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Abstract—Software system quality is strongly affected by the

organizational structure and collaboration across developers.

Effective and loosely coupled organization structures reflect the

high quality of the system architecture and the efficiency with

which this system can evolve. Especially for microservice-based

systems, as the notion of “one-microservice-per-team” is highly

recommended and advocated as one of the best practices in the

industry, it is crucial for the companies to be aware of the status

of their organizational structure and the critical contributors

therein. To such an end, this paper proposes an approach

to analyze the organizational structure of microservice-based

software projects in terms of contributor collaboration and to

identify the core contributors therein. Furthermore, we can also

monitor the evolution of the project’s organizational structure

via the growing collaboration activities through different releases.

The proposed method shall help the companies and organizations

adopting microservices better understand their organizational

structure and make more effective decisions in maintaining the

quality of microservice architectures.

Index Terms—Microservice; Organizational Structure; Collab-

oration; Social Network Analysis; Software Evolution; Mining

Software Repositories

I. INTRODUCTION

Microservice architecture is gaining increasing popularity
when academia has been investigating its adoption strategies,
best practices, and issues [1], [2]. Though both the technical
and organizational aspects of microservice adoption need to be
considered, the organizational side is often overlooked [3]. For
large programming projects, the purpose of the organization is
to reduce the amount of communication and enable effective
collaboration, which is critical for the project’s success [4].
Many metrics of project organization structure, such as the
developer team size, contribution frequency, organization in-
tersection factor, etc., can be seen as predictors for project
failure [5]. Therefore, it is important for any software project
and the critical stakeholders therein to be aware of the well-
functioning of their organizational structure. Especially for
large microservice projects, organizational challenges need to

be addressed when the companies migrate from monolithic
systems to microservices, where the structure and skills of
the organization should also support the new architecture [6].
Regarding the relation between the organization structure
and system architecture, Melvin E. Conway states that any
organization that designs a system will produce a design
whose structure is a copy of the organization’s communication
structure, known publicly as the Conway’s Law [7]. For
microservice-based systems, Conway’s Law is also contribut-
ing to the decentralized governance practice in the industry [8].
However, limited studies have contributed to investigating the
decentralization of organizations corresponding to potentially
similar microservice architecture and the best practices.

On the other hand, such decentralized organization of
microservice projects also influences the work of individual
software designers and developers in terms of their com-
munication and collaboration [9]. Since responsibilities are
assigned to microservices, a similar division in responsibilities
and labor should exist for developers [10]. It is important for
any software project managers to be aware of the developer
network within their organization in terms of collaboration
when such collaboration is latent from version control systems,
e.g., Github [11]. For microservice-baed projects specifically,
it is also important to effectively allocate the best-fitting devel-
opers and their suitable collaborators to specific microservices
they’re more familiar with. Such practice requires not only a
clear understanding of the overall organizational structure and
software architecture but also the traits and characteristics of
each individual developer.

Meanwhile, accompanied with the inevitable evolution of
the system, the microservice architecture evolves and, to
some extent, degrades if not properly maintained [12]. The
asynchronous changes in the architecture and organizational
structure shall influence the performance of the maintenance
team as well as the sustainable quality of the architecture itself.
To cope with such changes, system evolution assessments



are often conducted focusing on the architectural changes
across systems versions. However, the impact of such system
evolution on the organizational structure, and vice versa, shall
be taken into account and carefully addressed [13]. Therein,
analyzing the evolution of developer collaboration networks
as a reflection of the organizational structure could serve such
a purpose.

Therefore, the goal of this paper is to investigate the
methods to assess the organizational structure and identify
the key contributors in terms of collaboration amongst the
microservice projects. Furthermore, we also provide ways of
tracking the changes in such collaboration and contributor
rankings through the software evolution process.

In order to investigate our aforementioned goal, we formu-
lated two Research Questions (RQs):
RQ1: How to evaluate the organization’s collaboration struc-

ture and identify the core contributors within?
RQ2: How to monitor the changes in the organization struc-

ture and the importance of contributors during system
evolution?

