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Abstract—Existing designs for fine-grained, dynamic
information-flow control assume that it is acceptable to
terminate the entire system when an incorrect flow is
detected—i.e, they give up availability for the sake of
confidentiality and integrity. This is an unrealistic limitation
for systems such as long-running servers.

We identify public labels and delayed exceptions as crucial
ingredients for making information-flow errors recoverable in
a sound and usable language, and we propose two new error-
handling mechanisms that make all errors recoverable. The
first mechanism builds directly on these basic ingredients,
using not-a-values (NaVs) and data flow to propagate errors.
The second mechanism adapts the standard exception model
to satisfy the extra constraints arising from information flow
control, converting thrown exceptions to delayed ones at certain
points. We prove that both mechanisms enjoy the fundamental
soundness property of non-interference. Finally, we describe
a prototype implementation of a full-scale language with
NaVs and report on our experience building robust software
components in this setting.
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1 Introduction
Information flow control (IFC) [24] is an approach to se-

curity that controls how information propagates between the

various components of a system, and between the system and

the outside world. This is achieved by associating security

levels (called labels) to entities such as processes, communi-

cation channels, files, and data structures, and enforcing the

constraint that information derived from secret data does

not leak to untrusted processes or to the public network.

Conversely, IFC can enforce that untrusted processes or

tainted inputs from the network have only carefully mediated

influence on high integrity entities such as a database. These

guarantees help reduce the trusted computing base, prevent-

ing bugs in untrusted code from breaking the confidentiality

or integrity properties of the whole system.
Approaches to IFC fall roughly into two groups: static,

where labels and information-flow checks are built into

a type system or other static analysis tool [24, etc.] and

dynamic, where labels are attached to run-time entities and

propagated during execution. Static approaches have the

usual advantages of early error detection and low run-

time overhead. On the other hand, dynamic techniques

are applicable in settings such as scripting languages [6],

[8], [15], operating systems [13], [19], [28], and hardware

implementations [10], [12] where static checking is prob-

lematic. Moreover, while early implementations of dynamic

IFC focused on simple forms of taint tracking that did

not detect implicit flows (secrets transmitted through the

program’s control flow), it has recently been shown [4], [25]

that more sophisticated dynamic checks can soundly enforce

a well-defined, formal policy—termination-insensitive non-

interference, our criterion for sound IFC. Furthermore, dy-

namic IFC can be used together with discretionary access

control (e.g., clearance [26]) to break up large systems

into mutually distrustful components that run with least

privilege [10], [13], [19], [26], [28].

Dynamic IFC can work at different levels of granularity.

In fine-grained dynamic IFC (FIFC, for short) [4]–[6], [14],

[15], [22], [23], [25], [26], each value—including, in gen-

eral, the constituent parts of compound values—is protected

by its own label, and the result of each computation step is

given a label based on the labels of all the data involved.

The main advantage of such fine-grained labeling is that it

allows individual values to be declassified when necessary;

this makes it easier to understand what gets declassified and

simplifies the code audit process, compared with coarse-

grained techniques [13], [19], [21], [28, etc.] where all the

data owned by a process has a single label and thus gets

classified and declassified together. Our focus in this paper

is on (sound) FIFC.

However, current formulations of FIFC1 suffer from a

critical weakness: IFC violations are not recoverable. In-

stead, they lead to fatal “stop the world” errors in which the

entire system is immediately terminated. This makes them

unsuitable for some real-world settings—ones where not

only confidentiality and integrity but also high availability
are crucial concerns. To remedy this shortcoming, we need

to enrich FIFC with an error-handling mechanism that allows

all errors (IFC violations and others) to be recoverable,

but that does not violate the soundness of information-

flow tracking. Showing how this can be done is the main

contribution of this paper.

Poison-pill Attacks To illustrate the problems and intro-

duce the main ideas of our solution (§2 gives more details),

we start by explaining a new class of availability attacks

that are specific to FIFC, which we call poison-pill attacks.

For this we use a simple idealized example—a server that

1One partial exception [27] is discussed in §9.
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receives a pair of numbers, sends the larger one back to the

client, and then loops to service the next request:

fun process_max (x,y) = if x <= y then y else x

fun rec max_server_loop () =
send out (process_max (recv in));
max_server_loop ()

The request and the response happen over public inter-

process communication channels in and out respectively,

so the pair received by the server is guaranteed to be labeled

public, and the server has to produce a public response.

