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Abstract

Coercion resistance is an important and one of the most intri-
cate security requirements of electronic voting protocols. Several
definitions of coercion resistance have been proposed in the liter-
ature, including definitions based on symbolic models. However,
existing definitions in such models are rather restricted in their
scope and quite complex.

In this paper, we therefore propose a new definition of co-

ercion resistance in a symbolic setting, based on an epistemic

approach. Our definition is relatively simple and intuitive. It

allows for a fine-grained formulation of coercion resistance and

can be stated independently of a specific, symbolic protocol and

adversary model. As a proof of concept, we apply our defini-

tion to three voting protocols. In particular, we carry out the

first rigorous analysis of the recently proposed Civitas system.

We precisely identify those conditions under which this system

guarantees coercion resistance or fails to be coercion resistant.

We also analyze protocols proposed by Lee et al. and Okamoto.

1 Introduction

Coercion resistance is one of the most important and intri-
cate security requirements of voting protocols [23,33]. Intu-
itively, a voting protocol is coercion resistant if it prevents
voter coercion and vote buying. In other words, a coercer
should not be able to influence the behavior of a voter. A
notion closely related to coercion resistance, but somewhat
weaker is receipt freeness, first proposed in [8].
Most voting schemes and systems that aim to achieve

coercion resistance or receipt freeness come without a rig-
orous security proof. Maybe not surprisingly, some of these
protocols have been found to be flawed (see, e.g., discus-
sions in [32] and [19]). The lack of proofs is partly due
to the fact that only recently first formal definitions of co-
ercion resistance and receipt freeness have been proposed
in the literature, both based on cryptographic and sym-
bolic models [4,13,17,21–23,31]. With “cryptographic mod-
els” we mean models in which messages are modeled as bit

∗This paper is an extended version of [27].

strings and adversaries are probabilistic polynomial time
Turing machines. In contrast, symbolic models take a more
abstract view on cryptography. In this paper, our focus
will be on symbolic models. While security guarantees in
cryptographic models are typically stronger than in sym-
bolic models, security proofs in cryptographic models are
usually very involved, and as a result, often omitted or
only sketched. For electronic voting protocols, which are
among the most complex security protocols, this is even
more so (see, e.g., [8,14,19,23,28,33,34]). Conversely, secu-
rity proofs in symbolic models are easier to carry out and
they are more amenable to tool support. Research on secu-
rity protocol analysis has demonstrated that, while not all,
but many attacks on security protocols can be uncovered
and prevented by means of symbolic protocol analysis (see,
e.g., [3, 7, 9, 10, 12, 26, 30]). In some cases, security guar-
antees established in symbolic models even imply security
in cryptographic models (see, e.g., [2, 15, 29]). Hence, sym-
bolic models certainly have their merits for security protocol
analysis, including the analysis of voting protocols.

However, the definitions of coercion resistance in sym-
bolic models proposed in the literature thus far are rather
restricted in scope, yet quite complex and not always intu-
itive (see Section 7 for a detailed discussion).

Contribution of this paper. One of the main contri-
butions of this paper is to provide a general, yet intuitive
and simple definition of coercion resistance. Our definition
follows an epistemic approach. It is formulated in a model-
independent way. In particular, it can be instantiated by
different symbolic models. While the focus of this work is
on voting protocols, our definition may be applicable be-
yond this domain.

In order to analyze concrete voting protocols, we instan-
tiate our framework by a rather standard symbolic model.
Within our model, we prove several general statements,
which underline the adequacy of our model and which have
not been proven in other symbolic models. Among oth-
ers, we show that coercion resistance w.r.t. a single coerced
voter implies coercion resistance w.r.t. multiple coerced vot-
ers.
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As a proof of concept, we analyze coercion resistance of
three voting protocols: the recently proposed voting system
Civitas [14], a voting protocol by Lee et al. [28] and one by
Okamoto [33]. As to the best of our knowledge, Civitas
and the scheme by Okamoto have not been rigorously ana-
lyzed before. Our modeling, in particular of Civitas, is quite
detailed and goes beyond the level of detail considered in
other works. For example, for Civitas we model dishonest
authorities and the zero-knowledge proofs authorities have
to provide to prove their compliance with the protocol. We
precisely identify those conditions under which coercion re-
sistance is guaranteed and point out situations in which
the protocols do not provide coercion resistance, thereby
relativizing previous claims and providing new insights into
and improvements of the protocols. The analyzes of the
example protocols illustrate that our definition of coercion
resistance allows to specify various degrees of coercion re-
sistance in a fine-grained way. Without this flexibility of
our definition, no reasonable statement about the coercion
resistance of voting protocols would be possible as every
protocol builds on its own assumptions and provides spe-
cific security guarantees.

Structure of this paper. In the following section, we
present our definition of coercion resistance. A concrete in-
stantiation of this definition is provided in Section 3, with
general properties given in Section 4. The analyzes of the
three mentioned voting protocols are then presented in Sec-
tions 5, 6, and Appendix D. Related work is discussed in
Section 7. We conclude in Section 8. More details and
proofs can be found in the appendix.

2 Defining Coercion Resistance

In this section, we present our definition of coercion resis-
tance in an epistemic framework, independent of a specific,
symbolic protocol or adversary model. A concrete instanti-
ation will be considered in Section 3.
Our definition of coercion resistance is based on what we

call a coercion system. A coercion system will be induced
by a voting protocol (see Section 3). It emphasizes in an
abstract way those parts relevant for defining coercion re-
sistance, without the need to consider details of a protocol
and adversary model. More intuition is provided following
the next definition.

Definition 1. A coercion system is a tuple S =
(R, V,C,E, r,∼), where R is a set of runs, V , C, and E
are sets of possible programs of coerced voters, the coercer,
and the environment, respectively, r is a mapping which as-
signs a set r(v, c, e) ⊆ R of runs induced by (v, c, e) to each
tuple (v, c, e) ∈ V ×C×E, and ∼ is an equivalence relation
on the set R, which determines the view of a coercer on a
run.

A coercion system determines the possible behaviors of
coerced voters, the coercer, and the environment. The en-
vironment is the part of the system controlled neither by

the coercer nor by the coerced voter. The environment
typically describes the possible behaviors of honest entities,
such as honest voters and authorities; dishonest voters and
authorities will be subsumed by the coercer. The programs
carried out by these honest entities will be determined by
the voting protocol under consideration. However, the en-
vironment typically does not fix up front how and if certain
honest voters vote. It may also leave open the number of
voters as well as how many of them and which voters are
honest or dishonest. The set r(v, c, e) describes the possible
runs obtained when the programs v, c, and e of the coerced
voter, the coercer, and the environment, respectively, run
together. A run is typically a sequence of configurations
induced by the interaction of v, c, and e. However, for a
general definition of coercion resistance it is not necessary
to fix such details at this point. The reason that we do
not define r(v, c, e) to be a single run is that a run of v,
c, and e might involve some non-deterministic choices, e.g.,
non-deterministic scheduling of messages. The equivalence
relation ∼ defines the view of the coercer. The intuition is
that if two runs ρ and ρ′ are equivalent w.r.t. ∼, i.e., ρ ∼ ρ′,
then the coercer has the same view in both runs. In other
words, these runs look the same from the coercer’s point of
view.

We can now turn to the definition of coercion resistance.
For the following discussion, we concentrate on the case
that only a single voter is coerced. The case of multi-voter
coercion resistance is discussed later.

Given a coercion system S = (R, V,C,E, r,∼), the idea
behind our definition of coercion resistance is as follows:

Our definition assumes that the coerced voter has a cer-
tain goal γ that he/she would try to achieve in absence of
coercion. Formally, γ is a subset of R, the set of runs of
S. If, for example, γ is supposed to express that the co-
erced voter wants to vote for a certain candidate, then γ
would contain all runs in which the coerced voter voted for
this candidate and this vote is in fact counted. Jumping
ahead, as we will see in the analysis of concrete protocols,
often such a goal cannot be achieved. This is, for example,
the case if ballots are sent over an unreliable channel or an
election authority misbehaves in an observable way and as a
result the election process is stopped. A more realistic goal
γ would then be that the coerced voter successfully votes
for a certain candidate, provided the voters ballot is deliv-
ered in time and the election authority did not misbehave
in an observable way.

Now, in the definition of coercion resistance we imagine
that the coercer provides the coerced voter with a program
v ∈ V (the coercion strategy), which the coercer wants the
coerced voter to run, instead of the program the coerced
voter would carry out when following the voting protocol.
The program v might determine the candidate for which
the coercer wants the coerced voter to vote for or might
dictate the coerced voter not to vote (abstention attack).
The choice of the candidate or whether or not the coerced
voter should abstain from voting might even depend on the
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course of the election process and the information that the
coercer has gathered thus far. Such information can be
gathered by the program v or might be given to the pro-
gram by the coercer; in the most general setting, one as-
sumes that the coercer can freely communicate with the
program v, and by this, further influence and control the
behavior of the coerced voter. Rather than directly manip-
ulating the outcome of the election, the purpose of v might
as well be to merely test whether the coerced voter follows
the prescribed program v; for example, to find out whether
this voter is “reliable”, and hence, is a good candidate for
coercion in later elections. This illustrates that the inten-
tions of the coercer are manifold and hard to predict. The
set V should therefore contain all programs that a coercer
could possibly give to a coerced voter. However, as shown
in Section 4.1, in a concrete communication model, it often
suffices to consider just one program that simply forwards
all messages from/to the coercer. Nevertheless, taking the
set V into account only makes our definition more flexible
since different classes of coercion strategies can be specified.
Our definition of coercion resistance requires that for all

v ∈ V , there exists a program v′ ∈ V , the counter strategy,
that the coerced voter can run instead of v, such that (i)
the voter always achieves his/her own goal γ by running
v′ and (ii) the coercer does not know whether the coerced
voter run v or v′. In other words, in every run in which the
coerced voter run v, the coercer thinks, given his/her view
of the run, that it is possible that the coerced voter run v′.
Conversely, in every run in which the coerced voter run v′,
the coercer thinks that it is possible that the coerced voter
run v. So, the coercer cannot know whether the coerced
voter followed the coercer’s instructions (i.e., run v) or just
tried to achieve his/her own goal (by running v′). If in
some situations the coercer knew that the coerced voter
run either v or v′, then the voter could be influenced: The
coercer could give positive and/or negative incentives for
running v/v′, e.g., by offering money and/or threatening
the coerced voter.
The above leads to the following definition. The meaning

of α is explained below.

Definition 2. Let S = (R, V,C,E, r,∼) be a coercion sys-
tem and α, γ ⊆ R. The system S is coercion resistant in α
w.r.t. γ, if for each v ∈ V there exists v′ ∈ V such that the
following conditions are satisfied.

(i) For every c ∈ C, e ∈ E, and ρ ∈ r(v, c, e) ∩ α, there
exists e′ ∈ E and ρ′ ∈ r(v′, c, e′) such that ρ ∼ ρ′.

(ii) For every c ∈ C, e ∈ E, and ρ ∈ r(v′, c, e) ∩ α, there
exists e′ ∈ E and ρ′ ∈ r(v, c, e′) such that ρ ∼ ρ′.

(iii) For every c ∈ C and e ∈ E, we have r(v′, c, e) ⊆ γ.

Condition (iii) in the above definition directly captures
that if the coerced voter runs the counter strategy v′, then
independently of the actions of the coercer c and the en-
vironment e, the coerced voter achieves his/her goal. To
explain the conditions (i) and (ii), let us first ignore the
set α. Then (i) says that, for every run ρ in which the

coerced voter carries out v, there exists another run ρ′ in
which the coerced voter carries out v′ such that the view of
the coercer, who runs c in both runs, is the same. In other
words, even though the coerced voter carried out v, from
the coercer’s point of view it is possible that the coerced
voter carried out v′. The programs e and e′ in (i) might,
for example, differ in the way honest voters voted. So even
though the coerced voter might not have voted in the way
intended by the coercer, the coercer can not tell from the
outcome of the election, as the coercer does not have com-
plete knowledge about how everybody voted. Analogously,
condition (ii) says that in every run in which the coerced
voter run v′, the coercer thinks that it is possible that the
coerced voter run v. Altogether (i) and (ii) say that the
coercer never knows whether the coerced voter run v or v′.

Now, let us discuss the purpose of α. The intuition is
that α describes a property of the environment (which, as
mentioned, includes the honest voters) in terms of a set of
runs that satisfy this property. The set α typically includes
almost all runs of the system, except for those that are un-
likely to happen and would reveal to the coercer that the
coerced voter is following v or v′. For example, α would
typically not contain a run, say ρ, in which a certain candi-
date, say a, does not get any vote from the honest voters.
Indeed, to obtain a successful counter strategy, it is neces-
sary to exclude such a run: Assume that the coercer wants
the coerced voter to vote for a (hence, an appropriate v is
given by the coercer to the coerced voter). Also assume that
the goal γ of the coerced voter is to vote for a different can-
didate, say b. Then in the run ρ from above, if the coerced
voter ran the counter strategy v′, the coercer would easily
detect this fact: If after the election the coercer observes
that there is no vote for a, the coercer can be sure that
the coerced voter was not following the coercion strategy v.
In other words, in Definition 2, if v′ satisfies (iii), then (ii)
cannot be satisfied, unless by α runs such as ρ are excluded.
This example shows that without taking an appropriate α
into account, Definition 2 would be too strong in almost all
realistic settings.

The example protocols analyzed in Sections 5, 6, and Ap-
pendix D will further illustrate the usefulness and necessity
of the parameters α and γ of our definition of coercion resis-
tance. These parameters allow to precisely capture under
what conditions a protocol is coercion resistant, making for
a quite fine-grained and general notion of coercion resis-
tance.

Definition 2 only stipulates the existence of a counter
strategy v′, given a coercion strategy v. However, it might
in general not be easy to come up with v′ given v. Fortu-
nately, as already mentioned above, we can show that it is
often suffices to come up with a counter strategy only for
what we call a dummy coercion strategy, which merely for-
wards messages to/from the coercer. Given such a counter
strategy, one can, in a generic way, construct a counter
strategy for any given coercion strategy (see Section 4.1).
We believe that the construction of a counter strategy from
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a (dummy) coercion strategy should be part of the protocol
specification, so that a voter knows how to defend against
coercion (see also [31]).

We note that Definition 2 captures coercion resistance in
a possibilistic way. We do not consider probabilities. While
Definition 2 requires that from the coercer’s point of view
it is always possible that the coerced voter run v, say, the
definition does not talk about the probability for this to
be the case. If this probability were low, the coercer could
tend to believe that the coerced voter run v′. We leave
a probabilistic/cryptographic version of our definition as
future work. The analysis carried out in this work for the
three voting protocols shows that already in a possibilistic
setting non-trivial security guarantees can be proved and
subtle vulnerabilities can be uncovered.

While in Definition 2 only one goal of the coerced voter is
considered, a protocol should of course be coercion resistant
no matter what goal the coerced voter would like to achieve;
for example, no matter which candidate the coerced voter
would like to vote for. This is captured by the following
generalization of Definition 2.

Definition 3. Let S = (R, V,C,E, r,∼) be a coercion sys-
tem and Γ be a set of goals, i.e. Γ is a set of subsets of R.
Then S is coercion resistant in α w.r.t. Γ, if S is coercion
resistant in α w.r.t. γ, for each γ ∈ Γ.

Multi-voter coercion. So far, we had in mind that v and
v′ stand for programs carried out by a single coerced voter.
Nevertheless, we can just as well think of v and v′ as tuples
of programs carried out by multiple coerced voters, where
the tuples may be of varying length, depending on how
many voters are coerced. In other words, our definition of
coercion resistance directly carries over to the case of multi-
voter coercion resistance, where multiple voters are coerced
at the same time. However, the requirement “for all v there
exists a v′ such that . . . ” in the definition of coercion re-
sistance then only means that a coerced voter can pick a
counter strategy depending on all the programs in v. This
is too weak. A coerced voter should be able to pick his/her
counter strategy independently of other coerced voters; a
coerced voter may in general not know who else is coerced
and with whom he/she can (safely) collaborate. Therefore,
for multi-voter coercion resistance, we replace the require-
ment “for all v there exists a v′ such that . . . ” by “there
exists a function f which maps a coercion strategy for one
voter to a counter strategy for one voter such that, for ev-
ery tuple v of programs, v′ = f(v) is a counter strategy
such that . . . ”, where f(v) means that f is applied to every
single program in the tuple v.