We propose adopting the social network analysis (SNA)
methods to visualize and assess the organizational structure
of microservice projects with the collaboration data crawled
from GitHub repositories. Here, we apply a combination of
mining software repository techniques together with network
modularity analysis [14]. We can also evaluate the criticality
of any contributors of a particular project by calculating their
centralities [15] in the collaboration network, and further iden-
tify the core contributors with high centrality scores. Herein,
we consider core contributors as the particular developers
who are more central in the collaboration network. Therefore,
the more collaborative or central is a developer, the higher
impact on the organization it will be when such developers are
available. This will answer RQ1. Furthermore, we also propose
a method to track and compare the collaboration networks of
the different releases of the project reflecting the evolution
of their organizational structure. In addition, the changes in
each contributor’s centrality together with the evolution of the
system shall also be monitored. This will answer RQ2. The
main contribution of our work is to provide a comprehensive
method to construct, visualize and monitor the organizational
structure of microservice projects in terms of the collaboration
network amongst contributors. It shall help the stakeholders
better understand such structure and enable effective decision-
making.

The remainder of this paper is structured as follows. Sec-
tion II summarizes related works. Section III describes the
research method applied. Section IV presents the results,
while Section V discusses them. Finally, Section VI draws
conclusions and highlights future works.

II. RELATED WORK

Developer collaboration has been the subject of multiple
studies in open-source projects from different perspectives.
Researchers have used various methods to analyze the struc-
ture of the developers and their stability in software projects.

One of the methods used is to build a collaboration network
to investigate the interactions between developers. Wolf et
al. [16] investigated the impact of developer collaboration
on the outcome of code integration processes and found that
collaboration plays a crucial role in determining the quality of
software integration. They also developed a model that utilizes
network measures to predict whether integration will fail based
on the current communication structure of a development
team. Singh studied the impact of macro-level properties of
developer collaboration on open-source software success [17].
The study shows that a small-world network structure of
the OSS community leads to the success of the projects in
terms of code development and user acceptance. Surian et
al. extracted detailed topological graph patterns from a large
developer network [18]. Their results show that even for large
developer communities, not all developers are connected to
each individual other peer and collaboration clusters exist
commonly. They also validated the existence of the small-
world phenomenon where each developer can be reached
within no more than six connections.

Meanwhile, many studies also proposed methods and tech-
niques to analyze one or multiple attributes of the collaboration
networks. For example, Peng et al. [19] applied network analy-
sis techniques to analyze and measure the structural stability of
the evolving developer collaboration network in open-source
projects. Surian et al. [18] investigated the most common
topological pattern in collaboration networks in open-source
projects. They have proposed a method to mine this network
in multiple projects. Furthermore, El Asri et al. [20] proposed
a method to detect peripheral contributors, and applied it with
an adaptive time-frame incremental approach to clustering
and locating contributors in different temporal networks, and
detected common temporal patterns.

Other studies have looked at developer collaboration and
network analysis as a way to predict and detect failures in
software projects. Meneely et al. [21] created a collabora-
tion graph by tracking changes in files and releases, linking
developers based on their collaboration on the same files
and revisions. They used various methods of social network
analysis to predict software defects. Zimmermann et al. [22]
also identified defect-prone units using network analysis, but
they focused on analyzing dependency graphs of systems.
The aforementioned studies as well as many other works
investigate the existing network structures in terms of the col-
laboration amongst developers. They focus more on unfolding
the community structure than evaluating the overall quality
and exploring the connection to the other latent relations of
software projects. In this study, we evaluate the modularity of
developer collaboration network through the system evolution
and identify key developers within the system using centrality
analysis.