However, with fine-grained labeling, data structures can be

heterogeneously labeled (i.e., even though a pair is labeled

public, its components can still be classified) and channels

only check the topmost label.

A malicious or confused client can mount an attack on

the max server by sending it a poison pill—a pair labeled

public containing numbers labeled secret. The server will

compare these numbers and try to send the larger of the two

back to the client. But since this number is labeled secret,

the send performed by the server will fail with a fatal IFC

violation.

We would like to protect the max server from such

availability attacks. The standard idiom in programming

languages is for all errors to lead to catchable exceptions;

we can then wrap the body of the server in a try/catch

expression and thereby ensure that it keeps running:

fun rec max_server_loop’ () =
try send out (process_max (recv in))
catch x => log x;
max_server_loop’ ()

However, combining catchable exceptions with FIFC can

easily lead to unsoundness, since exceptions can leak secrets

via labels or via the control flow of the program. In the rest

of this section we sketch each of these problems and describe

our solutions at a high level, postponing details to §2.

Problem: IFC Exceptions Reveal Information About
Labels It is well known in the IFC community [23], [26],

[29, etc.] that dynamically varying labels are themselves

information channels. For instance, the following simple

example encodes the secret bit h by varying the label of

the final result:

if h then ()@high else ()@top

In this and the following examples we use label low for

public data, high for secret data, and top for top-secret data.

We use the term ()@high to classify unit to label high.

In a FIFC language there is usually more than one label

channel—e.g., one for labels on values, illustrated above,

and a different one for labels on references (used for

controlling reads and writes). For each label channel, we

can prevent leaking secrets in one of two ways: (1) either

by preventing secret information from leaking into the label

channel [4], [26] or (2) by preventing any information from

leaking out of the label channel [4], [5], so that, even though

there may be secrets in the label channel, there is no way to

observe them. In the presence of catchable IFC exceptions,

however, the second alternative is not satisfactory. Observing

IFC exceptions inherently reveals information about labels,

so if one wanted to prevent information from leaking out

of the label channel, one would need to impose severe re-

strictions on the observability of exceptions.2 The following

example encodes the secret h using labels as above and then

tries to leak it using catchable IFC exceptions:

try
href := (if h then ()@high else ()@top);
true

catch IFCException => false

Here, href is a reference cell holding high values. Writing

to href succeeds when h is true (writing a high value

to a high reference is OK) but raises an exception when

h is false (writing a top-secret value to a high reference

fails). Thus the success or failure of the assignment depends

on the label of the value that gets written. Since the reference

write is now basically a conditional branching construct, one

could prevent the leak by recording that the control flow

decision was potentially influenced by secrets encoded in

the label of the value that gets written. This would, however,

lead to a very restrictive language, in which the information

whether an IFC exception has occurred or not is protected

by an arbitrarily high label, and where programmers have

little control over how data is labeled. For instance, in such

a system the max server above would have no way to log

that an IFC exception occurred, since this information would

be labeled with a label chosen by the poison-pill attacker.

Solution: Sound Public Labels Instead of allowing se-

crets to flow into the label channel and then trying to hide

labels (and thus IFC exceptions), we obtain soundness by

making sure that the information in the labels is public in

the first place. We can do this by separating the choice of

label (which needs to be done in a low context) from the

computation of the labeled data (which happens in a high

context). To achieve this separation we put the code that

branches on secrets inside brackets that explicitly specify the

label of the result [26]. In the example above the conditional

has to be bracketed with top, i.e., a label that is more secure

than the label of the result of either branch:

top[if h then ()@high else ()@top]

Regardless of which branch is chosen, the example now

evaluates to ()@top, thus preventing h from being leaked

to the label channel. Brackets close the label channel, which

allows us to make labels and IFC errors publicly observable.

Moreover, the soundness of the techniques we propose

does not depend on the label annotations on brackets being

2This problem only gets worse when one also adds label-based discre-
tionary access control to the language (as we do in Breeze), since then
even adding two numbers can cause access control violations and thus
reveal information about labels.
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correct. We defer the discussion about brackets and incorrect

annotations to §2.2 and §2.3.

Problem: Exceptions Destroy Control Flow Merge Points
The standard formulation of catchable exceptions can leak

secret information via the control flow of the program.