In Section 4.3 we show that (a slight extension of) coer-
cion resistance w.r.t. a single coerced voter implies multi-
voter coercion resistance. So, to obtain multi-voter coercion
resistance it suffices to consider the case of a single coerced
voter.

3 A Concrete Protocol and Adversary

Model

In this section, we instantiate the framework presented in
the previous section by a concrete protocol and adversary
model. Several instantiations are possible, including, for
example, one based on I/O automata or process calcu-
lus. For the sake of brevity, we pick a quite abstract one,
in which computations are described by certain functions,
called atomic processes. However, the results presented in
the subsequent sections also carry over to other models.
We note that these sections should be intelligible without
the concrete protocol and adversary model presented in this
section.

3.1 Terms and messages

Let Σ be some signature for cryptographic primitives (in-
cluding a possibly infinite set of constants for represent-
ing participant names, etc.), X = {x1, x2, . . . } be a set of
variables, and N be an infinite set of nonces, where the
sets Σ, X , and N are pairwise disjoint. For N ⊆ N , the
set TN of terms over Σ ∪ N and X is defined as usual.
Ground terms, i.e., terms without variables, represent mes-
sages. We assume some fixed equational theory associated
with Σ and denote by ≡ the congruence relation on terms
induced by this theory. The exact definition of Σ and the
equational theory will depend on the cryptographic primi-
tives used in the voting protocol under consideration. For
the voting protocols we analyze in Section 5, 6, and Ap-
pendix D quite involved signatures and equational theories
will be considered, which, among others, allow to model ho-
momorphic encryption and various kinds of zero knowledge
proofs (designated-verifier reencryption proofs, distributed
plaintext equivalence tests, etc.). A simple example of a
signature Σex and its associated equational theory is pro-
vided in Figure 1. A term of the form sigk{m} represents a
message m signed using the (private) key k. Checking va-
lidity of such a signature is modeled by equation (1). The
fact that signatures do not necessarily hide the signed mes-
sage is taken care of by equation (2). A term of the form
{x}rpub(k) represents the ciphertext obtained by encrypting

x under the public key pub(k) using randomness r. De-
cryption of such a term using the corresponding private
key k is modeled by equation (3). A term of the form
〈x, y〉 models the pairing of terms x and y. The compo-
nents x and y of 〈x, y〉 can be extracted by applying the
operators first(·) and sec(·), respectively, as modeled by the
equations (4). Let ≡ex denote the congruence relation in-
duced by the equational theory in Figure 1, then we have
that dec({a}rpub(k), first(〈k, b〉)) ≡ex a.

3.2 Event sequences and views

Let Ch be a set of channels (channel names). An in-
put/output event is of the form (c : m) and (c̄ : m), re-
spectively, for c ∈ Ch and a message m (note that c̄ /∈ Ch).
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checksig(sigk{m}, pub(k)) = T (1)

extractmsg(sigk{m}) = m (2)

dec({x}rpub(k), k) = x (3)

first(〈x, y〉) = x, sec(〈x, y〉) = y (4)

Figure 1: The equational theory associated with the signa-
ture Σex = {sig·{·}, 〈·, ·〉, {·}

·
·,T, checksig(·, ·), extractmsg(·),

first(·), sec(·)}..

A finite or infinite sequence of events is called an event se-
quence. For an event sequence ρ = (c1 : m1), (c2 : m2), . . .
of input events, we denote by chan(ρ) the sequence c1, c2, . . .
of channels. For C ⊆ Ch, we denote by ρ|C the subsequence
of ρ containing only the events (c : m) with c ∈ C.
Let τ ∈ TN be a term. Then, with ρ as above, we

denote by τ [ρ] the message τ [m1/x1,m2/x2, . . . ], where
xi is replaced by mi. (Recall that the set of variables
is X = {x1, x2, . . . }.) For example, assume that τex =
dec(x1, first(x2)) and ρex = (c1 : {a}rpub(k)), (c2 : 〈k, b〉).

Then τex[ρex] = dec({a}rpub(k), first(〈k, b〉)) ≡ex a.

Borrowing the notion of static equivalence from [1], we
call two event sequences ρ and ρ′ of input events statically
equivalent w.r.t. a set C ⊆ Ch of channels and a set N ⊆ N

of nonces, written ρ ≡C
N ρ′, if (i) chan(ρ|C) = chan(ρ′|C) and

(ii) for every τ1, τ2 ∈ TN we have that τ1[ρ|C ] ≡ τ2[ρ|C ] iff
τ1[ρ

′
|C ] ≡ τ2[ρ

′
|C ]. Intuitively, a party listening on chan-

nels C and a priori knowing the nonces in N , cannot dis-
tinguish between the inputs received according to ρ and
those received according to ρ′. We call the equivalence
class of ρ w.r.t. ≡C

N , the (C,N)-view on ρ. For exam-
ple, if k, k′, a, and b are different constants, r and r′

are nonces, C = {c1, c2}, and N = ∅, then it is easy to
see that ρ1ex = (c1 : {a}rpub(k)), (c2 : 〈k′, b〉), (c3 : k) and

ρ2ex = (c1 : {b}r
′

pub(k)), (c2 : 〈k′, b〉) yield the same (C,N)-
view w.r.t. ≡ex.

3.3 Processes

Processes are built from atomic processes. An atomic pro-
cess is basically a function that given a sequence of in-
put events (representing the history so far) produces a se-
quences of output events. We require that an atomic pro-
cess behaves the same on inputs on which it has the same
view. Formally, atomic processes are defined as follows.

Definition 4. An atomic process is a tuple p = (I, O,N, f)
where

(i) I, O ⊆ Ch are finite sets of input and output channels,
respectively,

(ii) N ⊆ N is a set of nonces used by p,

(iii) f is a mapping which assigns a sequence f(U) = (c1 :
τ1) · · · (cn : τn) with ci ∈ O and τi ∈ TN to each
(I,N)-view U .

We refer to I, O and N by Ip, Op, and Np, respectively.
We note that the sets Ip and Op do not have to be disjoint
(which means that p can send messages to itself).

We note that (iii) guarantees that p performs the same
computation on event sequences that are equivalent accord-
ing to ≡I

N , and hence, on which p has the same view. This
is why f is defined on (I,N)-views rather than on sequences
of input events.

For an event sequence ρ, we write p(ρ) for the output pro-
duced by p on input ρ. This output is (c1 : τ1[ρ

′]) · · · (cn :
τn[ρ

′]), where ρ′ = ρ|I and (c1 : τ1) · · · (cn : τn) = f(U)
for the equivalence class U of ρ′ w.r.t. ≡I

N . For exam-
ple, let I = {c1, c2}, N = ∅, U be the equivalence class
of ρ1ex, and assume that f(U) = (c4 : 〈x1, first(x2)〉). Then,
p(ρ1ex) = (c4 : 〈{a}rpub(k), first(〈k

′, b〉)〉), which modulo ≡ex

can be equivalently written as (c4 : 〈{a}rpub(k), k
′〉) and

p(ρ2ex) = (c4 : 〈{b}r
′

pub(k), first(〈k
′, b〉)〉), which modulo ≡ex

can be equivalently written as (c4 : 〈{b}r
′

pub(k), k
′〉). Note

that since ρ1ex and ρ2ex yield the same (I,N)-view w.r.t. ≡ex,
p performs the same transformation on ρ1ex and ρ2ex.

For atomic processes p and p′, we write p ≃ p′, if p
and p′ perform the same computation up to renaming of
nonces. Formally, for atomic processes p = (I, O,N, f),
p′ = (I, O,N ′, f ′), we write p ≃ p′, if there exists a bijec-
tion h : N → N ′ such that h(f(U)) = f ′(h(U)) for every
(I,N)-view U . This is extended to processes (see below) in
the obvious way.

A process P is a finite set of atomic processes with disjoint
sets of input channels and sets of nonces, i.e., Ip ∩ Ip′ =
∅ and Np ∩ Np′ = ∅, for distinct p, p′ ∈ P . The set of
input/output channels and the set of nonces of P is IP =
⋃

p∈P Ip, OP =
⋃

p∈P Op, and NP =
⋃

p∈P Np, respectively.
We say that P is a process over (I, O,N), if IP ⊆ I, OP ⊆
O, and NP ⊆ N . By Π(I, O) we denote the set of all
processes over (I, O,N), for some N ⊆ N .

For a finite event sequence ρ with the last event of the
form (c : m), we write P (ρ) for p(ρ), where p is the (unique)
element of P such that c ∈ Ip (if such a p does not exists,
then P (ρ) is undefined).

Given a process P and a finite sequence s0 of output
events over OP , a run ρ of a process P initiated by s0 is a
finite or infinite sequence of input and output events which
evolves from s0 in a natural way: An output event is cho-
sen non-deterministically (initial from s0). Once an output
event has been chosen, it will not be chosen anymore later
on. By definition of processes, there exists at most one
atomic process, say p, in P with an input channel corre-
sponding to the output event. Now, p (if any) is given
the input event corresponding to the chosen output event,
along with all previous input events on channels of p. Then,
p produces a sequence of output events as described above.
Now, from these or older output events an output event
is chosen non-deterministically, and the computation con-
tinues as before. The notion of a run is formally defined
below.
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Definition 5. Let P be a process and s0 be a finite se-
quence of events. A run induced by P initiated by s0 is a
sequence of events s = e1e2 . . . such that

(i) s begins with s0,

(ii) There exists a bijective function f from non-negative
integers to non-negative integers such that for each
i, if ei is an input event (c : m), then f(i) < i and
ef(i) = (c̄ : m), and, moreover, for each i < j with
ei = (c : m) and ej = (c : m′) we have f(i) < f(j),

(iii) If ρ can be splitted into ρ1 ρ2 ρ3, where ρ1 ends with
an input event, ρ2 contains output events only, and
ρ3 either is empty or begins with an input event, then
ρ2 = P (ρ1).

An run is fair if it is finite or, in case it is infinite, each
message sent is eventually delivered (i.e. for each output
event ei there exists j such that f(j) = i).

A run is finite if all output events were chosen at some
point and there is no new output event left that has not
yet been chosen; otherwise a run is infinite. We emphasize
that s0 can induce many runs, due to the non-deterministic
delivery of messages.

We call two processes P and P ′ non-conflicting if IP ∩
IP ′ = ∅ and NP ∩ NP ′ = ∅. In this case, we will write
P1 ‖ P2 instead of P1 ∪ P2.

If P ⊆ P ′, we call process P a subprocess of process P ′.
For such a P , we define an equivalence relation ≡P on runs
induced by P ′ as follows: ρ1 ≡P ρ2 iff ρ1 ≡IP

NP
ρ2. Hence,

ρ1 ≡P ρ2 means that from the point of view of P , the runs
ρ1 and ρ2 look the same. In particular, P behaves the same
on these runs.

3.4 Protocols and Their Induced Coercion
Systems

Definition 6. A protocol is a tuple S = (A, in , out , s0, P ),
where

(i) A is a finite set of agent names, with access to input
and output channels in(a), out(a) ⊆ Ch, respectively,
such that in(a) ∩ in(a′) = ∅ for a 6= a′,

(ii) s0 is a finite sequence of output events, the initial
output sequence, for initializing parties,

(iii) for every a ∈ A, P (a) ⊆ Π(in(a), out(a)) is the set of
programs or processes of a; this set is assumed to be
closed under ≃.

For example, if a is an honest voter, then P (a) would
typically contain a program for each way a could vote, pos-
sibly including abstention of voting. We note that the set
A typically contains the coercer and coerced parties, i.e.,
these entities are part of the protocol specification.

If A = {a1, . . . , an} and pi ∈ P (ai), then (p1 ‖ · · · ‖ pn) is
an instance of S, where the p1, . . . , pn are non-conflicting.
A run of S is a fair run of the process p1 ‖ · · · ‖ pn initiated
by s0, where p1 ‖ · · · ‖ pn is some instance of S.

For a protocol S = (A, in , out , s0, P ) and a ∈ A, a chan-
nel c is said to be private channel of a, if c ∈ in(a)∩out (a)
and c /∈ in(a′) ∪ out(a′) for all a′ 6= a.
Now, let S = (A, in , out , s0, P ) be a protocol with A =

{v, c, e}. Typically, e subsumes all honest principals and
processes in P (e) are of the form p1 ‖ · · · ‖ pn, where pi
are programs of honest voters and authorities. Dishonest
voters and authorities are subsumed by the coercer c and
coerced voters by v. For such a protocol we can define a
coercion system, as follows.

Definition 7. Let S = (A, in , out , s0, P ) be a protocol
with A = {v, c, e}. The coercion system induced by S is
(R, V,C,E, r,∼), where

(i) V = P (v), C = P (c), and E = P (e),

(ii) R is a set of tuples of the form (v, c, e, π), with non-
conflicting v ∈ V , c ∈ C, e ∈ E and π is a run induced
by (v ‖ c ‖ e).

(iii) for every v ∈ V , c ∈ C, e ∈ E, r(v, c, e) = {(v̂, ĉ, ê, π) |
v̂ ≃ v, ĉ ≃ c, ê ≃ e, and π is a run of S induced by
(v̂ ‖ ĉ ‖ ê)} is the set of runs of the process formed by
v, c, and e, closed under renaming of nonces,

(iv) for all (v, c, e, π), (v′, c′, e′, π′) ∈ R, we have
(v, c, e, π) ∼ (v′, c′, e′, π′) iff c = c′ and π ≡c π′.
Hence, the relation ∼ models the view of the coercer
c on runs of S.

4 General Properties

In this section, we state general properties of coercion sys-
tems induced by protocols, as introduced in the previous
section. On the one hand, these properties facilitate proofs
of coercion resistance of voting protocols. On the other
hand, they demonstrate the adequacy of our model. In
Section 4.1, we show that, under reasonable assumptions,
to prove coercion resistance it is not necessary to consider
all coercion strategies, i.e., all programs v ∈ V , but rather
suffices to consider a single coercion strategy, the dummy
strategy. In Section 4.2, we briefly discuss the notion of
receipt freeness and show that it is implied by our notion
of coercion resistance. We also show, in Section 4.3, that
multi-voter coercion resistance, where multiple voters are
coerced, is implied by a slight extension of single-voter co-
ercion resistance, where only one voter is coerced. Except
for the second statement, the other statements have not
been proven in other works on the symbolic analysis of vot-
ing protocols.

4.1 Dummy Theorem

The theorem that we want to prove, requires normal pro-
tocols. In these protocols the coerced voter and the coercer
can freely communicate (there are input and output chan-
nels in both directions) and the set of programs of both
entities contains all processes, with appropriate input and
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output channels. For general coercion resistance, protocols
are typically defined in this way.
We define the dummy coercion strategy v0 to be the pro-

cess which simply forwards to the coercer all the messages
it receives from the environment and, conversely, forwards
to the environment all the messages it receives from the
coercer.
Now, we call a coercion system for a protocol dummy

coercion resistant if it is coercion resistant in case a counter
strategy is demanded only for the dummy coercion strategy.
To state our dummy theorem, we need to define a relation

.
= on runs which defines a certain view of the environment.
Let S = (A, in , out , s0, P ) be a protocol with A = {v, c, e}
and let π be a run of P . Then, by env(π) we denote the
subsequence of π which only contains input and outputs
events for channels of e, i.e., events of the form (c : m) and
(c̄,m) with c ∈ in(e) ∪ out(e). Now, for runs π and π′ we
write π

.
= π′ iff env(π) = env(π′). We extend this relation

to the set of runs of the coercion system of S: (v, c, e, π)
.
=

(v′, c′, e′, π′) iff e = e′ and π
.
= π′. We say that a set H of

runs is closed under
.
=, if π ∈ H and π

.
= π′ implies π′ ∈ H .

In the following theorem, we assume that α and γ are
closed under

.
=. As α and γ are typically defined based on

the view of the environment, the assumption is satisfied in
most applications, including the protocols that we analyzed.

Theorem 1. Let S = (V,C,E, r,∼) be a coercion system
for a normal protocol and α, γ be sets of runs of S closed
under

.
=. Then dummy coercion resistance implies (full)

coercion resistance.

Proof sketch (see Appendix A.1 for the full proof).
Assume that v′0 is the counter strategy for the dummy
strategy v0. Let v ∈ V be any coercion strategy. Then we
show that the parallel composition of v′0 and v, i.e., the
process v′0 ‖ v, with a proper renaming of channels, is a
counter strategy for v.

We note that theorems of a similar flavor as the one above
are also considered in cryptographic, simulation-based set-
tings (see, e.g., [11, 24, 25]).

