
“You Might Also Like:”
Privacy Risks of Collaborative Filtering

Joseph A. Calandrino1, Ann Kilzer2, Arvind Narayanan3, Edward W. Felten1, and Vitaly Shmatikov2

1Dept. of Computer Science, Princeton University {jcalandr,felten}@cs.princeton.edu
2Dept. of Computer Science, The University of Texas at Austin {akilzer,shmat}@cs.utexas.edu

3Dept. of Computer Science, Stanford University arvindn@cs.utexas.edu

Abstract—Many commercial websites use recommender sys-
tems to help customers locate products and content. Modern
recommenders are based on collaborative filtering: they use
patterns learned from users’ behavior to make recommendations,
usually in the form of related-items lists. The scale and complexity
of these systems, along with the fact that their outputs reveal only
relationships between items (as opposed to information about
users), may suggest that they pose no meaningful privacy risk.

In this paper, we develop algorithms which take a moderate
amount of auxiliary information about a customer and infer this
customer’s transactions from temporal changes in the public
outputs of a recommender system. Our inference attacks are
passive and can be carried out by any Internet user. We evaluate
their feasibility using public data from popular websites Hunch,
Last.fm, LibraryThing, and Amazon.

I. INTRODUCTION

Recommender systems are ubiquitous on the Web. When
you buy products from Amazon, rent movies on Netflix,
listen to music on Last.fm, or perform myriad other tasks
online, recommender systems make suggestions based on your
behavior. They typically rely on collaborative filtering, or
patterns learned from other users: for example, “customers
who buy item X (as you just did) often buy item Y .”

We investigate the privacy risks of recommender systems
based on collaborative filtering. By design, such systems
do not directly reveal behavior of individual users or any
“personally identifiable information.” Their recommendations
are based on aggregated data involving thousands to millions
of users, each with dozens to thousands of transactions. More-
over, modern collaborative filtering leverages relationships
between items rather than relationships between users, creating
an extra level of indirection between public recommendations
and individual transactions. One might therefore assume that it
is infeasible to draw meaningful inferences about transactions
of specific users from the public outputs of recommender
systems. We show that this assumption is wrong.

Our contributions. We develop a set of practical algorithms
that allow accurate inference of (partial) individual behavior
from the aggregate outputs of a typical recommender system.
We focus on item-to-item collaborative filtering, in which the
system recommends items similar to a given item. Our key
insight is to exploit the dynamics of public recommendations
in order to make the leap from aggregate to individual data.
This paper is the first to make and quantitatively evaluate the

observation that temporal changes in aggregate recommenda-
tions enable accurate inference of individual inputs.

Our algorithms require only passive, “black-box” access to
the public outputs of a recommender system, as available to
any Internet user. The attacker need not create fake customers
or enter purchases or ratings into the system. We do not assume
that customers’ transactions are available in either identifiable
or anonymized form. Our approach is thus fundamentally
different from the techniques for re-identifying anonymized
transactional records [26]. Re-identification assumes that the
attacker has direct access to customers’ records. By contrast,
our attacks rely only on indirect access: the records are fed into
a complex collaborative filtering algorithm and the attacker’s
view is limited to the resulting outputs.

Our algorithms monitor changes in the public outputs of rec-
ommender systems—item similarity lists or cross-item correla-
tions—over a period of time. This dynamic information is then
combined with a moderate amount of auxiliary information
about some of the transactions of a particular “target” user. The
combination is used to infer many of the target user’s unknown
transactions with high accuracy. Auxiliary information can be
obtained by analyzing the user’s publicly revealed behavior;
we discuss this in more detail in Section III.

Overview of results. We evaluate our algorithms on real-world
recommender systems which produce different types of rec-
ommendations. Our goal is not to claim privacy flaws in these
specific sites—in fact, we often use data voluntarily disclosed
by their users to verify our inferences—but to demonstrate the
general feasibility of inferring individual transactions from the
outputs of collaborative filtering systems.

Some recommender systems make item-to-item correlations
available. An example is Hunch, a popular recommendation
and personalization website. There is a tradeoff between the
number of inferences and their accuracy. When optimized for
accuracy, our algorithm infers a third of the test users’ secret
answers to Hunch questions with no error.

Other recommender systems make only item similarity or
“related items” lists available, with or without numeric similar-
ity scores. Examples include Last.fm, an online music service,
and LibraryThing, an online book cataloging service and
recommendation engine. The results from our LibraryThing
experiment illustrate the yield-accuracy tradeoff, ranging from



58 inferences per user with 50% accuracy to 6 inferences per
user with 90% accuracy. Another example of item similarity
lists is the “Customers who bought this item also bought . . . ”
feature on Amazon. Our ability to evaluate our algorithms on
Amazon’s recommender system is constrained by the lack of
a “ground-truth oracle” for verifying our inferences, but we
conducted a limited experiment to demonstrate the feasibility
of adversarial inference against Amazon’s recommendations.

By necessity, our experiments on real-world systems involve
only a limited sample of users. To demonstrate that our
inference algorithms also work at scale, we implemented an
item-to-item collaborative filtering engine very similar to that
used by Amazon, and ran it on the Netflix Prize dataset of
movie-rating histories [28]. This allowed us to simulate a
complete system, producing public recommendations as well
as auxiliary information about users. The underlying dataset
of individual ratings served as the “ground-truth oracle” for
verifying inferences made by our algorithm. Our algorithm
was able to infer 4.5% of transactions of sufficiently active
users with an accuracy of 90%.

There is a passing similarity between our inference algo-
rithms and actual collaborative filtering. Both use statistical
methods to reach probabilistic conclusions about unknown
aspects of users’ behavior. Our algorithms, however, are tech-
nically different and pursue a fundamentally different goal: not
to predict future events, but to infer past events. This translates
into several concrete differences, discussed in Section V. For
example, in contrast to prediction algorithms, ours perform
best when a user deviates from normal patterns and if his
transactions involve less popular items. We can also infer an
approximate date when a transaction occurred.

For completeness with respect to different types of recom-
mender systems, we present a simple active attack on user-
based collaborative filtering. In broad terms, the attacker cre-
ates multiple sybil users whose transactional profile is similar
to what he knows about the target user’s profile and infers
the target’s non-public transactions from the recommendations
made by the system to these sybils.

In summary, this work is the first to develop a generic
method for inferring information about individual users’ trans-
actions from the aggregate outputs of collaborative filtering.
We show that public outputs of common recommender al-
gorithms may expose non-public details of individual users’
behavior—products they purchase, news stories and books
they read, music they listen to, videos they watch, and other
choices they make—without their knowledge or consent.

II. SURVEY OF RECOMMENDER SYSTEMS

Recommender systems have become a vital tool for attract-
ing and keeping users on commercial websites. Their utility
is supported by research [14] as well as common practice.

The task of a recommender system can be abstractly de-
scribed as follows. Consider a matrix in which rows corre-
spond to users and columns correspond to items. Each value
in this matrix represents a user’s revealed or stated preference
(if any) for an item: for example, whether he purchased a book,

how many times he listened to a song, or what rating he gave
to a movie. Because the item set is typically far larger than a
single user can consume and evaluate, this matrix is “sparse:”
only a small fraction of entries are filled in. A recommender
system takes this matrix as input, along with any available
metadata about users (such as demographics) and items (such
as item categories). The goal of the system is to extrapolate
users’ “true” preferences over the full item set.

Recommender systems can provide several types of rec-
ommendations. If the system suggests items to an individual
user based on its knowledge of the user’s behavior, it provides
user-to-item recommendations. If the system helps users find
similar users, it provides user-to-user recommendations. If,
given an item, the system suggests similar items, it provides
item-to-item recommendations. The system may even list users
who are strongly associated with a given item, thus providing
item-to-user recommendations. The same system may provide
several types of recommendations: for example, Last.fm pro-
vides both item-to-item and user-to-user recommendations.

We focus on item-to-item recommendations, both because
they are supported by essentially all popular online recom-
mender systems and because their output is typically public
and thus the most feasible avenue for an attack.

A thorough technical survey of the literature on recom-
mender systems can be found in [1]. Recommender systems
can be classified as content-based, collaborative, and hybrid.
Content-based systems identify relationships between items
based on metadata alone and recommend items which are
similar to the user’s past transactions. Purely content-based
recommender systems pose no privacy risks under our attacks,
since the system does not consider other users’ transactions
when making recommendations to a user.

Collaborative filtering is much more robust and domain-
agnostic, and hence far more popular. Collaborative filtering
identifies relationships between items based on the preferences
of all users. Traditional collaborative filtering methods are
user-based. For a given user, the system finds other users
with a similar transaction history. In the user-to-user case, the
system recommends these similar users; in the user-to-item
case, it recommends items selected by the similar users.

The alternative is item-based collaborative filtering, which
was first described by Sarwar et al. [31] and has become the
dominant approach [2, 20, 21]. It generates recommendations
using item similarity scores for pairs of items, which are based
on the likelihood of the pair being purchased by the same
customer. Although some systems make raw similarity scores
public, their main uses are internal: for example, to find items
which are similar to a user’s previously purchased items in
order to make user-to-item recommendations.

