has drifted from the original plan.

A. On service and domain view information

To extract necessary system information to construct the
service view, we require two things: first, to detect the end-
points of each service, and second, to detect the calls made

from one service to another using these endpoints. Software
frameworks often provide utilities for quickly defining these
endpoints in code, and this has been utilized by projects
like Swagger7 for automated endpoint documentation. After
endpoints are identified, Prophet inspects the microservice
Abstract Syntax Trees (ASTs) for remote method calls. These
can be recognized through common constructs such as REST
templates, etc. Once the list of endpoints and calls is collected
for each service, Prophet matches the calls to system endpoints
based on the relative endpoint URL, the HTTP method, and
parameters. The result is a call-graph representing the system,
showing how the services communicate among themselves.

To extract system information to determine the domain view,
we need to identify data entities, their properties, and their
relationships. Data entities use frameworks utilities and can
be identified similarly to endpoints. Having entities identified
we can consider their properties and relevant data types.
Identified property data types can reveal relationships the
entities have with each other. These relationships have three
different components, which we extract using code analysis:
the types involved in the relationship (i.e., the entities that
are on either side of the relationship), the multiplicity of
the relationship, and the directionality of the relationship.
Identifying the types is done based on the type names of the
entities’ fields, the multiplicity can be determined by whether
or not the field is a collection, and its directionality can be
determined by whether or not there is a corresponding field in
both of the entities involved or in only one entity. Considering
a single microservice codebase, we can derive a microservice
bounded context.

Using the bounded contexts for all microservices, a com-
bined canonical model for the entire system can be generated
by merging the bounded contexts. Since the services should
be operating on some of the same entities, the entities in each
microservice can be merged by detecting if they have the
same or similar names. Different services may have different
purposes for the entities they share and so may retain different
fields from each other. Fields with the same or similar names
and the same data type are merged into a single field in the
merged entity, while non-matching fields from all the source
entities can simply be appended to the merged entity. The
result represents the scope of all entities used in the system.

B. Considered system samples

To demonstrate visualization approaches for this manuscript
and on a large, realistic system, we adopted two test benches.
The Teacher Management System (TMS)8 consists of three
microservices, and the limited size allows us to embed
complete SAR visualization examples in this article. For a
demonstration of a complex case study, TrainTicket9 [46] is
used (originating from the ICSE conference). The TrainTicket
was designed to emulate a real-world microservice system
consisting of 41 microservices and over 60,000 lines of code.

7https://swagger.io
8https://github.com/cloudhubs/tms2020
9https://github.com/FudanSELab/train-ticket

https://swagger.io
https://github.com/cloudhubs/tms2020
https://github.com/FudanSELab/train-ticket


It is written in Spring Boot, uses MongoDB as its database,
and follows cloud-native practice with containers, routing, etc.

C. Conventional architectural visualization and its properties

The conventional approach to visualizing service and do-
main views operates in two-dimensional space. The service
view represents microservices as nodes and particular service
calls as edges. An example output of the result of this analysis
on the TMS testbench is shown in Fig. 3.

The domain view has a perfect fit for the UML class
diagram that represents the scope of all entities used in the
system, as shown in Fig. 4 for the TMS system.

These results on the TMS system demonstrate a system-
centric perspective extracted from the microservice codebase.
Since this article focuses on visualization aspects, we next
consider deficiencies and limits of obtained results.

The biggest shortcoming of the conventional two-
dimensional graph representation is its visualization ability;
it quickly runs into scaling problems. We discovered that the
visualization breaks down when analyzing systems larger than
a few microservices. A two-dimensional space only has so
much area available to display a graph, which fills up quickly
and becomes unintelligible. This limitation is not surprising;
as the number of services in a system increases, the potential
number of connections between them increases at a much
faster rate. There is only so much space in a two-dimensional
layout to arrange these connections, and thus the visualization
becomes cluttered and unwieldy. We discovered this problem
when analyzing larger systems; Fig. 5 shows service view
output on the TrainTicket testbench (41 microservices), which
becomes difficult to understand.