In the context of microservices, which are known for their
large distribution and use of multiple programming languages,
there are few studies that investigate collaboration among de-
velopers in microservices-based systems. Gustafsson et al. [23]
manually examined the collaboration practices of developers



in three microservices projects. They attempted to identify
patterns in the organization of these projects and whether
teams were adhering to Conway’s Law recommendations.
They also identified core developers based on the number of
files they have committed to. However, their findings suggest
that Conway’s Law has a lower limit of applicability regarding
project size and maturity, which calls for further research to
validate these pilot results.

Other studies have used network analysis techniques to
examine different aspects of microservice architecture. Gaidels
et al. [24] used a 37-microservice online banking application
to investigate the feasibility of applying network analysis on
the service dependency graph, but the study only shows the
feasibility of such application but fell short in contributing
to solving issues in microservice architecture reconstruction,
quality evaluation or anomaly detection. Gamage et al. [25]
proposed a tool that uses dependency graph and graph the-
ory algorithms to evaluate microservice architecture and to
identify anti-patterns, but the tool is capable of tracking only
synchronous systems which communicate in RESTful style.

The studies mentioned above use dependency graphs and
network analysis on the connection relations between mi-
croservices and aim to validate the feasibility of the methods.
Especially regarding the dependency graphs of microservices
architecture, many studies contribute to the reconstruction of
different architecture views using static and dynamic analysis.
For example, Bushong et al. proposed a method to analyze
microservice systems for the generation of data models and
communication diagrams using static analysis on Java source
code [26]. Al Maruf et al., proposed methods to use dynamic
analysis on telemetry data to generate the service dependency
graph of microservice-based systems which aims to facilitate
the monitoring of such systems and to detect the potential
anomalies and quality deterioration therein [27]. These studies
focus on the reconstruction and visualization of the existing
microservice architecture. But based on our knowledge, no
studies have been conducted on the investigation of developer
collaboration in microservice-based projects and the recon-
struction of the developer organization structure.

Furthermore, community detection methods have been ap-
proved being useful in detecting the latent network clusters
and patterns of software communities. Hou et al. proposed
a community detection algorithm based on the cooperation
intensity of developers to identify the many different types of
developer networks in the GitHub software ecosystem [28].
Shen et al. proposed a multi-objective optimization model for
community detection in software ecosystem network based on
developer collaboration intensity and programming language
similarity [29]. Meanwhile, network centrality and modularity
are also often adopted as important metrics to assess the
criticality of network nodes and the strength of network
division. For example, He et al. applied centrality analysis to
investigate the developers’ behaviors in the OSS community
and found different kinds of collaboration patterns and corre-
lations amongst different centrality values [30]. Jermakovics
et al. proposed an approach to construct and visualize the

developer networks and a filtering method to improve the
modularity of the network [11]. However, the application of
such methods in investigating the developers’ collaboration in
microservice-based projects is still limited.

III. METHODS

A. Data Pre-Processing

First, we crawl all the commits from the project repository
and group them by releases. For each commit, we identify
the related files changed, for each of which we identify the
developers committing to it. We identify two developers’
collaboration when they both commit to a file and use the
amount of time they modify the same file as the weight of the
collaboration relation. By doing so, we obtain the collaboration
network with each node being a developer and each edge as
the collaboration between two developers. On the other hand,
as herein each microservice is organized as a separate folder
in the repository, we consider any developer, who committed
to a file in a microservice folder, to be a contributor to this
microservice. In this way, we can also construct the collabo-
ration network on the microservice level with the weight of
each edge being the number of microservices to which the two
developers both contribute.

B. Evaluate Organization Collaboration Structure

For any real-world graphs, e.g., social networks, it is also
critical but difficult to detect the communities or clusters
within. A network community is commonly seen as a set
of vertices in a graph within which the connections amongst
the nodes are denser than those towards the rest of the
network [31]. Thus, community detection is necessary for the
identification of such communities of a particular network so
that the structure of it can be revealed. In general, two types
of community detection methods are commonly adopted in
practice: 1) to partition graphs by identifying and removing
the “spanning” links between densely-connected regions, e.g.,
Girvan-Newman algorithm [32]; 2) to assemble nodes that are
likely to belong to the same region, e.g., Louvain algorithm
[33].