4.2 Receipt Freeness

We define receipt freeness similarly to coercion resistance,
but with the assumption that the coercer cannot send any
messages directly to the coerced voter. Hence, only the
coerced voter can send messages to the coercer. These
messages can be considered as receipts. This intuition is
shared with many other works. One could further weaken
the following definition by fixing a certain class of coercion
strategies, where, for example, the coerced voter basically
follows the protocol but provides the coercer with all the
information obtained during the run of the protocol.

Definition 8. A coercion system S = (V,C,E, r,∼) is
receipt-free in α w.r.t. γ, if the system S′ = (V,C′, E, r,∼),
where C′ consists of all the programs in C which do not

directly send messages to the coerced voter, is coercion-
resistant in α w.r.t. γ.

Alternatively to restricting the coercer, one could require
the coerced voter not to accept messages from the coercer.
As an immediate consequence of the above definition, we
obtain the following theorem.

Theorem 2. If a coercion system is coercion-resistant,
then it is receipt-free.

4.3 Multi-voter Coercion Resistance

In this section, we show that multi-voter coercion resistance
is implied by a slight extension of single-voter coercion re-
sistance. The main idea is that in case of multiple coerced
voters, all coerced voters, except for one, can be considered
to be dishonest, and hence, their behavior can be subsumed
by the coercer, leaving the case of a single coerced voter.
In what follows, let S = (A, in, out , s0, P ) be a protocol

with A = {v, c, e}. According to the definition of multi-
voter coercion resistance (see Section 2), we assume that
the programs of v are processes of the form (p1 ‖ · · · ‖
pn), where pi represents a process of the coerced voter vi,
with its own set Ii and Oi of input and output channels,
respectively. We have that in(v) = I1∪· · ·∪In and out(v) =
O1 ∪ · · · ∪On.
Given S, we define for every coerced voter vi a new pro-

tocol Si, where vi is the only coerced voter and every other
coerced voter is considered to be dishonest, and hence, sub-
sumed by the coercer. The environment e in Si is the same
as in S.
We let T denote the coercion system for S and T1, . . . , Tn

the coercion systems for S1, . . . , Sn, respectively.
Now, we slightly extend the notion of (single-voter) co-

ercion resistance, as mentioned before. An explanation fol-
lows the definition.

Definition 9. A system S = (R, V,C,E, r,∼) is coercion
resistant for (α0, . . . , αn) w.r.t. γ, where α0, . . . , αn, γ ⊆ R,
if for each v ∈ V there exists v′ ∈ V such that the following
conditions are satisfied.

(i) For every k ∈ {1, . . . , n}, c ∈ C, e ∈ E, and ρ ∈
r(v, c, e)∩αk, there exists e

′ ∈ E and ρ′ ∈ r(v′, c, e′)∩
αk−1 such that ρ ∼ ρ′.

(ii) For every k ∈ {1, . . . , n}, c ∈ C, e ∈ E, and ρ ∈
r(v′, c, e)∩αk, there exists e

′ ∈ E and ρ′ ∈ r(v, c, e′)∩
αk−1 such that ρ ∼ ρ′.

(iii) For every c ∈ C and e ∈ E, we have that r(v′, c, e) ⊆
γ.

First note that condition (iii) of the definition is the same
as the corresponding condition in Definition 2. Also, for
n = 1 and (α0, α1) = (R,α) the rest of the conditions
coincide with Definition 2 as well. A property αi contains,
for example, all runs in which there are at least i votes for
all candidates by honest voters. Now, when going from a
run where the coerced voter carries out v to a run where
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he/she carries out v′, then in the latter runs honest voters
might have to vote in different ways in order to balance
the behavior of v′. The above definition requires that in
the run with v′ still αi−1 is satisfied, and hence, in the
example, there are still at least i−1 votes for all candidates
by honest voters.
We obtain the following theorem, which says that to

prove multi-voter coercion resistance, it suffices to show
single-voter coercion resistance in the sense of Definition 9.
Despite the quantification over i in the following theorem, it
typically suffices to prove (single-voter) coercion resistance
for one Ti, due to symmetry.

Theorem 3. Let S, S1, . . . , Sn and T, T1, . . . , Tn be defined
as above. Let α0, . . . , αn and γ1, . . . , γn be properties of T ,
i.e., sets of runs of T . If, for each i ∈ {1, . . . , n}, we have
that Ti is coercion-resistant for (α0, . . . , αn) w.r.t. γi, then
T is multi-voter coercion resistant in αn w.r.t. γ1∩· · ·∩γn.

The proof of this theorem is postponed to Appendix A.2.
As mentioned before, the proof of this theorem relies on the
fact that coerced voters, except for one, can be considered
to be dishonest voters, and hence, can be subsumed by the
coercer. Our analysis on the protocol by Okamoto [33] show
that if dishonest voters are not considered, then single-voter
coercion does in fact not imply multi-voter coercion: One
can show that the Okamoto protocol is coercion resistant
in the case of a single coerced voter without any dishon-
est voters. But the protocol is not coercion resistant with
two coerced voters and still no dishonest voters (see Ap-
pendix D).

5 Civitas

In this section, we briefly recall the Civitas system [14],
discuss how this system is modeled in our framework, and
present positive and negative results of our analysis of Civ-
itas, i.e., we state conditions under which Civitas does not
guarantee coercion resistance and conditions under which
coercion resistance is achieved. This is the first rigorous
analysis of Civitas and our analysis brings out subtleties
that have not been observed before. A detailed treatment
can be found in Appendix B.

5.1 Protocol Description

We now briefly describe the Civitas system. A more de-
tailed specification of this system in our framework is pro-
vided in the appendix. We start with a short description of
the various cryptographic primitives employed in Civitas.

Cryptographic primitives. Civitas uses, among others, en-
cryption schemes that allow for homomorphic encryption,
random reencryption, and/or distributed decryption. In
an encryption scheme with distributed decryption, a public
key is generated by multiple parties. This public key can be
used for encryption as usual. However, the participation of
all parties involved in generating the public key is necessary

to decrypt a message encrypted under the public key. Civi-
tas also uses a distributed plaintext equivalence test (PET),
where multiple parties participate in determining whether
two different ciphertexts contain the same plaintext. Fi-
nally, Civitas employs a number of zero-knowledge proofs
and a mix network.

Protocol participants. The Civitas system assumes the
following protocol participants: the supervisor S, vot-
ers v0, . . . , vm, the bulletin board B (which is a kind of
write-only, publicly accessible memory), registration tellers
R0, . . . ,Rk, ballot boxes X0, . . . ,Xk, and tabulation tellers
T0, . . . ,Tk. As in [14], we make the following assumptions:
S, B, R0, X0, and T0 are honest, the remaining voting au-
thorities may be dishonest. An arbitrary number of voters
are dishonest, they are subsumed by the coercer. The chan-
nel between the coerced voter and the honest registration
teller is untappable. Channels from voters to the ballot
boxes are anonymous, but not untappable (the coercer can
see whether ballots are sent to a ballot box).

For now, we consider one coerced voter, say v0. We note
that in [14], it is assumed that v0 knows which one of the
registration tellers is honest. It is in fact easy to see that
Civitas is not coercion resistant otherwise. We discuss the
case of multi-voter coercion at the end of this section.

Phases of the protocol. The protocol has three phases: the
setup, voting, and tabulation phase.

In the setup phase the following steps are performed. The
tabulation tellers collectively generate a public key KT and
post it on the bulletin board; messages encrypted under KT

are decrypted in a distributed manner by the tabulation
tellers. Next, each registration teller Rj randomly gener-
ates, for each voter vi, a private credential share sij and
posts the corresponding public share Sij = {sij}

rij
KT

on the
bulletin board, where rij represents the random coins used
in the encryption of sij . The public credential Si of vi is
publicly computable as Si = (Si0×· · ·×Sik). Now, a voter
vi registers at each Rj to acquire his/her private credential
shares sij , which comes with a designated verifier reencryp-
tion proof (DVRP) that sij corresponds to the public share
Sij posted on the bulletin board (such a proof is built using
the public key of the voter; a voter, or any party who knows
the corresponding private key, is able to forge such a proof,
which is crucial for coercion resistance). The voter then
computes his/her private credential si = si1 × · · · × sik.

In the voting phase, a voter vi posts his ballot bi on all
the ballot boxes (it is enough, if the ballot is published
on only one such a box to be taken into account in the
tabulation phase). A ballot consists of an encrypted vote
{v}rKT

, the encrypted credential {si}r
′

KT
, a zero-knowledge

proof showing that v is a valid vote, and a zero knowledge-
proof showing that the submitter simultaneously knows si
and vi.

In the tabulation phase, tabulation tellers collectively
tally the election by performing the following steps: (1)
They retrieve the ballots from ballot boxes and the pub-
lic credentials from the bulletin board. (2) They check the
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proofs of the ballots, eliminating those ballots with invalid
proofs. (3) Using PETs, duplicate ballots, i.e., ballots with
the same encrypted credential, are eliminated according to
some fixed policy. (4) First the ballots and then the cre-
dentials are mixed by each tabulation teller, by applying
a permutation and using reencryption. (5) Ballots with-
out valid credentials are eliminated, again using PETs. (6)
The votes of the remaining ballots are decrypted in a dis-
tributed manner by the tabulation tellers and published.
In steps (3)-(6) zero-knowledge proofs are posted to ensure
that these steps are performed correctly.

5.2 Negative Results

Clarkson et al. [14] claim that under the assumptions men-
tioned before, Civitas is coercion resistant. Just as in the
protocol by Juels et al. [23], the idea behind the counter
strategy of the coerced voter is to provide the coercer with
a fake credential, which prevents the coercer from voting.
Clarkson et al. briefly mention that a voter might not be
able to vote if a registration teller refuses to provide a cre-
dential share to the voter and propose to use an additional
voting authority, which attest the misbehavior of the reg-
istration teller. However, in the course of trying to prove
that Civitas is coercion resistant, we found further prob-
lems that make clear that, under the mentioned conditions,
Civitas does not provide coercion resistance, if the goal of
the coerced voter is to vote for a specific candidate, say z.
The first problem is the following. We may well as-

sume that all dishonest registration tellers provide creden-
tial shares to all voters. But they might in addition inform
the coercer who has registered. Now, if the coercion strat-
egy dictates the coerced voter not to register, there is no
way that the coerced voter can register, as the coercer would
be informed. In particular, there is no counter strategy that
would allow the coerced voter to vote for z, as the coerced
voter cannot register in the first place, and hence, does not
know all credential shares required for casting a valid ballot.
There is also another more subtle coercion strategy,

which instructs the coerced voter to reveal his/her private
key to the coercer before the registration phase. Now, a
dishonest registration teller collaborating with the coercer,
can use this private key to forge the DVRP. As a result,
the coerced voter cannot be sure to have obtained a valid
credential share. Hence, even if this voter obtained a cre-
dential share from every registration teller, he/she might
still not be able to vote.

5.3 Positive Results

We found that Civitas is coercion resistant in all of the
following three settings:

1. All registration tellers are honest and the goal of the
coerced voter is to successfully vote for the candidate
of his/her choice.

2. The goal of the coerced voter is only to prevent the
coercer from casting a valid ballot, where otherwise the
assumptions about channels and honest and dishonest
authorities are as in [14] and discussed above.

3. The goal of the coerced voter is to successfully vote
for the candidate of his/her choice, but the coercion
strategies are restricted in that they first dictate the
coerced voter to register as prescribed by the protocol
and only then follow some arbitrary coercion strategy.
Otherwise, the assumptions are as in [14] and discussed
before.

The assumptions in the first setting appear to be too strong,
given that the main difference of Civitas compared to the
Juels et al. protocol, on which Civitas is based, was to re-
place a single trusted registration teller by a group of pos-
sibly dishonest registration tellers. The second setting does
not provide the coerced voter with much guarantees. The
last setting, which we refer to by Civitas with restricted
coercion strategies, seems to be the most interesting and
certainly the most challenging to prove. We will therefore
concentrate on this setting in the rest of the section. One
can imagine that the registration is performed long before
the election and that in this phase the coercer does not yet
try to influence the voter.

We note that in case of Civitas with restricted coer-
cion strategies, the coercer can still ask the voter to reveal
his/her private key, but only after the registration of the
voter. Hence, the voter can check whether he/she has ob-
tained a valid credential share. Also note that registration
tellers might be dishonest.

The main theorem of this section states that Civitas
with restricted coercion strategies is coercion resistant in
α w.r.t. γz for any candidate z, in the sense of Definition 2.
We now formulate α and γz.

We first introduce some terminology. We say that a bal-
lot posted by a voter is posted successfully, if this ballot is
delivered to the honest ballot box before the voting phase
ends. A run ρ is fair w.r.t. the coerced voter v0, if, in this
run, (1) all the registration and tabulation tellers follow the
protocol, i.e. post all messages and correct zero-knowledge
proofs, as required, (2) v0 obtains his credentials before the
voting phase ends, and (3) if v0 posts a valid ballot before
the voting phase ends, then this ballot is posted success-
fully.

The properties γz and α defined next, will be discussed
below.

For every candidate (or valid vote) z, the goal γz of the
coerced voter v0 is defined to be the set of all runs satisfying
the following conditions: If a run is fair w.r.t. v0, then the
coerced voter successfully votes for z.

The set α of runs contains all runs satisfying the following
conditions: (1) For each possible candidate (or valid vote),
there is at least one honest voter who successfully casts this
vote. (2) There is at least one honest voter who obtains his
credential before v0 finishes registration and abstains from
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voting. (3) There is at least one honest voter who obtains
his credential, but posts successfully a ballot with an invalid
credential. (4) There is at least one honest voter who posts
a ballot after v0 finishes registration.
Let us first discuss γz. By Definition 2, (iii) γz means

that the counter strategy of v0 must be such that v0 votes
successfully for z in every fair run. In runs that are not fair
w.r.t. v0 it is clear that the vote of the coerced voter will not
be counted, either because a tabulation teller misbehaved
in an observable way, making the election invalid, or the
ballot did not reach any ballot box in time, and as a result
is not decrypted and published by a tabulation teller. The
latter can happen if messages on the network are delayed for
too long, possibly caused by the coercer. These are obvious
reasons why a vote might not be counted. Hence, γz is a
very strong goal.
Now, consider the conditions (1) to (4) for α: Condition

(1) was already motivated in Section 2. Condition (2) is
needed because if no honest voter abstains from voting, the
coercer could tell that the coerced voter does not abstain
from voting, even though he/she was supposed to abstain,
just by counting the published votes. Moreover, if v0 com-
pleted registration before everybody else (the coercer can
even force this to happen when cooperating with a dishon-
est registration teller), then if some ballot is posted, the
coercer knows that this must have been v0. (We assume
that honest voters do not post ballots without completing
registration.) In this way, the coercer could again force v0
to abstain from voting. Condition (3) is also necessary. If
the coercer posts a ballot with the fake credential provided
by v0, and if all honest voters only post valid credentials,
then the coercer can tell that he/she was fooled, and hence,
the counter strategy of the coerced voter fails. Finally, con-
dition (4) is needed for similar reasons as condition (2).
Conditions (1) and (4) arguably exclude runs that are

unlikely to happen anyway. However, this is debatable for
condition (3) (maybe also for (2)). There is no reason to as-
sume that an honest voter would use an invalid credential,
even if he/she has a valid one (such a voter would have to
deviate from the protocol). To avoid condition (3), we sug-
gest that Civitas contains some authority which randomly
casts some ballots with invalid credentials. Similar “noise”
can also help to avoid condition (2).

Theorem 4. The coercion system induced by Civitas with
restricted coercion strategies is coercion resistant in α w.r.t.
γz, for any valid vote z.

The proof of this theorem is given in the appendix. Let
us note that the theorem holds for any number of honest
and dishonest voters and authorities. We also note that
the proof of this theorem does not depend on the policy
used to remove duplicates. In particular, it does not matter
whether re-voting is allowed or not.

Multi-voter coercion. Theorem 4 can easily be gener-
alized to multi-voter coercion resistance. Suppose that a
number k of voters is being coerced. Suppose that the goal

of voter vk is γk. By Theorem 3, to prove multi-voter coer-
cion resistance in α w.r.t. γ = (γ1 ∩ · · · ∩ γn), it is enough
to prove (*): a system with only one coerced voter vi is
coercion resistant for (α0, . . . , αn) w.r.t. γi, with αn = α.
We define αk as the set of runs where (1) for each possible

vote, there are at least k honest voters who successfully
cast this vote, (2) there are at least k honest voters who
obtain their credentials, before any of the coerced voters
finishes registration, and abstain from voting, (3) there are
at least k honest voters who obtain their credential, but
post ballots with invalid credentials, (4) there are at least
k honest voters who post a ballot after the coerced voters
finish registration.
The proof of (*) is very similar to the one for Theorem 4.