A problem of visualization may seem like a minor one, but
it directly affects the view’s intended purpose as an artifact
to help a stakeholder quickly understand how microservices
interact with each other in a large system and to allow them
to visually identify potential problems with the architecture or
to identify drift from the originally-intended architecture. As
the graphs become cluttered, this kind of quick visual analysis
becomes less feasible, as it takes more time to understand
what the graph is displaying. A visualization solution based
on two-dimensional diagrams simply does not scale well with
the number of microservices in a system.

The related problem is that of navigating the displayed
graphs. While a small system can be displayed on a single
page without much issue, the output requires users to navigate
larger graphs using the mouse scroll wheel and does not
provide for zooming in or out, nor any other method of
viewing multiple levels of abstraction, an important feature
of microservice architectural analysis as seen in, e.g., the
hierarchical C4 model [31]. This limited method of navigation
creates a problem since there is no way to step back and get a
broad view of the system, nor can the user quickly drill into a
specific region of the microservice mesh. It can take time and
effort to find the area of interest in the displayed graph, and it
may not be as insightful if developers cannot easily relate what

they are looking at to the rest of the system. Again, this directly
impedes the original goal of the quick and intuitive analysis.

Another problem is that the information about each mi-
croservice’s API is not easily accessible. The endpoints are
only displayed on the edges that point to the node. The
user must mentally reconstruct what the API looks like for
a particular service by finding all of the incoming edges
and identifying their labels. This is extra work for the user,
which is also detrimental to the goal of quick visualization,
and the difficulties with navigation as previously mentioned
compound the task.

The final problem with the conventional visualization is its
inability to display how the microservices interact with each
other when servicing actual requests from users. Its visualiza-
tion is completely static; the connections between services are
there, but there is no information on how those connections
are utilized. This also hinders the goal of providing at-a-glance
visualization of a system; the static view of the connections
provides only a partial picture.

To summarize, we identified these challenges:
1) Visualization ability: the method needs to scale better with

system size than a two-dimensional, UML-based solution.
2) Comprehensibility: developers should be able to quickly

comprehend the interaction of microservices in a system.
3) Navigation: the visualization should be easily navigable

and enable traversing multiple levels of abstraction.
4) Interaction of services: a method is needed that can visual-

ize how the services operate and interact with each other,
beyond what is capable with UML-based diagrams (e.g.,
sequence diagrams).

D. A Microvision

The most applicable view for understanding the system-
centric perspective and the system operation is the service
view. With the 2D limitation in mind, we have adopted this
view to explore the benefits of a three-dimensional visualiza-
tion scheme. We utilize the AR medium, which is natively
three-dimensional, and it lends itself to control schemes based
on natural movement. We believe this combination holds
potential for use with displaying and navigating complex
systems such as microservices. The way we approach the
visualization is by using a 3D graph operating in AR. Given
we were able to automate the SAR process and reconstruct
the service view in 2D, we use the same input for a 3D graph
operating in AR.

The potential of using AR for software visualization has
been recognized, and it has been used to visualize monolithic
software systems in various ways as shown above in the
Related Work section. However, it has not been previously ap-
plied to microservice systems. We aim to expand the existing
3D visualization techniques to a higher level of abstraction
beyond a single piece of software to an entire distributed
microservice system.

1) Designing 3D Visualization: For the system-centric per-
spective, the view needs to provide a high-level system visual-
ization. In microservices, we intend to see their interconnec-



Fig. 3: Sample service view extracted from a the TMS
benchmark.

Fig. 4: Domain view derived from the TMS benchmark.
These entities are aggregate definitions from partial entities
in each microservice’s bounded context.

Fig. 5: The service view from a large microservice testbench TrainTicket [46]. Connections between services become difficult
to decipher as the system size grows.
tion; however, the view cannot get cluttered as more services
are introduced. Quickly understanding the high-level structure
should be prioritized in all system-centric perspectives.

In addition, the user should easily interacts with the view
and navigates through the microservice system both at a high
level and a lower level of detail centered around a few services.
The high-level view should be easily understandable, and upon
drilling down into a lower-level view, the user should be able
to identify details about individual services and how they relate
to their neighbors.