From the collaboration network identified in the pre-
processing step, we adopt the Louvain community detection
algorithm to extract the latent communities in the collaboration
networks [33]. It is commonly used for the structure extraction
of a large weighted network with optimized modularity value.
As a key measure for network community quality, the modu-
larity of a network is a measure indicating the strength of the
division of a network into communities [14]. High-modularity
networks have dense connections between the vertices within
communities and comparatively sparse connections between
vertices between different communities. Simply put, networks
with higher modularity are stronger connected with the nodes
therein.

Given any network which is defined by V and E, where V is
the set of vertices and E is the set of edges of the network, we
assume m is the number of communities by which the target



network is partitioned into. Therefore, the network modularity
Q is then calculated as follows.

Q =
mX

k=1

[
lk
|E| � (

dk
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2] (1)

where lk is the number of edges between any two nodes
from the k-th community; and dk is the sum of the degree of
all those nodes.

Using the Louvain community detection method, each node
is assigned to a community when Q is maximized. �Q
indicating the increased value of Q when moving node i to
community C, which is calculated as
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where ki is the sum of weighted edges incident to i; kCi is
the sum of the edges from i to nodes in the community C;P

C is the sum of the weighted edges in C;
P

bC is the sum
of the edges incident to nodes in C; and n is the sum of the
weights of all the edges of the network.

The method is to detect the optimized community structure
of a network by moving nodes from one community to
another in order to detect the significantly improved �Q
[34]. Considering the fact that the nature of a high-modularity
network complies with the well-known “low coupling, high
cohesion” in software engineering, it is reasonable to use
the modularity value to represent the relevant quantification
of the organization structure. According to Fortunato and
Barthelemy, a value of Q larger than 0.3 – 0.4 is a clear
indication that the subgraphs of the corresponding partition are
modules [35]. Herein, such a value shall similarly indicate the
project organization has decent “low coupling, high cohesion”
quality in terms of contributor collaboration.

C. Identify the Critical Contributors in Organization

Two classic centrality measures are usually considered for
such a purpose, including closeness centrality and betweenness
centrality [36] Both closeness centrality and betweenness
centrality can be used to evaluate the importance of any
particular developer within the project collaboration network
[36].

Closeness centrality is an important index based on the
geodesic distances from the network vertices to all others.
It is a metric used to identify how long it shall take for
information to travel from a particular vertex to the others
in the network, i.e., how close is it to them [37]. Let V be
the set of vertices of a given network, where i is a particular
vertex within. The geodesic distance between i and another
vertex j 2 V is denoted as dG(i, j). Thus, as the closeness
centrality is defined as the inverse of the average distance [?],
the closeness centrality of i, CC(i), is calculated as follows.

CC(i) =
1P

j2V DG(i, j)
(3)

Betweenness centrality, indicating the “brokering positions
between others that provides an opportunity to intercept or
influence their communication“ [15], is based on the shortest
paths through a particular node. Herein, the geodesic path of
two individual nodes in the network is defined as the shortest
path between them. For a particular node i 2 N , the number
of geodesic paths between another two nodes h, j 2 N via
node i is denoted as ghij . Meanwhile, the number of geodesic
paths from h to j is denoted as ghj . Then, the betweenness
centrality of i, CB(i), is calculated as follows.

CB(i) =
X

j,h 6=i

ghij
ghj

(4)

Both betweenness centrality and closeness centrality cal-
culate the shortest paths of a vertex to the rest of the vertex
pairs in a relatively large network [38]. Betweenness centrality
measures the others’ dependence on a particular node indi-
cating which node has the most control [15]. Comparatively,
closeness centrality measures the access efficiency of the
specific node to the other nodes [39]. The developers of high
betweenness centrality are the ones critically linking two sets
of developers that tend to lose connection. Regarding the
collaboration network of developers, the ones with the high
closeness centrality are more closely collaborating with the
others. Meanwhile, the developers of high betweenness cen-
trality are the ones critically linking two sets of developers that
tend to be separate from each other. If the high-betweenness
developers are removed, the project then tends to have separate
subgroups of developers with less communication across.

