
CERIAS Tech Report 2007-71
Usable Mandatory Integrity Protection for Operating Systems

 by Ninghui Li, Ziqing Mao, Hong Chen
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086



Usable Mandatory Integrity Protection for Operating Systems

Ninghui Li Ziqing Mao Hong Chen
Center for Education and Research in Information Assurance and Security (CERIAS)

and Department of Computer Science
Purdue University

{ninghui, zmao, chen131}@cs.purdue.edu

Abstract

Existing mandatory access control systems for operat-
ing systems are difficult to use. We identify several prin-
ciples for designing usable access control systems and in-
troduce the Usable Mandatory Integrity Protection (UMIP)
model that adds usable mandatory access control to oper-
ating systems. The UMIP model is designed to preserve
system integrity in the face of network-based attacks. The
usability goals for UMIP are twofold. First, configuring a
UMIP system should not be more difficult than installing
and configuring an operating system. Second, existing ap-
plications and common usage practices can still be used
under UMIP. UMIP has several novel features to achieve
these goals. For example, it introduces several concepts
for expressing partial trust in programs. Furthermore, it
leverages information in the existing discretionary access
control mechanism to derive file labels for mandatory in-
tegrity protection. We also discuss our implementation of
the UMIP model for Linux using the Linux Security Mod-
ules framework, and show that it is simple to configure, has
low overhead, and effectively defends against a number of
network-based attacks.

1 Introduction

Host compromise is one of the most serious computer
security problems today. Computer worms propagate by
first compromising vulnerable hosts and then propagate to
other hosts. Compromised hosts may be organized under a
common command and control infrastructure, forming bot-
nets. Botnets can then be used for carrying out attacks such
as phishing, spamming, and distributed denial of service.
These threats can be partially dealt with at the network level
using valuable technologies such as firewalls and network
intrusion detection systems. However, to effectively solve
the problem, one has to also address the root cause of these
threats, namely, the vulnerability of end hosts. Two key rea-

sons why hosts can be easily compromised are: (1) software
are buggy, and (2) the discretionary access control mecha-
nism in today’s operating systems is insufficient for defend-
ing against network-based attacks.

There are a lot of research efforts on making computer
systems more secure by adding mandatory access con-
trol (MAC)1 to operating systems, e.g., Janus [12], DTE
Unix [3, 2], Linux Intrusion Detection System (LIDS) [13],
LOMAC [10], systrace [17], AppArmor [8, 1], and Security
Enhanced Linux (SELinux) [16]. Several of these systems
are flexible and powerful. Through proper configuration,
they could result in highly-secure systems. However, they
are also complex and intimidating to configure. For exam-
ple, SELinux has 29 different classes of objects, hundreds
of possible operations, and thousands of policy rules for a
typical system. The SELinux policy interface is daunting
even for security experts. While SELinux makes sense in a
setting where the systems run similar applications, and so-
phisticated security expertise is available, its applicability
to a more general setting is unclear.

In this paper, we tackle the problem of designing and im-
plementing a usable MAC system to protect end hosts. We
start by identifying several principles for designing usable
access control mechanisms in general. We then introduce
the Usable Mandatory Integrity Protection (UMIP) model,
which was designed following these principles.

The security goal of the UMIP model is to preserve sys-
tem integrity in the face of network-based attacks. We as-
sume that programs contain bugs and can be exploited if
the attacker is able to feed malicious inputs to them. We as-
sume that users may make careless mistakes in their actions,
e.g., downloading a malicious program from the Internet
and running it. However, we assume that the attacker does
not have physical access to the host to be protected. UMIP
aims at narrowing the channels through which a network-

1In this paper, we use MAC to refer to the approach where a system-
wide security policy restricts the access rights of processes. This is a wider
interpretation of MAC than that in the TCSEC [9], which focuses on multi-
level security.



based attacker can take over a host. The usability goals for
UMIP are twofold. First, configuring a UMIP should not be
more difficult than installing and configuring an operating
system. Second, existing application programs and com-
mon practices for using and administering the system can
still be used under UMIP.

The basic UMIP policy is as follows: Each process has
an integrity level, which is either high or low. When a pro-
cess is created, it inherits the integrity level of the parent
process. When a process performs an operation that makes
it potentially contaminated, it drops its integrity. Such oper-
ations include communicating with the network, receiving
data from a low-integrity process through an interprocess
communication channel, and reading or executing a file that
is potentially contaminated. A low-integrity process by de-
fault cannot perform sensitive operations.

One novel feature of UMIP is that, unlike previous MAC
systems, UMIP uses existing DAC information to identify
which files are to be protected. In UMIP, a file is write-
protected if its DAC permission is not world-writable, and
a file is read-protected if it is owned by a system account
(e.g., root, bin, etc.) and is not world-readable. A low-
integrity process (even if running as root) by default is for-
bidden from writing any write-protected file, reading any
read-protected file, or changing the DAC permission of any
(read- or write-) protected file.

While the basic UMIP policy achieves the security goal,
many existing applications will not be able to run and many
common practices for using and administering the system
will become impossible. We thus need to extend the basic
UMIP policy to balance the functional requirements, the se-
curity goal, and the simplicity of the design (for usability).
UMIP introduces several concepts to model programs that
are partially trusted; these programs can violate the default
integrity policy in certain limited, well-defined ways. For
example, a program can be declared to be a remote admin-
istration point, so that a process running the program does
not drop integrity upon receiving network traffic. This en-
ables remote system administration through, e.g., the ssh
daemon. Such a program is only partially trusted in that a
process running it still drops integrity when reading a low-
integrity file or receiving data from another low-integrity
process. For another example, exception policies can be
specified for some programs so that even when they are run-
ning in low-integrity processes, they can access some pro-
tected resources.

We have implemented UMIP for Linux using the Linux
Security Modules (LSM) framework [24], and have been
using evolving prototypes of the UMIP system within our
group for a few months. We have found that only a small
number of exceptions and settings need to be specified for
our environment.

The contributions of this paper are three-fold.

1. We identify several design principles for designing us-
able access control mechanisms. Not all of these prin-
ciples are new. Several of them have appeared before
in the literature. However, we believe that putting these
principles together and illustrating them through the
design of an actual system would be useful for other
researchers and developers designing and implement-
ing usable access control systems.

2. We introduce the UMIP model, a simple, practical
MAC model that preserves system integrity in the face
of network-based attacks. It has several novel features
compared with existing integrity protection models.

3. We report our design and implementation of UMIP un-
der Linux, and show that it is simple to configure, has
low overhead, and effectively defends against a num-
ber of network-based attacks.

The rest of this paper is organized as follows. We dis-
cuss design principles in Section 2. The UMIP model is
described in Section 3. Our implementation of UMIP and
its evaluation are described in Section 4. We then discuss
related work in Section 5 and conclude in Section 6.

2 Design Principles for Usable Access
Control Systems

While it is widely agreed that usability is very important
for security technologies, how to design an access control
system that has a high level of usability has not been ex-
plored much in the literature. In this section we present
six principles for designing usable access control systems.
Some of these principles challenge established common
wisdom in the field, because we place an unusually high
premium on usability. These principles will be illustrated
by our design of UMIP in Section 3.

Principle 1 Provide “good enough” security with a high
level of usability, rather than “better” security with a low
level of usability.

Our philosophy is that rather than providing a protection
system that can theoretically provide very strong security
guarantees but requires huge effort and expertise to con-
figure correctly, we aim at providing a system that is easy
to configure and that can greatly increase the level of se-
curity by reducing the attack surfaces. Sandhu [21] made
a case for good-enough security, observing that “cumber-
some technology will be deployed and operated incorrectly
and insecurely, or perhaps not at all.” Sandhu also identi-
fied three principles that guide information security, the sec-
ond of which is “Good enough always beat perfect”2. He

2The first one is “Good enough is good enough” and the third one is
“The really hard part is determining what is good enough.”