A. Item-to-item recommendations

It has become standard practice for online recommender
systems to publish item-to-item recommendations, usually in
the form of item similarity lists produced from item similarity
scores. Given an item, these lists help find related items
(see [6] for a survey of algorithms). On Amazon, this is seen as



the “Customers who bought this item also bought . . . ” feature.
Similar features are found on many commercial websites,
including iTunes, Last.fm, Pandora, Netflix, YouTube, Hulu,
and Google Reader. Item similarity lists even appear on many
sites that do not have traditional user-to-item recommenda-
tions, such as IMDb, CNN, and the New York Times.1 Item
similarity lists may be limited to top N items or contain an
ordered list of hundreds or thousands of items.

Many systems reveal additional information. Amazon re-
veals not only the relative popularity of items via bestseller
lists and “sales rank,” but also the percentage of users pur-
chasing certain other items after viewing the given item.2 For
every song, Last.fm provides the number of listeners and how
many times it was played by each listener. Given a book,
LibraryThing provides several ordered lists of related books,
including more common and more obscure recommendations;
some lists also contain detailed transaction information, such
as the precise number of users who have both books. Finally,
Hunch gives all users access to the entire item-to-item co-
variance matrix via an API.

B. User-to-item recommendations
User-to-item recommendations may be user-based (finding

similar users and recommending their items) or item-based
(finding items related to ones that the user chose in the past).
Amazon provides several personalized lists with up to 1,000
items to logged-in users. LibraryThing, Last.fm, and Netflix
also provide recommendation lists to their users.

III. ATTACK MODEL

We view the data that the system uses to make recommenda-
tions as a matrix where rows correspond to users and columns
to items. Each cell represents a transaction (e.g., the user’s
purchase or stated preference for an item). Entries may be
dated; the date may or may not be sensitive from a privacy
perspective. As users interact with the system, the matrix is
continually updated and new recommendations are generated.

Our primary focus is on passive inference attacks. The
attacker has access to the public outputs of the recommender
system, which, depending on the system, may include item
similarity lists, item-to-item covariances, and/or relative pop-
ularity of items (see Section II). The outputs available to the
attacker are available to any user of the system. Crucially, the
attacker observes the system over a certain period and can
thus capture changes in its outputs: an increase in covariance
between certain items, appearance of an item on the similarity
list of another item, an increase in an item’s sales rank, etc.
Note, however, that each update incorporates the effects of
hundreds or thousands of transactions. With the exception
of auxiliary information (described below), inputs into our
inference algorithms are based on aggregate statistics and con-
tain neither personally identifiable information nor information
about specific transactions.

1Even offline retailers such as supermarkets frequently deploy item-to-item
similarity analysis to optimize store layout [3].

2We do not exploit the latter information for the inference attacks in this
paper. This is an interesting topic for future research.

For completeness, we also briefly consider active attacks,
where the attacker creates fake, “sybil” users and manipulates
their entries in the corresponding rows of the transaction
matrix. Depending on the system, this includes adding new
entries (easy in the case of ratings and stated preferences,
more expensive for purchases), modifying existing entries, or
deleting them (easy in the case of ratings and preferences
and may also be possible for purchases; for example, one
can instruct Amazon to ignore certain purchases when making
recommendations). Observable outputs include items recom-
mended by the system to the sybil users and, in the case of
systems like Last.fm or LibraryThing, also user similarity lists
which explicitly identify users with similar histories.

Auxiliary information. We assume that for some users, a
subset of their transaction history is available to the attacker.
We refer to this as the attacker’s auxiliary information. An
inference attack is successful if it enables the attacker to learn
transactions which are not part of the auxiliary information.
In other words, the attacker’s objective is to “leverage” his
prior knowledge of some of the target user’s transactions to
discover transactions that he did not know about.

There are many sources of auxiliary information. The first is
the target system itself. On many websites, users publicly rate
or comment on items, revealing a high likelihood of having
purchased them. The system may even publicly confirm the
purchase, e.g., “verified purchase” on Amazon. Alternatively,
on sites with granular privacy controls, some of the transac-
tions may be publicly visible, while others remain private.

The second source is users revealing partial information
about themselves via third-party sites. This is increasingly
common: for example, music websites allow embedding of
tracks or playlists on blogs or other sites, while Amazon
Kindle allows “tweeting” a selected block of text; the identity
of the book is automatically shared via the tweet.3

The third source is data from other sites which are not
directly tied to the user’s transactions on the target site,
but leak partial information about them. For example, books
listed in a Facebook user profile reveal partial information
about purchases on Amazon. Linking users across different
sites is a well-studied problem [17, 27]. On blippy.com, “a
website where people obsessively review everything they buy,”
individual purchase histories can be looked up by username,
making linkages to other sites trivial. Note that the third (and
to a lesser extent, the second) source of auxiliary information
is outside the control of the recommender system.

Furthermore, information about users’ behavior is con-
stantly leaked through public mentions on online fora, real-
world interactions with friends, coworkers, and acquaintances,
etc. Therefore, we do not consider the availability of auxiliary
information to be a significant impediment to our attacks.

3The stream of such tweets can be conveniently accessed in real time by
searching Twitter for “amzn.com/k/”.



Algorithm 1: RELATEDITEMSLISTINFERENCE

Input: Set of target items T , set of auxiliary items A, scoring
function : R|A| → R

Output: Subset of items from T which are believed by the
attacker to have been added to the user’s record

inferredItems = {}
foreach observation time τ do

∆ = observation period beginning at τ
N∆ = delta matrix containing changes in positions of
items from T in lists associated with items from A
foreach target item t in N∆ do

scorest = SCOREFUNCTION(N∆[t])
if scorest ≥ threshold and t /∈ A then

inferredItems = inferredItems ∪ {t}
return inferredItems

IV. GENERIC INFERENCE ATTACKS

A. Inference attack on related-items lists

In this setting of the problem, the recommender system
outputs, for each item, one or more lists of related items.
For example, for each book, LibraryThing publishes a list of
popular related books and a list of obscure related books.

The description of the inference algorithm in this section is
deliberately simplified with many details omitted for clarity.
Intuitively, the attacker monitors the similarity list(s) associ-
ated with each auxiliary item (i.e., item that he knows to be
associated with the target user). The attacker looks for items
which either appear in the list or move up, indicating increased
“similarity” with the auxiliary item. If the same target item
t appears and/or moves up in the related-items lists of a
sufficiently large subset of the auxiliary items, the attacker
infers that t has been added to the target user’s record.

Algorithm 1 shows the inference procedure. Intuitively, delta
matrices N∆ store information about the movement of each
target item t in the related-items lists of auxiliary items A
(we defer the discussion of matrix construction). The attacker
computes a score for each t using a scoring function. The
simplest scoring function counts the number of auxiliary items
in whose related-items lists t has appeared or risen. If the final
score exceeds a predefined threshold, the attacker concludes
that t has been added to the user’s record.

Scoring can be significantly more complex, taking into
account full dynamics of item movement on related-items
lists or giving greater weight to certain lists. To reduce
false positives and improve inference accuracy, the scoring
function must be fine-tuned for each system. For example,
recommender systems tend to naturally cluster items. Netflix
users who watched the DVD of the first season of “The Office”
also tend to watch the second season. Suppose that some movie
rises in the similarity lists of both seasons’ DVDs. Because
the overlap in viewers across seasons is so great, this does
not reveal much more information than a movie rising in the
list associated with a single DVD. In fact, it may reveal less if
users who watch only one of the two seasons are very unusual.

Our scoring functions prefer sets of auxiliary items which
span genres or contain obscure items. Consider LibraryThing,

where users share the books they read. Classics such as To
Kill a Mockingbird or Catcher in the Rye are so common that
changes in their similarity lists tend to result from widespread
trends, not actions of a single user. Movement of a book
in a list associated with an obscure book reveals more than
movement in a list associated with a bestseller.

B. Inference attack on the covariance matrix

In this setting of the problem, the item-to-item covariance
matrix is visible to any user of the system. An example of an
online recommender system that reveals the covariance matrix
is Hunch (see Section VI-A). We also explain complications,
such as asynchronous updates to the system’s public outputs,
which apply to the related-items scenario as well.

Let I be the set of items. The recommender system main-
tains an item-to-item matrix M . For any two distinct items
i, j ∈ I, the (i, j) cell of M contains a measure of the
similarity between i and j. In the setting of this section, (i, j)
and (j, i) contain the covariance between i and j. In the setting
of Section IV-A, the (i, j) cell contains the position, if any, of
item i in j’s related-items list, along with additional informa-
tion such as numeric similarity strength. As users interact with
the recommender system by making purchases, entering their
preferences, etc., the system continually accumulates more
data and updates M at discrete intervals.

For each user u, the recommender system maintains a
“record” Su ⊂ I. As the user interacts with the system, some
item t may be added to Su, reflecting that t is now related to
the user. In some systems, the same item may be added to Su
multiple times: for example, the user may listen to a particular
song, watch a movie, or purchase a product more than once.
The system may also remove items from Su, but this is less
common and not used for our attack.

Consider a toy case when a single user u interacts with the
system between time τ1 and τ2 = τ1 + ∆, and t is added to
the user’s item list Su. Covariance between t and all other
items in Su must increase. Let M1 be the matrix at time τ1,
M2 the matrix at time τ2, and M∆ = M2 −M1. Then, for
all items si ∈ Su, the (si, t) entry of M∆ will be positive. Of
course, real-world recommender systems interact concurrently
with multiple users whose item sets may overlap.