D. Monitor the Organization Structure Evolution

In order to monitor the changes in the organizational struc-
ture, we follow the changes in the collaboration networks;
specifically, focusing on the changes in modularity and core
contributors. We shall keep track of the changes through the
different releases of the system, which is a common ap-
proach to analyzing the system evolution in terms of different
performance metrics [40], [41]. Herein, we can observe the
improvement or degradation of the collaboration relations and
the changes in contributor ranking by using the collaborating
data for different releases.

IV. CASE STUDY

In this study, we demonstrate the applicability of the pro-
posed method with a case study on an existing microservice-
based system, eShopOnContainer1, a sample .NET Core refer-
ence application, powered by Microsoft, based on a simplified
microservices architecture and Docker containers. By adopting
this case project as a proof-of-concept, we hereby present its
collaboration network and its evolution through releases and
identify the core contributors therein.

1eShop Container http://github.com/dotnet-architecture/eShopOnContainers
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Fig. 1: Number of Developers for each Microservice Fig. 2: Developers Distribution on File Coverage

A. Data Collection
We collect the 4 078 commits data of the project from

2016-09-06 to 2022-11-22 to establish latent collaboration
relations. Therein, each commit data point contains the infor-
mation of committer id, date, and changed files.
212 different committers contributed to all these commits with
59 321 changes to 6 403 different files. Furthermore, we also
manually checked the architecture of the project and identified
11 microservices (by the time of the last collected commit),
including Ordering, Basket, Catalog, Identity, Location, Pay-
ment, Marketing, Webhooks, GracePeriod, SagaManager, and
Common. In order to investigate the collaboration relations
on microservices, we identify the microservice on which
each commit targets. As all the microservices are defined as
individual sub-folders located in the eShopOnContainers/sr-
c/Services/ folder, we can easily identify the service changed
by each commit by locating the directory of the files changed.

The number of unique developers who contributed to each
microservice is displayed in Fig. 1 while the number of
files contributed by each developer is depicted in Fig. 2. We
can observe the nature of this case project that for some
microservices only very few developers have touched when
some have been contributed by many. On the other hand, the
developers’ file coverages also vary greatly, as nearly half of
the developers committed to only one file while 15 of them
committed to more than 500 files.

Additionally, we also select five major releases of the project
to observe its organizational structure evolution. The goal is to
select the releases where the in-between timespans are similar
so that the changes in terms of collaboration can be easily
observed with more commits involved for each timespan.

B. Data Analysis
With the commit dataset, we construct and visualize the

collaboration network establishing the collaboration relations
amongst the developers with Gephi [42]. Herein, we define
that a collaboration relationship is established when two
contributors commit to the same file or microservice. Such
a relation is depicted as an edge between the according nodes
(i.e., contributors) in the constructed collaboration network.
Furthermore, the weight of the edge is the number of files to

which the two developers both contributed; because when the
two developers co-contributed to more files, their connection
is closer than that of the ones having fewer co-contributed
files. To be emphasized, such an over-simplified collaboration
definition is only used for this proof-of-concept. In real-life
projects, the collaboration together with the social connection
between developers is complex and of multi-perspectives.