2



observed that the applicability of this principle to the com-
puter security field is further amplified because there is no
such thing as “perfect” in security, and restate the principle
as “Good enough always beats ‘better but imperfect’.”

There may be situations that one would want stronger
security guarantees, even though the cost of administration
is much more expensive. However, to defend against threats
such as botnets, one needs to protect the most vulnerable
computers on the Internet, i.e., computers that are managed
by users with little expertise in system security. One thus
needs a protection system with a high level of usability.

One corollary following from this principle is that some-
times one needs to tradeoff security for simplicity of the de-
sign. Below we discuss five other principles, which further
help achieve the goal of usable access control. The follow-
ing five principles can be viewed as “minor” principles for
achieving the overarching goal set by the first principle.

Principle 2 Provide policy, not just mechanism.

Raymond discussed in his book [19] the topic of “what
UNIX gets wrong” in terms of philosophy, and wrote “per-
haps the most enduring objections to Unix are conse-
quences of a feature of its philosophy first made explicit
by the designers of the X windowing system. X strives to
provide ‘mechanism, not policy’. [...] But the cost of the
mechanism-not-policy approach is that when the user can
set policy, the user must set policy. Nontechnical end-users
frequently find Unix’s profusion of options and interface
styles overwhelming.”

The mechanism-not-policy approach is especially prob-
lematic for security. A security mechanism that is very
flexible and can be extensively configured is not just over-
whelming for end users, it is also highly error-prone. While
there are right ways to configure the mechanism to enforce
some desirable security policies, there are often many more
incorrect ways to configure a system. And the complexity
often overwhelms users so that the mechanism is simply not
enabled.

This mechanism-not-policy philosophy is implicitly
used in the design of many MAC systems for operating
systems. For example, systems such LIDS, systrace, and
SELinux all aim at providing a mechanism that can be used
to implement a wide range of policies. While a mechanism
is absolutely necessary for implementing a protection sys-
tem, having only a low-level mechanism is not enough.

Principle 3 Have a well-defined security objective.

The first step of designing a policy is to identify a secu-
rity objective, because only then can one make meaningful
tradeoffs between security and usability. To make trade-
offs, one must ask and answer the question: if the policy
model is simplified in this way, can we still achieve the se-
curity objective? A security objective should identify two

things: what kind of adversaries the system is designed to
protect against, i.e., what abilities does one assume the ad-
versaries have, and what security properties one wants to
achieve even in the presence of such adversaries. Often
times, MAC systems do not clearly identify the security ob-
jective. For example, achieving multi-level security is often
identified together with defending against network attacks.
They are very different kinds of security objectives. History
has taught us that designing usable multi-level secure sys-
tems is extremely difficult, and it seems unlikely that one
can build a usable access control system that can achieve
both objectives.

Principle 4 Carefully design ways to support exceptions in
the policy model.

Given the complexity of modern operating systems and
the diverse scenarios in which computers are used, no sim-
ple policy model can capture all accesses that need to be
allowed, and, at the same time, forbid all illegal accesses.
It is thus necessary to have ways to specify exceptions in
the policy model. The challenges lie in designing the policy
model and the exception mechanisms so that the number of
exceptions is small, the exceptions are easy and intuitive to
specify, the exceptions provide the desired flexibility, and
the attack surface exposed by the exceptions is limited. Lit-
tle research has focused on studying how to support excep-
tions in an MAC model. As we will see, much effort in
designing UMIP goes to designing mechanisms to support
exceptions.

Principle 5 Rather than trying to achieve “strict least priv-
ilege”, aim for “good-enough least privilege”.

It is widely recognized that one problem with existing
DAC mechanisms is that it does not support the least privi-
lege principle [20]. For example, in traditional UNIX access
control, many operations can be performed only by the root
user. If a program needs to perform any of these operations,
it needs to be given the root privilege. As a result, an at-
tacker can exploit vulnerabilities in the program and abuse
these privileges. Many propose to remedy the problem by
using very-fine-grained access control and to achieve strict
least privilege. For example, the guiding principles for de-
signing policies for systems such as SELinux, systrace, and
AppArmor is to identify all objects a program needs to ac-
cess when it is not under attack and grants access only to
those objects. This approach results in a large number of
policy rules. We believe that it is sufficient to restrict privi-
leges just enough to achieve the security objective; and this
enables one to design more usable access control systems.
This principle can be viewed as a corollary of Principle 1.
We state it as a separate principle because of the popularity
of the least privilege principle.

3



Principle 6 Use familiar abstractions in policy specifica-
tion interface.

Psychological acceptability is one of the eight principles
for designing security mechanisms identified by Salzer and
Schroeder [20]. They wrote “It is essential that the human
interface be designed for ease of use, so that users rou-
tinely and automatically apply the protection mechanisms
correctly. Also, to the extent that the user’s mental image of
his protection goals matches the mechanisms he must use,
mistakes will be minimized. If he must translate his image of
his protection needs into a radically different specification
language, he will make errors.” This entails that the policy
specification interface should use concepts and abstractions
that administrators are familiar with. This principle is vio-
lated by systems such as systrace and SELinux.

3 The UMIP Model

We now introduce the Usable Mandatory Integrity Pro-
tection (UMIP) model, which was guided by the principles
identified in Section 2. While the description of the UMIP
model in this section is based on our design for Linux, we
believe that the model can be applied to other UNIX vari-
ants with minor changes. While some (but not all) ideas
would be applicable also to non-Unix operating systems
such as the Microsoft Windows family, investigating the
suitability of UMIP or a similar model for Microsoft Win-
dows is beyond the scope of this paper.

We now identify the security objective of our policy
model. We aim at protecting the system integrity against
network-based attacks. We assume that network server and
client programs contain bugs and can be exploited if the at-
tacker is able to feed input to them. We assume that users
may make careless mistakes in their actions, e.g., down-
loading a malicious program from the Internet and running
it. However, we assume that the attacker does not have
physical access to the host to be protected. Our policy
model aims at ensuring that under most attack channels, the
attacker can only get limited privileges and cannot compro-
mise the system integrity. For example, if a host runs privi-
leged network-facing programs that contain vulnerabilities,
the host will not be completely taken over by an attacker as
a bot. The attacker may be able to exploit bugs in these pro-
grams to run some code on the host. However, the attacker
cannot install rootkits. Furthermore, if the host reboots, the
attacker does not control the host anymore. Similarly, if a
network client program is exploited, the damage is limited.
We also aim at protecting against indirect attacks, where the
attacker creates malicious programs to wait for users to exe-
cute them, or creates/changes files to exploit vulnerabilities
in programs that later read these files.

The usability goals for UMIP are twofold: First, con-
figuring a UMIP system should not be more difficult than

installing and configuring an operating system. Second, ex-
isting applications and common usage practices can still be
used under UMIP. Depending on the needs of a system, the
administrator of the system should be able to configure the
system in a less-secure, but easier-to-user manner.

One constraint that we have for UMIP is that it can
be implemented using an existing mechanism (namely the
Linux Security Modules framework).