Intuitively, the attack works as follows. The attacker has
auxiliary information about some items in the target user’s
record (Section III). By observing simultaneous increases in
covariances between auxiliary items and some other item t, the
attacker can infer that t has been added to the user’s record.

Formally, the attacker’s auxiliary information is a subset
A ⊆ Su. It helps—but is not necessary—if A is uniquely
identifying, i.e., for any other user uj of the recommender
system, A * Suj . This is possible if items in A are less
popular or if A is large enough [26].

The attacker monitors the recommender system and obtains
the covariance matrix M at each update. Let T ⊆ I\A be the
set of items the user may have selected. The attacker observes
the submatrix of M formed by rows corresponding to the items
in T ∪ A and columns corresponding to the items in A. Call



this submatrix N . Since A ⊆ Su, when an item t ∈ T is
added to Su, covariances between t and many ai ∈ A will
increase. If the attacker can accurately recognize this event,
he can infer that t has been added to Su.

The inference procedure is significantly complicated by the
fact that when an item is added to Su, not all of its covariances
are updated at the same time due to processing delays. In
particular, (t, ai) covariances for ai ∈ A may update at
different times for different auxiliary items ai. Furthermore,
auxiliary items may enter the system at or around the same
time as t. We cannot use the (t, ai) covariance unless we are
certain that the addition of item ai to u’s record has been
reflected in the system. Before attempting an inference, we
compute the subset of auxiliary items which “propagated”
into the covariance matrix. The algorithm works by measuring
increases in pairwise covariances between auxiliary items; we
omit the details due to space limitations. In the following, we
refer to this algorithm as PROPAGATEDAUX.

Constructing delta matrices. Suppose the attacker observes
the covariance submatrices Nτ1 , Nτ2 , . . . at times τ1, τ2, . . ..
For each observation, the attacker creates a delta matrix N∆

which captures the relevant changes in covariances. There are
several ways to build this matrix. In the following, τmax is a
parameter of the algorithm, representing the upper bound on
the length of inference windows.

Strict time interval. For each τi, set N∆ = Nτi+1−Nτi . Since
not all covariances may update between τi and τi+1, some
entries in N∆ may be equal to 0.

First change. For each τi, N∆ consists of the first changes in
covariance after τi. Formally, for each entry (x, y) of N , let
τk > τi be the first time after τi such that τk ≤ τmax and
Nτk [x][y] 6= Nτi [x][y]. Set N∆[x][y] = Nτk [x][y]−Nτi [x][y].

Largest change. Similar to first change.

Making an inference. The attacker monitors changes in
the submatrix N . For each relevant interval ∆, the attacker
computes the delta matrix N∆ as described above and uses
PROPAGATEDAUX to compute which auxiliary items have
propagated into N . Then he applies Algorithm 2. In this
algorithm, scoreSett is the set of all auxiliary items whose
pairwise covariances with t increased, supportt is the sub-
set of scoreSett consisting of auxiliary items which have
propagated, scoret is the fraction of propagated items whose
covariances increased. If scoret and supportt exceed certain
thresholds (provided as parameters of the algorithm), the
attacker concludes that t has been added to the user’s record.

Inference algorithms against real-world recommender sys-
tems require fine-tuning and adjustment. Algorithm 2 is only a
high-level blueprint; there are many system-specific variations.
For example, the algorithm may look only for increases in
covariance that exceed a certain threshold.

C. Inference attack on kNN recommender systems

Our primary focus is on passive attacks, but for complete-
ness we also describe a simple, yet effective active attack on

Algorithm 2: MATRIXINFERENCE

Input: Set of target items T , set of auxiliary items A,
PROPAGATEDAUX returns a subset of A,
implementation-specific parameters
thresholdsupport,score

Output: Subset of items from T which are believed by the
attacker to have been added to Su

inferredItems = {}
foreach observation time τ do

propagatedτ = PROPAGATEDAUX(A, τ)
∆ = observation period beginning at τ
N∆ = delta matrix containing changes in covariances
between items in T ∪ A
foreach item t in T do

scoreSett = subset of a ∈ A such that N∆[t][a] > 0
supportt = |scoreSett ∩ propagatedτ |
scoret = |supportt|

|propagatedτ |
if scoret ≥ thresholdscore and
supportt ≥ thresholdsupport then

inferredItems = inferredItems ∪ {t}
return inferredItems

the k-nearest neighbor (kNN) recommendation algorithm [1].
Consider the following user-to-item recommender system. For
each user U , it finds the k most similar users according to some
similarity metric (e.g., the Pearson correlation coefficient or
cosine similarity). Next, it ranks all items purchased or rated
by one or more of these k users according to the number of
times they have been purchased and recommends them to U
in this order. We assume that the recommendation algorithm
and its parameters are known to the attacker.

Now consider an attacker whose auxiliary information con-
sists of the user U ’s partial transaction history, i.e., he already
knows m items that U has purchased or rated. His goal is to
learn U ’s transactions that he does not yet know about.

The attacker creates k sybil users and populates each sybil’s
history with the m items which he knows to be present in
the target user U ’s history. Due to the sparsity of a typical
transaction dataset [26], m ≈ O(logN) is sufficient for the
attack on an average user, where N is the number of users.
(In practice, m ≈ 8 is sufficient for datasets with hundreds
of thousands of users.) With high probability, the k nearest
neighbors of each sybil will consist of the other k − 1 sybils
and the target user U . The attacker inspects the list of items
recommended by the system to any of the sybils. Any item
which appears on the list and is not one of the m items
from the sybils’ artificial history must be an item that U has
purchased. Any such item was not previously known to the
attacker and learning about it constitutes a privacy breach.

This attack is even more powerful if the attacker can
adaptively change the fake history of his sybils after observing
the output of the recommender system. This capability is
supported by popular systems—for example, Netflix users
can change previously entered ratings, while Amazon users
can tell the site to ignore certain transactions when making
recommendations—and allows the attacker to target multiple
users without having to create new sybils for each one.



D. Attack metrics

Our attacks produce inferences of this form: “Item Y was
added to the record of user X during time period T .” The
main metrics are yield and accuracy. Yield is the number of
inferences per user per each observation period, regardless
of whether those inferences are correct. Accuracy is the
percentage of inferences which are correct. We use yield rather
than alternative metrics that focus on the number of correct
inferences because the attacker can adjust the parameters to
control the number of inferences made by our algorithm but
cannot directly control the number or proportion that are
correct. Where it makes sense, we also express yield as the
percentage of the user’s transactions inferred by our algorithm,
but in general, we focus on the absolute number of inferences.

High yield and high accuracy are not simultaneously nec-
essary for an attack to be dangerous. A single accurate
inference could be damaging, revealing anything from a
medical condition to political affiliation. Similarly, a large
number of less accurate inferences could be problematic if
their implications are uniformly negative. While the victim
may retain plausible deniability for each individual inference,
this provides little or no protection against many privacy
violations. For example, plausible deniability does not help in
situations where judgments are based on risk (e.g., insurance)
or prejudice (e.g., workplace discrimination), or where the
inferred information further contributes to a negative narrative
(e.g., confirms existing concerns that a spouse is cheating).

There is an inherent tradeoff between yield and accuracy.
The higher the yield, the higher the number of incorrect infer-
ences (“false positives”). Different combinations of parameters
for our algorithms produce either more inferences at the cost
of accuracy, or fewer, but more accurate inferences. Therefore,
we evaluate our algorithms using the yield-accuracy curve.

V. INFERENCE VS. PREDICTION

At first glance, our inference algorithms may look similar
to standard collaborative filtering algorithms which attempt to
predict the items that a user may like or purchase in the future
based on his and other users’ past transactions.

The two types of algorithms are completely different, both
technically and conceptually. We infer the user’s actual trans-
actions—as opposed to using the known behavior of similar
users to guess what he may do or have done. Prediction algo-
rithms discover common patterns and thus have low sensitivity
to the presence or absence of a single user. Our algorithms are
highly sensitive. They (1) work better if there are no similar
users in the database, but (2) do not work if the target user is
not the database, even if there are many similar users.

Collaborative filtering often exploits covariances between
items; our algorithms exploit changes in covariance over time.
The accuracy of predictions produced by collaborative filtering
does not change dramatically from period to observation
period; by contrast, we infer the approximate date when the
transaction occurred, which is very hard to discover using
collaborative filtering. Finally, our algorithms can infer even
transactions involving very obscure items. Such items tend to

populate lower ranges of auxiliary items’ similarity lists, where
a single transaction has the biggest impact. Section VII shows
that transactions involving obscure items are more likely to be
inferred by our algorithms.

Prediction quality can be seen as a baseline for feasible
inference quality. A prediction is effectively an expected
probability that a user with item a will select some target
item t at any time. If a user with item a selects item t during
a given time period, he exceeds this expected probability,
causing a temporary rise (until other users balance the impact).
By looking at changes in predictions over short periods of
time, we can reconstruct how user behavior deviated from the
predictions to produce the observed changes. This yields more
accurate information than predictions alone. As Sections VI-A
and VII show, our algorithms not only outperform a Bayesian
predictor operating on the same data, but also infer items
ranked poorly by a typical prediction algorithm.

