
Benchmarks for End-to-End Microservices Testing
Sheldon Smith

Computer Science
Baylor University

Waco, Texas, USA
sheldon smith2@alumni.baylor.edu

Ethan Robinson
Computer Science
Baylor University

Waco, Texas, USA
Ethan Robinson2@alumni.baylor.edu

Timmy Frederiksen
Computer Science
Baylor University

Waco, Texas, USA
timmyfrederiksen@gmail.com

Trae Stevens
Computer Science
Baylor University

Waco, Texas, USA
trae stevens1@alumni.baylor.edu

Tomas Cerny
Computer Science
Baylor University

Waco, Texas, USA
tomas cerny@baylor.edu

Miroslav Bures
Computer Science

Czech Technical University, FEE
Prague, Czech Republic

buresm3@fel.cvut.cz

Davide Taibi
M3S Cloud Group
University of Oulu

Oulu, Finland
davide.taibi@oulu.fi

Abstract—Testing microservice systems involves a large
amount of planning and problem-solving. The difficulty of testing
microservice systems increases as the size and structure of
such systems become more complex. To help the microservice
community and simplify experiments with testing and traf-
fic simulation, we created a test benchmark containing full
functional testing coverage for two well-established open-source
microservice systems. Through our benchmark design, we aimed
to demonstrate ways to overcome certain challenges and find
effective strategies when testing microservices. In addition, to
demonstrate our benchmark use, we conducted a case study to
identify the best approaches to take to validate a full coverage
of tests using service-dependency graph discovery and business
process discovery using tracing.

Index Terms—Microservices, Load Testing, Functional Regres-
sion Testing, Functionality Testing, Benchmark

I. INTRODUCTION

Microservices are the mainstream approach to building
cloud-native systems. Microservice Architecture (MSA) pre-
scribes that a system comprises independently deployable ser-
vices that interact [1]. A microservice should have a single re-
sponsibility, meaning they only manage one specific part of the
organization’s needs. Microservices enable the decentralized
evolution of system parts and their selective scalability. Creat-
ing a service based on MSA helps eliminate the dependency on
certain technologies, enabling users to access service-specific
infrastructure [2]. However, microservices are developed and
evolved by independent and decentralized teams, despite the
result that users see as one holistic product.

Ensuring that the overall system functions properly, no
matter it’s internal dependencies and decomposition, is vital.
With the ever-growing complexity of the system and especially
when decentralized, it is important to aim for complete system
coverage, which is often challenging to accomplish. But only
then could we uncover whether all system functions are
assessed to proper and improper inputs.

Alongside functional testing, it is vital to assess that the
system responds properly to various amounts of users and

requests in concurrent load. Such load testing can accompany
functional tests while monitoring system response times.

Considering functional and load testing, we identified that
the microservices community is missing a test suite benchmark
that could be used for further research advancements and
evolution in this field. Because of this lack, we devised a case
study to show our progress in generating such a benchmark.

The central goal of our contribution is to provide the
scientific community with a comprehensive test suite for two
well-established microservice systems. Specifically, we are
focusing this work on functional and load testing. These
testing types are both an important part of testing the overall
functionality of these systems.

We introduce the test suite benchmarks through a case
study. We also identify and discuss multiple challenges that
arose while testing these systems and present some of the
best practices and fixes to common problems. We developed a
”best-effort” complete set of tests covering the endpoints of the
multiple microservices within each system. The test suite can
be used by researchers to validate their work on microservice
testing on a common test suite.

The remaining sections are organized as follows. Section 2
provides background on the microservices and tools. Section
3 covers our case study followed by the introduced benchmark
in Section 4. Section 5 concludes the paper.

II. BACKGROUND

Functional testing ensures that various system features work
in accordance with specifications or expectations of the system
functionality. The test cases are typically based on the specifi-
cations of the software components and each test corresponds
to a given software requirement or feature. This helps ensure
that the parts of the overall software suite work independently.
Focusing on the software requirements ensures that the output
is consistent with the end user’s expectations.

To simulate user interaction with microservice systems,
we consider the system as a black box and use its user
interfaces unaware of internal details. To aid with such testing,

ar
X

iv
:2

30
6.