3.1 An overview of the UMIP model

An important design question for any operating system
access control system is: What is a principal? That is,
when a process requests to perform certain operations, what
information about the process should be used in deciding
whether the request should be authorized. The traditional
UNIX access control system treats a pair of (uid,gid) as a
principal. The effective uid and gid together determine the
privileges of a process. As many operations can be per-
formed only when the effective uid is 0, many programs
owned by the root user are designated setuid. One problem
with this approach is that it does not consider the possi-
bility that these programs may be buggy. If all privileged
programs are written correctly, then this approach is fine.
However, when privileged programs contain bugs, they can
be exploited so that attackers can use the privileges to dam-
age the system.

As having just uid and gid is too coarse-granulated, a nat-
ural extension is to treat a triple of uid, gid, and the current
program that is running in the process as a principal. The
thinking is that, if one can identify all possible operations a
privileged program would do and only allows it to do those,
then the damage of an attacker taking over the program is
limited. This design is also insufficient, however. Consider
a request to load a kernel module3 that comes from a pro-
cess running the program insmod with effective user-id 0.
As loading a kernel module is what insmod is supposed to
do, such access must be allowed. However, this process
might be started by an attacker who has compromised a
daemon process running as root and obtained a root shell
as the result of the exploits. If the request is authorized,
then this may enable the installation of a kernel rootkit, and
lead to complete system compromise. One may try to pre-
vent this by preventing the daemon program from running
certain programs (such as shell); however, certain daemons
have legitimate need to run shells or other programs that can
lead to running insmod. In this case, a daemon can legiti-
mately run a shell, the shell can legitimately run insmod,

3A loadable kernel module is a piece of code that can be loaded into
and unloaded from kernel upon demand. LKMs (Loadable Kernel Mod-
ules) are a feature of the Linux kernel, sometimes used to add support for
new hardware or otherwise insert code into the kernel to support new fea-
tures. Using LKMs is one popular method for implementing kernel-mode
rootkits on Linux.

4



Figure 1. The summary of the UMIP model

and insmod can legitimately load kernel modules. If one
looks at only the current program together with (uid,gid),
then any individual access needs to be allowed; however,
the combination of them clearly needs to be stopped.

The analysis above illustrates that, to determine what the
current process should be allowed to do, one has to consider
the parent process who created the current process, the pro-
cess who created the parent process, and so on. We call this
the request channel. For example, if insmod is started by a
series of processes that have never communicated with the
network, then this means that this request is from a user who
logged in through a local terminal. Such a request should
be authorized, because it is almost certainly not an attacker,
unless an attacker gets physical access to the host, in which
case not much security can be provided anyway. On the
other hand, if insmod is started by a shell that is a descen-
dant of the ftp daemon process, then this is almost certainly
a result from an attack; the ftp daemon and its legitimate
descendants have no need to load a kernel module.

The key challenge is how to capture the information in
a request channel in a succinct way. The domain-type en-
forcement approach used in SELinux and DTE Unix can
be viewed as summarizing the request channel in the form
of a domain. Whenever a channel represents a different set
of privileges from other channels, a new domain is needed.
This requires a large number of domains to be introduced.

The approach we take is to use a few fields associated
with a process to record necessary information about the re-
quest channel. The most important field is one bit to classify
the request channel into high integrity or low integrity. If a
request channel is likely to be exploited by an attacker, then

the process has low integrity. If a request channel may be
used legitimately for system administration, then the pro-
cess needs to be high-integrity. Note that a request chan-
nel may be both legitimately used for system administra-
tion and potentially exploitable. In this case, administrators
must explicitly set the policy to allow such channels for sys-
tem administration. The model tries to minimize the attack
surface exposed by such policy setting when possible.

When a process is marked as low-integrity, this means
that it is potentially contaminated. We do not try to iden-
tify whether a process is actually attacked. The success
of our approach depends on the observation that with such
an apparently crude distinction of low-integrity and high-
integrity processes, only a few low-integrity processes need
to perform a small number of security critical operations,
which can be specified using a few simple policies as ex-
ceptions.

Basic UMIP Model: Each process has one bit
that denotes its integrity level. When a process is
created, it inherits the integrity level of the parent
process. When a process performs an operation
that makes it potentially contaminated, it drops
its integrity. A low-integrity process by default
cannot perform sensitive operations.

The basic UMIP model is then extended with exceptions
to support existing softwares and system usage practices.
Figure 1 gives an overview of UMIP. A high-integrity pro-
cess may drop its integrity to low in one of three ways.
There are two classes of exceptions that can be specified
for programs. The first class allows a program binary to be

5



identified as one or more of: RAP (Remote Administration
Point), LSP (Local Service Point), and FPP (File Processing
Program). Such exceptions allow a process running the bi-
nary to maintain its integrity level when certain events that
normally would drop the process’s integrity occur. In the
second class, a program binary can be given special privi-
leges (e.g., using some capabilities, reading/writing certain
protected files) so that a process running the program can
have these privileges even in low integrity.

In the rest of this section, we describe the UMIP model
in detail. Section 3.2 discusses contamination through net-
work and interprocess communications. Section 3.3 dis-
cusses restrictions on low-integrity processes. Section 3.4
discusses contamination through files. Section 3.5 discusses
protecting files owned by non-system accounts. In Sec-
tion 3.6 we discuss how the design principles in Section 2
are applied in designing UMIP. Comparison of UMIP with
closely related integrity models is given in Section 3.7.

3.2 Dealing with communications

When a process receives remote network traffic (network
traffic that is not from the localhost loopback), its integrity
level should drop, as the program may contain vulnerabili-
ties and the traffic may be sent by an attacker to exploit such
vulnerabilities. Under this default policy, system mainte-
nance tasks (e.g., installing new softwares, updating system
files, and changing configuration files) can be performed
only through a local terminal. Users can log in remotely,
but cannot perform these sensitive tasks. While this offers
a high degree of security, it may be too restrictive in many
systems, e.g., in a collocated server hosting scenario.

In the UMIP model, a program may be identified as a
remote administration point (RAP). The effect is that a pro-
cess running the program maintains its integrity level when
receiving network traffic. If one wants to allow remote sys-
tem administration through, e.g., the secure shell daemon,
then one can identify /usr/sbin/sshd as a remote adminis-
tration point. (Note that if a process descending from sshd
runs a program other than sshd and receives network traf-
fic, its integrity level drops.) Introducing RAP is the result
of trading off security in favor of usability. Allowing re-
mote administration certainly makes the system less secure.
If remote administration through sshd is allowed, and the
attacker can successfully exploit bugs in sshd, then the at-
tacker can take over the system, as this is specified as a le-
gitimate remote administration channel. However, note that
in this case the attack surface is greatly reduced from all
daemon programs, to only sshd. Some daemon programs
(such as httpd) are much more complicated than sshd and
are likely to contain more bugs. Moreover, firewalls can
be used to limit the network addresses from which one can
connect to a machine via sshd; whereas one often has to

open the httpd server to the world. Finally, techniques such
as privilege separation [5, 18] can be used to further mitigate
attacks against sshd. The UMIP model leaves the decision
of whether to allow remote administration through channels
such as sshd to the system administrators.

We also need to consider what happens when a pro-
cess receives Inter-Process Communications (IPC) from an-
other local process. UMIP considers integrity contamina-
tion through those IPC channels that can be used to send
free-formed data, because such data can be crafted to ex-
ploit bugs in the receiving process. Under Linux, such
channels include UNIX domain socket, pipe, fifo, message
queue, shared memory, and shared file in the tmpfs filesys-
tem. In addition, UMIP treats local loopback network com-
munication as a form of IPC. When a process reads from
one of these IPC channels which have been written by a
low-integrity process, then the integrity level of the process
drops, even when the process is a RAP.