TABLE I: Collaboration Network Info for Each Release

Release Date File Collaboration MS Collaboration
Nodes Edges Nodes Edges

2.0.5 2018-04-05 80 458 83 2967
2.0.8 2018-11-12 97 537 105 4517
2.2.0 2019-03-21 111 664 122 5972
3.0.0 2019-11-26 136 837 146 8455
5.0.0 2021-11-08 174 1037 197 15244

For the constructed collaboration network, we use the
Louvain community detection algorithm to find the best com-
munities and calculate the modularity [33]. In addition, by
calculating the centrality of each contributor in the network,
we can estimate their importance in terms of collaboration.
Furthermore, by establishing the collaboration networks of
the selected five major releases based on the commits pushed
before the release time. Therefore, we can visualize and
observe the changes in the collaboration network through these
releases; meanwhile, together with the changes in contributor
centrality, the core contributor status can also be tracked.

The number of nodes and edges of the collaboration net-
works (on files and microservices) for the selected releases
are presented in TABLE I. We can observe the growth of the
collaboration through the releases.

C. Results

By using the Louvain community detection method, in terms
of file-level collaboration, the project (at Release 5.0.0) can
be divided into three communities with modularity at 0.195
(in TABLE II). The modularity value is much lower than 0.3
which indicates a suboptimal partition [35]. Therefore, the
result here shows that the communities are not well divided,
which means the contributors are heavily collaborating across
communities when it is likely that many are overburdened by



multiple unrelated modules of the systems. Similarly, consid-
ering collaboration on microservices, the modularity value is
even lower (0.170). The visualized collaboration network is
shown on the left of Fig. 3.

Fig. 3: The Collaboration Network and Core Contributors

Meanwhile, by calculating the betweenness centrality of
each developer in the collaboration network, we can simply
evaluate and compare their importance to the project in terms
of their position in control. From the visualized network, by
setting a threshold on centrality, we can simply extract the core
contributors of the project. Shown in the right part of Fig. 3, by
filtering out the developers with betweenness lower than 100
(an example threshold), we identify 13 core contributors. By
choosing different thresholds, the circle of core contributors
can certainly vary.

TABLE II: Network Modularity and Communities per Release

Release File Collaboration MS Collaboration
Modularity Community Modularity Community

2.0.5 0.139 2 0.113 2
2.0.8 0.145 3 0.144 2
2.2.0 0.167 3 0.148 2
3.0.0 0.184 3 0.156 2
5.0.0 0.195 3 0.170 2

Furthermore, by visualizing the collaboration networks of
different releases, we can easily observe the growth of the
collaboration in terms of both files and microservices (shown
in Fig. 4 and Fig. 5). Meanwhile, by tracking the evolution
of the collaboration through the releases, we can observe that
the modularity is increasing (shown in TABLE II). It indicates
the organizational structure is gradually improving though the
value is still not optimal. On the other hand, the collaboration
network on microservice shows similar results. The modularity
is also slightly increasing; though many developers are cover-
ing multiple microservices with their duties heavily coupled.

Furthermore, by comparing the centrality of the core con-
tributors in different releases, we can also clearly observe
their gaining or losing connections (shown in TABLE III).
Herein, we only use the betweenness centrality value of each
contributor as an example, as it is only to demonstrate the
feasibility of the method. For example, the developer mvelosop
start at a centrality of 7.93 at Release 2.0.5 and became
the 2nd core contributor of the project with a centrality of
2222.74. Another two developers, bad.kto and cesardl also

TABLE III: Core Contributors Centrality Evolution

Contributor 2.0.5 2.0.8 2.2.0 3.0.0 5.0.0
bad.kto 695.19 1339.95 1925.43 3150.56 6925.14
mvelosop 7.93 55.33 259.62 1164.68 2222.74
cesardl 730.16 1111.82 1230.81 1441.75 1759.89
etomas 593.61 710.60 844.21 1353.30 1574.85
ramon.tomas84 408.13 514.60 732.44 709.44 802.14
bgarcia 0.00 0.00 0.00 0.00 508.70
davidbritch@D 163.17 194.78 226.83 268.91 365.16
dmytro.hridin 0.00 0.00 0.55 206.89 221.78
dsanz 69.15 73.15 83.98 94.50 163.41
jcorral 0.00 0.00 0.00 108.22 117.39
unai 20.76 115.84 92.99 98.91 115.55
davidbritch@u 91.50 81.66 71.96 97.36 108.16
rtomas 18.94 92.86 89.87 89.98 100.30

grew steadily and remained top contributors. There are also
developers who lose collaboration within some periods, e.g.,
unai and davidbritch@u.