05
89

5v
1

 [
cs

.S
E

]
 9

 J
un

 2
02

3

various frameworks bring the ability to design testing scripts.
For instance, the Selenium framework facilitates web-system
testing. It provides a method of automated web browsers
triggering events as if users made these.

Functional regression testing checks the system after modi-
fication ensuring all system features, flows, and functionalities
are working as in the previous version, or by a specification or
expectation of correct functionality. It helps with the quality
assurance of the system and assists in avoiding unintended
changes in the system caused by haste push for changes.

Besides functionality, analyzing how a system behaves
during various load conditions is also important. Load testing
is the process of simulating system demand that tests behavior
under various conditions. The term ’load’ in this case refers to
the rate or number of users and requests accessing the given
system [3]. Load testing helps ensure that user actions on
the system are stable by evaluating how the system reacts to
various amounts of load.

There are three main ways that load testing can be executed.
These load generation techniques include utilizing real users
to generate the load, using load drivers, or deploying the load
tests on special platforms [4]. Assessing the behavior of a
system over multiple amounts of load can highlight areas of
improvement, such as bottlenecks or areas of failure within
the system. These issues can often only be discovered using
load testing because they only occur or are visible under a
certain amount of load on the system.

Similarly, there are frameworks that can aid with test
automation. For instance, Gatling [5] can run a test script and
generate comprehensive load reports.

Another key metric in software testing is test coverage. It
helps to measure the amount of testing done over a given sys-
tem. The coverage of the tests shows which parts of the system
are being executed throughout the tests, measured by a ratio
of the number of particular elements of the system covered by
tests to the total number of these elements in the system.

A. Microservice System Benchmarks

To demonstrate functional and load tests for microservices,
two well-established and community-based systems were used
that provide a wide range of functionality that could be tested
throughout a case study. The Train-Ticket [6] is based on the
Java platform, and the eShopOnContainers [7] uses C#. This
system selection allows us to illustrate different scenarios in
our case study, resulting in a shareable test benchmark for
these systems.

The Train-Ticket benchmark provides a train ticket book-
ing system based on 47 microservices (as of version 1.0.0).
Figure 1 shows the Train-Ticket architecture’s general layout
and structure. It shows how the front-end, monitoring system,
and services interact within the system. This figure allows
users to understand how each of the microservices within the
Train-Ticket system depends on each other.

The use cases involved with this microservice system can
be broken down into user and admin actions. Certain actions

MYSQL

Gateway

Service
discovery

Service
registry

Flow
control

Verify
code

Ticket
Office

Avatar News Payment Inside
payment

User Food Security Contracts AssuranceConsign Order
/other

Station-
food

Train-
food

Consign-
price

Basic Voucher

TrainStationRoutePriceFood
delivery

Admin
-user

Config

Admin-
route

Admin-
travel

Admin-
basic-info

Travel
plan

Admin
-order

Front End

Monitoring
& metrics

Distributed
tracing

RABBITMQ

Notification Delivery

Wait-
order

Preserve
/other Rebook Execute Cancel

Route-
plan

Auth

SeatTravel/2

Fig. 1: Train-Ticket Architecture [6]

are present for all users, such as the login system, while others
depend on the type of user.

There are six main user use cases within the Train-Ticket
system. These cases are searching for a train, booking a ticket,
updating one’s consign, paying for the ticket, collecting the
ticket, and entering the station.

The admin use cases involve adding, updating, and deleting
various elements of the ticketing system such as orders,
routes, travel plans, users, contacts, stations, trains, prices, and
configurations.

For our case study, we are using version 1.0.0 of Train-
Ticket, which was released on August 9, 2022 [6]. This
microservice system was created by the Fudan University
CodeWisdom Team. The original goal for this system was
to provide a benchmark system for railway ticketing [8].

This system was created using a multitude of different
programming languages and frameworks such as Java (Spring
Boot, Spring Cloud), Node.js (Express), Python (Django), Go
(Webgo), and MongoDB and MySQL for the databases [6].

The eShopOnContainers microservice system is a sample
.Net Core reference application [7]. The system is centered
around providing various use cases involved in electronic
shopping applications. The front-end for this microservice is
split between two web applications: a traditional web app
made using HTML and a Single Page Application (SPA) made
through typescript and Angular 2. There is also a mobile app
component to this microservice system.