In this case, the high-level view refers to the overall struc-
ture of the system, and the low-level view refers to information
about individual services and their immediate neighbors. The
less time it takes to go from high to low level of detail, the
easier it is to understand the system and the roles the individual
services play in it.

Given our ambitious AR microservice visualization plan, we
have developed a Microvision proof-of-concept tool delivering

the service view. Microvision consists of two broad compo-
nents to achieve its functionality: the main graph display, and
the API viewer. The following section describes the design
of these components and details the rationale behind the
components.

Graph display: The overall display of the microservice
system shows an abstract 3D graph view of the system
projected in AR. The goal of the base graph is to give a
quick view of the system, its services, and its connections.
Each microservice is represented as a node, and an edge exists
between nodes if a call exists between two microservices.
Fig. 6 shows our implementation example. The nodes are
distributed such that there is no overcrowding in one particular
area of the graph. To help visualize how the connections work,
a node can be selected to highlight it and its neighbors. In this
case, the neighbors highlighted are only those that are called
at some point from the selected node. This helps clarify the
node’s role among nearby nodes.



Fig. 6: Showing 3D graph of services and their connections.

The rationale for choosing a graph display is simple. A
graph is the most natural way of conceptualizing how mi-
croservices work, and two-dimensional graphs are consistently
encountered in other microservice analysis tools.

The three-dimensional display addresses both of these
drawbacks. First, adding the third dimension increases the
available area to display the services and reduces the amount
of overlap their connections have. This decluttering also makes
it more straightforward to analyze the architecture and identify
potential architectural problems or areas of drift from the
original architecture. Second, displaying the graph in an AR
environment allows us to implement a natural navigation
scheme: the user simply moves their device through the graph.
Since a 3D graph has an innate spatial logic to it, it is intuitive
to navigate by natural motion, even for a large graph. This
natural movement also allows for quickly switching between a
broad overall view of the system or a closer look at a particular
group of services simply by moving closer or farther.

The other alternative considered is to display the content
of the system using a visual metaphor, such as “software
cities” or similar approaches encountered in prior work [34],
[35], [47]. We ultimately rejected this approach in favor of an
abstract approach, since learning a new visual metaphor would
take extra time and training, and the idea of how microservices
connect is served well by an abstract graph representation.
Furthermore, these visual metaphors usually restrict the space
in which the services can be displayed; for example, the
software city metaphor requires a two-dimensional layout of
the system in question, with the vertical dimension being
used to display information about the content of the software
packages. For a large system of microservices, this space
would be better utilized by simply displaying more services
in a smaller area.

API view: The API view component is responsible for
displaying the endpoints that make up the API of a selected
microservice. The design goals for this component were to
concisely display the relevant API for a particular microservice
without cluttering the overall graph. For this component, a
simple pop-up box that contains the list of endpoints was
chosen. Fig. 7 shows our implementation example.

Upon selecting a microservice in the graph, the API view
box will pop up and display the list of endpoints. Each
endpoint is identified by the endpoint path and HTTP method.
The endpoints can be expanded by tapping them, providing

Fig. 7: The context menu shows a selected services API
endpoints, in this case the “cms” service highlighted in red.

further information such as the actual method that implements
the endpoint and its parameters and return type.

This component is intended to provide details for developers
to drill down into. The graph itself provides both a broad
overview and details of the services through a contextual
window panel. We chose to show specifically the API because
that is a microservice’s best indicator of its role within the
system. It is not by default shown within the graph itself,
as that would add too much information that may not be
immediately relevant to the user.

The primary alternative considered for this component is to
annotate the node in the graph itself with the information.
This way, the information could be positioned spatially in
relation to the nodes it applies. This alternative was rejected
because it would clutter the graph unnecessarily. The graph
already contains the nodes, their connections, and the names
of the microservices annotated onto the nodes. Adding extra
text to the graph would make the existing elements more
difficult to read and interpret. Furthermore, the convention of
tapping an element to display an informational pop-up already
exists, and since we highlight the selected node, we do not
lose any clarity.