Hence, multi-voter coercion resistance follows.

6 Lee et al. Protocol

In this section, we analyze a protocol proposed by Lee et
al. [28] within our framework. We show that the protocol is
not coercion resistant in general, but propose an extension
of the protocol for which we can show coercion resistance.

6.1 Protocol Description

The Lee et al. protocol assumes that every voter owns a
tamper-resistant device, called a randomizer.
In the setup phase, the tallying tellers T1, . . . ,Tk gener-

ate and publish their common public key KT for threshold
decryption.
In the voting phase, a voter prepares his/her ballot, con-

taining a vote encrypted under KT, and gives it to his/her
randomizer which reencrypts the ballot and signs it, and
sends the result s back to the voter along with a designated
verifier reencryption proof (DVRP) (such a DVRP can be
forged by anyone who knows the private key of the voter).
This part of the communication is assumed to be entirely
private. Then the voter checks the proof, computes his/her
own signature on s and posts it on the bulletin board.
In the tallying phase, the following is done: (1) the dou-

ble signatures of voters and their randomizers on the posted
ballots are verified and invalid ballots are eliminated, (2)
the remaining ballots are shuffled and reencrypted and the
result is posted on the bulletin board, (3) talliers jointly
decrypt shuffled ballots and publish the tally result. Cor-
rectness of all these steps is assured by posting appropriate
non-interactive zero-knowledge proofs.

6.2 Negative Results

Assuming that the goal of the coerced voter is to vote for a
particular candidate, it is easy to see that this protocol is
not coercion resistant: There is a simple abstention attack
where the coercer disallows the coerced voter to put a bal-
lot signed by this voter on the bulletin board. So, one can
at most hope to prove that if a ballot signed by the coerced

10



voter and his/her randomizer has been put on the bulletin
board, then the vote of the coerced voter is counted. How-
ever, even this weaker form of coercion resistance cannot be
shown: A coercer could prepare a ballot with some invalid
vote which is unlikely to occur otherwise and then ask the
coerced voter to give this ballot to his/her randomizer, sign
the result and put it on the bulletin board. The coercer can
check whether his/her vote is decrypted, assuming a dishon-
est tallying teller collaborating with the coercer. (The Lee
et al. protocol is designed to deal with dishonest tallying
tellers.) Therefore, a counter strategy is forced to use the
ballot prepared by the coercer, and hence, the goal of the
coerced voter cannot be achieved.

6.3 Positive Results

To prove coercion resistance, one could assume that all tal-
lying tellers are honest, but this is not the point of the Lee
et al. protocol. We instead propose a slight extension of the
protocol, where the randomizer expects in addition to the
ballot a zero-knowledge proof which shows that the vote
in the ballot is well-formed (just as in Civitas). The ran-
domizer then checks the proof before replying. With this
extension of the protocol, we obtain coercion resistance for
a natural γz and α: γz contains all runs where the co-
erced voter successfully votes for z, if some ballot signed
by this voter and his/her randomizer appears on the bul-
letin board (within the voting phase) and all zero-knowledge
proofs that have to be provided by the authorities are valid.
Note that this goal does not exclude abstention attacks. For
the same reason explained above, these attacks are still pos-
sible in the extended version of the Lee et al. protocol. The
set α is simply the set of runs where for each possible vote
there is at least one honest voter who successfully casts this
vote.

Theorem 5. The coercion system induced by the extended
version of the Lee et al. protocol is coercion resistant in α
w.r.t. γz, for any valid vote z.

The proof of this theorem is sketched in the appendix.

7 Related Work

Coercion resistance in a symbolic model was first formu-
lated by Delaune et al. [16–18]. This work was then further
developed by Backes et al. [4]. Both the work by Delaune
et al. and Backes et al. were motivated by the desire to use
ProVerif [10], a tool for security protocol analysis, for the
automatic analysis of voting protocols. Due to the focus
on automation, the notions of coercion resistance studied
in these works are more restricted than the one considered
here. For example, the notion of coercion resistance intro-
duced by Delaune et al. does not apply to Civitas or the
protocol by Juels et al. [23], as the class of coercion strate-
gies and counter strategies they consider are too restricted.

To show coercion resistance of the Lee et al. protocol, De-
laune et al. study a variant of this protocol which is different
to the one studied here. One of the abstention attacks that
we point out still works for their variant. However, this
attack is out of the scope of their notion of coercion re-
sistance. Conversely, the notion of coercion resistance by
Backes et al. is inspired by the one of Juels et al., which
in turn is especially tailored to the specific protocol struc-
ture of the protocol by Juels et al. and the specific forms of
coercion strategies. In order to facilitate automation, the
protocol models that Delaune et al. and Backes et al. con-
sider are much coarser than ours. For example, the way
votes are tallied is simplified and mix networks and proofs
of compliance are not modeled.

There is also a more fundamental difference between the
work by Delaune et al. and Backes et al. on the one hand,
and our work on the other hand. The symbolic model by
Delaune et al. and Backes et al. is the applied pi calculus [1],
with its notion of observational equivalence for comparing
systems/processes. Observational equivalence is a bisimi-
larity relation which demands that every step of one sys-
tem is matched by a similar step of the other system. In
particular, in the works by Delaune et al. and Backes et
al. the two systems in which the coerced voter runs the co-
ercion strategy and the counter strategy, respectively, are
related using the notion of observational equivalence. This
is fundamentally different to the approach taken here: In
our epistemic approach, we relate traces of systems and say
that for every trace of one system, there exists a trace of
the other system such that the coercer has the same view
on both traces. In the two traces, honest voters may vote in
different ways. By this, votes (including abstention) can be
balanced in case coerced voters vote in different ways in the
two systems and this balancing may be based on the traces
as a whole. Conversely, observational equivalence, with its
strict stepwise correspondence between systems, prohibits
a simple balancing of votes. As a result, the formulations of
coercion resistance proposed by Delaune et al. and Backes
et al. are very complex and less intuitive. In Delaune et
al., the balancing problem is tackled by restricting the set
of coercers and coercion strategies. It is assumed that the
coercer’s goal is to vote for a particular party and that co-
ercion strategies only slightly deviate from the prescribed
protocol. Altogether this leads to a rather weak notion of
coercion resistance, excluding, for example, abstention at-
tacks and other natural coercion strategies, e.g., those rele-
vant for Civitas. Backes et al. introduce what they call an
extractor to solve the balancing problem, which makes the
definition of coercion resistance quite complex and hard to
understand.

In [21,22], Jonker et al. also follow an epistemic approach
to model properties of voting protocols. However, they do
not consider coercion resistance, only receipt freeness. Re-
ceipt freeness is modeled w.r.t. a message that a voter could
use as a receipt. This is only a very rough approximation
of the intuition behind receipt freeness. Also, Jonker et
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al. do not model any cryptographic operators. A more re-
cent work on receipt freeness by Jonker et al. is [20].
The work by Baskar et al. [6] focuses on the decidability of

knowledge-based properties of voting protocols. However,
they only study a very simplistic notion of receipt-freeness,
which resembles privacy of votes; coercion resistance is not
considered.
As already mentioned in the introduction, there also exist

several cryptographic definitions of coercion resistance and
receipt freeness (see, e.g., [13, 23, 31, 33, 35]). On the one
hand, compared to the cryptographic definitions, our sym-
bolic approach abstracts from many cryptographic details,
including details of cryptographic primitives and probabilis-
tic aspects. This leads to weaker security guarantees. On
the other hand, the simplicity of the symbolic approach
in general, and our definition in particular, facilitates the
analysis of protocols and is more amenable to automation,
which, given the complexity of voting protocols, is a crucial
advantage.

8 Conclusion

In this paper, we presented a general, yet simple and in-
tuitive definition of coercion resistance of voting protocols
in an epistemic setting, which does not depend on any spe-
cific, symbolic protocol or adversary model. We applied our
definition to three different voting protocols, two of which,
namely Civitas and the protocol by Okamoto, have not been
rigorously analyzed before. For all three protocols, we iden-
tified conditions under which these protocols are coercion
resistant or fail to be coercion resistant. To obtain these
results it was vital that our definition of coercion resistance
allows to specify various degrees of coercion resistance in
a way more fine-grained than in previous proposals. Our
analyzes brought out several insights about the three pro-
tocols that have not been observed before and that led us
to propose improvements of the protocols.
We believe that our definition of coercion resistance pro-

vides a good basis for automated analysis of coercion resis-
tance, in particular since the definition can be instantiated
with different protocol and adversary models. However,
carrying out tool supported analysis was out of the scope
of the present work.
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O. Kouchnarenko, J. Mantovani, S. Mödersheim, D. von
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A General Properties

A.1 Proof of Theorem 1

Before we present the proof of Theorem 1, we define normal
protocols precisely.

Definition 10. A protocol (A, in , out , s0, P ) with A =
{v, c, e} is normal, if (i) v and c are connected by some input
and output channels (in both directions), (ii) both v and c

have an unbounded number of private channels (see the
paragraph after Definition 6), (iii) P (v) = Π(in(v), out(v))
and P (c) = Π(in(c), out(c)).

Proof of Theorem 1. We first introduce some terminol-
ogy and prove general lemmas about processes for forward-
ing messages between channels.
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Let p = (I, O,N, f) be an atomic process and h be a
channel renaming, i.e. a injection from Ch to Ch. We define
an atomic process h(p) as (I ′, O′, N, f ′) with I ′ = h(I) and
O′ = h(O), where, for each (I ′, N)-view U = (λ,W ), we
put f ′(U) = h(f(h−1(λ),W )). We extend the domain of
a channel renaming to arbitrary (non necessarily atomic)
processes in a natural way.
Now, for processes P1, P2 and a channel renaming h, we

will write P1 ⊑h P2, if for each run π induced by P1, the
run h(π) is induced by P2. The following lemma is easy to
prove.

Lemma 1. For a process P and a channel renaming h, we
have P ⊑h h(P ).

For c, d ∈ Ch, we denote by ↑dc the process which simply
forwards on channel d every message received on c. By
↑dc↑

d′

c′ we will denote (↑dc ‖ ↑d
′

c′ ). For a process P [c0, c1]
which uses channels c0 and c1, we will write P [a0, a1] for the
process which uses ai instead of ci and otherwise behaves
like P [c0, c1] (i.e. P [a0, a1] = h(P [c0, c1]) for h = {c0 7→
a0, c1 7→ a1}). Sometimes we will write P [~c] instead of
P [c0, c1].
Let P be a subprocess of some process P ′. We define an

equivalence relation
.
=P on runs induced by P ′ as follows:

π
.
=P π′ iff π|D = π′

|D, where D is the set of elements of
the form c and c̄, for c ∈ IP ∪ OP . Note that, if π and
π′ are runs of some protocol S = (A, in , out , s0, P ) with
A = {v, c, e} and P ∈ P (e), then π

.
= π′ iff π

.
=P π′.

Let P be a process. A channel c is called an input channel
of P , if c ∈ IP and c /∈ OP . A channel c is called an output
channel of P , if c ∈ OP and c /∈ IP .

Lemma 2. Let P [c0, c1] be a process with some input chan-
nel c0 and some output channel c1, let P

′ be a process, and
x0, x1 be channels not used neither by P [c0, c1] nor P ′. Let
P1 = (P ′ ‖ P [c0, c1]) and P2 = (P ′ ‖↑x0

c0
↑c1x1

‖ P [x0, x1]).
Then:

(1) For each run π induced by P1 there exists a run π′

induced by P2 with π
.
=P ′ π′.

(2) For each run π induced by P2 there exists a run π′

induced by P1 with π ≡P ′ π′.

Proof. Let f be the process ↑x0

c0
↑c1x1

. To prove (1), suppose
that π is a run induced by P1. We construct π′ in the follow-
ing way. Whenever it happens in π that (c0 : m) is delivered
and, in consequence, a reply of P [c0, c1] is sent, then two
steps are performed in π′: first, (c0 : m) is delivered and,
in consequence, the reply (x0 : m) of f is sent; and second,
the message (x0 : m) sent in the first step is immediately
delivered and, in consequence, the reply of P [x0, x1] is sent.
Furthermore, whenever it happens in π that (c1 : m) is sent
by P [c0, c1], then two steps are performed in π′: the cor-
responding message (x1 : m) is sent by P [x0, x1] and then
this message is immediately delivered and, in consequence,
(c1 : m) is sent by f . It is easy to show that π′ obtained in
this way is a run induced by P2 and π′ .

=P ′ π.

To prove (2), suppose that π is a run induced by P2. We
construct π′ in the following way. Whenever it happens in
π that (x1 : m) is sent by P [x0, x1], then, in π′, the corre-
sponding message (c1 : m) is sent by P [c0, c1]. When, in π,
such a message (x1 : m) is delivered and, in consequence,
the reply (c1 : m) of f is sent, no corresponding step is
performed in π′, so, in particular, (c1 : m) is kept as a mes-
sage to be delivered. Furthermore, whenever it happens in
π that a message (c0 : m) is delivered and, in consequence,
the reply (x0 : m) of f is sent, then no corresponding step is
taken in π′, so, (c0 : m) is kept as a message to be delivered.
When, in π, a message (x0 : m) is delivered to P [x0, x1],
then, in π′, we can deliver (c0 : m) to P [c0, c1]. It is easy
to show that π′ obtained in this way is a run induced by
P1 and π′ ≡P ′ π. (Note, however, that one cannot prove
π′ .

=P ′ π.) This completes the proof of Lemma 2.

To make the proof of Theorem 1 simpler, we assume that
~a = (a0, a1) with a0 ∈ out(v) ∩ inp(c) and a1 ∈ out(c) ∩
inp(v), are the only channels shared by c and v in a normal

protocol. Similarly, we assume that ~d = (d0, d1) with d0 ∈
out(e)∩inp(v) and d1 ∈ out(v)∩inp(e) are the only channels
shared by e and v. We stress, that these assumptions make
the proof simpler, but are by no mean crucial and can be
easily dropped.
For channels ~x = (x0, x1), let v0[~x] be (↑x0

d0
↑d1

x1
). So, v0[~x]

simply forwards on channel x0 each message received on d0
and forwards on d1 each message on channel x1. Now, v0
is just v0[~a].

To prove Theorem 1, suppose that v0 is not a coercion
strategy in α w.r.t. γ and v′0 is a counter-strategy for v0. Let
v be a strategy in V . We will construct a counter-strategy
v′ for v.
We will write v′0[~a] instead of v′0, as channels ~a are used by

v′0. Similarly, we will write v[~d,~a] and c[~a], for any c ∈ C.
Let ~x = (x0, x1) be some private channels of v not used
in v nor v′0. Such channels exist due to Condition (ii) of
Definition 10. Similarly, for a given c ∈ C, let ~y = (y0, y1)
be some internal channels of c not used in c.
We define v′ as (v′0[~x] ‖ v[~x,~a]). We will show that v′ is

a counter-strategy for v. Let σ = {~x 7→ ~a,~a 7→ ~y, ~y 7→ x}.
The following lemma holds true, because none of ~a, ~x, ~y

is used by any ê ∈ E.

Lemma 3. Let ρ = (v̂, ĉ, ê, π) be a run of S. We have that
π

.
= σ(π).

Lemma 4. Let π1, π2 be runs induced by some (v̂ ‖ ĉ ‖ ê)
such that channels ~x do not occur in π1, π2. If π1 ≡ĉ π2,
then σ−1(π1) ≡ĉ σ

−1(π2).

Sketch of proof. The lemma follows from the observation,
that, for each channel z occurring in π1 or π2 (note that
z 6= x), if σ−1(z) ∈ Iĉ, then z ∈ Iĉ.

Now we will show that Item (iii) of the definition of coer-
cion resistance holds for v′, i.e. r(v′, c, e) ⊆ γ, for all c ∈ C
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and e ∈ E. So, let ρ1 ∈ r(v′, c, e), which means that

ρ1 = ((v̂′0[~x] ‖ v̂[~x,~a]), ĉ[~a], ê, π),

for some v̂′0 ≃ v0, v̂ ≃ v, ĉ ≃ c, ê ≃ e, and some π induced
by (v̂′0[~x] ‖ v̂[~x,~a] ‖ ĉ[~a] ‖ ê). So, by Lemma 1, σ(π) is a
run induced by (v̂′0[~a] ‖ v̂[~a, ~y] ‖ ĉ[~y] ‖ ê) and thus

ρ2 = (v̂′0[~a], (v̂[~a, ~y] ‖ ĉ[~y]), ê, σ(π))

is in r(v′0[~a], (v[~a, ~y] ‖ c[~y]), e) (note that v[~a, ~y] ‖ c[~y] is
in P (c), by condition (iii) of Definition 10). Because v′0[~a]
is a counter-strategy for v0[~a], we have that ρ2 ∈ γ. By
Lemma 3, π

.
= σ(π), which implies ρ1

.
= ρ2. Because γ is

closed under
.
=, we obtain ρ1 ∈ γ.