The architecture of this application is cross-platform at the
server and client-side. Figure 2 shows a layout of the interac-
tion between the client apps and the Docker host. Within the
Docker host there are multiple autonomous microservices with
each service containing its own data or database. Different
approaches to the structure of the microservices are used, such
as CRUD and DDD/CQRS patterns. HTTP is the primary form
of communication between these microservices and the client
apps with which the user interacts [7].

There are a multitude of use cases that the user can perform
on this application. In order to interact the most with the

Fig. 2: eShopOnContainers Architecture [7]

functionality, the user must login with either the premade demo
account or they can register a new account on the system. A
user is able to filter the items based on multiple fields, which
is not dependent on the user being login into the system. A
registered user can add items to the cart, which can be
updated on the cart page. Users can complete the checkout
process to finalize the order or cancel the given order. Lastly,
users can view the past orders that they’ve completed.

For our case study we used version 5.0.0 of the eShopOn-
Containers microservice. This microservice system is provided
as one of the reference apps by .NET Application Architecture
[7]; in addition, it has broad community contributions in its
codebase repository.

III. CASE STUDY

The goal of our case study is to create an all-inclusive set
of tests centered around the functionality of all the system
endpoints, so as to evaluate the system and its functionality
under stress and determine the behavior of well-established
microservice systems.

Since we are focusing on functional and load testing for our
case study, our test benchmark is centered around evaluating
the response time of actions, the user interface interaction, and
the overall functionality of the system.

The functionality testing considers the system as a black box
and is unaware of internal decomposition to microservices,
which is often reflecting the user view. The (web-based)
user interface testing benchmark helps ensure consistency
throughout the execution of user actions.

The functionality testing through the user interface ensures
that the system displays information correctly and consistently.
If there is variability within the displayed information, it could
greatly affect the user experience.

The load testing aims to identify possible places of bottle-
neck and slow down. This is important because user experience
can be significantly effected by these issues. However, with
load testing, we might consider the system to be a gray box
and focus on middleware-exposed endpoints.

As mentioned previously, load testing microservice systems
is vital to ensure that the various microservices react well to
different amounts of load. This can help pinpoint areas of
bottleneck and failure within the system.

Throughout the process of our case study, multiple chal-
lenges arose while testing these microservice systems. Within
this case study we will present some of the best practices and
fixes to common issues that could arise while testing.

A. Functional Regression Testing Case Study

We wanted to ensure the correctness of the provided
functionality of the microservice system by implementing an
automated web-based test suite. We used Selenium for this
purpose, and we were able to ensure the microservices func-
tion and display properly across various browser environments.
We wanted to ensure that we implemented automated tests
to thoroughly test both the microservices’ functionality and
design. For this case study, our goal was to provide a complete
test suite that includes functional and user interface testing in
order to closely simulate a user’s experience when utilizing
the microservice systems.

We used Selenium framework to write automated tests
that simulated a user’s experience of the Train-Ticket and
eShopOnContainers microservice systems.

1) Study Design

First, we manually created a comprehensive list of use cases
within each microservice. Our approach to creating a list of
comprehensive use cases was to record every possible action
the user could take when interacting with the microservice and
test the result of that action. We kept track of the use cases
in a spreadsheet and marked each use case as the automated
test was completed. Keeping a list of test cases helped us keep
track of which use cases were fully tested and provided a good
indicator of our progress until full coverage. This document
has been shared along with our test benchmark on Zenodo [9].

2) Study Procedure / Facing Initial Pitfalls

We ruled off Katalon Web Recorder [10] since the resulting
scripts contained a lot of unmodularized, repetitive, and un-
readable code. We proceeded manually with our own Selenium
scripts. Runnable as JUnit tests for our automated web browser
testing, we would test our work by using a Chrome web
browser. This web browser allowed us to visualize how our
code interacted with the microservices and allowed us to stop
the execution and inspect the web browser while debugging.
While using a Chrome web browser is good to debug and
write the tests, using this method is not efficient when running
multiple tests, since multiple web browsers are generated for
each test and clutter the screen.