Finally, it is worth mentioning that we use some machine-
learning techniques for tuning inference algorithms that oper-
ate on related-items lists (see Section VI-C). These techniques
are very different from collaborative filtering. Whereas collab-
orative filtering attempts to predict future behavior based on
past behavior of other users, our models are backward-facing.
We know that an item has risen in a similarity list, but we
don’t know why. To produce accurate inferences, we must
learn which observations are sufficient to conclude that this
rise signals addition of the item to the target user’s record. In
summary, we use machine learning to learn the behavior of
the recommender system itself, not the behavior of its users.

VI. EVALUATION ON REAL-WORLD SYSTEMS

We evaluated our inference algorithms on several real-world
recommender systems. Our goal was not to carry out an actual
attack, but to demonstrate the feasibility and measure the
accuracy of our algorithms. Therefore, all experiments were set
up so that we knew each user’s record in advance because the
user either revealed it voluntarily through the system’s public
interface or cooperated with us. This provided the “ground-
truth oracle,” enabling us to measure the accuracy of our
inferences without violating anyone’s privacy.

A. Hunch

Hunch.com provides personalized recommendations on a
wide range of topics. For each topic, Hunch poses a se-
ries of multiple-choice questions to the user and uses the
responses to predict the user’s preferences. Hunch also has
a large set of generic personal questions in the category
“Teach Hunch About You” (THAY), intended to improve
topic recommendations. Hunch aggregates collected data and
publishes statistics which characterize popular opinions in
various demographics. For example, according to responses
given to Hunch, “birthers” are 94% more likely to say that
cultural activities are not important to them and 50% more
likely to believe in alien abductions [16].

Statistics collected by Hunch are accessible via an API.
They include the number of users responding to each THAY



question, the percentage selecting each possible answer, the
number of users who responded to each pair of questions, and
covariances between each pair of possible answers.

We show that aggregate statistics available via the Hunch
API can be used to infer an individual user’s responses to
THAY questions, even though these responses are not made
public by Hunch. Suppose the attacker knows some auxiliary
information about a Hunch user (e.g., height, hair color,
age, hometown, political views) which allows the attacker to
reliably predict how the user will respond to the corresponding
THAY questions. We refer to the latter as AUX questions. See
Section III for possible sources of auxiliary information.

Setup. The attacker forms a list of questions consisting of both
AUX questions and questions for which he does not know the
user’s responses. We refer to the latter as TARGET questions;
the objective of the experiment is to infer the user’s responses
to them. For our experiment, we chose questions with at least 4
possible answers. There were 375 such questions in the THAY
set at the time of our experiment with simulated users (see
below), but new THAY questions are continually added and
users may even suggest new questions.

Immediately prior to the attack, the attacker uses the API
function responsePairStats to collect all pairwise co-
variances between possible answers to questions on his list.
Next, he directs the target user to specific questions from his
list via links of the form http://hunch.com/people/〈username〉
/edit-answer/?qid=〈qid〉 where 〈username〉 is replaced by the
target user’s username and 〈qid〉 is replaced with the ques-
tion id. The attacker must know the username, but the site
provides a social networking feature with profile pages where
usernames can be linked to real names, interests, and other
personal information. We assume that the user responds to
all questions at the same time and that his responses to most
AUX questions match the attacker’s auxiliary information (our
inference algorithms are robust to some mistakes in AUX).

Our goal is to show that individual responses can be inferred
from the public outputs of recommender systems, not to
conduct an actual attack. Therefore, we omit discussion of
mechanisms for convincing a Hunch user to respond to a set
of THAY questions. Similarly, it is a matter of opinion which
questions and answers constitute sensitive information about
an individual. For our purposes, it is sufficient to show that
the attacker can infer the values of the user’s secret responses
to questions chosen by the attacker.

Data collection. Hunch does not update the covariance matrix
immediately after the user responds to the attacker-supplied
questions. At the time of our experiment, Hunch had approx-
imately 5,000 possible answers to THAY questions and thus
had to keep statistics on 12.5 million answer pairs. The update
cycle of pairwise statistics varies, but seems to be on the order
of 2-3 weeks. Each day during this period, for each known
AUX response ai, the attacker uses responsePairStats
to collect the covariances between (1) ai and all possible
answers to TARGET questions, and (2) ai and aj , where i 6= j
(i.e., cross-covariances between all AUX responses).

Algorithm 3: HUNCHINFERENCE

Input: Set Q of non-overlapping sets Rq containing all
possible answers to each TARGET question q, set of
known responses to AUX questions A,
PROPAGATEDAUX returns a subset of A,
implementation-specific parameters
thresholdsupport,score

Output: Inferred responses to TARGET questions q
inferredResponses = {}
foreach answer set Rq in Q do

maxScore = thresholdscore
maxSupport = thresholdsupport
foreach observation time τ do

propagatedτ = PROPAGATEDAUX(A, τ)
∆ = observation period beginning at τ
N∆ = delta matrix containing changes in covariances
between items in Rq ∪ A
foreach TARGET answer r in Rq do

scoreSetr = subset of a ∈ A such that
N∆[r][a] > 0
supportr = |scoreSetr ∩ propagatedτ |
scorer = |supportr|

|propagatedτ |
if scorer ≥ thresholdscore then

if supportr > maxSupport then
inferredResponses[q] = {r}
maxSupport = supportr
maxScore = scorer

else if supportr = maxSupport then
if scorer > maxScore then

maxScore = scorer
inferredResponses[q] = {r}

else if scorer == maxScore then
inferredResponses[q] =
inferredResponses[q] ∪ {r}

return inferredResponses

The above covariances are not updated simultaneously,
which greatly complicates the attacker’s task. Hunch appears
to split THAY questions into chunks and update pairwise
answer statistics one chunk at a time. For instance, covariances
between possible answers to question 1 and question 2 may
update on Tuesday and Friday, while covariances between
answers to question 1 and question 3 update on Thursday.
The attacker must be able to detect when the covariances he
is interested in have “propagated” (see Section IV-B).

Inferring secret responses. Algorithm 3 shows the inference
procedure. Intuitively, the algorithm looks for a subset of AUX
answers whose cross-covariances have increased (indicating
that they propagated into the covariance matrix), and then
for a single answer to each of the TARGET questions whose
covariances with most of the AUX responses in the propagated
subset have increased simultaneously.

For the algorithm to work, it is essential that large chunks
of AUX responses propagate into the covariance matrix at
the same time (as is the case for Hunch). The attacker can
expect to see large positive shifts in covariance between the
user’s (known) responses to AUX questions and (unknown)
responses to TARGET questions soon after both AUX and
TARGET have propagated. The larger the number of AUX



0 20 40 60 80 100

0
20

40
60

80
10

0

% Yield (total inferences made)

%
 A

cc
ur

ac
y

Fig. 1. Hunch: Accuracy vs. yield for real users. Each point represents a
particular tuning of the algorithm, thresholdscore ranges from 45% to 78%,
thresholdsupport ranges between 32% and 57% of AUX size.

questions for which this pattern is observed, the higher the
attacker’s confidence that the TARGET answer for which
covariances have increased is the user’s true response.

Results. For the experiment with real users, we used 5
volunteers and chose THAY questions with at least 4 possible
answers. Questions were ordered by sample size, and each user
was assigned 20 questions in a round-robin fashion; 15 were
randomly designated as AUX and 5 as TARGET. We requested
that users respond honestly to all questions and collected
their responses to serve as the “ground-truth oracle.” After
all responses were entered into Hunch, we collected pairwise
answer statistics via the API as described above and applied
Algorithm 3 to infer the responses to TARGET questions.

Results are shown in Fig. 1 in the form of a yield-accuracy
curve, with each point corresponding to a particular setting
of the algorithm’s parameters. We constructed a linear rela-
tion between thresholdscore and thresholdsupport parameters
which produced good results across all experiments. We use
this relation for all Hunch graphs. Parameter ranges are listed
in captions. Here yield is the fraction of unknown responses
for which the algorithm produces candidate inferences and
accuracy is the fraction of candidate inferences that are correct.

For the experiment on simulated users, we used all 375
Hunch THAY questions with at least 4 possible answers. We
monitored the number of users responding to each question
(calculated as change in sample size) for 1 week prior to
the experiment and ranked questions by activity level. The
40 questions with the lowest activity were assigned to user A,
the next 40 to user B, etc., for a total of 9 users. Due to a data
collection error, the data for one user had to be discarded.

For each user, 30 questions were randomly assigned as AUX
and 10 as TARGET. The simulated users “selected” answers

0 20 40 60 80 100

0
20

40
60

80
10

0

% Yield (total inferences made)

%
 A

cc
ur

ac
y

●
●●

●
●

●

●●●

●

●●●

●

All
Low Activity
High Activity

Fig. 2. Hunch: Accuracy vs. yield for simulated users: average of 8
users, 4 users assigned low-activity questions, 4 users assigned high-activity
questions, thresholdscore ranges from 40% to 75%, thresholdsupport
ranges between 28% and 55% of AUX size.

10 15 20 25 30

0
20

40
60

80
10

0

AUX Size

%
 Y

ie
ld

●

●

●

●

●

●

●
●

●

●
●

●

●

●
● ●

●

● ● ● ● ●
●

● Correct Inferences
Total Inferences

Fig. 3. Hunch: Yield vs. size of AUX for simulated users. thresholdscore
is 70%, thresholdsupport is 51.25% of AUX size.

following the actual distribution obtained from Hunch, e.g.,
if 42% of real users respond “North America” to some
question, then the simulated user selects this answer with 0.42
probability. Results are in Fig. 2. As expected, the inference
algorithm performs better on less active questions. Overall,
our algorithm achieves 78% accuracy with 100% yield.