Finally, we will show that Item (ii) of the definition of
coercion resistance holds for v and v′, i.e. for each c, e, and
ρ ∈ r(v′, c, e)∩ α, there exist e′ ∈ E and ρ′ ∈ r(v, c, e) such
that ρ ∼ ρ′. For Item (i) one can proceed similarly. This
completes the proof of the theorem.
So, let ρ1 ∈ r(v′, c, e)∩ α. We proceed, as above, and so,

ρ1 is like above and, for ρ2 defined as above, ρ1
.
= ρ2 holds.

Because α is closed under
.
=, we have ρ2 ∈ α. As v′0[~a] is

a counter-strategy for v0[~a], there exists e′ ∈ E and a run
ρ′2 ∈ r(v0[~a], (v[~a, ~y] ‖ c[~y]), e′) with ρ2 ∼ ρ′2. This means
that

ρ′2 = (v0[~a], (v̂[~a, ~y] ‖ ĉ[y]), ê′, π′),

for some ê′ ≃ e′, and some π′ induced by (v0[~a] ‖ v̂[~a, ~y] ‖
ĉ[y] ‖ ê′) such that π′ ≡(v̂[~a,~y]‖ĉ[y]) σ(π). By Lemma 1,
σ−1(π′) is a run induced by (v0[~x] ‖ v̂[~x,~a] ‖ ĉ[~a] ‖ ê′) and
thus

ρ′1 = ((v0[~x] ‖ v̂[~x,~a]), ĉ[~a], ê′, σ−1(π′))

is in r((v0[~x] ‖ v[~x,~a]), c[~a], e′) (note that v0[~x] ‖ v[~x,~a] is
in P (v), because of condition (iii) of Definition 10). Since
π′ ≡(v̂[~a,~y]‖ĉ[y]) σ(π) and Iĉ[~a] ⊆ Iv̂[~a,~y]‖ĉ[y], we have π′ ≡ĉ[~a]

σ(π). So by Lemma 4, σ−1(π′) ≡ĉ[~a] π. Now, by Lemma 2,
there exists a run π′′ induced by (v̂ ‖ ĉ[~a] ‖ ê′) such that
π′′ ≡(ĉ[~a]‖ê′) σ

−1(π′) with implies π′′ ≡ĉ[~a] σ
−1(π′). Hence,

π′′ ≡ĉ[~a] π, and so, finally, we obtain a run (v̂, ĉ, ê′, π′′) ∼ ρ1
in r(v, c, e′).

A.2 Proof of Theorem 3

Before we prove the theorem, we state some definitions only
sketched or omitted in Section 4.3.
Let S be a protocol as in Section 4.3. We define

Si = (A, in i, out i, s0, Pi), where v now represents voter
vi only, e is unchanged, and c gets direct access to the
channels of the coerced voters v1, . . . , vi−1, vi+1, . . . , vn, i.e.,
ini(v) = Ii, out i(v) = Oi, ini(c) = in(c) ∪

⋃

i∈W Ii, and
out i(c) = out(c) ∪

⋃

i∈W Oi, where W = {1, . . . , n} \ {i}.
Moreover, Pi(e) = P (e), Pi(v) = Π(in i(v), out i(v)), and
Pi(c) = Π(in i(c), out i(c)).
For the proof of Theorem 3, we define a mapping from

runs ρ of T to runs ρ(i) of Ti and from properties β of T
to properties β(i) of Ti: Recall that each v ∈ P (v) is of

the form (v1 ‖ · · · ‖ vn) with vi ∈ Π(Ii, Oi). For a run
ρ = ((v1 ‖ · · · ‖ vn), c, e, π), we define ρ(i) as (vi, (v1 ‖ . . . ‖
vi−1 ‖ vi+1 ‖ . . . ‖ vn ‖ c), e, π). For a property β of T ,
we define β(i) to be {ρ(i) : ρ ∈ β}. When it is clear from
the context, we will write β instead of β(i), treating β as a
property of Ti.
We can now turn to the proof of Theorem 3. We define

a function f which maps a coercion strategy vi of the i-th
voter to a counter strategy v′i = f(vi), by defining v′i as
some (arbitrarily chosen) counter strategy for vi in Ti (such
a counter strategy exists, since Ti is coercion resistant).
Now, for any v ∈ P (v) which, as we know, must be of the

form (v1 ‖ . . . ‖ vn) with vi ∈ Pi(v), and for v′ = (v′1 ‖ . . . ‖
v′n), where v′i = f(vi), we will show that T , along with v
and v′, meets the conditions of the definition of multi-voter
coercion resistance.
First, let us show that condition (iii) holds. Let c ∈

P (c), e ∈ P (e) and ρ ∈ r(v′, c, e). So, ρ is of the form
((v̂′1 ‖ . . . ‖ v̂′n), ĉ, ê, π). For each i ∈ {1, . . . , n} we have
that ρ(i) ∈ ri(v

′
i, ci, e), where ci = (v1 ‖ . . . ‖ vi−1 ‖ vi+1 ‖

. . . ‖ vn ‖ c). Thus, ρ(i) ∈ γi and so ρ ∈ γi. Hence,
ρ ∈ γ1 ∩ · · · ∩ γn.
Now, let us show that condition (i) holds. The proof for

condition (ii) is very similar. Let ρ ∈ r(v, c, e)∩αn, for some
c and e. Let uk denote (v′1 ‖ . . . ‖ v′k ‖ vk+1 ‖ . . . ‖ vn).
Note that u0 = v and un = v′. We will show, by induction,
that for each k ∈ {0, . . . , n} there exists ek and ρk such
that ρk ∈ r(uk, c, ek) ∩ αn−k and ρk ∼ ρ. Note that, for
k = 0, we can simply take e0 = e and ρ0 = ρ. So, let us
assume that the above holds for k − 1. We will show that
it also holds for k. So, we have some ek−1 and ρk−1 ∼ ρ
such that ρk−1 ∈ r(uk−1, c, ek−1) ∩ α(n−k+1). It follows

that ρ
(k)
k−1 ∈ α(n−k+1) and ρ

(k)
k−1 ∈ ri(vk, c

∗, ek−1), where
c∗ = (v′1 ‖ . . . ‖ v′k−1 ‖ vk+1 ‖ . . . ‖ vn ‖ c). By coercion
resistance of Tk, there exists ek and ρ′k ∈ r(v′k, c

∗, ek)∩αn−k

such that ρ′k ∼k ρ
(k)
k−1. Let ρk be such that ρ

(k)
k = ρ′k.

Hence, ρk ∼ ρk−1 (as the coercer can see more in Tk than
in T ). By transitivity of ∼, we have ρk ∼ ρ. We also have
that ρk ∈ r(uk, c, ek) and ρk ∈ αn−k.

B Civitas

In this section we provide a detailed modeling of Civitas in
our framework and present the proof of coercion resistance
of this system.

B.1 Cryptographic Primitives

We use a term of the form 〈m,m′〉 to represent a pair of
messages m and m′; with first(p) and sec(p) yielding, re-
spectively, the first and the second component of a pair p.
A term sigm{k} represents the signature on a message m
under a (private) key k. Such a signature can be verified
using pub(k), the public key corresponding to k. We also
assume that such a signature reveals m.
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We use the following terms to represent randomized en-
cryption with reencryption and homomorphic property:
{m}rk represents a term m encrypted under a (public) key
k using a randomness r; dec(c, k) represents a decryption
of a ciphertext c with a key k (k is intended to be a pri-
vate key corresponding to the public key under which c is
encrypted); reenc(c, k, r) represents a reencryption of a ci-
phertext c under a (public) key k with randomness r (we

have reenc({m}rk, k, r
′) = {m}r+r′

k ). We also use symbols
+ and ×, equipped with the appropriate equational theory,
to express the homomorphic property of the encryption:
{m1}

r1
k × {m2}

r2
k = {m1 ×m2}

r1+r2
k .

Distributed decryption is modelled as follows. Sup-
pose that x1, . . . , xn are private key shares of some agents
a1, . . . , an. Then, pub(x1), . . . , pub(xn) are the correspond-
ing public key shares (which are intended to be pub-
lished). The distributed public key of a1, . . . , an is now
K = pub(x1) × · · · × pub(xn). To decrypt a ciphertext
c = {m}rK , that is a message m encrypted under this key,
the cooperation of all a1, . . . , an is necessary: each ai posts
his public decryption share pi = dshare(c, xi). Now, the re-
sult of decryption (that is the message m) can be computed
from these shares: m = distdec(p1, . . . , pn).
In a very similar way me model distributed plaintext

equivalence test (PET), which can be used to determine,
whether, for two ciphertext c and c′, the plaintext of c and
c′ are the same, without revealing anything more about
these plaintexts (in particular, without decrypting c and
c′). Suppose, again that x1, . . . , xn are private key shares
of a1, . . . , an and K = pub(x1) × · · · × pub(xn) is their
distributed public key. To perform a PET on ciphertexts
c = {m}rK and c′ = {m′}r

′

K (that is to check whether m
and m′ are the same), each ai posts his public PET share
pi = petshare(c, c′, xi). Now, the result of the PET can be
computed from these shares: distpet(p1, . . . , pn) = T iff the
m = m′.
The equational theory for modeling these primitives is

given in the appendix (Fig. 2). We assume additionally that
+ and × are equipped with equations for associativity and
commutativity property (we could consider more complex
equational theory for there operators, which however makes
the proof more complicated). This theory will be denoted
by E.

B.2 Zero-knowledge Proofs

We will model the zero-knowledge proofs used in the
protocol following the approach of [5]. A zero-
knowledge proof will be represented by a term P =
ZKn,k

ϕ (t1, . . . , tn; s1, . . . , sk) where t1, . . . , tn are terms
called the private component (the proof will keep these
terms secret), terms s1, . . . , sk are called the public compo-
nent (the proof reveals these terms), and ϕ is a term built
upon variables x1, . . . , xn, y1, . . . , yn (no other variables and
no nonces can occur in this term; xi is intended to refer to
ti, while yi is intended to refer to si), called the formula of
P .

We have the following equalities associated to zero-
knowledge proofs. The first group of equations reveals the
public components (also the formula) of a proof. The sec-
ond one allows one to check validity of a proof.

public(ZKn,k
ϕ (t1, . . . , tn, s1, . . . , sk)) = 〈ϕ, s1, . . . , sk〉

check(ZKn,k
ϕ (t1, . . . , tn, s1, . . . , sk)) = T

if ϕ is a formula build upon x1, . . . , xn, y1, . . . , yk,
and ϕ[ti/xi, si/yi] ≡E T.

To model Civitas, we will use zero-knowledge proofs for-
mally defined in Fig. 3. We use semicolons only to enhance
legibility, as a mean of separating private and public com-
ponents. The meaning of these proofs is as follows.

KnowPriv(x; y) represents a proof of knowledge of the pri-
vate key x associated with the given public key y (i.e.
y = pub(x)).

DVRP(α, x; m,m′, k, kv) represents a designated-verifier
reencryption proof which shows that m′ is a reencryp-
tion ofm under k; kv is the public key of the designated
verifier who, having the corresponding private key, is
able to forge a faked proof; α is an additional random-
ness used to construct the proof. The proof is valid if
either (a) m′ = reenc(m, k, x) or (b) kv = pub(x), i.e.
x is a private key associated with public key kv of the
designated verifier.

ProofDShare(x; p, y, c) represents a proof that p is the pub-
lic share for distributed decryption of c w.r.t. y, i.e.
p = dshare(c, x) and y = pub(x).

ProofPETShare(x; p, y, c, c′) represents a proof that p is the
public share for distributed PET of ciphertexts c and
c′ w.r.t. y, i.e. p = petshare(c, c′, x) and y = pub(x).

OneOfl(r; m, k,~b) represents a proof that m is an encryp-

tion under k of one of the values in ~b = 〈b1, . . . , bl〉

(m = {b}rk, where b is an element of ~b).

MutKnow(m,m′, r, r′; c, c′, k) represents a proof of mutual
knowledge of the plaintexts contained in ciphertexts c
and c′ (c = {m}rk and c′ = {m′}r

′

k ).

ProofMixl(~r; ~c1,~c2, k) where ~r,~c1,~c2 are tuples of length
l, represents a proof that ~c2 is obtained from cipher-
texts ~c1 by mixing (i.e. applying some permutation)
and reencryption (~r is the collection of random values
used in reencryption), i.e. ~c2[π(i)] = reenc(~c1[i], k, ~r[i]),
for some permutation π of {1, . . . , l}.

B.3 Protocol Description

The participants. The participants of the protocol are:
the voters v0, . . . , vm, the supervisor S, the bulletin board B

registration tellers R0, . . . ,Rk, ballot boxes X0, . . . ,Xk, and
tabulation tellers T0, . . . ,Tk. We will assume that B, R0,
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checksig(sigk{m}, pub(k)) = T

extractmsg(sigk{m}) = m

dec({x}rpub(k), k) = x

reenc({x}rk, k, r
′) = {x}r+r′

k

reenc(reenc(x, k, r), k, r′) = reenc(x, k, r + r′)

{m1}
r1
k × {m2}

r2
k = {m1 ×m2}

r1+r2
k

distdec(p1, . . . , pk) = m where pi = dshare({m}rY , xi)
with Y = (pub(x1)×· · ·×pub(xk))

distpet(p1, . . . , pk) = T where pi = petshare({m}rY , {m}r
′

Y , xi)
with Y = (pub(x1)× · · · × pub(xk))

first(〈x, y〉) = x sec(〈x, y〉) = y

x
.
= x = T T ∨ x = T

T ∧ T = T x ∨ T = T

Figure 2: Theory E — equational theory for modeling Civitas.

KnowPriv stands for ZK1,1
ϕ with ϕ =

(

y1
.
= pub(x1)

)

DVRP stands for ZK2,4
ϕ with ϕ =

(

y2
.
= reenc(y1, y3, x2) ∨ y4

.
= pub(x2)

)

ProofDShare stands for ZK1,3
ϕ with ϕ =

(

y1
.
= dshare(y3, x1) ∧ y2

.
= pub(x1)

)

ProofPETShare stands for ZK1,4
ϕ with ϕ =

(

y1
.
= petshare(y3, y4, x1) ∧ y2

.
= pub(x1)

)

OneOfl stands for ZK
1,3
ϕ with ϕ =

∨l
i=1(y1

.
= {y3[i]}x1

y2
)

MutKnow stands for ZK2,5
ϕ with ϕ =

(

y1
.
= {x1}

x3

y3
∧ y2

.
= {x2}

x4

y3

)

ProofMixl stands for ZK
1,3
ϕ with ϕ =

∨

π∈Pl

∧l
i=1

(

y2[π(i)]
.
= reenc(y1[i], y3, x1[i])

)

Figure 3: Shortcuts for zero-knowledge proofs. In the equations t[i] denotes the i-th element of a tuple t (obtained by
appropriately applying destructors to t), and Pl denotes the set of all permutation of {1, . . . , l}.

X0, and T0 are honest. The remaining voting authorities
may be dishonest. We will also assume that some of voters
are dishonest and cooperate with the coercer. We assume
that the channel from the voter’s trusted registration teller
is untappable.

In what follows, we assume that i ranges over the set
{0, . . . ,m} and j ranges over {0, . . . , k}. For a participant
a, we will write siga{m} instead of sigpub(ka){m}. We will
also write pub(a) instead of pub(ka).

Setup phase. We do not model here the first part of the
setup phase, where the supervisor posts the ballot design
(the set of valid votes), identifies the tellers by posting their
public keys, and posts the electoral roll (the set of autho-
rized voters). Instead, we assume that the public keys of
the voting authorities, the ballot design, and the electoral
roll are fixed. Below, we describe the remaining steps of
this phase.
Tabulation tellers collectively generate a public key for a

distributed encryption scheme and post it on the bulletin
board (decryption of messages encrypted under this key

requires the participation of all tabulation tellers):

(KGen1) Tj → B : sigTj
{h(yj)}

(KGen2) Tj → B : sigTj
{yj, KnowPriv(xj ; yj)}

where yi = pub(xi) and xi is random value, the private
key share of Tj. After the first step, all the tellers wait
until all commitments are available. After the second step,
they check proofs (by “checking a proof p” we mean veri-
fying that its public components are as required and that
check(p) = T). Now, (y1×· · ·×yk) is the distributed public
key of T1, . . . ,Tk. We will refer to this key by KT.