We grouped similar use cases together into tests, to reduce
the number of tests run. Grouping the tests together helped
reduce redundant steps and increased efficiency. After the cre-
ation of the tests, instead of running them on the Chrome web
browser, we transitioned to running the tests on the HTML
Unit WebDriver, which is a web driver without a GUI. It

supports JavaScript and will simulate a web browser for testing
with other frameworks, such as JUnit [11]. This also sped up
the processing time for our JUnit tests. However, we wanted
to make our tests even more efficient by parallelizing them.

We utilized TestNG framework with the ability to parallelize
the tests [12]. Moreover, TestNG allows the tester to have
more control over the tests and is able to specify the number
of threads the tests will execute on. We transitioned from
using JUnit as our testing framework to using TestNG. After
switching frameworks, we parallelized our tests to make them
more efficient. After the parallelization of the Selenium tests,
now the time it takes to run them was reduced dramatically.

3) Study Results

Since our procedure was to create an all-inclusive set of tests
of the user-provided functionality, we aimed to interact with
every possible functionality exposed to the user in order to best
simulate the user’s experience. As a result of our functional
regression case study, we ended up testing a total of 51 use
cases for the TrainTicket system and a total of 26 use cases
for the eShopOnContainers system, as shown in Table I.

Test Suite # of Selenium Use Cases
Admin TrainTicket 33
Client TrainTicket 18

Combined TrainTicket 51
eShopOnContainers 26

TABLE I: Number of Selenium Tests per Suite
Use Case Benchmark

Although we strove to fully implement every possible use
case, there was one use case in the TrainTicket microservice
system we could not fully test, which was the consign service.
Although we fully wrote out the test for the consign service,
we were unable to get that service deployed in the TrainTicket
system. Therefore our test would work theoretically, but we
were unable to verify its results.

The TrainTicket booking test suite encompasses all of the
client-side use cases, due to their co-dependence on one
another. The booking test suite involves using the regular
search feature to find and book a ticket, pay for the ticket,
change the ticket order, collect the ticket, and enter the station.
The booking test suite also includes using the advanced search
feature to find and book a second ticket, cancel that ticket, and
finally delete all of the information added at the end of the
test. All of these use cases are actions a client would typically
take when booking and managing their ticket.

The eShopOnContainers checkout test suite involves popu-
lating the cart with an item, navigating to the checkout screen,
and verifying the system needs the formatted information to
proceed with the checkout and placing the order.

Table II and Table III lists all of the TrainTicket and
eShopOnContainers Selenium tests. The number of tests for
both TrainTicket and eShopOnContainers is far less than the
amount of use cases covering each microservice, as depicted
in Table I. Since we grouped together similar use cases, we
ended up with far less tests than use cases.

Test
Suite

Test Use Cases

Client Login Valid/Invalid Login,
Invalid User/Password, Logout

Booking

Book Economy, Book First Class,
Create/Save Contact,

Client Book with Assurance, with Food,
with Consign, Cancel

Order List Invalid Phone Number,
Update Consign, Pay for Ticket

Collect Ticket Collect Ticket
Enter Station Enter Station

Admin Login Valid/Invalid Login,
Invalid User/Password, Logout

Order List Add/Update/Delete Order
Route List Add/Update/Delete Route
Travel List Add/Update/Delete Travel
User List Add/Update/Delete User

Admin Contact List Add/Update/Delete Contact
Station List Add/Update/Delete Station
Train List Add/Update/Delete Train
Price List Add/Update/Delete Price

Config List Add/Update/Delete Config

TABLE II: Name of TrainTicket Selenium Tests
Use Case Benchmark

Test Use Cases
Valid/Invalid Login,

Login Invalid User/Password,
Logout

Registration

Valid/Invalid Credentials,
Missing Credentials,
Unique Username,

Matching Passwords,
Invalid Expiration Date,

Login

Browse Pages Next Page,
Previous Page

Searching/Filtering
Search By Brands,
Search By Types,
Multi-field Search

Update Cart
Increment Cart (Save/No Save),
Decrement Cart (Save/No Save),

Remove Item

Checkout Information Population,
Valid/Invalid Checkout

TABLE III: Name of eShopOnContainers Selenium Tests
Use Case Benchmark

The parallelization of the eShopOnContainers test suites
resulted in faster execution of the tests. Before parallelizing
our functional regression tests, we observed that the execution
time would average about 25 seconds. After we implemented
Html Unit and the TestNG testing framework, we observed that
the execution time would average about 6-7 seconds, which
was the execution time of the slowest test.