Fig. 3 shows, for a particular setting of parameters, how
yield and accuracy vary with the size of auxiliary information.
As expected, larger AUX reduces the number of incorrect



0

1

2

3

4

5

6

7

8

9


10


A
 B
 C
 D
 E
 G
 H
 I


Ave
rag

e


Nu
m

be
r C

or
re

ct



User


Bayesian Predictor


Inference Algorithm


Fig. 4. Inference vs. Bayesian prediction on simulated Hunch users.
thresholdscore is 55%, thresholdsupport is 40% of AUX size. We used
low thresholds to ensure that our algorithm reached 100% yield.

inferences, resulting in higher accuracy.

Inference vs. prediction. To illustrate the difference between
inference and prediction, we compared the performance of
our algorithm to a Bayesian predictor. Let Xi be a possible
answer to a TARGET question and Yj be the known response
to the jth AUX question. The predictor selects Xi to max-
imize P (Xi|Y1)P (Xi|Y2) · · ·P (Xi|Yn), where P (Xi|Yj) =
P (XiYj)
P (Yj)

= covar(Xi,Yj)+P (Xi)P (Yj)
P (Yj)

. Individual probabilities
and covariances are available from the Hunch API. As Fig. 4
shows, our algorithm greatly outperforms the Bayesian predic-
tor, averaging 73.75% accuracy vs. 33.75% accuracy for the
predictor. This is not surprising, because our algorithm is not
making educated guesses based on what similar users have
done, it is observing the effects of actual transactions!

B. LibraryThing

LibraryThing is an online recommender system for books
with over 1 million members and 55 million books in their
online “libraries” [19]. For each book, LibraryThing provides
a “People with this book also have... (more common)” list
and a “People with this book also have... (more obscure)” list.
These lists have 10 to 30 items and are updated daily.

Algorithm 4 shows our inference procedure. Here delta
matrices contain changes in “related books (common)” and
“related books (obscure)” lists. Because these lists are updated
frequently, the algorithm takes a window parameter. When
a book is added to the user’s library, we expect that, within
window, it will rise in the lists associated with the “auxiliary”
books. Algorithm 5 counts the number of such lists, provided
they are associated with less popular auxiliary books.

We used the site’s public statistics to select 3 users who
had consistently high activity, with 30-40 books added to
their collections per month. 200 random books from each
user’s collection were selected as auxiliary information. The
experiment ran for 4 months. Results are shown in Fig. 5.

Algorithm 4: LIBRARYTHINGINFERENCE

Input: set of “common” delta matrices NC , set of “obscure”
delta matrices NO , scoring function: R|A| → P(A), set
of AUX items A, lookup table of popularities P ,
thresholdpop for popularity of AUX books,
thresholdscore for score, window time interval in
which we expect changes to propagate

Output: Inferred books from the target user’s library
inferences = {}
scoreSets = dict{}
foreach observation time τ do

foreach delta matrix N∆ in NC ,NO within window of τ
do

foreach target item t in N∆ do
if t /∈ scoreSets then

scoreSets[t] = {}
scoreSets[t] = scoreSets[t] ∪
SCOREFUNCTION(N∆[t],A, P, thresholdpop)

foreach target item t in keys of scoreSets do
if |scoreSets[t]| ≥ thresholdscore and t /∈ A then

inferences = inferences ∪ {t}
return inferences

Algorithm 5: LTSCOREFUNCTION

Input: Delta-matrix row Tt corresponding to book t,
implemented as a dictionary keyed on AUX books and
containing the relative change in list position, set of
AUX books A, lookup table of popularities P ,
threshold for popularity of AUX book

Output: Subset of AUX books with which t increased in
correlation

scoreSet = {}
foreach a ∈ A do

if popularity P [a] ≤ threshold then
if Tt[a] > 0 then

scoreSet = scoreSet ∪ {a}
return scoreSet

When parameters are tuned for higher yield, related-items
inference produces many false positives for LibraryThing.
The reason is that many public libraries have accounts on
LibraryThing with thousands of books. Even if some book
rises in K lists related to the target user’s library, K is
rarely more than 20, and 20 books may not be enough to
identify a single user. False positives often mean that another
LibraryThing user, whose library is a superset of the target
user’s library, has added the inferred book to their collection.

C. Last.fm

Last.fm is an online music service with over 30 million
monthly users, as of March 2009 [18]. Last.fm offers cus-
tomized radio stations and also records every track that a user
listens to via the site or a local media player with a Last.fm
plugin. A user’s listening history is used to recommend music
and is public by default. Users may choose not to reveal
real-time listening data, but Last.fm automatically reveals the
number of times they listened to individual artists and tracks.
Public individual listening histories provide a “ground-truth
oracle” for this experiment, but the implications extend to



0


10


20


30


40


50


60


70


80


90


100


0
 10
 20
 30
 40
 50
 60


%
 A

cc
ur

ac
y


Yield (total inferences made)


  All Users


  Strongest User


Fig. 5. LibraryThing: Accuracy vs. yield: for all users (averaged) and for
the strongest user.

cases where individual records are private.
Aggregated data available through the Last.fm site and API

include user-to-user recommendations (“neighbors”) and item-
to-item recommendations for both artists and tracks. We focus
on track-to-track recommendations. Given a track, the API
provides an ordered list of up to 250 most similar tracks
along with “match scores,” a measure of correlation which
is normalized to yield a maximum of one in each list.

Our Last.fm experiment is similar to our LibraryThing
experiment. Using changes in the similarity lists for a set of
known auxiliary (AUX) tracks, we infer some of the TARGET
tracks listened to by the user during a given period of time.

Unlike other tested systems, Last.fm updates all similarity
lists simultaneously on a relatively long cycle (typically, every
month). Unfortunately, our experiment coincided with changes
to Last.fm’s recommender system.4 Thus during our six-month
experiment, we observed a single update after approximately
four months. Batched updates over long periods make infer-
ence more difficult, since changes caused by a single user are
dominated by those made by millions of other users.

Several features of Last.fm further complicate adversarial
inference. Last.fm tends not to publish similarity lists for
unpopular tracks, which are exactly the lists on which a single
user’s behavior would have the most impact. The number of
tracks by any given artist in a similarity list is limited to
two. Finally, similarity scores are normalized, hampering the
algorithm’s ability to compare them directly.

Setup. We chose nine Last.fm users with long histories and
public real-time listening information (to help us verify our
inferences). As auxiliary information, we used the 500 tracks
that each user had listened to most often, since this or similar
information is most likely to be available to an attacker.

Inferring tracks. After each update, we make inferences using

4Private communication with Last.fm engineer, July 2010.

TABLE I
ATTRIBUTES OF CANDIDATE INFERENCES. COMPUTED SEPARATELY FOR

AUX ITEMS FOR WHICH TARGET ROSE AND THOSE FOR WHICH IT FELL.

Attribute Definition
numSupports Number of AUX similarity lists in which

TARGET rose/fell
avgInitPos Average initial position of TARGET item in

supporting AUX item similarity list
avgChange Average change of TARGET item in sup-

porting AUX item similarity lists
avgListeners Average number of listeners for AUX items

supporting TARGET
avgP lays Average number of plays for AUX items

supporting TARGET
avgArtistScore Average number of other AUX supports by

same artist as any given AUX support
avgSimScore Average sum of match scores for all other

AUX supports appearing in any given AUX
support’s updated similarity list

avgTagScore Average sum of cosine similarity between
normalized tag weight vectors of any given
AUX support and every other AUX support

the generic algorithm for related-items lists (Algorithm 1) with
one minor change: we assume that each value in N∆ also
stores the initial position of the item prior to the change.

Our scoring function could simply count the number of
AUX similarity lists in which a TARGET track has risen. To
strengthen our inferences, we use the scoring function shown
in Algorithm 6. It takes into account information summarized
in Table I (these values are computed separately for the
lists in which the TARGET rose and those in which it fell,
for a total of 16 values). To separate the consequences of
individual actions from larger trends and spurious changes,
we consider not only the number of similarity lists in which
the TARGET rose and fell, but also the TARGET’s average
starting position and the average magnitude of the change.
Because the expected impact of an individual user on an AUX
item’s similarity list depends on the popularity of the AUX
item, we consider the average number of listeners and plays
for AUX tracks as well.

We also consider information related to the clustering
of AUX tracks. Users have unique listening patterns. The
more unique the combination of AUX tracks supporting an
inference, the smaller the number of users who could have
caused the observed changes. We consider three properties of
AUX supports to characterize their uniqueness. First, we look
at whether supports tend to be by the same artist. Second,
we examine whether supports tend to appear in each other’s
similarity lists, factoring in the match scores in those lists.
Third, the API provides weighted tag vectors for tracks, so
we evaluate the similarity of tag vectors between supports.