V. DISCUSSION

Compared to the previous studies, our work focuses on
the application of social network analysis methods, especially
the network centrality and modularity analysis as well as the
community detection, to the investigation of developer collab-
oration and organizational structure of microservice architec-
ture. Compared to traditional monolithic systems, microservice
projects are more demanding in terms of the quality of their
organizational structure, as advocated by many practitioners,
for microservice projects, it would be recommended that a
team should own exactly one service unless there is a proven
need to have multiple [43], [44]. Therefore, it is critical to
investigate the internal structure of the microservice project or-
ganization in terms of developer collaboration before detecting
the potential harming collaboration coupling and constructing
the according solutions.

In general, the coupling is a critical factor for microser-
vice architecture anti-patterns in terms of shared libraries,
inappropriate service intimacy, and shared persistence [45].
Regarding microservice systems, logically coupled microser-
vices can cause issues as multiple files will be changed with
one single commit when, consequently, the risk of developers
committing to services out of their domain expertise is high
[46], [47]. On the contrary, loosely coupled services allow the
developers to make changes without modifying other services
[48]. Therefore, investigating the evolving coupling between
services is critical for increasing the independence between
teams and reducing the level of hazardous dependencies.
Correspondingly, it is also critical to investigate the toxic
coupling in the organization structure of microservice projects
as it can be copied by the system structure [7]. Towards such
an end, a synthesized study on the different system views
together with the view of the organization structure shall
contribute to solving the issues [26].

The results show that by mining the commit data of any
given microservice project, we can evaluate its latent organi-
zational structure via collaboration network construction (con-
sidering either file level or microservice level collaboration).



Fig. 4: Developer Collaboration Evolution on Files

Fig. 5: Developer Collaboration Evolution on Microservices

Meanwhile, we can also identify the core contributors of the
project by evaluating their centrality in the network. This shall
answer RQ1. Furthermore, by tracking the evolution of such
collaboration through releases, we can clearly observe the
evolution of such structures and the growth of any individ-
ual contributor. This shall answer RQ2. To be noted, when
adopting closeness centrality, the outcomes are similar. When
considering the collaboration networks on the microservice
level, the majority (11) of the high-centrality core contributors
remain. In addition, these core contributors also contributed a
largely above-average number of commits.

To be emphasized, the proposed method is limited con-
cerning the ways of obtaining sufficient collaboration data. In
the case study, the collaboration relations between developers
(either on files or microservices) are largely simplified for
the purpose of proof-of-concept. The collaboration data can
be enhanced by mining issues and communications via chat
or emails [49]. On the other hand, the scope of the project
organization structure can be also enlarged by including more
stakeholders [50]. For future work, we shall continue to
investigate the adaptation of network modularity as a metric to
measure the quality of microservice-based project organization
in terms of contributor collaboration. We would also explore
the approaches to identify and assess the organizational cou-
pling issue in microservice projects and its relation to other
types of couplings. Furthermore, we shall also investigate the
potential solutions to fix the identified coupling issues in order
to improve the overall quality of the project organization.

VI. CONCLUSION

In this study, we propose the use of social network analysis
to evaluate the microservice project organizational structure in
terms of contributor collaboration, identify the core contrib-
utors therein, and monitor the evolution of collaboration and
contributors’ centrality through releases. The approach can be
largely enhanced by considering the multi-perspectives of con-
tributor collaboration in the future. This work also contributes
to the future investigation towards solving the organizational
coupling in microservice projects, and furthermore, effectively
maintaining the quality of microservice architecture.
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