2) Microvision Approach Summary: Our proof-of-concept,
Microvision10, addresses the shortcomings of 2D visualization.
We demonstrated 3D visualization based on AR to reduce the
cluttered nature of the conventional visualization for microser-
vices. In addition, we demonstrated navigation and control
through the reconstructed microservice system architecture.
Specifically, we addressed the challenges:

1) Visualization ability: we have developed a 3D visualiza-
tion that offers better scaling with the number of services
than a 2D diagram.

2) Comprehensibility: the 3D structure can be viewed for a
high-level system overview.

3) Navigation: the graph is displayed in AR and is easily
traversed by natural movement. Multiple levels of abstrac-
tion are viewed naturally within the graph itself due to
the 3D overview.

Still, the interaction perspective can be further developed
with simulated endpoint interaction to better address depen-
dencies and tracing.

10Its code is available at GitHub https://github.com/cloudhubs/microvision

https://github.com/cloudhubs/microvision


V. SMALL EVALUATION STUDY

A small-scale pilot study in terms of the number of partici-
pants and the number of microservices is included. It was con-
ducted to evaluate the feasibility of the Microvision approach
by answering practical developer questions and analyzing
the architecture of a microservice system. We conducted the
trial user study with graduate student volunteers performing
various analysis tasks on a real-world microservice system
using Microvision and giving feedback on their experience.

Our evaluation was conducted with a group of six graduate
computer science students (five males, one female). All of the
participants had experience with software development, and
four participants had prior experience with microservices.

The participants were given a system consisting of 16
microservices to analyze. The system in question was a
TrainTicket testbench [46] handling train ticket reservations.
We prepared a set of nine evaluation tasks relating to this
system for the participants to complete. Three questions were
prepared relating to individual services and their connections
in the system, and six were prepared relating to user requests
and how the system handled them. The tasks required the
participants to use Microvision to identify different aspects
of the microservice APIs and their connections to each other.
The tasks are given in Table I.

General questions
Which service has the most connections?
Of those connections, how many calls from that service to another?
How many services have only a single connection?
Request #1
How many services are involved in this request?
What is the last call in the call chain? Include the service and endpoint.
Suppose the ts-ticketinfo-service changes the arguments required for its
controller method, queryForStationId. Will this change affect this request?
Request #2
What data type is the argument passed to the second endpoint?
What is the controller method that handles the initial request?
Suppose the ts-travel-plan service could be made to skip the route-plan-
service and call the ts-travel-service directly. Would this change make the
ts-route-plan-service obsolete in the system?

TABLE I: Tasks completed by participants in the evaluation.

We also prepared a 5-question satisfaction survey regarding
participant experience with the application. The first three
questions were given on a 5-point Likert scale and measured
the participants’ satisfaction with the use of Microvision on
the specified tasks. The next two questions asked about the
participants’ perceived usefulness of Microvision’s features
and asked for suggestions for new features. The feedback
survey and the participant responses are given in Table II.

The evaluation was split into three segments. In the first
segment, the participant was briefed on the features of Micro-
vision and given directions on how to operate it. This segment
lasted a maximum of ten minutes. In the second segment, the
participants were given 15 minutes to complete the evaluation
tasks, beginning with the three tasks relating to individual
services, followed by the six tasks relating to user requests.
The tasks were given one at a time, with immediate feedback
as to whether the participant answered correctly or not. In the

final segment, the participants were given the feedback survey,
which they could complete in any amount of time they chose.

Satisfaction feedback (5-point Likert scale)
Was Microvision helpful to you when
completing the tasks?

4 strongly agree, 2 agree

Was Microvision intuitive to use? 4 strongly agree, 2 agree
Given the option, would you use Mi-
crovision again?

4 strongly agree, 2 agree

General feedback
Which features, if any, did you find
helpful or useful when using Microvi-
sion?

3D graph visualization: 6/6;
API viewer: 5/6

Do you have any other comments or
suggestions regarding Microvision?

Graph scaling and individual
node movement suggested

TABLE II: Feedback questions posed to participants.

1) Evaluation Results: All six of the participants completed
the evaluation tasks with 100% accuracy within the allotted
time frame. Furthermore, all the participants either agreed or
strongly agreed to the first three qualitative feedback questions.
Regarding the features, all participants said the 3D graph
visualization was useful, and five out of the six participants
said the API viewer was useful. These results show that
Microvision is a promising direction to further research for
microservice system analysis.