To fine-tune the parameters of our inference algorithm, we
use machine learning. Its purpose here is to understand the
Last.fm recommender system itself and is thus very different
from collaborative filtering—see Section V. For each target
user, we train the PART learning algorithm [12] on all other
target users, using the 16 features and the known correct
or incorrect status of the resulting inference. The ability to



Algorithm 6: LASTFMSCOREFUNCTION

Input: Delta-matrix row Tt corresponding to item t. Each
vector entry contains initPos - the initial position of t
in the list, and change - the number of places t has
risen or fallen in the list. We also assume that each
AUX item is associated with
(listeners, plays, simList, tags) which are,
respectively, the number of listeners, the number of
plays, the updated similarity list with match scores, and
the vector of weights for the item’s tags.

Output: A score for the row
score = 0
Arise = {a ∈ Tt such that Tt[a][change] > 0}
Afall = {a ∈ Tt such that Tt[a][change] < 0}
datarise = [0, 0, 0, 0, 0, 0, 0, 0]
datafall = [0, 0, 0, 0, 0, 0, 0, 0]
foreach relevant ∈ {rise, fall} do

numSupports = |Arelevant|
avgInitPos = avg(Tt[a][initPos] for a ∈ Arelevant)
avgChange = avg(Tt[a][change] for a ∈ Arelevant)
avgListeners = avg(a[listeners] for a ∈ Arelevant)
avgP lays = avg(a[plays] for a ∈ Arelevant)
avgArtistScore = 0
avgSimScore = 0
avgTagScore = 0
foreach aux item a ∈ Arelevant do

foreach aux item a′ 6= a in Arelevant do
if a[artist] == a′[artist] then

avgArtistScore+ = 1
if a′ in a[simList] then

simList = a[simList]
avgSimScore+ = simList[a′][matchScore]

tags = norm(a[tags])
tags′ = norm(a′[tags])
avgTagScore+ = cosineSim(tags, tags′)

if numSupports > 0 then
avgArtistScore = avgArtistScore/numSupports
avgSimScore = avgSimScore/numSupports
avgTagScore = avgTagScore/numSupports
datarelevant = [numSupports, avgInitPos,
avgChange, avgListeners, avgP lays,
avgArtistScore, avgSimScore, avgTagScore]

if |Arise| > 0 then
score = MLPROBCORRECT(datarise, datafall)

return score

analyze data from multiple users is not necessary: a real
attacker can train on auxiliary data for the target user over
multiple update cycles or use his knowledge of the recom-
mender system to construct a model without training. The
model obtained by training on other, possibly unrepresentative
users underestimates the power of the attacker.

After constructing the model, we feed the 16 features of
each TARGET into the PART algorithm using the Weka
machine-learning software [35]. Given the large number of
incorrect inferences in the test data, Weka conservatively
classifies most attempted inferences as incorrect. Weka also
provides a probability that an inference is correct (represented
by MLPROBCORRECT in Algorithm 6). We take these prob-
abilities into account when scoring inferences.

We also account for the fact that similarity lists change in

0


20


40


60


80


0
 500
 1000
 1500
 2000


%
 A

cc
ur

ac
y


Yield (total inferences made)


Fig. 6. Accuracy vs. yield for an example Last.fm user.

0


10


20


30


40


0
 500
 1000
 1500
 2000


%
 A

cc
ur

ac
y


Yield (total inferences made)


Fig. 7. Accuracy vs. yield for another Last.fm user.

length and cannot contain more than two tracks by the same
artist. For example, if a track was “crowded out” in a similarity
list by two other tracks from the same artist, we know that its
position was below the lowest position of these two tracks.
Therefore, we judge the magnitude of any rise relative to this
position rather than the bottom of the list. Similarly, if a list
grows, we can confirm that a track has risen only if it rises
above the bottom position in the previous list.

Results. The performance of our inference algorithm was
negatively impacted by the fact that instead of a typical
monthly update, it had to make inferences from a huge, 4-
month update associated with a change in the recommender
algorithm.5 Figs. 6 and 7 shows the results for two sample
users; different points correspond to different settings of the
threshold parameter of the algorithm. For the user in Fig. 6,
we make 557 correct inferences at 21.3% accuracy (out of
2,612 total), 27 correct inferences at 50.9% accuracy, and 7
correct inferences at 70% accuracy. For the user in Fig. 7, we
make 210 correct inferences at 20.5% accuracy and 31 correct
inferences at 34.1% accuracy.

5Last.fm’s changes to the underlying recommender algorithm during our
experiment may also have produced spurious changes in similarity lists, which
could have had an adverse impact.



For a setting at which 5 users had a minimum of 100 correct
inferences, accuracy was over 31% for 1 user, over 19% for 3
users, and over 9% for all 5 users. These results suggest that
there exist classes of users for whom high-yield and moderate-
accuracy inferences are simultaneously attainable.

D. Amazon

We conducted a limited experiment on Amazon’s recom-
mender system. Without access to users’ records, we do not
have a “ground-truth oracle” to verify inferences (except when
users publicly review an inferred item, thus supporting the
inference). Creating users with artificial purchase histories
would have been cost-prohibitive and the user set would not
have been representative of Amazon users.

The primary public output of Amazon’s recommender sys-
tem is “Customers who bought this item also bought . . . ” item
similarity lists, typically displayed when a customer views
an item. Amazon reveals each item’s sales rank, which is a
measure of the item’s popularity within a given category.

Amazon customers may review items, and there is a public
list of tens of thousands of “top reviewers,” along with links to
their reviews. Each reviewer has a unique reviewer identifier.
Reviews include an item identifier, date, and customer opinions
expressed in various forms. Customers are not required to
review items that they purchase and may review items which
they did not purchase from Amazon.

Setup. Amazon allows retrieval of its recommendations and
sales-rank data via an API. The data available via the API are
only a subset of that available via the website: only the 100
oldest reviews of each customer (vs. all on the website) and
only the top 10 similar items (vs. 100 or more on the website).

We chose 999 customers who initially formed a contiguous
block of top reviewers outside the top 1,000. We used the
entire set of items previously reviewed by each customer as
auxiliary information. The average number of auxiliary items
per customer varied between 120 and 126 during our experi-
ment. Note that this auxiliary information is imperfect: it lacks
items which the customer purchased without reviewing and
may contain items the customer reviewed without purchasing.

Data collection ran for a month. We created a subset of
our list containing active customers, defined as those who had
written a public review within 6 months immediately prior to
the start of our experiment (518 total). If a previously passive
reviewer became active during the experiment, we added
him to this subset, so the experiment ended with 539 active
customers. For each auxiliary item of each active customer,
we retrieved the top 10 most related items (the maximum
permitted by the API)6 daily. We also retrieved sales-rank data
for all items on the related-item lists.7

Making inferences. Our algorithm infers that a customer has
purchased some target item t during the observation period if

6The set of inferences would be larger (and, likely, more accurate) for an
attacker willing to scrape complete lists, with up to 100 items, from the site.

7Because any item can move into and off a related-items list, we could
not monitor the sales ranks of all possible target items for the full month.
Fortunately, related-items lists include sales ranks for all listed items.

t appears or rises in the related-items lists associated with
at least K auxiliary items for the customer. We call the
corresponding auxiliary items the supporting items for each
inference. The algorithm made a total of 290,182 unique (user,
item) inferences based on a month’s worth of data; of these,
787 had at least five supporting items.

One interesting aspect of Amazon’s massive catalog and
customer base is that they make items’ sales ranks useful
for improving the accuracy of inferences. Suppose (case 1)
that you had previously purchased item A, and today you
purchased item B. This has the same effect on their related-
items lists as if (case 2) you had previously purchased B and
today purchased A. Sales rank can help distinguish between
these two cases, as well as more complicated varieties. We
expect the sales rank for most items to stay fairly consistent
from day to day given a large number of items and customers.
Whichever item was purchased today, however, will likely see
a slight boost in its sales rank relative to the other. The relative
boost will be influenced by each item’s popularity, e.g., it may
be more dramatic if one of the items is very rare.

Case studies. Amazon does not release individual purchase
records, thus we have no means of verifying our inferences.
The best we can do is see whether the customer reviewed
the inferred item later (within 2 months after the end of our
data collection). Unfortunately, this is insufficient to measure
accuracy. Observing a public review gives us a high confidence
that an inference is correct, but the lack of a review does not
invalidate an inference. Furthermore, the most interesting cases
from a privacy perspective are the purchases of items for which
the customer would not post a public review.

Therefore, our evidence is limited to a small number of
verifiable inferences. We present three sample cases. Names
and some details have been changed or removed to protect
the privacy of customers in question. To avoid confusion, the
inferred item is labeled t in all cases, and the supporting
auxiliary items are labeled a1, a2, and so on.

Mr. Smith is a regular reviewer who had written over 100
reviews by Day 1 of our experiment, many of them on gay-
themed books and movies. Item t is a gay-themed movie. On
Day 20, its sales rank was just under 50,000, but jumped
to under 20,000 by Day 21. Mr. Smith’s previous reviews
included items a1, a2, a3, a4, and a5. Item t was not in the
similarity lists for any of them on Day 19 but had moved into
the lists for all five by Day 20. Based on this information,
our algorithm inferred that Mr. Smith had purchased item t.
Within a month, Mr. Smith reviewed item t.

Ms. Brown is a regular reviewer who had commented on
several R&B albums in the past. Item t is an older R&B album.
On Day 1, its rank was over 70,000, but decreased to under
15,000 by Day 2. Ms. Brown had previously reviewed items
a1, a2, and a3, among others. Item A moved into item a1

and item a2’s similarity lists on Day 2, and also rose higher
in item a3’s list that same day. Based on this information,
our algorithm inferred that Ms. Brown had purchased item t.
Within two months, Ms. Brown reviewed item t.