Similar to the concept of RAP, a program may be identi-
fied as a Local Service Point (LSP), which enables a process
running the program to maintain its integrity level after re-
ceiving IPC communications from low-integrity processes.
For example, if one wants to enable system administration
and networking activities (such as web browsing) to happen
in one X Window environment, the X server and the desk-
top manager can be declared as LSPs. When some X clients
communicate with network and drop to low-integrity, the X
server, the desktop manager and other X clients can still
maintain high integrity.

3.3 Restricting low-integrity processes

Our approach requires the identification of security-
critical operations that would affect system integrity so that
our protection system can prevent low-integrity processes
from carrying them out. We classify security-critical opera-
tions into two categories, file operations and operations that
are not associated with specific files.

Examples of non-file administrative operations include
loading a kernel module, administration of IP firewall, mod-
ification of routing table, network interface configuration,
rebooting the machine, ptrace other processes, mounting
and unmounting file systems, and so on. These operations
are essential for maintaining system integrity and availabil-
ity, and are often used by malicious code. In modern Linux,
these operations are controlled by capabilities, which were
introduced since version 2.1 of the Linux kernel. Capabil-
ities break the privileges normally reserved for root down
to smaller pieces. As of Linux Kernel 2.6.11, Linux has 31
different capabilities. The default UMIP rule grants only
two capabilities CAP SETGID and CAP SETUID to low-
integrity processes; furthermore, low-integrity processes
are restricted in that they can use setuid and setgid only in

6



the following two ways: (1) swapping among effective, real,
and saved uids and gids, and (2) going from the root account
to another system account. (A system account, with the ex-
ception of root, does not correspond to an actual human
user.) We allow low-integrity processes to use setuid and
setgid this way because many daemon programs do them
and they do not compromise our security objective. Note
that by this design, a low-integrity process running as root
cannot set its uid to a new normal user.

It is much more challenging to identify which files
should be considered sensitive, as a large number of objects
in an operating system are modeled as files. Different hosts
may have different softwares installed, and have different
sensitive files. The list of files that need to be protected
is quite long, e.g., system programs and libraries, system
configuration files, service program configuration files, sys-
tem log files, kernel image files, and images of the mem-
ory (such as /dev/kmem and /dev/mem). We cannot ask the
end users to label files, as our goal is to have the system
configurable by ordinary system administrators who are not
security experts. Our novel approach here is to utilize the
valuable information in existing Discretionary Access Con-
trol (DAC) mechanisms.

Using DAC info for MAC All commercial operating
systems have built-in DAC mechanisms. For example,
UNIX and UNIX variants use the permission bits to sup-
port DAC. While DAC by itself is insufficient for stopping
network-based attacks, DAC access control information is
nonetheless very important. For example, when one in-
stalls Linux from a distribution, files such as /etc/passwd
and /etc/shadow would be writable only by root. This in-
dicates that writing to these files is security critical. Sim-
ilarly, files such as /etc/shadow would be readable only by
root, indicating that reading them is security critical. Such
DAC information has been used by millions of users and
examined for decades. Our approach utilizes this informa-
tion, rather than asking the end users to label all files, which
is a labor intensive and error-prone process. UMIP offers
both read and write protection for files owned by system ac-
counts. A low-integrity process (even if having effective uid
0) is forbidden from reading a file that is owned by a system
account and is not readable by world; such a file is said to
be read-protected. A low-integrity process is also forbidden
from writing to a file owned by a system account and is not
writable by world. Such a file is said to be write-protected.
Finally, a low-integrity process is forbidden from changing
the DAC permission of any (read- or write-) protected file.

Exception policies: least privilege for sensitive opera-
tions Some network-facing daemons need to access re-
sources that are protected. Because these processes re-
ceive network communications, they will be low-integrity,
and the default policy will stop such access. We deal with

this by allowing the specification of policy exceptions for
system binaries. For example, one policy we use is that
the binary “/usr/sbin/vsftpd” is allowed to use the capa-
bilities CAP NET BIND SERVICE, CAP SYS SETUID,
CAP SYS SETGID, and CAP SYS CHROOT, to read the
file /etc/shadow, to read all files under the directory
/etc/vsftpd, and to read or write the file /var/log/xferlog.
This daemon program needs to read /etc/shadow to authen-
ticate remote users. If an attacker can exploit a vulnerability
in vsftpd and inject code into the address space of vsftpd,
this code can read /etc/shadow file. However, if the attacker
injects shell code to obtain an shell by exploiting the vul-
nerabilities, then the exception policy for the shell process
will be reset to NULL and the attacker loses the ability to
read /etc/passwd. Furthermore, the attacker cannot write to
any system binary or install rootkits. Under this policy, an
administrator cannot directly upload files to replace system
binaries. However, the administrator can upload files to an-
other directory and login through a remote administration
channel (e.g., through sshd) and then replace system binary
files with the uploaded files.

When a high integrity process loads a program that has
an exception policy, the process has special privileges as
specified by the policy. Even when the process later re-
ceives network traffic and drops integrity, the special privi-
leges remain for the process. However, when a low integrity
process loads a program that has an exception policy, the
process is denied the special privileges in the policy. The
rationale is as follows. Some network administration tools
(such as iptables) must perform network communications
and will thus drop its integrity, so they need to be given
capability exceptions for CAP NET ADMIN. However, we
would not want a low-integrity process to invoke them and
still have the special privileges. On the other hand, some
programs need to invoke other programs when its integrity
is low, and the invoked program needs special privilege. For
example, sendmail needs to invoke procmail when its in-
tegrity is low, and procmail needs to write to the spool direc-
tory which is write-protected. We resolve this by defining
executing relationships between programs. If there is an ex-
ecuting relationship between the program X to the program
Y , then when a process running X executes Y , even if the
process is in the state of low-integrity, the process will have
the special permissions associated with Y after executing.
In the example, we define an executing relationship from
sendmail to procmail and give procmail the special permis-
sion to write to the spool directory.

3.4 Contamination through files

As an attacker may be able to control contents in files
that are not write-protected, a process’s integrity level needs
to drop after reading and executing files that are not write-

7



protected. However, even if a file is write-protected, it may
still be written by low-integrity processes, due to the exis-
tence of exception policies. We use one permission bit to
track whether a file has been written by a low-integrity pro-
cess. There are 12 permission bits for each file in a UNIX
file system: 9 of them indicate read/write/execute permis-
sions for user/group/world; the other three are setuid, set-
gid, and the sticky bit. The sticky bit is no longer used for
regular files (it is still useful for directories), and we use it
to track contamination for files. When a low-integrity pro-
cess writes to a file that is write-protected as allowed by an
exception, the file’s sticky bit is set. A file is considered to
be low-integrity (potentially contaminated) when either it is
not write-protected, or has the sticky bit set.

When a process reads a low-integrity file, the process’s
integrity level drops. We do not consider reading a directory
that was changed by a low-integrity process as contamina-
tion, as the directory is maintained by the file system, which
should handle directory contents properly. When a file’s
permission is changed from world-writable to not world-
writable, the sticky bit is set, as the file may have been con-
taminated while it was world-writable.

A low-integrity process is forbidden from changing the
sticky bit of a file. Only a high-integrity process can reset
the sticky bit by running a special utility program provided
by the protection system. The requirement of using a spe-
cial utility program avoids the problem that other programs
may accidentally reset the bit without the user intending to
do it. This way, when a user clears the sticky bit, it is clear
to the user that she is potentially raising the integrity of the
file. The special utility program cannot be changed by low-
integrity processes, so that its integrity level is always high.

Similar to the concept of RAP, we introduce file process-
ing programs (FPP). A process running an FPP maintains
its integrity level even after reading a low-integrity file. Pro-
grams that read a file’s content and display the file on a ter-
minal (e.g., vi, cat, etc.) need to be declared to be FPP.