VI. CONCLUSIONS

This research was motivated by recurrent microservice
system challenges regarding missing system-centric views. It
analyzed cloud-native systems using static analysis to demon-
strate it is feasible to derive a system-centric perspective of
these systems. It also elaborated on alternative visualization
directions using three-dimensional space to render the system’s
service view in AR. We implemented a Microvision tool that
uses the intermediate representation of the system built by
the static analysis tool Prophet, which is capable of multi-
codebase analysis for microservices. We assessed the approach
on two system testbench with a short evaluation study to better
understand the practical implications and potential impacts of
such a visualization. In future work, we plan to perform a large
user study for which we have already obtained IRB approval.
The SAR process will also be generalized to a platform-
agnostic approach as initiated in [48]. We will also assess
more architectural views and alternative 3D models.

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation under Grant No. 1854049, grant from Red
Hat Research, and Ulla Tuominen (Shapit).

REFERENCES

[1] J. Bogner, J. Fritzsch, S. Wagner, and A. Zimmermann, “Industry
practices and challenges for the evolvability assurance of microservices,”
Empirical Software Engineering, vol. 26, no. 5, p. 104, 2021.

[2] J. Soldani, D. A. Tamburri, and W.-J. Van Den Heuvel, “The pains and
gains of microservices: A systematic grey literature review,” Journal of
Systems and Software, vol. 146, pp. 215–232, 2018.

[3] J. Carnell and I. H. Sánchez, Spring microservices in action. Manning
Publications Co., 2021.

[4] T. Cerny and D. Taibi, “Static analysis tools in the era of cloud-native
systems,” in 4th International Conference on Microservices, 2022.



[5] A. Walker, I. Laird, and T. Cerny, “On automatic software architecture
reconstruction of microservice applications,” Information Science and
Applications: Proceedings of ICISA 2020, vol. 739, p. 223, 2021.

[6] V. Bushong., D. Das., and T. Cerny., “Reconstructing the holistic archi-
tecture of microservice systems using static analysis,” in Int. Conference
on Cloud Computing and Services Science -, 2022, pp. 149–157.

[7] D. Das, A. Walker, V. Bushong, J. Svacina, T. Cerny, and V. Matyas, “On
automated rbac assessment by constructing a centralized perspective for
microservice mesh,” PeerJ Computer Science, vol. 7, p. e376, 2021.

[8] T. Cerny, A. Abdelfattah, V. Bushong, A. A. Maruf, and D. Taibi,
“Microservice architecture reconstruction and visualization techniques:
A review,” in 2022 IEEE Symposium on Service-Oriented System Engi-
neering (SOSE), 2022.

[9] L. O’Brien, C. Stoermer, and C. Verhoef, “Software architecture re-
construction: Practice needs and current approaches,” Carnegie Mellon
University, Tech. Rep., 01 2002.

[10] D. E. Perry and A. L. Wolf, “Foundations for the study of software
architecture,” SIGSOFT Softw. Eng. Notes, vol. 17, p. 40–52, 1992.

[11] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice,
3rd ed. Addison-Wesley Professional, 2012.

[12] F. Rademacher, S. Sachweh, and A. Zündorf, “A modeling method for
systematic architecture reconstruction of microservice-based software
systems,” in Enterprise, Business-Process and Information Systems
Modeling. Springer International Publishing, 2020, pp. 311–326.

[13] A. Al Maruf, A. Bakhtin, T. Cerny, and D. Taibi, “Using microservice
telemetry data for system dynamic analysis,” in 2022 IEEE Symposium
on Service-Oriented System Engineering (SOSE), 2022.

[14] B. Mayer and R. Weinreich, “An approach to extract the architecture
of microservice-based software systems,” in 2018 IEEE Symposium on
Service-Oriented System Engineering (SOSE), 2018, pp. 21–30.

[15] K. A. Torkura, M. I. Sukmana, and C. Meinel, “Integrating continuous
security assessments in microservices and cloud native applications,” in
Int. Conf. on Utility and Cloud Computing, 2017, pp. 171–180.