Next, each registration teller Rj randomly generates cre-
dential shares sij (for each voter vi) and post these shares
on the bulletin board:

(Cred) Rj → B : sigRj
{i, Sij} (for each i, j)

where Sij = {sij}
rij
KT

, and rij are random. The pub-
lic credential of vi is now publicly computable as Si =
(Si1 × · · · × Sik).
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Registration phase. Voters register to acquire their pri-
vate credentials:

(Reg1) vi → Rj : request

(Reg2) Rj → vi : sij , r̄ij , Dij

where r̄ij = (rij + wij), for random wij and Dij =

DVRP(δij , wij ; Sij , S
′
ij ,KT, pub(vi)), with S′

ij = {sij}
r̄ij
KT

(which, up to the equation theory under considera-
tion, equal to reenc(Sij ,KT, wij)) and random δij , is a
designated-verifier reencryption proof which shows that S′

ij

is a reencryption of Sij . The voter verifies this proof. Now,
his private credential is si = (si0 × · · · × sik).

Voting phase. Each voter sends his ballot bi containing
his vote along with his credential to all ballot boxes:

(Vote) vi → Xj : bi = 〈{si}
ri
KT

, {vi}
r′i
KT

, P i
V , P

i
K〉

where ri, r
′
i are random, vi is the vote chosen by

vi, P i
V = OneOfl(r

′
i; {vi}

r′i
KT

,KT, b1, . . . , bl), and P i
K =

MutKnow(si, vi, ri, r
′
i; {si}

ri
KT

, {vi}
r′i
KT

,KT). The value vi
will be called the vote of bi; si is ballot credential of bi;

{vi}
r′i
KT

will be called the encrypted vote of bi, and {si}
ri
KT

will be called the encrypted credential of bi. P i
V is a zero-

knowledge proof which shows that the vote is well-formed
with respect to the ballot design (vi is one of the valid votes
z1, . . . , zl), and P i

K is a zero knowledge-proof which shows
that the submitter simultaneously knows si and vi. We will
some times write bi[v

′, s′] for the message like bi but with
v′ and s′ instead of vi and si.

Tabulation phase. Before the tabulation phase, each bal-
lot box posts a commitment to its contents on the bulletin
board:

(Comm1) Xj → B : sigXj
{j, Cj}

where Cj = h(contents(Xj)). The supervisor then posts his
own signatures on all these commitments, defining the set
of votes to be tabulated:

(Comm2) S → B : sigS{j, Cj}

Then, the tabulation tellers collectively tally the elec-
tion: All tabulation tellers (1) retrieve the ballots from all
ballot boxes and the public credentials from the bulletin
board. They also verify that the content of ballot boxes cor-
responds to the commitments posted in (Comm2). Then,
they (2) check proofs in retrieved ballots and eliminate any
ballot with an invalid proof. Note that these steps are per-
formed by each teller independently, and the resulting set
of votes, let us denote it by B, is determined by the publicly
known information.
Next, (3) duplicate elimination (according to some fixed

policy) is performed, by running PET(c, c′), for all en-
crypted ballot credentials c, c′ from distinct ballots in B:

(PET1) Tj → B : sigTj
{αj(c, c

′), Pαj
(c, c′)}

where αj(c, c
′) = petshare(c, c′, xj) and Pαj

(c, c′) =
ProofPETShare(xj ;αj(c, c

′), yj , c, c
′). Now, each teller waits

until all the tellers post their share and verifies the proofs.
The result of PET for c, c′ is distpet(α0, . . . , αk) (it evalu-
ates to T if the PET passes) and is publicly computable.
For each two ballots for which PET holds true, only one is
kept (according to the mentioned policy).
Next, (4) mixing ballots is performed on the list of re-

maining ballots ~u0. Each tabulation teller in turn applies
its own random permutation πb

j with reencryption. We as-
sume that ~uj is the input for j-th teller:

(Mix1) Tj → B : sigTj
{~uj+1, Puj

}

where ~rj is a vector of random values,
~uj+1[π

b
j(i)] = reenc(~uj [i],KT, ~r[i]), and Puj

=
ProofMix(~rj ; ~uj , ~uj+1, KT). The result of mixing is
~uk+1. Similarly, mixing credentials is performed on the list
~w0 = (S0, . . . , Sm) of public credentials. Each tabulation
teller in turn applies its own random permutation πc

j with
reencryption. We assume that ~wj is the input for j-th
teller:

(Mix2) Tj → B : sigTj
{~wj+1, Pwj

}

where ~r′j is a sequence of random values,
~wj+1[π

c
j(i)] = reenc(~wj [i],KT, ~r

′[i]), and Pwj
=

ProofMix(~r′j ; ~wj , ~wj+1, KT). The result of mixing is
~wk+1.
The next step is invalid ballots elimination where bal-

lots without valid credentials are eliminated. For each bal-
lot with the encrypted credential c, PET(c, c′) is performed
against every public credential c′:

(PET2) Tj → B : sigTj
{βj(c, c

′), Pβj
(c, c′)}

where βj(c, c
′) = petshare(c, c′, xj) and Pβj

(c, c′) =
ProofPETShare(xj ; βj(c, c

′), yj , c, c
′). Now, each teller

waits until all the tellers post their share and verifies the
proofs. The result of PET for c, c′ is distpet(β0, . . . , βk) and
is publicly computable. If this test fails for all c′, the ballot
is removed.
Finally, decrypt step is performed, for each of the remain-

ing ballots. Decryption is applied to the encrypted vote c
of each of the remaining ballots (but not to the encrypted
credentials):

(Decr) Tj → B : sigTj
{γj(c), Pγj

(c)}

where γj(c) = dshare(c, xj) and Pγj
(c) =

ProofDShare(xj ; γj(c), yj , c). Each teller waits until
the remaining tellers submit their shares and verifies the
proofs. Now, the decrypted vote is v = distdec(γ0, . . . , γk).
At this point the result of the voting process is publicly
computable.

B.4 Modelling of the Protocol

In addition to the participants enumerated in Section B.3,
we assume that the coercer c and a key issuer K also par-
ticipate in the protocol. The role of the key issuer is to
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generate private and public keys to each participant and,
to provide these keys on request.
We assume that v0 is the coerced voter. The voters

v1, . . . , vn, for some n < m, are honest, while vn+1, . . . , vm
are dishonest and will not be modelled directly, but, in-
stead, will be subsumed by the coercer. As we mentioned
before, we assume that S, B, R0, X0, and T0 are honest. The
remaining authorities, that is Xi, Ri, Ti, for i ∈ {1, . . . , k},
are assumed to be dishonest and will be subsumed by the
coercer. Additionally, to model anonymous channels, we
introduce agents C0, . . . ,Ck. The role of Ck is to simply for-
ward messages to Xi (and so, Xj cannot associate a sender
to a received message).
The set Ch of the channels used in the protocol consists

of:

– ch[S→x], for each protocol participants x (including S),

– ch[K→x] and ch[x→K], for each protocol participant x 6=
K,

– ch[B→x] and ch[x→B], for each protocol participant x 6=
B, x 6= Cj , and x 6= Xj ,

– ch[Cj→Xj ] and ch[x→Cj ], for each protocol participant x,

– ch[Xj→B]

– ch[vi→Rj ] and ch[Rj→vi],

– ch[v0→c] and ch[c→v0],

– ch[init→S] is a channels used to initiate S.

We will use the following notation: for a set B, we will write
ch[B→∗] for the set of all c ∈ Ch of the form ch[x→y] with
x ∈ B. Similarly, we will write ch[∗→B] for the set of all
c ∈ Ch of the form ch[x→y] with y ∈ B.
We assume that Σ contains, in addition, constants init,

request, and done and also constants representing the par-
ticipant names.
The protocol we take is S = (A, in , out , s0, P ), where

A = {v, c, e} and in, out , s0, and P are defined as follows:
in and out are the functions:

in(v) = ch[∗→v0] out(v) = ch[v0→∗]

in(c) = ch[∗→D] out(c) = ch[D→∗]

in(e) = ch[∗→H] out(e) = ch[H→∗]

where H = {S,B,R0,X0,T0, v1, . . . , vn} is
the set of honest participants and D =
{c, vn+1, . . . , vm,R1, . . . ,Rk,X1, . . . ,Xk,T1, . . . ,Tk} is
the set of dishonest participants. Additionally, both v0
and c have an infinite number of private channels (i.e.
channels that occur only in in(v)∩ out(v) or in(c)∩ out(c),
respectively). In particular, let cv be some private channel
of v.
The initial sequence s0 = (ch[init→S] : init). For each

participant a, we define the set P (a) of programs of this
participant as follows.

Key-Issuer. P (K) consists of programs which assign a dis-
tinct nonce ka (the private key of a) to each participant
a and, in response to (ch[x→K] : request), send on channel

ch[K→x] the tuple containing the public keys pub(ka) of all
the participants and, additionally, the private key kx of x.

Bulletin board. The set P (B) contains one program which
immediately forwards all received messages to all partici-
pants (except for Xj).

Ballot box. The set P (X0) contains one program which,
after obtaining the message done from S, posts the commit-
ment of its content (i.e. the list of the messages received so
far) on the bulletin board and publishes this content, i.e.
sends the content to all participants (except for B, Cj , and
Xj). In addition, this program immediately forwards to the
coercer each message he receives (this model the fact that
the coercer is able to intercept messages sent to the ballot
box, but cannot block them).

Supervisor. The set P (S) consists of a program which, in
response to the message init, initiates Tj and Rj by send-
ing them init message and waits until the setup phase is
completed (all the necessary commitments and key shares
are posted). Then it sends init to all voters and message
done to itself (this models “waiting” for the voting phase
to end). When this message is delivered, it sends done to
all the ballot boxes and waits for their commitments. After
it obtains these commitments, he signs them and posts on
the bulletin board.

Registrars. The set P (R0) consists of programs which, in
response to the message init sent by S, request for keys and,
after obtaining them, pick a distinct nonces sij and rij ,
and post sigRj

{vi, Sij} to the bulletin board, as defined in
(Cred), for each i ∈ {0, . . . ,m}. Then, on request sent by
vi, it replies with (Reg2).

Honest voters. The set P (vi), for i ∈ {1, . . . , n}, consists
of (a) programs ξz , for each valid vote z, which after re-
ceiving message init from S, take the keys from K, request
for credentials (Reg1) and, after obtaining them all (Reg2),
post their ballots bi (Vote), with vi = z and fresh nonces
ri and r′i, to all Cj ; (b) programs which register like ξz but
do not post any ballot (abstain from voting); (c) programs
ξ⊥, which is defined like ξz , but instead of posting a valid
ballot, posts a ballot with an invalid credential (some fresh
nonce);

Anonymous channel. The set P (Cj) consists of one program
which forwards to Xj every message it receives.

Tallier. The set P (T0) consists of the following programs:
a program, after receiving init from S, participates in the
procedure of public key generation: it picks a nonce xi (its
private key) and posts (KGen1) and then, when it sees that
all the tellers have posted their messages (note that he can
see it, because the bulletin board forwards all the messages
to every participant), it post (KGen2), waits for the corre-
sponding messages of the remaining tellers and checks the
proofs (it these tests fail, it halts).
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Then, after it obtains (forwarded by the bulletin board)
the commitment of S on the contents of all ballot boxes
(sent in step (Comm2)), it participates in the tabulation
procedure: it post messages as defined in steps (PET1)–
(Decr). After each step, it waits for the remaining tellers
to post their messages and verifies whether these messages
have an appropriate form and the zero-knowledge proofs
are correct. If these tests fail, it halts.

Coerced voter. The set P (v0) consists of program of the
form (vreg ‖ v), where v ∈ Π(I0, O0), for O0 = out(v0)
and I0 = in(v0) \ {ch[S→v0], ch[K→v0], ch[Rj→v0]}, and vreg is
the program which after receiving message init from S, take
the keys from K, request for credentials (Reg1) and, after
obtaining them all, sends all the obtained keys and creden-
tials on cv. The program vreg , performing registration, is
the fixed part of any program of v0; v represents the be-
haviour of v0 after registration has been done (e.g. in the
voting phase). Note that v has access to all the registration
data, as can read the data sent on cv.

Coercer. P (c) is defined as Π(in(c), out(c)).

B.5 Proof of Theorem 4

Let us denote Civitas with restricted coercion strategies by
S. Note that this protocol is not normal, because the set
V does not contain all programs over in(v), out(v), and
thus we cannot use Theorem 1. Hence, we first show that
coercion-resistance of this protocols is equivalent to coer-
cion resistance of some normal protocol Ŝ. Let Ŝ be defined
like protocol S with only one difference: the subprocess vreg
of any program of the coerced voter will be now run by a
distinct agent v∗0 , which will be a part of the environment.
Let R be the coercion system induced by S, and R̂ be the

coercion system induced by Ŝ. Let ρ be a run of S, which
means that ρ = ((vreg ‖ v), c, e, π), where π is induced by
(vreg ‖ v ‖ c ‖ e). By ρ̂ we denote (v, c, (vreg ‖ e), π). Note

that ρ̂ is a run of Ŝ. We extend the operator ·̂ to properties
of S in a natural way: β̂ = {ρ̂ : ρ ∈ β}. It is easy to show
that the following lemma holds.

Lemma 5. R is coercion-resistant in α w.r.t. γz iff R̂ is
coercion-resistant in α̂ w.r.t. γ̂z.

One can show that protocol Ŝ is normal and both α and
γ are now closed under

.
=. Hence, we can use Theorem 1.

So, it is enough to provide a counter-strategy v′ for a strat-
egy v which simply forwards to the coercer all the messages
obtained from the remaining participants and forwards to
these participants all the messages obtained from the co-
ercer.
Let v′ be the process which after obtaining the registra-

tion data on cv post the ballot b0 = b[z, s0] and, in the
same time, behaves like the forwarder v with the follow-
ing exception. When he obtains the registration data on
cv, he changes it before forwarding: he replaces s00 by a

fresh nonce s̃00 (a faked credential) and D00 by D̃00 =
DVRP(δ̃00, kv0 ; S00, S̃

′
00,KT, pub(v0)) (a faked proof) with

random δ̃00 and S̃′
00 = {s̃00}

r̄00
KT

(recall that pub(v0) stands
for pub(kv0)). We will show that v′ is a counter-strategy
for v.

First, we show that condition (iii) of Definition 2
holds for v′. Let ρ be a run of the system induced by v′,
i.e. ρ is induced by (v′ ‖ c ‖ e), for some c ∈ C, e ∈ E. If
ρ is not fair, then there is nothing to prove. So, suppose
that ρ is fair. First, note that, by the fairness assumption,
all R0, . . . , Rk post all messages and zero-knowledge proofs
as required. Since vreg does not send out his private key,
the DVRP-s he gets cannot be faked, and thus the private
credential he obtains is valid. Second, v′ obtains his regis-
tration data before the voting phase ends1.
Since v′ posts then a valid ballot b0 right away (still before

the voting phase ends), by the fairness assumption, this
ballot is posted successfully and so b0 is in the initial pool
of votes to be tabulated.
Now, it is easy to show that b0 will be successfully pro-

cessed by tabulation tellers, using the fact that v′ never
reveals his private credential (so it is not used in any other
ballot) and the assumption that the run is fair (and so all
the tabulation tellers have to correctly perform all the ex-
pected step, because otherwise they would not be able to
construct valid zero-knowledge proofs).