Mr. Grant is a regular reviewer who appears to be interested
in action and fantasy stories. Item t is a fairly recent fantasy-
themed movie. On Day 18, its sales rank jumped from slightly
under 35,000 to under 15,000. It experienced another minor
jump the following day, indicating another potential purchase.
Mr. Grant’s previous reviews included items a1, a2, and a3.
On Day 19, item t rose in the similarity lists of a1 and a2, and
entered a3’s list. None of the supporting items had sales rank
changes that indicate purchases on that date. Based on this
information, our algorithm inferred that Mr. Grant had bought
item t. Within a month, Mr. Grant reviewed item t.

In all cases, the reviewers are clearly comfortable with
public disclosure of their purchases since they ultimately
reviewed the items. Nevertheless, our success in these cases
suggests a realistic possibility that sensitive purchases can be
inferred. While these examples include inferences supported
by items in a similar genre, we have also observed cross-
domain recommendations on Amazon, and much anecdotal
evidence suggests that revealing cross-domain inferences are
possible. For example, Fortnow points to a case in which an
Amazon customer’s past opera purchases resulted in a recom-
mendation for a book of suggestive male photography [11].

VII. EVALUATION ON A SIMULATED SYSTEM

To test our techniques on a larger scale than is readily
feasible with the real-world systems that we studied, we
performed a simulation experiment. We used the Netflix Prize
dataset [28], which consists of 100 million dated ratings of
17,770 movies from 460,000 users entered between 1999
and 2005. For simplicity, we ignored the actual ratings and
only considered whether a user rated a movie or not, treating
the transaction matrix as binary. We built a straightforward
item-to-item recommender system in which item similarity
scores are computed according to cosine similarity. This is
a very popular method and was used in the original published
description of Amazon’s recommender system [21].

We restricted our simulation to a subset of 10,000 users
who have collectively made around 2 million transactions.8

Producing accurate inferences for the entire set of 460,000
users would have been difficult. Relative to the total number of
users, the number of items in the Netflix Prize dataset is small:
17,770 movies vs. millions of items in (say) Amazon’s catalog.
At this scale, most pairs of items, weighted by popularity, have
dozens of “simultaneous” ratings on any single day, making
inference very challenging.

Methodology. We ran our inference algorithm on one month’s
worth of data, specifically July 2005. We assumed that each
user makes a random 50% of their transactions (over their
entire history) public and restricted our attention to users
with at least 100 public transactions. There are around 1,570
such users, or 16%. These users together made around 1,510
transactions during the one-month period in question.

8Reported numbers are averages over 10 trials; in each trial, we restricted
the dataset to a random sample of 10,000 users out of the 460,000.

Fig. 8. Inference against simulated recommender: yield vs. accuracy.

We assume that each item has a public similarity list of 50
items along with raw similarity scores which are updated daily.
We also assume that the user’s total number of transactions
is always public. This allows us to restrict the attack to
(customer, date) pairs in which the customer made 5 or fewer
transactions. The reason for this is that some users’ activity
is spiky and they rate a hundred or more movies in a single
day. This makes inference too easy because guessing popular
movies at random would have a non-negligible probability of
success. We focus on the hard case instead.

Results. The results of our experiment are summarized in
Fig. 8. The algorithm is configured to yield at most as many
inferences as there are transactions: 1510/1570 ≈ 0.96 per
vulnerable user for our one-month period. Of these, 22%
are correct. We can trade off yield against accuracy by only
outputting higher-scoring inferences. An accuracy of 80% is
reached when yield is around 141, which translates to 7.5% of
transactions correctly inferred. At an accuracy level of 90%,
we can infer 4.5% of all transactions correctly. As mentioned
earlier, these numbers are averages over 10 trials.

Inference vs. prediction. Fig. 9 shows that transactions
involving obscure items are likely to be inferred in our simu-
lated experiment. Fig. 10 shows that our inference algorithm
accurately infers even items that a predictor would rank poorly
for a given user. For this graph, we used a predictor that
maximizes the sum-of-cosines score, which is the natural
choice given that we are using cosine similarity for the item-
to-item recommendations. The fact that the median prediction
rank of inferred items lies outside the top 1,000 means,
intuitively, that we are not simply inferring the items that the
user is likely to select anyway.

VIII. MITIGATION

Differential privacy. Differential privacy is a set of algorithms
and analytical techniques to quantify and reduce privacy risk



Fig. 9. Likelihood of inference as a function of movie popularity.

Fig. 10. Simulated recommender: Inferences vs. predictions.

to individual participants when answering statistical database
queries [9]. Two threads of differential privacy research are
potentially applicable to recommender systems. First, Mc-
Sherry and Mironov showed how to construct differentially
private covariance matrices, with some loss of accuracy for
the collaborative filtering algorithms that use them [23]. While
this is promising, they do not consider updates to the matrix,
and it is not known how to build a dynamic system using this
approach without destroying the privacy guarantee. The second
line of research is on differential privacy under “continual
observation,” which directly addresses the needs of a dynamic
system [5, 10]. These techniques break down, however, for
systems with a large “surface area” such as similarity lists for
every item. Designing a differentially private online recom-
mender system remains an open problem.

Restrict information revealed by the system. Our inference

algorithms exploit the fact that modern recommender systems
make a large amount of information available for automated
collection through their API. Restricting publicly available
recommendation information may significantly complicate
(but may not completely foil) the attack, while preserving
legitimate functionality.

Limit the length of related-items lists. Amazon’s “Customers
who bought this item also bought . . . ” or Last.fm’s “Similar
music” lists can contain more than 100 items (although on
Amazon, only the top 10 are available for automated collection
via the API). Recommendations near the top of an item’s
related-items list have a strong relationship with that item,
which is unlikely to be impacted significantly by a single
purchase. The ordering of recommendations near the bottom
of the list is more volatile and reveals more information.

Factor item popularity into update frequency. Less popular
items tend to be more identifying, so limiting the frequency
of updates involving these items may decrease the efficacy of
our inference attacks. For example, purchases of less popular
items may be batched and reflected in the item-to-item matrix
only several times a year. The same applies to their “sales
rank,” which for rare items can be sensitive even to a single
purchase. Unfortunately, this mitigation technique may dull
the impact of sudden, important shifts in the data, such as a
surge in popularity of a previously obscure book.

Avoid cross-genre recommendations. In general, “straddlers,”
i.e., customers with interests in multiple genres, tend to be at
higher risk for privacy breaches. This risk could be mitigated
by avoiding cross-genre recommendations except when items
have strong relationships. This has the shortcoming of ob-
structing potentially surprising, but useful recommendations.

Limit the speed and/or rate of data access. The large-scale,
passive attacks described in this paper require that the attacker
extract a somewhat large quantity of data from the recom-
mender system over a long period of time. Limiting the speed
of access (by rate-limiting the API, using crawler-detection
heuristics, etc.) may reduce the amount of available data and
consequently the scale of the attack. Unfortunately, this may
also prevent some legitimate uses of the data. Furthermore,
these limits may not stop smaller, more focused attacks or a
capable attacker (e.g., one with access to a botnet).

It is hard to set a limit which would completely foil the
attack. For example, Hunch’s API limits each “developer
key” to 5,000 queries per day (an attacker can easily acquire
multiple keys). Our experiments in Section VI-A required
between 500 and 2,500 queries per day per target user.

User opt-out. Many sites allow users to opt out of their
recommender systems, but the opt-out is often incomplete.
Amazon allows customers to request that certain purchases
not be used for their own personalized recommendations. This
option is primarily used to prevent gift purchases from in-
fluencing one’s recommendations. For customers with privacy
concerns, a more useful option would be to prevent a purchase
from influencing the recommender system in any manner at all.



If users habitually chose to opt out, however, recommendation
quality could suffer significantly.

While each mitigation strategy has limitations, a careful
combination of several techniques may provide substantial
practical benefits with only modest drawbacks.

IX. RELATED WORK

Privacy and collaborative filtering. To our knowledge, this is
the first paper to show how to infer individual behavior from
the public outputs of recommender systems. Previous work
on privacy risks of recommenders focused on “straddlers”
whose tastes span unrelated genres and assumed that the
attacker is given the entire (anonymized) database of user
transactions [30]. This model may be applicable in scenarios
where collaborative filtering is outsourced, but is unrealistic for
real-world recommender systems. Similarly, de-anonymization
attacks require access to static datasets [13, 26].

Shilling attacks on collaborative filtering systems [24, 25]
aim to influence the system by causing certain items to be rec-
ommended more often. We briefly mention an active attack on
user-to-item collaborative filtering which is somewhat similar,
but pursues a completely different goal.

Research on “social recommendations”—made solely based
on a social graph—has shown that accurate recommendations
necessarily leak information about the existence of edges
between specific nodes in the graph [22]. This work differs
from ours in that it (i) does not model user transactions, only
edges in the social graph, (ii) does not consider temporal
dynamics, and (iii) analyzes recommendations made to a user
rather than public recommendations.