We observe that our approach for handling file in-
tegrity is different from existing integrity models (such as
Biba [4]), in which an object has one integrity level.

The integrity level of an object can be used to indicate
two things: (1) the importance level of the object as a con-
tainer (i.e., whether the object is used in some critical ways),
and (2) the quality (i.e., trustworthiness, or, alternatively,
contamination level) of information currently in the object.
These two may not always be the same. When only one
integrity level is used, one can keep track of only one of
the two, which is problematic. Consider, for example, the
system log files and the mail files. They are considered to
be contaminated because they are written by processes who
have communicated with the network. However, it is incor-
rect not to protect them, as an attacker who broke into the
system through, say, httpd, would be able to change the log.

UMIP handles this by using a file’s DAC permission to
determine the importance level of the file, and using the
sticky bit to track the contamination level. Even if a file has
the sticky bit set (i.e., considered contaminated), as long as
the file’s DAC permission is not writable by the world, a
low-integrity process still cannot write to the file (unless a
policy exception exists). In other words, the set of write-
protected files and the set of contaminated files intersect.
This way, files such as system logs and mails are protected.
This is different from other integrity models such as Biba,
where once an object is contaminated, every subject can
write to it. UMIP’s design reduces the attack surface.

3.5 Files owned by non-system accounts

Not all sensitive files are owned by a system account. For
example, consider a user account that has been given privi-
leges to sudo (superuser do) all programs. The startup script
files for the account are sensitive. We follow the approach
of using DAC info in MAC. If a file is not writable by the
world, then it is write-protected. UMIP allows exceptions
to be specified for specific users. Different users may have
different exception policies. An account’s exception policy
may specify global exceptions that apply to all processes
with that user’s user-id. For example, a user may specify
that a directory can be written by any low-integrity process
and uses the directory to store all files from the network.

If the system administrator does not want to enable in-
tegrity protection for a user, so that the user can use the
system transparently (i.e., without knowing the existence of
UMIP), then the policy can specify a global exception for
the home directory of the user with recursion so that all
low-integrity processes with the user’s user-id can access
the user’s files. We point out that even with such a global
exception, UMIP still offers useful protection. First, the
exception will be activated only if the process’s effective
user id is that user. Recall that we disallow a low-integrity
process from using setuid to change its user id to another
user account. This way, if an attacker breaks in through one
daemon program owned by account A, the attacker cannot
write to files owned by account B, even if a global excep-
tion for B is in place. Second, if the user is attacked while
using a network client program, and the users’ files are con-
taminated. These files will be marked by the sticky bit, and
any process that later accesses them will drop its integrity
level; the overall system integrity is still protected.

3.6 Design principles in UMIP

We now briefly examine how the design of UMIP illus-
trates the principles identified in Section 2. We follow prin-
ciple 1 and aim at providing good enough security with a
high level of usability. Following principles 2 and 3, we

8



use an existing mechanism (namely, LSM) and focus on
designing a policy model to achieve the security objective
laid out in the beginning of Section 3. A major part of the
work in developing the UMIP model is in designing the ex-
ception mechanisms (principle 4). Regarding principle 5,
our approach differs from strict least privilege in two im-
portant ways. First, no limitation is placed on high-integrity
processes, so they may operate with more privileges than
strictly necessary. Second, non-sensitive files are not pro-
tected. Both design choices were made because they do
not compromise our security objective and they increase the
simplicity (and hence usability) of our model. Finally, fol-
lowing principle 6, UMIP uses files and capabilities in pol-
icy specifications, rather than exposing kernel data struc-
tures in the policy specification interface.

We believe that using DAC information is one key to the
usability of UMIP. This makes deployment and installation
of new software easy, as no labeling process is needed. This
also uses concepts that users are already familiar with.

3.7 Other integrity models

The UMIP model borrows concepts from classical work
on integrity models such as Biba [4] and LOMAC [10].
Here we discuss UMIP’s novel features.

The Biba [4] model has five mandatory integrity poli-
cies: (1) the strict integrity policy, in which subject and ob-
ject integrity labels never change; (2) the subject low-water
mark policy, in which a subject’s integrity level drops af-
ter reading a low-integrity object; (3) the object low-water
mark policy, in which an object’s integrity level drops af-
ter being written by a low-integrity subject; (4) the low-
water mark integrity audit policy, which combines the pre-
vious two and allow the integrity levels of both subjects and
objects to drop; (5) the ring policy, which allows subjects
to read low-integrity objects while maintaining its integrity
level. LOMAC [10] is an implementation of the subject
low-water mark policy for operating systems. Each object
is assigned an integrity level. Once assigned, an object’s
level never changes. It aims at protecting system integrity
and places emphasis on usability. Compared with Biba and
LOMAC, UMIP has the following novel features.

First, UMIP supports a number of ways to specify some
programs as partially trusted to allow them to violate the de-
fault contamination rule or the default restrictions on low-
integrity processes in some limited way. This enables one
to use existing applications and administration practices,
while limiting the attack surfaces exposed by such trust.

Second, in UMIP a file essentially has two integrity level
values: whether it is protected and whether it is contami-
nated. The former is determined by the DAC permission,
and does not change unless the file’s permission changes.
The latter is tracked using the sticky bit for protected files,

and may change dynamically. The advantages of our ap-
proach is explained in Section 3.4.

Third, UMIP’s integrity protection is compartmental-
ized by users. Even if one user has an exception policy
that allows all low-integrity processes to access certain files
owned by the user, another user’s low-integrity process is
forbidden from such access.

Fourth, UMIP allows low-integrity files to be upgraded
to high-integrity. (This feature also exists in LOMAC.) This
means that low-integrity information (such as files down-
loaded from the Internet) can flow into high-integrity ob-
jects (such as system binaries); however, such upgrade must
occur explicitly, i.e., by invoking a special program in a
high-integrity channel to remove the sticky bit. Allowing
such channels is necessary for patching and system ungrade.

Fifth, UMIP offers some confidentiality protection, in
addition to integrity protection. For example, low-integrity
processes are forbidden from reading files owned by a sys-
tem account and not readable by the world.

Finally, UMIP uses DAC information to determine in-
tegrity and confidentiality labels for objects, whereas in LO-
MAC each installation requires manual specification of a
mapping between existing files and integrity levels.

4 An Implementation under Linux

We have implemented the UMIP model in a prototype
protection system for Linux, using the Linux Security Mod-
ule (LSM) framework. We have been using evolving proto-
types of the system within our group for a few months.

4.1 Implementation

The basic design of our protection system is as follows.
Each process has a security label, which contains (among
other fields) a field indicating whether the process’s in-
tegrity level is high or low. When a process issues a request,
it is authorized only when both the Linux DAC system and
our protection system authorize it. A high-integrity process
is not restricted by our protection system. A low-integrity
process by default cannot perform any sensitive operation.
Any exception to the above default policy must be specified
in a policy file, which is loaded when the module starts.

The Policy Specification The policy file includes a list
of entries. Each entry contains four fields: (1) a path that
points to the program that the entry is associated with; (2)
the type of a program, which includes three bits indicat-
ing whether the program is a remote administration point
(RAP), a local service point (LSP), and a file processing
point (FPP); (3) a list of exceptions; and (4) a list of exe-
cuting relationships, which is a list of programs that can be
executed by the current program with the exception policies

9



Syntax Meaning
(f , read) f is a regular file or a directory Allowed to read f
(f , full) f is a regular file or a directory Allowed to do anything to f
(d, read, R) d is a directory Allowed to read any file in d recursively.
(d, full, R) d is a directory. Allowed to do anything to any file in d recursively.