[16] G. Granchelli, M. Cardarelli, P. D. Francesco, I. Malavolta, L. Iovino,
and A. D. Salle, “Towards recovering the software architecture of
microservice-based systems,” in 2017 IEEE International Conference
on Software Architecture Workshops (ICSAW), 2017, pp. 46–53.

[17] A. Chlipala, “The bedrock structured programming system: Combining
generative metaprogramming and hoare logic in an extensible program
verifier,” SIGPLAN Not., vol. 48, no. 9, pp. 391–402, Sep. 2013.

[18] E. Albert, M. Gómez-Zamalloa, L. Hubert, and G. Puebla, “Verification
of java bytecode using analysis and transformation of logic programs,”
in Practical Aspects of Declarative Languages, 2007, pp. 124–139.

[19] X. Li, Y. Chen, and Z. Lin, “Towards automated inter-service autho-
rization for microservice applications,” in Proceedings of the ACM
SIGCOMM 2019 Conference Posters and Demos, 2019, pp. 3–5.

[20] S. Eski and F. Buzluca, “An automatic extraction approach: Transition to
microservices architecture from monolithic application,” in International
Conference on Agile Software Development: Companion, 2018.

[21] D. Taibi and K. Systä, “From monolithic systems to microservices: A
decomposition framework based on process mining,” in Proceedings
of the 9th International Conference on Cloud Computing and Services
Science, 2019, pp. 153–164.

[22] U. Azadi, F. A. Fontana, and D. Taibi, “Architectural smells detected by
tools: A catalogue proposal,” in Proceedings of the Scientific Workshop
Proceedings of XP2016, ser. XP ’16 Workshops, 2019.

[23] S. Esparrachiari, T. Reilly, and A. Rentz, “Tracking and controlling
microservice dependencies,” ACM Queue, vol. 16, pp. 44–65, 2018.

[24] I. Pigazzini, F. A. Fontana, V. Lenarduzzi, and D. Taibi, “Towards
microservice smells detection,” in Proceedings of the 3rd International
Conference on Technical Debt, ser. TechDebt ’20, 2020, p. 92–97.

[25] D. Taibi and V. Lenarduzzi, “On the definition of microservice bad
smells,” IEEE Software, vol. 35, no. 3, pp. 56–62, 2018.

[26] D. Taibi, V. Lenarduzzi, and C. Pahl, Microservices Anti-patterns: A
Taxonomy. Springer International Publishing, 2020, pp. 111–128.

[27] M. Rahman and D. Taibi, “A curated dataset of microservices-based
systems,” in Joint Proceedings of the Summer School on Software
Maintenance and Evolution. CEUR-WS, September 2019.

[28] A. Ibrahim, S. Bozhinoski, and A. Pretschner, “Attack graph generation
for microservice architecture,” in ACM/SIGAPP Symposium on Applied
Computing, 2019, pp. 1235–1242.

[29] A. Bakhtin, A. Al Maruf, T. Cerny, and D. Taibi, “Survey on tools and
techniques detecting microservice api patterns,” in IEEE International
Conference on Services Computing (SCC), 2022.

[30] Z. Zhou, Q. Zhi, S. Morisaki, and S. Yamamoto, “A systematic literature
review on enterprise architecture visualization methodologies,” IEEE
Access, vol. 8, pp. 96 404–96 427, 2020.

[31] A. Vázquez-Ingelmo, A. Garcı́a-Holgado, and F. J. Garcı́a-Peñalvo, “C4
model in a software engineering subject to ease the comprehension of
uml and the software,” in 2020 IEEE Global Engineering Education
Conference (EDUCON), 2020, pp. 919–924.

[32] M. Shahin, P. Liang, and M. A. Babar, “A systematic review of software
architecture visualization techniques,” J. Syst. Softw., vol. 94, pp. 161–
185, 2014.

[33] R. Wettel and M. Lanza, “Visually localizing design problems with
disharmony maps,” in ACM Symposium on Software Visualization, ser.
SoftVis ’08, 2008, p. 155–164.