Previous work on protecting privacy in collaborative recom-
mender systems aimed to hide individual user records from
the system itself [4, 29, 32, 36]. These papers do not address
the risk that individual actions can be inferred from temporal
changes in the system’s public recommendations and do not
appear to provide much protection against this threat.

Privacy of aggregated data. Our attacks belong to a broad
class of attacks that infer individual inputs from aggregate
statistics. Disclosure of sensitive data from statistical sum-
maries has long been studied in the context of census data [33].
Dinur and Nissim showed theoretically that an attacker who
can query for arbitrary subsets of rows of a private database
can learn the entire database even if noise has been added
to aggregated answers [7]. Differential privacy was developed
in part to provide a rigorous methodology for protecting
privacy in statistical databases [8, 9]. Attacks on statistical
databases often exploit the aggregates that happen to involve
too few individuals. By contrast, we show that even with large
aggregates, temporal changes can reveal underlying inputs.

Homer et al. showed that given a statistical summary of
allele frequencies of a DNA pool—such as might be published
in a genome-wide association study (GWAS)—it is possible to
detect whether or not a target individual is represented in the
pool, provided that the attacker has access to the individual’s

DNA [15]. The attack exploits the fact that DNA is very high-
dimensional, thus the number of attributes is much greater
than the number of records under consideration. Wang et al.
strengthened the attack of Homer et al. and also developed a
second type of attack, which uses a table of pairwise correla-
tions between allele frequencies (also frequently published in
GWA studies) to disaggregate the table into individual input
sequences [34]. By contrast, the inference attacks described in
this paper are not based on disaggregation.

X. CONCLUSIONS

Recommender systems based on collaborative filtering have
become an essential component of many websites. In this
paper, we showed that their public recommendations may
leak information about the behavior of individual users to an
attacker with limited auxiliary information. Auxiliary informa-
tion is routinely revealed by users, but these public disclosures
are under an individual’s control: she decides which items
to review or discuss with others. By contrast, item similarity
lists and item-to-item covariances revealed by a recommender
system are based on all transactions, including ones that
users would not disclose voluntarily. Our algorithms leverage
this to infer users’ non-public transactions, posing a threat
to privacy. We utilize aggregate statistics which contain no
“personally identifiable information” and are widely available
from popular sites such as Hunch, Last.fm, LibraryThing, and
Amazon. Our attacks are passive and can be staged by any
user of the system. An active attacker can do even more.

We study larger, established sites as well as smaller and/or
newer sites. Our results in the latter category are stronger, sup-
porting the intuitive notion that customers of larger sites are
generally safer from a privacy perspective and corroborating
the findings in [23]. Smaller datasets increase the likelihood
that individual transactions have a perceptible impact on the
system’s outputs.

Our work concretely demonstrates the risk posed by data
aggregated from private records and undermines the widely
accepted dichotomy between “personally identifiable” indi-
vidual records and “safe,” large-scale, aggregate statistics.
Furthermore, it demonstrates that the dynamics of aggregate
outputs constitute a new vector for privacy breaches. Dynamic
behavior of high-dimensional aggregates like item similarity
lists falls beyond the protections offered by any existing
privacy technology, including differential privacy.

Modern systems have vast surfaces for attacks on privacy,
making it difficult to protect fine-grained information about
their users. Unintentional leaks of private information are akin
to side-channel attacks: it is very hard to enumerate all aspects
of the system’s publicly observable behavior which may re-
veal information about individual users. Increasingly, websites
learn from—and indirectly expose—aggregated user activity in
order to improve user experience, provide recommendations,
and support many other features. Our work demonstrates the
inadequacy of current theory and practice in understanding the
privacy implications of aggregated data.



ACKNOWLEDGEMENTS

We thank Ilya Mironov for useful discussions and Ian
Davey, Benjamin Delaware, Ari Feldman, Josh Kroll, Joshua
Leners, and Bill Zeller for helpful comments on earlier drafts
of this paper. The research described in this paper was partially
supported by the NSF grants CNS-0331640, CNS-0716158,
and CNS-0746888, Google research awards, the MURI pro-
gram under AFOSR grant no. FA9550-08-1-0352, and the
DHS Scholarship and Fellowship Program under DOE contract
no. DE-AC05-06OR23100.

REFERENCES

[1] G. Adomavicius and A. Tuzhilin. Toward the next
generation of recommender systems: A survey of the
state-of-the-art and possible extensions. TKDE, 17(6),
2005.

[2] R. Bell, Y. Koren, and C. Volinsky. The BellKor solution
to the Netflix Prize. http://www.netflixprize.com/assets/
ProgressPrize2007 KorBell.pdf.

[3] A. Borges. Toward a new supermarket layout: From
industrial categories to one stop shopping organization
through a data mining approach. In SMA Retail Sympo-
sium, 2003.

[4] J. Canny. Collaborative filtering with privacy. In S & P,
2002.

[5] H. Chan, E. Shi, and D. Song. Private and continual
release of statistics. In ICALP, 2010.

[6] M. Deshpande and G. Karypis. Item-based top-n recom-
mendation algorithms. TISSEC, 22(1), 2004.

[7] I. Dinur and K. Nissim. Revealing information while
preserving privacy. In PODS, 2003.

[8] C. Dwork. Differential privacy. In ICALP, 2006.
[9] C. Dwork. Differential privacy: a survey of results. In

TAMC, 2008.
[10] C. Dwork, M. Naor, T. Pitassi, and G. Rothblum. Dif-

ferential privacy under continual observation. In STOC,
2010.

[11] L. Fortnow. Outed by Amazon. http://weblog.fortnow.
com/2008/02/outed-by-amazon.html (Accessed Nov 17,
2010).

[12] E. Frank and I. H. Witten. Generating accurate rule sets
without global optimization. In ICML, 1998.

[13] D. Frankowski, D. Cosley, S. Sen, L. Terveen, and
J. Riedl. You are what you say: privacy risks of public
mentions. In SIGIR, 2006.

[14] R. Garfinkel, R. Gopal, B. Pathak, R. Venkatesan, and
F. Yin. Empirical analysis of the business value of
recommender systems. http://ssrn.com/abstract=958770,
2006.

[15] N. Homer, S. Szelinger, M. Redman, D. Duggan,
W. Tembe, J. Muehling, J. Pearson, D. Stephan, S. Nel-
son, and D. Craig. Resolving individuals contributing
trace amounts of DNA to highly complex mixtures using
high-density SNP genotyping microarrays. PLoS Genet,
4, 2008.

[16] http://blog.hunch.com/?p=8264 (Accessed Nov 19,
2010).

[17] D. Irani, S. Webb, K. Li, and C. Pu. Large online social
footprints–an emerging threat. In CSE, 2009.

[18] http://blog.last.fm/2009/03/24/
lastfm-radio-announcement (Accessed Nov 2, 2010).

[19] http://www.librarything.com/press/ (Accessed Nov 10,
2010).

[20] G. Linden, J. Jacobi, and E. Benson. Collaborative rec-
ommendations using item-to-item similarity mappings.
U.S. Patent 6266649. http://www.patentstorm.us/patents/
6266649/fulltext.html, 2008.

[21] G. Linden, B. Smith, and J. York. Amazon.com recom-
mendations: Item-to-item collaborative filtering. In IEEE
Internet Computing, January-February 2003.

[22] A. Machanavajjhala, A. Korolova, and A. Sarma. Per-
sonalized social recommendations - accurate or private?
Manuscript, 2010.

[23] F. McSherry and I. Mironov. Differentially private
recommender systems. In KDD, 2009.

[24] B. Mehta and W. Nejdl. Unsupervised strategies
for shilling detection and robust collaborative filtering.
UMUAI, 19(1–2), 2009.

[25] B. Mobasher, R. Burke, R. Bhaumik, and C. Williams.
Effective attack models for shilling item-based collabo-
rative filtering systems. In WebKDD, 2005.

[26] A. Narayanan and V. Shmatikov. Robust de-
anonymization of large sparse datasets. In S & P, 2008.

[27] A. Narayanan and V. Shmatikov. De-anonymizing social
networks. In S & P, 2009.

[28] http://www.netflixprize.com/rules (Accessed Nov 19,
2010).

[29] H. Polat and W. Du. Privacy-preserving top-n rec-
ommendation on horizontally partitioned data. In Web
Intelligence, 2005.

[30] N. Ramakrishnan, B. Keller, B. Mirza, A. Grama, and
G. Karypis. Privacy risks in recommender systems. In
IEEE Internet Computing, November-December 2001.

[31] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-
based collaborative filtering recommendation algorithms.
In WWW, 2001.

[32] R. Shokri, P. Pedarsani, G. Theodorakopoulous, and J-
P. Hubaux. Preserving privacy in collaborative filtering
through distributed aggregation of offline profiles. In
RecSys, 2009.

[33] C. Sullivan. An overview of disclosure principles. U.S.
Census Bureau Research Report, 1992.

[34] R. Wang, Y Li, X. Wang, H. Tang, and X. Zhou.
Learning your identity and disease from research papers:
information leaks in genome wide association study. In
CCS, 2009.

[35] Weka 3 - data mining software in Java. http://www.cs.
waikato.ac.nz/ml/weka/ (Accessed Nov 3, 2010).

[36] J. Zhan, C. Hsieh, I. Wang, T. Hsu, C. Liau, and D. Wang.
Privacy-preserving collaborative recommender systems.
In SMC, 2010.