Figure 2. The four forms of file exceptions in UMIP.

enabled, even if the process is low integrity. If a program
does not have a corresponding entry, the default policy is
that the program is not an RAP, a LSP or an FPP, and the ex-
ception list and the executing relationship list are empty. An
exception list consists of two parts, the capability exception
list and the file exception list, corresponding to exceptions
to the two categories of security critical operations. A file
exception takes one of the four forms shown in the Figure 2.

The authorization provided by file exceptions includes
only two levels: read and full. We choose this design be-
cause of its simplicity. In this design, one cannot specify
that a program can write a file, but not read. We believe
that this is acceptable because system-related files that are
read-sensitive are also write-sensitive. In other words, if the
attacker can write to a file, then he can pose at least compa-
rable damage to the system as he can also read the file. A
policy of the form “(d, read, R)” is used in the situation that
a daemon or a client program needs to read the configura-
tion files in the directory d. A policy of the form “(d, full,
R)” is used to define the working directories for programs.

4.2 Evaluation

We evaluate our design of the UMIP model and the im-
plementation under Linux along the following dimensions:
usability, security, and performance.

Usability One usability measure is transparency, which
means not blocking legitimate accesses generated by nor-
mal system operations. Another measure is flexibility,
which means that one can configure a system according to
the security needs. A third usability measure is ease of con-
figuration. Several features of UMIP contribute to a high
level of usability: the use of existing DAC information, the
existence of RAP, LAP, and FPP, and the use of familiar
abstractions in the specification of policies. To experimen-
tally evaluate the transparency and flexibility aspects, we
established a server configured with Fedora Core 5 with ker-
nel version 2.6.15, and enabled our protection system as a
security module loaded during system boot. We installed
some commonly used server applications (e.g., httpd, ftpd,
samba, svn) and have been providing services to our re-
search group over the last few months. The system works
with a small and simple policy specification as given in Fig-
ure 3. With this policy, we allow remote administration

through the SSH daemon by declaring sshd as RAP. In this
setting, one can also do remote administration through X
over SSH tunneling and VNC over SSH tunneling. If one
wants to allow remote administration through VNC without
SSH tunneling, then he can declare the VNC Server as a
RAP.

Security Most attack scenarios that exploit bugs in
network-facing daemon programs or client programs can be
readily prevented by our protection system. Successful ex-
ploitation of vulnerabilities in network-facing processes of-
ten results in a shell process spawned from the vulnerable
process. After gaining shell access, the attacker typically
tries downloading and installing attacking tools and rootk-
its. As these processes are low-integrity, the access to sensi-
tive operations is limited to those allowed by the exception.
Furthermore, if the attacker loads a shell or any other pro-
gram, the new process has no exception privileges.

In our experiments, we use the NetCat tool to offer an
interactive root shell to the attacker in the experiment. We
execute NetCat in “listen” mode on the test machine as root.
When the attacker connects to the listening port, NetCat
spawns a shell process, which takes input from the attacker
and also directs output to him. From the root shell, we per-
form the following three attacks and compare what happens
without our protection system with what happens when our
protection system is enabled.
1. Installing a rootkit: rootkits can operate at two different
levels. User-mode rootkits manipulate user-level operating
system elements, altering existing binary executables or li-
braries. Kernel-mode rootkits manipulate the kernel of the
operating system by loading a kernel module or manipu-
lating the image of the running kernel’s memory in the file
system (/dev/kmem).

We use two methods to determine whether a system
has been compromised after installing a rootkit. The first
method is to try to use the rootkit and see whether it is
successfully installed. The second method is to calculate
the hash values for all the files (content, permission bits,
last modified time) in the local file system before and af-
ter installing the rootkit. For the calculation we reboot the
machine using an external operating system (e.g., from a
CD) and mount the local file system. This ensures that
the running kernel and the programs used in the calcula-

10



Services and
Path of the Binary

Type File Exceptions Capability Exceptions Executing
Relationships

SSH Daemon
/usr/sbin/sshd

RAP

Automated Update:
/usr/bin/yum

RAP

/usr/bin/vim FPP
/usr/bin/cat FPP
FTP Server
/usr/sbin/vsftpd

NONE (/var/log/xferlog, full)
(/etc/vsftpd, full, R)
(/etc/shadow, read)

CAP SYS CHROOT
CAP SYS SETUID
CAP SYS SETGID
CAP NET BIND SERVICE

Web Server
/usr/sbin/httpd

NONE (/var/log/httpd, full, R)
(/etc/pki/tls, read, R)
(/var/run/httpd.pid, full)

Samba Server
/usr/sbin/smbd

NONE (/var/cache/samba, full, R)
(/etc/samba, full, R)
(/var/log/samba, full, R)
(/var/run/smbd.pid, full)

CAP SYS RESOURCE
CAP SYS SETUID
CAP SYS SETGID
CAP NET BIND SERVICE
CAP DAC OVERRIDE

NetBIOS name server
/usr/sbin/nmbd

NONE (/var/log/samba, full, R)
(/var/cache/samba, full, R)

Version control server
/usr/bin/svnserve

NONE (/usr/local/svn, full, R)

Name Server for NT
/usr/sbin/winbindd

NONE (/var/cache/samba, full, R)
(/var/log/samba, full, R)
(/etc/samba/secrets.tdb, full)

SMTP Server
/usr/sbin/sendmail

NONE (/var/spool/mqueue, full, R)
(/var/spool/clientmqueue,
full, R)
(/var/spool/mail, full, R)
(/etc/mail, full, R)
(/etc/aliases.db, read)
(/var/log/mail, full, R)
(/var/run/sendmail.pid, full)

CAP NET BIND SERVICE /usr/sbin/procmail

Mail Processor
/usr/bin/procmail

NONE (/var/spool/mail, full, R)

NTP Daemon
/usr/sbin/ntpd

NONE (/var/lib/ntp, full, R)
(/etc/ntp/keys, read)

CAP SYS TIME

Printing Daemon
/usr/sbin/cupsd

NONE (/etc/cups/certs, full, R)
(/var/log/cups, full, R)
(/var/cache/cups, full, R)
(/var/run/cups/certs, full R)

CAP NET BIND SERVICE
CAP DAC OVERRIDE

System Log Daemon
/usr/sbin/syslogd

NONE (/var/log, full, R)

NSF RPC Service
/sbin/rpc.statd

NONE (/var/lib/nfs/statd, full, R)

IP Table
/sbin/iptables

NONE CAP NET ADMIN
CAP NET RAW

Figure 3. Sample policy

11



tion are clean. A comparison between the hash results can
tell whether the system has been compromised.

We tried two well-known rootkits. The first one is
Adore-ng, a kernel-mode rootkit that runs on Linux Kernel
2.2 / 2.4 / 2.6. It is installed by loading a malicious kernel
module. The supported features include local root access,
file hiding, process hiding, socket hiding, syslog filtering,
and so on. Adore-ng also has a feature to replace an existing
kernel module that is loaded during boot with the trojaned
module, so that adore-ng is activated during boot. When our
protection was not enabled, we were able to successfully
install Adore-ng in the remote root shell and activat it. We
were also able to replace any existing kernel module with
the trojaned module so that the rootkit module would be
automatically loaded during booting. When our protection
system was enabled, the request to load the kernel module
of Adore-ng from the remote root shell was denied, getting
an “Operation not permitted” error. We got the same er-
ror when trying to replace the existing kernel module with
the trojaned module. When trying to use the rootkit, we
received a response saying “Adore-ng not installed”. We
checked the system integrity using the methods described
above. The result showed that the system remained clean.