[34] F. Fittkau, A. Krause, and W. Hasselbring, “Exploring software cities
in virtual reality,” in 2015 IEEE 3rd Working Conference on Software
Visualization (VISSOFT), 2015, pp. 130–134.

[35] M. Steinbeck, R. Koschke, and M. O. Rüdel, “How evostreets are
observed in three-dimensional and virtual reality environments,” in 2020
IEEE 27th International Conference on Software Analysis, Evolution and
Reengineering (SANER), 2020, pp. 332–343.

[36] Z. Ma and Y. Bai, “A distributed system monitoring tool with virtual re-
ality,” in International Conference on Computer Science and Application
Engineering, ser. CSAE ’18, 2018.

[37] R. Oberhauser and C. Pogolski, “VR-EA: Virtual Reality Visualization
of Enterprise Architecture Models with ArchiMate and BPMN,” in
Business Modeling and Software Design, 2019, pp. 170–187.

[38] A. Wiggins, “The twelve-factor app,” 2017, (Accessed on 10/02/2021).
[Online]. Available: https://12factor.net/

[39] T. Cerny, M. J. Donahoo, and M. Trnka, “Contextual understanding of
microservice architecture: Current and future directions,” SIGAPP Appl.
Comput. Rev., vol. 17, no. 4, pp. 29–45, Jan. 2018.

[40] W. Hopkins, “JSR 375: JavaTM EE security API,” November 2009.
[Online]. Available: https://jcp.org/en/jsr/detail?id=375

[41] L. Han, A. L. Kashyap, T. Finin, J. Mayfield, and J. Weese,
“UMBC EBIQUITY-CORE: Semantic textual similarity systems,” in
Second Joint Conference on Lexical and Computational Semantics
(*SEM), Volume 1: Proceedings of the Main Conference and the Shared
Task: Semantic Textual Similarity. Atlanta, Georgia, USA: Association
for Computational Linguistics, Jun. 2013, pp. 44–52.

[42] A. Walker, D. Das, and T. Cerny, “Automated code-smell detection in
microservices through static analysis: A case study,” Applied Sciences,
vol. 10, no. 21, 2020.

[43] D. Taibi, V. Lenarduzzi, and C. Pahl, “Architectural patterns for mi-
croservices: A systematic mapping study,” in Proceedings of the 8th
International Conference on Cloud Computing and Services Science -
Volume 1: CLOSER,, INSTICC. SciTePress, 2018, pp. 221–232.

[44] B. Mayer and R. Weinreich, “A dashboard for microservice monitoring
and management,” in 2017 IEEE International Conference on Software
Architecture Workshops (ICSAW), 2017, pp. 66–69.

[45] T. Černý, M. Donahoo, and M. Trnka, “Contextual understanding of
microservice architecture: current and future directions,” ACM SIGAPP
Applied Computing Review, vol. 17, pp. 29–45, 01 2018.

[46] X. Zhou, X. Peng, T. Xie, J. Sun, C. Xu, C. Ji, and W. Zhao, “Bench-
marking microservice systems for software engineering research,” in
Proceedings of the 40th International Conference on Software Engi-
neering: Companion Proceeedings, 2018.

[47] A. Schreiber, L. Nafeie, A. Baranowski, P. Seipel, and M. Misiak,
“Visualization of software architectures in virtual reality and augmented
reality,” in 2019 IEEE Aerospace Conference, 2019, pp. 1–12.

[48] M. Schiewe, J. B. Curtis, V. Bushong, and T. Cerny, “Advancing static
code analysis with language-agnostic component identification,” IEEE
Access, 2022.

https://12factor.net/
https://jcp.org/en/jsr/detail?id=375

	I Introduction
	II Background and Related Work
	II-A Static and Dynamic Analysis Visualization
	II-B Architecture Visualization

	III Static analysis-based SAR of Microservices
	IV Visualization of Microservices
	IV-A On service and domain view information
	IV-B Considered system samples
	IV-C Conventional architectural visualization and its properties
	IV-D A Microvision
	IV-D1 Designing 3D Visualization
	IV-D2 Microvision Approach Summary


	V Small Evaluation Study
	V-1 Evaluation Results

	VI Conclusions
	References