Although our tests are still relatively small in size, our case
study is evidence that parallelizing functional regression tests
saves time, especially for bigger projects and testing suites.

B. Load Testing

Within our load testing case study, we wanted to focus on
testing the response time of the multiple endpoints within
the microservice systems. More specifically, we wanted to
supply tests so that the community is able to see how these
microservices response to a variety of different loads. We

sought to provide a way for those interested to be able to
see the various issues that could arise as more users access
the system. This includes seeing the potential bottlenecks and
response time of the system.

As elaborated in the background, we used Gatling (version
3.9.2) to create our load tests for both systems.

1) Study Design

To track which endpoints have been tested within the mi-
croservice, we created a version control document to show the
progress of our tests. Within the document, we listed out every
endpoint we had found within the microservice system and
additional information such as the specific microservice the
endpoints were within, the testing file in which the endpoint
was tested, and lastly, whether the endpoint was fully covered
or not. This helped to provide a structure and plan for the tests
moving forward. This allowed us to split up the testing files
more efficiently, such as basing the tests on the microservice
each endpoint was associated with or on a use case. This
document has been shared along with our test benchmark on
Zenodo [9].

To create this version control list of the endpoints, we
needed to manually fill out all of the endpoints and services
that they are a part of. This took a decent amount of time
to create and keep track of which tests we had fully tested.
It would have been more efficient and less reliant on human
error to have an automated system that tracked endpoints that
we tested by analyzing the test source code. This would have
cut down a significant amount of time spent to make sure that
the version control list and our tests were in sync. However,
this process was out of the bounds of our case study, so we
were unable to implement this system.

In addition to creating a list of endpoints, we also high-
lighted the main use cases within each microservice. This
helped us get a better understanding of how users would
normally interact with the microservices to help guide our
tests to focus on the use cases that the user would perform.
This list of endpoints is included on Zenodo [9].

2) Study Procedure / Facing Initial Pitfalls

We ruled out the recording tool provided by Gatling. Writing
the tests manually allowed us to develop more concise and
focused code that was outside the bounds of the recorder.

One issue that was prevalent early on in the process of
load testing was ensuring proper authentication through the
test. When a user logs into the given system, an authenti-
cation token is generated, which is used in the header of
subsequent calls in order to authenticate that the user has
valid access to that endpoint. However, within Gatling, this
authentication token is often hard-coded into the header and
thus becomes obsolete on ensuing requests. This causes an
HTTP 403 forbidden response from the system, thus blocking
the request. To solve this issue, we saved the authentication
token that was in the response body after completing the login
request. You can save a specific part of the response body
by using the function .check(jsonPath("$.token")

.saveAs("user_token")) in Gatling. This saves the
token in a local variable called ”user_token.” The variable
can then be accessed using ${user_token} in the header
of the request to provide the valid authentication token.

Another important decision with load testing is how to
deal with form parameters. Form parameters can be used in
a variety of HTTP requests but are mainly associated with
post, put, and patch requests since they normally require
information to be sent to the endpoint. Throughout our case
study for load testing, we used two main types of providing
form parameters in Gatling: using the formparam function
or the .body(RawFileBody()) function.

The formparam function is used for each
parameter needed for the form. The format is
.formparam(parameterName, parameterValue).
We found that this option is best when there is a low number
of parameters. Using this function helps the tester easily see
all of the parameters within the given endpoint call. Below is
a sample post request showing the usage of the formparam
function in Gatling. This example uses references to variables
defined elsewhere in the test file.

// Example Usage of RawFileBody() Function
.exec(http("Example Post Request for Login")

.post("/api/v1/login")

.formParam("Email", "${email}")

.formParam("Password", "${password}")

.headers(...))

The other option is using the RawFileBody() function,
which can be used with a variety of file formats. We used
this function by employing JSON files. We found this option is
best suited for forms that require a large number of parameters.
This is because you are able to contain all the parameters in
one external file instead of having them spread over multiple
lines within the test scenario. This option is also generally
more dynamic than using the formparam function because you
are able to use a variety of different file formats depending
on which format suits the given request the best. This option
involves supplying a JSON file within the structure of the
project that maps the parameter names to each parameter’s
value. Below is a sample post request showing the usage of
the RawFileBody() function in Gatling.