Now, we will show that condition (i) of Defini-
tion 2 holds for v and v′. So, let ρ ∈ α be a run induced
by (v ‖ c ‖ e), for some c ∈ C and e ∈ E.
Since ρ is in α, there is some honest voter, say v1, who

successfully posts a ballot b1[z, s1] (that is a ballot with
vote z), some honest voter, say v2, who obtains his creden-
tial and successfully posts a ballot b2[z2, s

∗
2] with an invalid

credential (a fresh nonce s∗2), and some honest voter, say
v3, who posts his ballot b3 after v0 finishes registration.
We take e′ ∈ E which is like e with the following excep-

tions: (a) v3 abstains from voting, (b) if v3 in ρ posted his
ballot successfully, then v1 votes like v3 voted in ρ; and (c)
moreover, if at least one proper ballot with s0 is in ρ suc-
cessfully posted and zc is the vote in the ballot with s0 that
is kept after duplicate elimination (note that zc must be a
valid vote), then v2 posts a valid ballot with zc instead of
the invalid one. Also, instead of using permutations πb

0 and
πc
0 in steps (Mix1) and (Mix2), T0 uses slightly different

permutations (see Sect. B.6).
The run ρ′ of (v′ ‖ c ‖ e′) is constructed from ρ in the

following way. The messages in ρ′ are delivered in the same
order like the corresponding messages in ρ with the fol-
lowing exceptions: first, the message sent by vreg on cv is
delivered immediately and, second, the ballot sent by v0 in
ρ′ is delivered at the same step, when the ballot sent by v3
is delivered in ρ (because v0 sends his ballot, just when he
gets the registration data on cv, and v3 posts his ballot after

1By the expression “v0 obtains his credentials”, used in the defi-
nition of a fair run w.r.t. v0, we mean formally that this credential is
delivered to v′.
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it, the ballot of v0 is ready to be delivered at the mentioned
step).

Now, one can show that ρ ∼ ρ′. The rough idea is as
follows: v2 is used to hide the fact that valid ballots possibly
posted by the coercer in ρ become invalid in ρ′, v3 is used to
hide the fact that v0 posts his ballot in ρ′, but abstains from
voting in ρ, and finally v1 is used to balance the outcome of
the voting. Due to the fact that the coercer cannot tell any
difference between an original DVRP and a faked one and
the fact that the messages posted on the bulletin board are
mixed and reencrypted before decryption, the frames are
indistinguishable to the coercer.

Details of the proof depend on (a) whether or not the
coercer successfully posts at least one valid ballot with s0
and (b) whether or not v3 posts his ballot successfully. In
next subsection, we present a detailed proof for one of these
cases: when the coercer successfully posts one proper ballot
with s0, and v3 also posts his ballot successfully.

Now, we will show that condition (ii) of Defini-
tion 2 holds for v and v′. So, let ρ ∈ α be a run induced
by (v′ ‖ c ‖ e), for some c ∈ C and e ∈ E. We define the
vote zc as follows: if the coercer, in ρ, successfully posts
at least one ballot with s̃0 (where s̃0 is computed like s0,
but using s̃00 instead of s00), then let zc be the vote in the
ballot containing s̃0 which is left after duplicate elimination
phase; otherwise let zc by any vote. Note that, since a valid
ballot has to contain a proof that a vote in it is valid, zc
must be a valid vote.

Since ρ is in α, there is some honest voter, say v1, who
obtains his credential, before vreg finishes registration, but
abstains from voting, and some honest voter, say v2, who
successfully votes for zc.

We take e′ ∈ E which is as e with the following excep-
tions: v1 votes for z and, moreover, if at least one ballot
with s̃0 is, in ρ, successfully posted, then v2 posts b[zc, s

∗
2],

for some unused nonce s∗2, instead of b[zc, s2]. We also need
to slightly change the permutations used by T0 in (Mix1)
and (Mix2).

The run ρ′ of (v ‖ c ‖ e′) is constructed from ρ in the
following way. The messages in ρ′ are delivered in the same
order like the corresponding messages in ρ with the follow-
ing exceptions: The ballot sent by v1 is delivered in the
same step, when the ballot sent by v0 was delivered in ρ (it
is possible because this ballot is posted before vreg finishes
registration).

Now, one can show that ρ ∼ ρ′. The rough idea is as
follows: v2 is used to hide the fact that the ballots involv-
ing the credential given by the coerced voter and possibly
posted by the coercer are invalid in ρ but valid in ρ′; v1
is used to hide the fact that v0 posts his ballot in ρ, but
not in ρ′. Moreover, due to the fact that the coercer can-
not distinguish an original DVRP and the faked one, and
the fact that the messages posted on the bulletin board are
mixed and reencrypted, the frames are indistinguishable to
the coercer.

B.6 Detailed Case Analysis

In this subsection we give a detailed proof that the runs ρ
and ρ′, as constructed in the proof for condition (i) above,
are indistinguishable to the coercer in the case the coercer,
in ρ, successfully posts exactly one proper ballot bc[zc, s0],
and v3 also successfully posts his ballot b3[z3, s3].
Formally, we have to show the following. The run ρ is

of the form (v̂, ĉ, ê, π), where v̂ ≃ v, ĉ ≃ c, ê ≃ e, and
π is a run induced by (v̂ ‖ ĉ ‖ ê). Similarly, ρ′ is of the
form (v̂′, ĉ, ê′, π′), where v̂′ ≃ v′, ê′ ≃ e′, and π′ is a run
induced by (v̂′ ‖ ĉ ‖ ê′). By the definition of ∼, we need
to prove that π ≡ĉ π′, which mens that π ≡Nĉ

Iĉ
π′. Since,

Iĉ ⊆ in(c) it is enough to show that π ≡N
I where N = Nĉ

and I = in(c). This, by the definition of ≡N
I , is equivalent

to the following statement, where ϕ = π|I and ϕ′ = π′
|I : (i)

chan(ϕ) = chan(ϕ′) and (ii) for each τ1, τ2 ∈ TN , we have
that τ1[ϕ] ≡ τ2[ϕ] iff τ1[ϕ

′] ≡ τ2[ϕ
′].

The proof goes as follows. First we describe ϕ and ϕ′

(which contain exactly those messages that are seen by the
coercer) and show that condition (i) holds. Then we will
show that condition (ii) holds as well.
Let us first informally point out the differences in view

of the coercer on ρ and ρ′. These views are very similar, in
particular, the lists of votes published by the tallying tellers
in both cases are exactly the same. The main differences
are summarized in the table below, where s̃0 denotes s̃00 ×
s01 × · · · × s0k (i.e. the faked private credential of v0).

ρ ρ′

the (faked) credential sent to c s0 s̃0
the ballot posted by c bc[zc, s0] bc[zc, s̃0]

the ballot posted by v3 / v0 b3[z3, s3] b0[z, s0]

the ballot posted by v1 b1[z, s1] b1[z3, s1]

the ballot posted by v2 b2[z2, s
∗

2] b2[zc, s2]

The messages placed in the same raw of the table are seen
by the coercer, in ρ and ρ′, respectively, at the same channel
and the same step.
We need also to specify the mentioned permutations π̃b

0

and π̃c
0, used by T0 in ρ, instead of πb

0 and πc
0, to mix votes

and credentials. So, π̃b
0 is like πb

0, but places the reencryp-
tions of b2[zc, s2], b1[z3, s1], b0[z, s0], bc[zc, s̃0] in the place
where πb

0 places the reencryptions of bc[zc, s0], b3[z3, s3],
b1[z, s1], and b2[z2, s

∗
2], respectively. The permutation π̃c

0 is
like πc

0, but places the permutations of Ŝ2, Ŝ1, Ŝ0, Ŝ3 in the
place where πc

0 places the reencryptions of Ŝ0, Ŝ3, Ŝ1, Ŝ2,
respectively, where Ŝi are reencryptions public credentials
produced in step (Mix2).
Detailed description of ϕ and ϕ′, which is the sequence of

messages received by the coercer in ρ and ρ′, respectively,
is given in Fig. 4. Only messages which are not produced
by the coercer (i.e. neither constructed nor randomly gener-
ated by him, like for instance messages posted by him on the
bulletin board and forwarded to him back) are presented,
as the messages produced by him are not essential to the
proof (instead of using them in τi, one can use the corre-
sponding terms that were used to construct them). Also, we
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Messages in frame ϕ Messages in frame ϕ′

(1) (KGen1) h(y0) h(y0)

(2) (KGen2) y0, KnowPriv(x0; y0) y0, KnowPriv(x0; y0)

(3) (Cred) i, Si0 i, Si0 (for i ∈ {0..m})

(4) (Reg2) si0, r̄i0, Di0 si0, r̄i0, Di0 (for i ∈ {n+ 1, . . . , m})

(5) (Reg2) s00, r̄00, D00 s̃00, r̄00, D̃00

(6) (Vote) B =

{

b3[z3, s3], b1[z, s1], b2[z2, s
∗

2]
bi

b0[z, s0], b1[z3, s1], b2[zc, s2]
bi

}

= B̃ (for i ∈ {4..n})

(7) (Comm) sig
Xj
{j, Cj}, sig

S
{j, Cj} sig

Xj
{j, C̃j}, sig

S
{j, C̃j} (for j ∈ {0, . . . , k})

(8) (PET1) α0(c, c
′), Pα0

(c, c′) (for c 6= c′ in Bc) α0(c, c
′), Pα0

(c, c′) (for c 6= c′ in B̃c)

(9) (Mix1) C =







b̂c[zc, s0], b̂3[z3, s3],

b̂1[z, s1], b̂2[z2, s
∗

2]

b̂i

b̂2[zc, s2], b̂1[z3, s1],

b̂0[z, s0], b̂c[zc, s̃0],

b̂i







= C̃ (for i = 4..m)

Pu0
P̃u0

(10) (Mix2) S =

{

Ŝ0, Ŝ3, Ŝ1, Ŝ2

Ŝi

Ŝ2, Ŝ1, Ŝ0, Ŝ3

Ŝi

}

= S̃ (for i = 4...m)

Pw0
P̃w0

(11) (PET2) β0(c, c
′), Pβ0

(c, c′) β0(c, c
′), Pβ0

(c, c′)
(for c ∈ Cc and c′ ∈ S) (for c ∈ C̃ and c′ ∈ S̃)

(12) (Decr) γ0(c), Pγ0(c) (for c ∈ Cv) γ0(c), Pγ0 (c) (for c ∈ C̃v)

Figure 4: Messages in ϕ and ϕ′. Bc denotes the sequence of encrypted ballot credentials in B. Cc (C̃c) denotes the sequence
of encrypted ballot credentials in C (C̃), and Cv (C̃v) is the sequence of encrypted votes in C (C̃). By b̂[x, y] and Ŝi we
denote reencryptions of b[x, y] and Si made by T0. Pu0

(P̃u0
) and Pw0

(P̃w0
) are the zero-knowledge proofs posted by T0 in the

mixing ballots and mixing credentials phase, respectively. Messages that occur in ϕ and ϕ′ at the same positions, are placed at
corresponding positions in the table (for example Ŝ3 and Ŝ1).

omit signatures on messages which are posted on the bul-
letin board. We only mention here, that the corresponding
messages from left and right column, if signed, are signed
by the some party (for instance, both messages in (1) are
signed by T0). We also omit the keys the coercer might
have obtained form K (these are the public keys of all the
participants and the private keys of the dishonest ones).

Messages (1) and (2) are posted by T0 in steps (KGen1)
and (KGen2). Messages (3) are posted by R0 in step (Cred).
(4) comprises messages sent by R0 in step (Reg2) to dishon-
est voters who have requested for credentials. Note that up
to this point messages in both ϕ and ϕ′ are exactly the
same. (5) contains the messages sent by R0 to v0 in step
(Reg2) and forwarded to the coercer (in ϕ) or a faked ver-
sion of these messages (in ϕ′). (6) comprises votes posted
by voters on ballot boxes. Messages (7) are the commit-
ments on the content of ballot boxes signed by these boxes
and by the supervisor and posted on the bulletin board in
steps (Comm1) and (Comm2). (8) are PET shares and
proofs posted by T0 in the duplicate elimination phase of

tabulation. (9) and (10) are the results of mixing with reen-
cryption of ballots posted by T0 in the mixing ballot phase
and the mixing credential phase, respectively, along with
the appropriate proofs. By b̂[x, y] and Ŝi we denote reen-
cryptions of b[x, y] and Si made by T0. (11) contains the
PET shares and proofs posted by T0 in the invalid ballots
elimination phase. Finally, (12) are the distributed decryp-
tion shares and corresponding zero-knowledge proofs posted
by T0 in (Decr).
One can check that condition (i) holds (i.e. that the

chan(ϕ) = chan(ϕ′)). Hence, to complete the proof, it is
enough to prove that the condition (ii) also holds, which is
stated by the lemma bellow.

Lemma 6. For each τ1, τ2 ∈ TN , we have that τ1[ϕ] ≡ τ2[ϕ]
iff τ1[ϕ

′] ≡ τ2[ϕ
′].

The remainder of this section is devoted to sketch the
proof of this lemma.
A destructor is any of the following symbols: first, second,

unsig, checksig, dec, distdec, distpet, public, and check. The
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remaining symbols of Σ are constructors. We will consider
equations associated with destructors as rewriting rules,
read from left to right (note that there is exactly one rule
associated with each destructor). Moreover, the equations
associated with reenc(·, ·, ·) will be also considered as rewrit-
ing rules. A term is said to be reduced, if all the mentioned
above equations, regarded as rewriting rules, are applied.
We will call ϕ and ϕ′ frames. We will sometimes write

ϕ(xi) instead of xi[ϕ] (for the i-the element of ϕ). A frame is
closed under applying destructors, if whenever a term of the
form g(xi, t1, . . . , tn)[ϕ], with some destructor g, reduces at
the top (i.e. a reduction can be applied at the top level of
the term), the result of total reduction of this term is also
an element of the frame. We stress that such a result is a
reduced term.
Now, we define ϕ0 as a closure under applying destruc-

tors of ϕ and ϕ1 as the corresponding closure of ϕ′, where
“corresponding” means that the results obtained by apply-
ing the same terms (of the form g(xi, t1, . . . , tn)) to both
frames are, in both frames, at the same position. We will
show that, for each τ1, τ2 ∈ TN , we have that τ1[ϕ0] ≡ τ2[ϕ0]
iff τ1[ϕ1] ≡ τ2[ϕ1], which immediately implies Lemma 6.
A test is an expression of the form τ1 = τ2. We will say

that a test τ1 = τ2 holds in a frame ϕ, if τ1[ϕ] ≡ τ2[ϕ]. A
test is basic, if it is either of the form (a) xi = τ , where τ is
a term with no destructor in the head, (b) xi = xj , or (c)
xj = g(xi, τ1, . . . , τn), where g is destructor and τ1, . . . , τn
are some terms.
We define the size of a term in the usual way, but in case

of terms representing zero-knowledge proofs (ZKi,j
ϕ (~t)), the

size of the formula ϕ is taken into account too.
The following lemma says that the frames ϕ0 and ϕ1 are

indistinguishable w.r.t. basic tests.

Lemma 7. For a basic test τ1 = τ2, the following is true:
τ1[ϕ0] = τ2[ϕ0] iff τ1[ϕ1] = τ2[ϕ1].

Sketch of Proof. (a) First, let us consider the case where the
test is of the form x = τ , where x is one of x1, x2, . . . and τ
has no destructor in its head. We consider all x case by case.

For instance, let ϕ0(x) = {z3}
r′
3

KT
and ϕ1(x) = {z}

r′
0

KT
(these

messages come from b3[z3, s3] and b0[z, s0] posted by the
voters on the bulletin boxes). Suppose that x = τ holds in
ϕ0. τ cannot have a constructor in its head, because, there
is no τ ′ such that τ ′[ϕ0] ≡ r′3 (r′3 is never revealed). So,
τ has to be a variable. However, no other variable gives a
term equivalent to ϕi(x). Hence, τ must be x and the test
under consideration also holds in ϕ1−i.
(b) If a test is of the form xi = xj , one can easily see,

considering again case by case, that it holds in ϕ1 iff it holds
in ϕ2.
(c) If a test is of the form xj = g(xi, τ1, . . . , τn), where g

a is destructor and τ1, . . . , τn are some terms, one should,
again, consider all possible xi case by case. For instance, if
g = distdec (i.e. a distributed decryption is applied), then
xi must by a distributed decryption share provided by T0

(Note that the destructor must reduce, because terms in

ϕi are reduced and the test holds in one of ϕi). Hence,
this decryption is applied to one of the encrypted ballots
from the list C′ of reencrypted and shuffled ballots, and
the resulting votes are the same in both frames, and so the
test does not distinguishes them.

Lemma 8. Let τ0 = τ1 be a minimal test distinguishing
ϕ0 and ϕ1. Then no destructor can be reduced in τj [ϕi]
(i, j ∈ {0, 1}).