The second is Linux Rootkit Family (LRK). It is a well-
known user-mode rootkit and replaces a variety of exist-
ing system programs and introduce some new programs, to
build a backdoor, to hide the attacker, and to provide other
attacking tools. When our protection was not enabled, we
were able to install the trojaned SSH daemon and replace
the existing SSH daemon in the system. After that we suc-
cessfully connected to the machine as root using a prede-
fined password. When our protection was enabled, installa-
tion of the trojaned SSH daemon failed, getting the “Oper-
ation not permitted” error. The system remained clean.
2. Stealing the shadow File: Without our protection sys-
tem, we were able to steal /etc/shadow by send an email
with the file as an attachment, using the command “mutt -a
/etc/shadow alice@haker.net < /dev/null”. When our pro-
tection was enabled, the request to read the shadow file was
denied, getting an error saying “/etc/shadow: unable to at-
tach file” .
3. Altering user’s web page files: Another common attack
is to alter web files after getting into a web server. In our
experiment, we put the user’s web files in a sub directory
of the user’s home directory “/home/Alice/www/”. That di-
rectory and all the files under the directory were set as not
writable by the world. When our protection was enabled,
from the remote root shell, we could not modify any web
files in the directory “/home/Alice/www/”. We could not
create a new file in that directory. Our module successfully
prevented user’s protected files from being changed by low-
integrity processes.

Performance We have conducted benchmarking tests to

compare performance overhead incurred by our protection
system. Our performance evaluation uses the Lmbench 3
benchmark and the Unixbench 4.1 benchmark suites. These
microbenchmark tests were used to determine the perfor-
mance overhead incurred by the protection system for vari-
ous process, file, and socket low-level operations.

We set up a PC configured with RedHat Linux Fedora
Core 5, running on Intel Pentium M processor with 1400Hz,
and having 120 GB hard drive and 1GB memory. Each
test was performed with two different kernel configurations.
The base kernel configuration corresponds to an unmodi-
fied Linux 2.6.11 kernel. The enforcing configuration corre-
sponds to a Linux 2.6.11 kernel with our protection system
loaded as a kernel module.

The test results are given in Figure 4 and Figure 5. We
compare our performance result with SELinux. The perfor-
mance data of SELinux is taken from [14]. For most bench-
mark results, the percentage overhead is small (≤ 5%). The
performance of our module is significantly better than the
data for SELinux.

5 Related Work

In Section 3.7 we have compared UMIP with Biba [4]
and LOMAC [10]. Another well-known integrity model is
the Clark-Wilson model [7], which divides data items into
constrained data items (CDI’s) and unconstraint data items
(UDI’s). CDI’s are considered to have high integrity, and
can be changed only by transformation procedures (TP’s)
that are certified to change the CDI’s in ways that preserve
their integrity. The Clark-Wilson model requires that, for
each TP, the system lists which CDI’s the TP is certified to
access. PACL [23] also uses the idea of limiting the pro-
grams that can access certain objects. It uses an access
control list for each file to store the list of programs that
are allowed to access the file. Later approaches store such
information with programs. As we have discussed in Sec-
tion 3.1, determining access based just on the user id and
the program that is running (without considering the his-
tory) is limited. While the policy exception part has its root
in Clark-Wilson, UMIP is fundamentally different in that it
maintains dynamic integrity levels for subjects and objects.

Our work differs from previous work that add MAC into
UNIX, such as Trusted Solaris and IX [15], in that our
goal is not multi-level security, but rather to preserve sys-
tem integrity when the softwares running on the system are
buggy and there are network-based attackers. Other sys-
tems that are closely related to ours include SELinux [16],
systrace [17], LIDS [13], securelevel [11], and AppAr-
mor [8, 1]. As we discussed in Section 1, SELinux, sys-
trace, and LIDS, while flexible and powerful, require exten-
sive expertise to configure. These systems focus on mech-
anisms, whereas our approach focuses on providing a pol-

12



Benchmark Base Enforcing Overhead (%) SELinux(%)
Dhrystone 335.8 334.2 0.5
Double-Precision 211.9 211.6 0.1
Execl Throughput 616.6 608.3 1 5
File Copy 1K 474.0 454.2 4 5
File Copy 256B 364.0 344.1 5 10
File Copy 4K 507.5 490.4 3 2
Pipe Throughput 272.6 269.6 1 16
Process Creation 816.9 801.2 2 2
Shell Scripts 648.3 631.2 0.7 4
System Call 217.9 217.4 0.2
Overall 446.6 435.0 3

Figure 4. The performance results of Unixbench 4.1 measurements.

Microbenchmark Base Enforcing Overhead (%) SELinux(%)
syscall 0.6492 0.6492 0
read 0.8483 1.0017 18
write 0.7726 0.8981 16
stat 2.8257 2.8682 1.5 28
fstat 1.0139 1.0182 0.4
open/close 3.7906 4.0608 7 27
select on 500 fd’s 21.7686 21.8458 0.3
select on 500 tcp fd’s 37.8027 37.9795 0.5
signal handler installation 1.2346 1.2346 0
signal handler overhead 2.3954 2.4079 0.5
protection fault 0.3994 0.3872 -3
pipe latency 6.4345 6.2065 -3 12
pipe bandwidth 1310.19 MB/sec 1292.54 MB/sec 7
AF UNIX sock stream latency 8.2 8.9418 9 19
AF UNIX sock stream bandwidth 1472.10 MB/sec 1457.57 MB/sec 9
fork+exit 116.5581 120.3478 3 1
fork+execve 484.3333 500.1818 3 3
for+/bin/sh-c 1413.25 1444.25 2 10
file write bandwidth 16997 KB/sec 16854 KB/sec 0.8
pagefault 1.3288 1.3502 2
UDP latency 14.4036 14.6798 2 15
TCP latency 17.1356 18.3555 7 9
RPC/udp latency 24.6433 24.8790 1 18
RPC/tcp latency 29.7117 32.4626 9 9
TCP/IP connection cost 64.5465 64.8352 1 9

Figure 5. The performance results of lmbench 3 measurements (in microseconds).

13



icy model that achieves a high degree of protection with-
out getting in the way of normal operations. Both sys-
trace and LIDS require intimate familiarity with UNIX in-
ternals for configuration. SELinux adopts the approach that
MAC information is independent from DAC. For example,
the users in SELinux are unrelated with the users in DAC,
each file needs to be given a label. This requires the file
system to support additional labeling, and limits the appli-
cability of the approach. Furthermore, labeling files is a
labor-intensive and error-prone process. Each installation
of a new software requires update to the policy to assign ap-
propriate labels to the newly added files and possibly add
new domains and types. SELinux policies are difficult to
understand by human administrators because of the size of
the policy and the many levels of indirection used, e.g., from
programs to domains, then to types, and then to files. Our
protection system, on the other hand, utilizes existing valu-
able DAC information, requires much less configuration,
and has policies that are easy to understand.

AppArmor [8, 1] is a Linux protection system that has
similarities with our work. It confines applications by creat-
ing security profiles for programs. A security profile identi-
fies all capabilities and files a program is allowed to access.
Similar to our approach, AppArmor also uses file paths to
identify programs and files in the security profiles. Regard-
ing policy design, AppArmor uses the same approach as
the Targeted Policy in Fedora Core Linux, i.e., if a program
has no policy associated with it, then it is by default not
confined, and if a program has a policy, then it can access
only the objects specified in the policy. This approach vio-
lates the fail-safe defaults principle [20], as a program with
no policy will by default run unconfined. By not confin-
ing high-integrity processes and allowing low-integrity pro-
cesses to access unprotected files, UMIP can afford to fol-
low the fail-safe default principle and only specify excep-
tions for programs. AppArmor does not maintain integrity
levels for processes or files, and thus cannot differentiate
whether a process or a file is contaminated or not. For ex-
ample, without tracking contamination, one cannot specify
a policy that system administration through X clients are al-
lowed as long as the X server and other X clients have not
communicated with the network. Also, AppArmor cannot
protect users from accidentally downloading and executing
malicious programs.