// Example Usage of formparam Function
.exec(http("Example Post Request for Login")

.post("/api/v1/login")

.body(RawFileBody("login_form.json"))

.headers(...))

3) Study Results

Before discussing the results from our load tests, it is im-
portant to note that load tests will give different results for
different server capacities. In our case study, we deployed
the microservice system through a Ubuntu server. We ran
the tests on a Windows machine with a disk capacity of 1
TB, 32 GB of memory, and a 3.20GHz, 6-core CPU. For the

deployed microservice system, we had a single insurance per
each microservice in the system.

From our analysis of the Train-Ticket microservice, we out-
lined 240 endpoints across microservices. However, only 41 of
those services contain endpoints. Throughout our case study,
we were able to complete full coverage of those endpoints to
the best of our understanding. We split up the tests into 26
Scala testing files.

Tables IV and V give a breakdown of the response time of
the respective system for a variety of users on the system for a
certain use case. The columns show the number of users during
the test, the number of requests that took more than 800ms,
the total requests throughout the test, and the percentage of
the requests that took over 800ms. This information is used
to determine the stability of the use case given multiple levels
of example load. Each load was applied to the system over
a 30-second interval to isolate the load as the independent
factor. In section IV, we will discuss how we formulated these
benchmark metrics.

Table IV shows the results of our load testing of the ticket
booking use case in Train-Ticket. In this given use case, the
user logs into the system, finds a train, and then books a ticket
for that train. For the purposes of isolating the ticket booking
use case, we silenced the login scenario requests so they would
not show up in our results.

Analyzing the results of the test covering 100 users, the
system reacts well to this low load by having less than 1% of
the response be over 800ms. Loads of 500 and 1000 cause
7.3% and 10.2% of the system, respectively to fall above
the 800ms threshold. However, these results still pass our
measurement specifications, mentioned in Section IV, because
the system was able to handle the particular load since the
percentage of requests over 800ms was below 20%. The last
tests covering loads of 2500 and 5000 users fall above these
specifications thus showing that the system doesn’t respond
well to loads at and above these amounts.

Number of
Users

Greater Than
800ms

Total Requests Percentage
over 800ms

100 3 706 0.4%
500 259 3,530 7.3%
1000 721 7,060 10.2%
2500 3,813 17,650 21.6%
5000 15,249 35,300 43.2%

TABLE IV: Train-Ticket Booking Ticket
Use Case Benchmark

For our load testing of the eShopOnContainers microservice
system, we split up the tests into 6 main Scala testing files.
The use cases we lower for this system because the system
mainly had use cases for one user type. We broke up the tests
based on the use case that they covered.

Table V portrays the same information as Table IV but
covers the results from the order checkout use case in the
eShopOnContainers microservice system. Within this use case,
the virtual users log into the system, go to their cart, and check
out. Similar to before we removed the requests from the login
scenario from our results to isolate the checkout scenario.

The first few tests with 100 and 500 users respectively show
a small amount of slow response time. This shows that the
system remains stable during these low levels of load. This test
benchmark shows that there is a dramatic increase in response
time between 1,000 users and 2,500 users. A load of 1,000
users falls close to our prescribed measurement specification of
20%. However, the system responds poorly in handling 2,500
and 5,000 users. Since a majority of requests take over 800ms
to finalize, the system is unsuccessful in responding effectively
to loads of over 1,000 users.

Number of
Users

Greater
Than 800ms

Total Requests Percentage
over 800ms

100 0 2,244 0.0%
500 52 11,253 0.5%

1000 4,276 22,479 19.0%
2500 35,952 56,343 63.8%
5000 75,910 112,593 67.4%

TABLE V: eShopOnContainers Checkout
Use Case Benchmark

Throughout both systems, we noticed that the microservice
controlling the login scenario reacted specifically poorly to
large amounts of load. This is likely due to the level of
validation that goes into checking the credentials of the user.
This highlights a key bottleneck within the system for users.