Sketch of Proof. For the sake of contradiction, let us sup-
pose that some destructor can be reduced in τj [ϕi]. Let us
consider a minimal subterm τ of τj , with a destructor in its
head, that can be reduced. Thus, its direct subterms are
either variables of irreducible terms. If the left-most direct
subterm of τ is a variable, then—because ϕi is closed un-
der applying destructors—there is a variable xk such that
xk = τj holds in ϕi. Now, by Lemma 7, xk = τj also holds
in ϕ1−i. Hence the considered test is equivalent (in both
frames) to τ1−j = xk, and thus it is not minimal.
If the left-most direct subterm of τ , let us denote it by τ ′,

is not a variable, then one can show that there is a subterm
τ ′′ of τ ′ such that τ [ϕ0] = τ ′′[ϕ0] and τ [ϕ1] = τ ′′[ϕ1], which
is impossible, because τ∗ = τ1−j , where τ

∗ is obtained from
τj by replacing τ by τ ′′, would be a smaller test distinguish-
ing the frames. (We use here the observation that, in this
case, a destructor can be applied only if some equations of
some subterms of τ ′ hold in a frame, and because the con-
sidered test is assumed to be minimal, these equations must
hold in both frames at the same time. So, in both frames
the reduction can be applied. Moreover, in case, when the
destructor in the head of τj is distdec or distpet, we use
some particular properties of the frames under considera-
tion and the fact that the arguments of these destructors
can be freely rearranged.)

Finally, we prove the following fact which completes the
proof of Lemma 6.

Lemma 9. For each τ1, τ2 ∈ TN , we have that τ1[ϕ1] ≡
τ2[ϕ1] iff τ1[ϕ2] ≡ τ2[ϕ2]

Sketch of Proof. For sake of contradiction, suppose that
τ0 = τ1 is a test which distinguishes these frames, i.e. it
holds in ϕi and does not hold in ϕ1−i, for some i ∈ {0, 1}.
We can assume that this test is minimal (w.r.t. the size of
terms).
Assume that some of τj , say τ0, is a variable. Then τ1

has to have a destructor in its head (because, otherwise, by
Lemma 7, the test would not distinguish the frames). But,
by Lemma 8, such a destructor cannot be reduced, so the
test does not hold in neither of ϕi (since both frames are
reduced and contain no destructors).
Now, assume that none of τj is a variable. If we suppose

that none of τ0ϕi, τ1ϕi reduces at the top, then one can
construct a smaller test that distinguishes the frames, which
contradicts the assumption about minimality of the test.
Hence, it is enough to consider the case when some τj , say
τ0 reduces at the top position in ϕi.
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By Lemma 8, we only need to consider three cases, de-
pending of whether the top symbol of τ0 is (a) reenc, (b)
+, or (c) ×. In each case, one obtains a contradiction. For
instance, let us consider the case (a). So, τ0ϕi is of the form
reenc(reenc(m, k, r), k, r′) or reenc({m}rk, k, r

′). However,
since τ0 is assumed to be reduced, τ0 has to be of the form
reenc(xl, k, r

′), for some variable xl. Now, since the frames
are reduced, ϕi(xl) cannot be of the form reenc(m, k, r), so
it must be of the form {m}rk. Hence, τ0ϕi is of the form

reenc({m}rk, k, r
′) and it reduces to {m}r+r′

k . Note that
there is no term σ such that σ[ϕi] ≡ r, as r is never revealed.
It implies that τ1 has to be of the form reenc(xl′ , k, r

′)
with ϕi(xl′) = {m}rk (there is no other way of obtaining

{m}r+r′

k ). So, xl = xl′ holds in ϕi and, by Lemma 7, also
holds in ϕ1−i. It, however, means that the test τ0 = τ1
holds in ϕ1−i, which contradicts the assumption that it dis-
tinguishes the frames.

C Lee et al. Protocol

In this section we describe the protocol [28] in more details
and sketch the proof of coercion-resistance of this protocol.
We can model cryptographic primitives used in this proto-
col, like in case of Civitas (see Fig. 2), with some small
modifications toward the threshold decryption scheme.

C.1 Description of the Protocol

The set of agents we take is A = {v0, . . . , vn, S, r0, . . . , rn,
c,B,T1, . . . ,Tk,M1, . . . ,Mk}, where v0, . . . , vn are voters, S
is the supervisor, r0, . . . , rn are tamper-resistant randomis-
ers, B is the bulletin board, T1, . . . ,Tk are the tallying au-
thorities, M1, . . . ,Mk are mixers, and c is the coercer. We
assume that the coerced voter is v0.
All the messages posted on B are publicly available. The

communication channel between a voter and his tamper-
resistant randomiser is assumed to be untappable (i.e. it
cannot be observed by the coercer). The remaining chan-
nels are public (can be observed by the coercer).
In the setup phase the tallying tellers T1, . . . ,Tk generate

and publish his common public key KT for the threshold
decryption. Then, from the point of view of a voter vi, the
protocol execution consists of three steps:

(P1) vi → ri : mi

(P2) ri → vi : sigkri
{m′

i},

DVRP(βi; mi,m
′
i,KT, pub(v0))

(P3) vi → B : sigpub(kvi
){sigkri

{m′
i}}

where mi = {vi}
αi

KT
, m′

i = reenc(mi,KT, βi), and vi denotes
the vote chosen by vi, αi is a random value generated by
this voter, and βi is a random value generated by ri.
In the second phase of the protocol, the following steps

are performed: (1) S verifies the double signatures of vot-
ers and their randomisers on the posted ballots, and pub-
lishes valid ballots on the bulletin board. (2) The, mixers

M1, . . . ,Mk, in turn, shuffle and reencrypt these ballots, and
post the result on the bulletin board. (3) Talliers jointly de-
crypt shuffled ballots using the (t, k)-threshold ElGammal
decryption protocol, and finally, (4) S publishes the tally
result.
We assume that the correctness of all these steps

is assured by posting appropriate non-interactive zero-
knowledge proofs. This guarantees that only decryptions al-
lowed by the protocol are performed, provided only a small
fraction of the entities is dishonest.

C.2 Proof of Theorem 5

Recall that we want to prove coercion-resistance for the ex-
tended version of the protocol. The extension described in
Section 6, can be formalised as follows. The voter, instead
of step (P1), performs the following step.

(P1a) T → B : mi, Pi

where Pi is is a zero-knowledge proof which shows that the
vote is well-formed with respect to the ballot design, i.e.
vi is one of the valid votes (one can do it like in Civitas).
Then, ri, before replying with (P2), checks this proof.
First, one can show that the protocol is normal and both

α and γ are closed under
.
=. Hence, we can use Theorem 1.

So, it is enough to provide a counter-strategy v′ for a strat-
egy v which simply forwards to the coercer all the messages
obtained from the remaining participants and forwards to
these participants all the messages obtained from the co-
ercer.
Let z be a choice of v0. Let v′ be the process which

behaves like the forwarder v with the following exception.
When he is instructed to send a message (mc, Pc), then,
instead, he sends (m0, P0) as in specified in (P1a), and,
instead of forwarding the answer of r0 to the coercer, he
sends him m′

0 signed by r0 along with a faked DVRP for
mc and m′

0. We will show that v′ is a counter-strategy for
v.

First, we show that condition (iii) of Definition 2
holds for v′. Let ρ be a run of the system induced by v′,
i.e. ρ is induced by (v′ ‖ c ‖ e), for some c ∈ C, e ∈ E. If
no message of the form m∗, as defined above, is posted on
bulletin board and tallied, then there is nothing to prove.
So, suppose that some sigv0{sigr0{m}} is posted and tal-
lied. The only message signed by r0 in ρ is m′

0, which
is a reencryption of the ballot containing the vote z, so
m = m′

0. Hence, as the tabulation phase has to be done
correctly (because otherwise the authorities would not be
able to construct valid zero-knowledge proofs), this vote is
published.

Now, we will show that condition (i) of Defini-
tion 2 holds for v and v′. So, let ρ ∈ α be a run induced
by (v ‖ c ‖ e), for some c ∈ C and e ∈ E. Since ρ is in α,
there is some honest voter, say v1, who successfully votes
for z.
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checksig(sigk{m}, pub(k)) = T

unblind(sig∗k(blind(m, t, pub(k))), t) = sigk{m}

BC(v′, f′(α, v, r, v′), f(α)) = BC(v, r, f(α))

splitVerif( f(sum(x1, . . . , xn)), f(x1), . . . , f(xn)) = T

Figure 5: Equational Theory for Okamoto Protocol.

We take e′ ∈ E which is as e with the following excep-
tions: if, in ρ, a message of the form sigv0{sigr0{m}} is
posted on the bulletin board, where m is a ballot with some
vote zc (note that zc has to be a valid vote), then v1, in e′,
votes for zc instead of z.
The run ρ′ of (v′ ‖ c ‖ e′) is constructed from ρ in a natu-

ral way: the messages in ρ′ are delivered in the same order
like the corresponding messages in ρ. One can show that
ρ ∼ ρ′. The rough idea is as follows: v1 is used to balance
the outcome of the election. Due to the fact that the coercer
cannot tell any difference between an original DVRP and a
faked one, and the fact that the messages posted on the bul-
letin board are mixed and reencrypted before decryption,
the runs are indistinguishable to the coercer.

Now, we will show that condition (i) of Defini-
tion 2 holds for v and v′. So, let ρ ∈ α be a run induced
by (v′ ‖ c ‖ e), for some c ∈ C and e ∈ E. We define the
vote of zc: if the coercer voter, in ρ, is instructed to use his
randomiser to reencrypt some ballot mc with a valid proof
that mc contains a valid vote v, then zc is v; otherwise let
zc by any vote. Since ρ is in α, there is some honest voter,
say v1, who successfully votes for zc.
We take e′ ∈ E which is as e with the following excep-

tions: if, in ρ, a message of the form sigv0{sigr0{m}} is post
on the bulletin board (note that m must be mc as defined
above) then v1, in e′, votes for z instead of zc.
The run ρ′ of (v′ ‖ c ‖ e′) is constructed from ρ, again, in

a natural way: the messages in ρ′ are delivered in the same
order like the corresponding messages in ρ. One can show
that ρ ∼ ρ′, for the same reasons as previously.

D Okamoto Protocol

In this section we describe the protocol [33] and discuss its
properties.

D.1 Cryptographic Primitives

In addition to the common cryptographic properties (which
can be modelled like in Figure 2), the protocol makes use of
blind signatures and trapdoor commitment. The equational
theory associated with these primitives is given in Fig. 5.
These primitives are used in the following way. For a

chosen vote v and random values r and α, a voter can com-
pute trapdoor-commitment for v, denoted by BC(v, r, f(α)).

As it is only f(α), not α itself, what is used to com-
pute this expression, the commitment can be checked (re-
computed) using v, r, and f(α). However, the voter,
who also knows α, can, for any vote v′, forge a value
r′ = f′(α, v, r, v′) which gives the same commitment value,
i.e. BC(v, r, f(α)) = BC(v′, r′, f(α)).

D.2 Description of the Protocol

The set of agents is {v0, . . . , vn,A,B,T,R1, . . . ,RN}, where
v0, . . . , vn are voters, A is an administrator, B is a bul-
letin board, T is a timeliness commission member, and
R1, . . . ,RN are PRC members.
Channels between vi and A are network channels (the

Internet). Messages posted on the bulletin board are sent
trough an anonymous channel. The voter vi send messages
to T and Rj using untappable, anonymous channel.
From the point of view of vi, the protocol execution con-

sists of the following steps: First, vi randomly generates
α1
i , . . . , α

N
i and computes αi = sum(α1

i , . . . , α
N
i ). Then he

computes Gi = f(αi) and Gj
i = f(αj

i ). Next, he randomly
chooses ri and ti. Let

mi = BC(vi, ri, Gi),

m′
i = (mi, Gi, G

1
i , . . . , G

N
i ),

xi = blind(m′
i, ti, pub(A)),

zi = sigvi{xi}

Now, the following messages are exchanged:

(P1) vi → A : {xi, zi, vi}pub(A)
(P2) A → vi : yi = sig∗A(xi)

As we mentioned, the communication channel between vi
and A is a public channel. Before executing (P2), A checks
the signature zi on xi and verifies that vi has the right to
vote and he has not applied yet. After step (P2) is per-
formed, vi takes si = unblind(yi, ti) (which is equivalent to
sigA{m

′
i}). The successive steps are:

(P3) vi → B : (m′
i, si)

(P4) vi → T : (vi, ri,mi)

(P5) vi → Rj : (αj
i , Gi)

(P6) Rj → B : uj
i = ( f(αj

i ), Gi), sigRj
{uj

i}

In the counting stage, T, using messages from the bul-
letin board, checks whether the message obtained from vi
in step (P4) is a valid ballot, as is explained below. Then
T publishes valid votes in random order.
To check whether to accept a message (P4), T does

the following: He looks for the matching message (m′
i, si)

published on the bulletin board (m′
i has to contain mi

as the first component) and verifies that si = sigA{m
′
i}.

Then he verifies that for Gi taken from m′
i it is true

that mi is in fact equal to BC(bi, ri, Gi). He also checks
whether, for all Gj

i taken from m′
i, the corresponding mes-

sage (Gj
i , Gi) was published on the bulletin board by Rj
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and that splitVerif(Gi, G
1
i , . . . , G

N
i ) = T. If all these tests

pass, the vote is accepted. T also provides a zero-knowledge
proof that he has honestly published valid votes.

In [33], it is mentioned that the above voting scheme is
not coercion-resistant, if one of the PRC’s is not honest (co-
operates with the coercer). So, a more complicated variant
of the voting scheme (Scheme B) is also proposed. In this
variant, the relation between αi and A = {α1

i , ..., α
N
i } is

that it is enough to know some number K < N of elements
in A to be able to compute αi (as opposed to the variant
presented above, where all N elements of A are necessary
to compute αi).

D.3 Properties of the Protocol

In short, the Okamoto protocol does not provide coercion
resistance even under strong assumptions. However, the
protocol is interesting in that it highlights the difference
between single-voter coercion and multi-voter coercion, in
absence of dishonest voters.
In [33], the proof of coercion-resistance is based on the

observation that the only way to make a ballot accepted is
to send valid αj

i to all Rj. So because the channels between
the voter and PRC’s are untappable, it can be only the
voter who sends these values and, in consequence, he has
to know them. Thus, he is able to compute αi and make
up a value r′ which enables him to vote for the vote of
his choice. This reasoning misses, however, the fact that
different αj

i can be sent by different voters or even by the
coercer, if he is also a voter.
If we assume that the coercer is an entitled voter or there

is some dishonest voter, the protocol is clearly not coercion-
resistance: The coercer prepares a ballot, ask the coerced
voter to obtain a blind signature on this ballot and then
completes the process by himself, using the anonymous un-
tappable channels he has access to.
Event if we assume that the coercer is not an entitled

voter and there is no dishonest voter, then still the proto-
col is not coercion-resistant, provided that more than one
voter is coerced at the same time. In this case the coercion

strategy is as follows. All the coerced voters are supposed to
obtain a blind signature of the appropriate voting authority
on messages provided by the coercer. Then, the coercer dis-
tributes the private credential shares to the voters in such
a way that no coerced voter has a complete collection of
private credential shares, i.e., the shares for one vote are
distributed among different coerced voters. As a result, no
coerced voter can open his/her commitment in an arbitrary
way. This suffices for the ballots of the coercer to be ac-
cepted. To the best of our knowledge, this attack has not
been observed before. A more detailed description of this
attack follows.
Suppose that there are N voters that are coerced (recall

that N is the number of PRC’s; we chose this number for
simplicity of the proof). The coercion strategy is as follows.
All the coerced voters are supposed to obtain a signature
on messages provided by the coercer. The i-th message is
build, as m′

i in the protocol description, using α1
i , . . . , α

N
i .

Each vi is then supposed to send xi, like in the protocol
description, for vi chosen by the coercer. Furthermore, vi
is supposed, for each j ∈ {1, . . . , N}, to forward αj

a to Rj ,
where a = (i + j) mod N . These shares are the only ones
that the voter learns. So, he is not able to compute any of
αi (it is also true in scheme B), because he knows only one
private share for each αi. Thus, the only valid vote vi can
send to T is vi, as demanded by the coercer. Because T

provides a zero-knowledge proof that the submitted votes
are accounted for, the coercer can verify, that this vote has
been really posted by the voter.
While the above attack allows the coercer to vote as he

wishes, an abstention attack is possible even if only one
voter is coerced, the coercer is not entitled to vote and
there are not dishonest voters.
The only setting in which we could prove coercion re-

sistance of the Okamoto protocol is in the setting just de-
scribed where α is defined similarly to the Lee et al. protocol
and the goal γ is merely that if the coerced voter posts mes-
sage (P3) on the bulletin board, then his/her successfully
votes for the candidate of his/her choice.
Note that for this result to hold it is essential that only

one voter is coerced.
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