Securelevel [11] is a security mechanism in *BSD ker-
nels. When the securelevel is positive, the kernel restricts
certain tasks; not even the superuser (i.e., root) is allowed
to do them. Any superuser process can raise securelevel,
but only the init process can lower it. The weakness of
securelevel is clearly explained in the FreeBSD FAQ [11]:
“One of its biggest problems is that in order for it to be at
all effective, all files used in the boot process up until the
securelevel is set must be protected. If an attacker can get

the system to execute their code prior to the securelevel be-
ing set [...], its protections are invalidated. While this task
of protecting all files used in the boot process is not techni-
cally impossible, if it is achieved, system maintenance will
become a nightmare since one would have to take the sys-
tem down, at least to single-user mode, to modify a config-
uration file.” UMIP enables system administration through
high-integrity channels, thereby avoiding the difficulty se-
curelevel has. UMIP also tracks file contamination to en-
sure that all files read during booting are high integrity for
the system to end up in a high-integrity state.

In UMIP, a program may be partially trusted in the sense
that it is allowed to violate the default contamination rule
and/or the limitations on low-integrity processes. Such trust
is necessary for ensuring that existing applications and ad-
ministration practices can be used. However, in UMIP pro-
grams are viewed as blackboxes, and the trust on them is
not justified. The CW-Lite work [22] addresses this issue
of trust by explicitly analyzing source code of programs.
One identifies inputs into programs and annotates the source
code with indications where filtering occurs. One then
checks whether low-integrity inputs are properly filtered be-
fore they flow into high-integrity objects. This process en-
ables one to discover bugs in the policy configuration or in
the program source code. The CW-Lite work is thus com-
plementary to UMIP.

6 Conclusions

We have identified six design principles for designing
usable access control mechanisms. We have also intro-
duced the UMIP model, a simple, practical MAC model for
host integrity protection, designed using these principles.
The UMIP model defends against attacks targeting network
server and client programs and protects users from careless
mistakes. It supports existing applications and system ad-
ministration practices, and has a simple policy configura-
tion interface. To achieve these, we introduced in UMIP
several novel features in integrity protection. We have also
reported the experiences and evaluation results of our im-
plementation of UMIP under Linux. We plan to continue
testing and improving the code and release it to the open-
source community in near future. We also plan to develop
tools that help system administrators analyze a UMIP con-
figuration and identify channels through which an attacker
may get a high-integrity process (e.g., by exploiting a re-
mote administration point).

Acknowledgement This work is supported by NSF CNS-
0448204 and by sponsors of CERIAS. We thank Xuxian
Jiang for helpful discussions and suggestions on approaches
to evaluate the UMIP implementation under Linux. We also
thank the anonymous reviewers and shepherd of our paper

14



Trent Jaeger for valuable comments that have greatly im-
proved the paper.

References

[1] Apparmor application security for linux.
http://www.novell.com/linux/security/apparmor/.

[2] L. Badger, D. F. Sterne, D. L. Sherman, K. M. Walker,
and S. A. Haghighat. A domain and type enforcement
UNIX prototype. In Proc. USENIX Security Sympo-
sium, June 1995.

[3] L. Badger, D. F. Sterne, D. L. Sherman, K. M. Walker,
and S. A. Haghighat. Practical domain and type en-
forcement for UNIX. In Proc. IEEE Symposium on
Security and Privacy, pages 66–77, May 1995.

[4] K. J. Biba. Integrity considerations for secure com-
puter systems. Technical Report MTR-3153, MITRE,
April 1977.

[5] D. Brumley and D. Song. PrivTrans: Automatically
partitioning programs for privilege separation. In Pro-
ceedings of the USENIX Security Symposium, August
2004.

[6] H. Chen, D. Dean, and D. Wagner. Setuid demys-
tified. In Proc. USENIX Security Symposium, pages
171–190, Aug. 2002.

[7] D. D. Clark and D. R. Wilson. A comparision of com-
mercial and military computer security policies. In
Proceedings of the 1987 IEEE Symposium on Security
and Privacy, pages 184–194. IEEE Computer Society
Press, May 1987.

[8] C. Cowan, S. Beattie, G. Kroah-Hartman, C. Pu,
P. Wagle, and V. D. Gligor. Subdomain: Parsimonious
server security. In Proceedings of the 14th Conference
on Systems Administration (LISA 2000), pages 355–
368, Dec. 2000.

[9] DOD. Trusted Computer System Evaluation Criteria.
Department of Defense 5200.28-STD, Dec. 1985.

[10] T. Fraser. LOMAC: Low water-mark integrity protec-
tion for COTS environments. In 2000 IEEE Sympo-
sium on Security and Privacy, May 2000.

[11] Frequently Asked Questions for FreeBSD 4.X, 5.X, and
6.X. http://www.freebsd.org/doc/en US.ISO8859-
1/books/faq/.

[12] I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer.
A secure environment for untrusted helper applica-
tions: Confining the wily hacker. In Proc. USENIX
Security Symposium, pages 1–13, June 1996.

[13] LIDS: Linux intrusion detection system.
http://www.lids.org/.

[14] P. Loscocco and S. Smalley. Integrating flexible
support for security policies into the Linux operat-
ing system. In Proceedings of the FREENIX track:
USENIX Annual Technical Conference, pages 29–42,
June 2001.

[15] M. D. Mcllroy and J. A. Reeds. Multilevel security
in the unix tradition. Software—Practice and Experi-
ence, 22(8):673–694, Aug. 1992.

[16] NSA. Security enhanced linux.
http://www.nsa.gov/selinux/.

[17] N. Provos. Improving host security with system call
policies. In Proceedings of the 2003 USENIX Security
Symposium, pages 252–272, August 2003.

[18] N. Provos, M. Friedl, and P. Honeyman. Prevent-
ing privilege escalation. In Proceedings of the 2003
USENIX Security Symposium, pages 231–242, August
2003.

[19] E. S. Raymond. The Art of UNIX Programming.
Addison-Wesley Professional, 2003.

[20] J. H. Saltzer and M. D. Schroeder. The protection of
information in computer systems. Proceedings of the
IEEE, 63(9):1278–1308, September 1975.

[21] R. Sandhu. Good-enough security: Toward a prag-
matic business-driven discipline. IEEE Internet Com-
puting, 7(1):66–68, Jan. 2003.

[22] U. Shankar, T. Jaeger, and R. Sailer. Toward au-
tomated information-flow integrity verification for
security-critical applications. In Proceedings of the
2006 ISOC Networked and Distributed Systems Secu-
rity Symposium, February 2006.

[23] D. R. Wichers, D. M. Cook, R. A. Olsson, J. Cross-
ley, P. Kerchen, K. N. Levitt, and R. Lo. Pacl’s: An
access control list approach to anti-viral security. In
Proceedings of the 13th National Computer Security
Conference, pages 340–349, Oct. 1990.

[24] C. Wright, C. Cowan, J. Morris, S. Smalley, and
G. Kroah-Hartman. Linux security modules: General
security support for the linux kernel. In Proc. USENIX
Security Symposium, pages 17–31, 2002.

15