IV. PROPOSED BENCHMARK

With our case study, we provide the community with a test
benchmark of the microservice systems that we evaluated.
Creating a test benchmark allows for an easy way to show
the community how systems respond to a variety of different
tests. In addition, they can use the benchmark to simulate
system used to perform dynamic system analysis, security
assessments, resilience, or scale testing.

One key to test benchmarks is that they are repeatable. It can
serve as a point of reference that other products and services
can be compared against. These benchmarks can also be used
to compare the past, present, and future software releases with
their respective benchmarks. A clear evolution of the software
results can be traced using these benchmarks.

Overall, there are three main benchmark components [13].
1. Workload Specifications: This area of a benchmark covers

determining the type and frequency of requests to be
submitted to the system under a given test. Within load
testing this selecting the overall number of users over
a given amount of time that the test will execute. The
workload specifications for web browser testing involve
evaluating the parallelization of tests.

2. Metric Specifications: This component centers around
determining which specific element of a given test will be
used for evaluation. These metrics can be simply whether
to overall test passed or fail, the response time of the
requests, the efficiency of the tests, or some other metric.

3. Measurement Specifications: The last main component of
a testing benchmark is determining how to measure the
specified metrics to evaluate the results. This determi-
nation is also denoted as the Service Level Agreement

(SLA) criteria. This can involve a certain threshold for
the number of requests passed a certain response time or
whether all the tests passed or not.

Within load testing, it is important to keep the load as
realistic to the normal workload of the system as possible. This
will give a better understanding of how the system reacts under
typical circumstances. Unfortunately, there is little data about
the normal amount of users that access these microservice
system. With this in mind, we decided to test a variety of
different loads starting with a low base test of 100 users and
going up to 5,000 users as our max. This helped define our
workload specification to be 100 users, 500 users, 1,000 users,
2,500 users, and 5,000 users.

To keep test execution consistent, these loads are executed
over a 30-second period of time. The metric specifications
that we use to measure the results were the response time of
each request. With each test, we are able to divide the number
of responses that took less than 800ms, between 800ms and
1200ms, and greater than 1200ms.

It has been found that the most preferred response time
for systems is 0.1 seconds or 100ms. However, the maximum
limit of acceptable response time is normally set at 1 second
or 1,000ms [14]. With this in mind, we decided to set our
acceptable response time at 0.8 seconds or 800ms since it lent
itself well with the testing tool that we used. This lead us to
determine that the specification of measurements for the load
tests would be the percentage of requests that took over 800ms
to complete. We chose to use a percentage instead of a specific
number to help this metric scale better to tests with different
loads. We decided that a given use case was able to handle
the particular load if the percentage of requests that took over
800ms is less than 20%

While writing regression tests for a web browser, it is impor-
tant to try and make the tests run as efficiently as possible to
reduce execution time. Since the tests will be run many times
after changes or updates to the code, they need to have a low
execution run-time. To cut down on the execution time, we
used the TestNG framework to parallelize the Selenium tests
for the microservices. We decided to dedicate each test to its
own thread to reduce the testing time as much as possible.

We grouped our regression tests by service, so each test
would include many assertions about the various parts of
the given system. We used the individual assertions as our
metric specifications. The individual assertions and actions
taken during the course of the test are the determining factor
for evaluation.

For our regression tests, we measure the assertions by
determining whether a collective test passed or failed. If one
of the assertions within a test failed, it will cause the entire
test to fail. We measure the success of the test only by if the
entire test passed or failed.

After completion, if our case study results in test benchmark
for particular microservice systems, we share our set of tests
to Zenodo [9]. We share the test benchmark to allow other
researchers and test industry engineers in the community
interested in tracking the testing results to expand them.

V. CONCLUSION

This paper presents a novel test suit that can be effectively
used as a benchmark for research on software testing in
microservice-based systems. Our approach considered both
functional regression testing and load testing. We selected two
well-established microservice systems to create a test bench-
mark to provide the community. These benchmark systems
were Train-Ticket and eShopOnContainers.

Our twofold approach to evaluating the performance of
microservice systems helps highlight key areas of failure
within these systems. The load testing aspect of our case
study highlights areas within the endpoints that could cause
a bottleneck or failure given different amounts of load. Un-
derstanding how the system responds to various amounts of
load can help designers understand areas to help improve
user experience. Our second testing aspect involves analyzing
the system using functional regression testing. Specifically
within this approach, we used automated web-system testing
to ensure that the system displays correctly and consistently
across various browser environments.

The contribution of this work to the community is (1)
to provide an open-source example of automated functional
regression tests and load tests for microservice systems, as
previously published examples are not sufficient, and (2) to
produce an initial set of comprehensive tests for a proposed
benchmark of well-established microservice systems.

REFERENCES

[1] J. Lewis and M. Fowler, “Microservices,” 2014. [Online]. Available:
https://martinfowler.com/articles/microservices.html

[2] T. Cerny, M. J. Donahoo, and M. Trnka, “Contextual understanding of
microservice architecture: current and future directions,” ACM SIGAPP
Applied Computing Review, vol. 17, no. 4, pp. 29–45, 2018.

[3] Z. M. Jiang, A. E. Hassan, G. Hamann, and P. Flora, “Automatic
identification of load testing problems,” in 2008 IEEE International
Conference on Software Maintenance, 2008, pp. 307–316.

[4] Z. M. Jiang and A. E. Hassan, “A survey on load testing of large-scale
software systems,” IEEE Transactions on Software Engineering, vol. 41,
no. 11, pp. 1091–1118, 2015.

[5] Gatling, “Gatling,” 2023. [Online]. Available: https://gatling.io/docs/
gatling/reference/current/

[6] FudanSELab, “Train-ticket,” 2022. [Online]. Available: https://github.
com/FudanSELab/train-ticket

[7] N. Application, “eshoponcontainers,” 2023. [Online]. Available: https:
//github.com/dotnet-architecture/eShopOnContainers

[8] X. Zhou, X. Peng, T. Xie, J. Sun, C. Xu, C. Ji, and W. Zhao,
“Benchmarking microservice systems for software engineering
research,” in Proceedings of the 40th International Conference
on Software Engineering: Companion Proceeedings, ICSE 2018,
Gothenburg, Sweden, May 27 - June 03, 2018, M. Chaudron,
I. Crnkovic, M. Chechik, and M. Harman, Eds. ACM, 2018, pp.
323–324. [Online]. Available: https://doi.org/10.1145/3183440.3194991

[9] S. Smith, E. Robinson, T. Frederiksen, and T. Stevens, “Case study of
test benchmark for microservices: Train-ticket and eshoponcontainers,”
2023. [Online]. Available: https://doi.org/10.5281/zenodo.7877723

[10] Katalon, “Katalon automation recorder quickstart,” 2023.
[Online]. Available: https://katalon.com/resources-center/blog/
katalon-automation-recorder

[11] G. S. Inc, “Htmlunit,” 2023. [Online]. Available: https://htmlunit.
sourceforge.io/

[12] C. Beust, “Testng,” 2022. [Online]. Available: https://testng.org/doc/
[13] T. Hamilton, “What is benchmark testing?” [Online]. Available:

https://www.guru99.com/benchmark-testing.html
[14] ——, “Response time testing - how to measure for api?” 2023. [Online].

Available: https://www.guru99.com/response-time-testing.html

https://martinfowler.com/articles/microservices.html
https://gatling.io/docs/gatling/reference/current/
https://gatling.io/docs/gatling/reference/current/
https://github.com/FudanSELab/train-ticket
https://github.com/FudanSELab/train-ticket
https://github.com/dotnet-architecture/eShopOnContainers
https://github.com/dotnet-architecture/eShopOnContainers
https://doi.org/10.1145/3183440.3194991
https://doi.org/10.5281/zenodo.7877723
https://katalon.com/resources-center/blog/katalon-automation-recorder
https://katalon.com/resources-center/blog/katalon-automation-recorder
https://htmlunit.sourceforge.io/
https://htmlunit.sourceforge.io/
https://testng.org/doc/
https://www.guru99.com/benchmark-testing.html
https://www.guru99.com/response-time-testing.html

	Introduction
	Background
	Microservice System Benchmarks

	Case Study
	Functional Regression Testing Case Study
	Study Design
	Study Procedure / Facing Initial Pitfalls
	Study Results

	Load Testing
	Study Design
	Study Procedure / Facing Initial Pitfalls
	Study Results

	Proposed Benchmark
	Conclusion
	References