Propagating exceptions adds many new edges to the control

flow graph and thus introduces additional exit edges out

of basic blocks. Without exceptions there is a unique edge

out of a conditional which merges the two branches. Such

control flow merge points play a crucial role for IFC in

general, because they mark the end of a high context (where

some secrets have affected the control flow). For instance,

brackets are only sound if ending brackets are control flow

merge points, but standard exception propagation breaks

this invariant. We explain this in more detail in §2.3, but

intuitively the problem here is that an expression like
try

ignore high[if h then throw Ex else ()];
false

catch _ => true

throws an exception in a high context, but catches it in a

low context, outside the brackets. The fact that the exception

“jumps” out of the brackets allows the secret boolean h to

be leaked as a low boolean.

Solution: Delayed Exceptions To fix this, we need to

change the language so that exceptions do not jump out

of the brackets—i.e., any exception that happens inside a

bracket needs to be delayed and turned into a result of

the bracket expression. While such delayed exceptions seem

unavoidable given the constraints of our setting (see §2.3),

we do have a choice about exactly how they propagate when

they are used, for instance: (1) we can simply rethrow the

exception (see §5.2 and LIO [27]), or (2) we can change the

semantics so that the result of the operation is the delayed

exception (see §2.4 and §4). While we investigate both these

alternatives in the paper, we find the second one particularly

interesting, because it allows us to devise an error handling

mechanism based solely on delayed exceptions. In this new

mechanism, exceptions are propagated only via the data

flow of the program. Since this is to a certain extent a

generalization of how not-a-numbers (NaNs) [16] propagate,

we call such delayed exceptions not-a-values (NaVs).

Contributions Our primary contribution is the identifica-

tion of public labels and delayed exceptions (§2) as the

key ingredients for making all errors (IFC violations and

all other exceptional conditions) recoverable in a sound

and usable language. Additionally, we explore the space

of possible designs based on these ingredients and focus

on two propagation approaches for delayed exceptions: a

simpler one using not-a-values (NaVs) and data flow to

propagate exceptions (§2.4 and §4), and a more complex

one using standard catchable exceptions that are delayed

by ending brackets (§5). We identify the rules that ensure

soundness in either case and we formally prove in Coq that

both designs enforce error-sensitive, termination-insensitive

non-interference [1]. Moreover, we devise translations that

encode each error handling mechanism in terms of the other

(§6). We also illustrate how each of the mechanisms can be

used to protect the simple max server above against poison-

pill attacks (§7). Finally, we have designed and implemented

a language called Breeze that incorporates the simpler and

more novel approach based on NaVs [1]. To gain experience

with the design, we have constructed a large library and a

number of small but illustrative applications. We report on

our experience, identifying practical issues that arise with

NaVs and idioms that can be used to work around potential

shortcomings (§8).

We discuss related work in §9; we conclude and sketch

future directions in §10.

2 Overview
To set the stage for the details of the calculi and their

properties, this section gives a technical overview of the

underlying ideas. §2.1 is a gentle introduction to the basic

mechanisms of FIFC; §2.2 gives more details on public

labels and brackets; §2.3 explains why delayed exceptions

are unavoidable if we want all errors to be recoverable in a

FIFC system; finally, §2.4 explains NaVs.

2.1 A Gentle Introduction to FIFC
In order to track information flow at a very fine level of

granularity [4], [5], each value is protected by an individual

IFC label representing a security level (e.g., low, high, or

top). Security levels are partially ordered: low is below

high (since it is always safe to protect public data as if

it was a secret) and high is below top. The semantics of

the language automatically propagates these labels as com-

putation progresses. For instance, the expression 1@low +

2@high evaluates to 3@high, thus capturing the dependency

of the result on the secret input 2. Trying to write the secret

result to a public reference (i.e., readable by the attacker) is

an example of an explicit flow; it results in an IFC violation:

lref := 1@low + 2@high // -> IFC violation

In most existing FIFC systems [4]–[6], [15], [22], [23], [25],

such IFC violations are fatal errors, immediately stopping

the execution of the program to prevent secret information

from being leaked.

Preventing only explicit flows is not enough to obtain a

sound IFC system, though, since the control flow of the

program can also leak secret information:

lref := false; if h then lref := true

In this example, an implicit flow3 is used to copy the secret

bit h to the public reference lref. The standard way of

stopping such leaks is a security context label, called the

3 In this paper we use the term implicit flow to mean any information
leak via the control flow of the program.
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pc label, that dynamically captures the security level of

all the values that have influenced the control flow. In the

example above, branching on h raises the pc to high, which

prevents writing to low references such as lref. In all of

this section’s examples, the pc starts out as low.

Stopping low side-effects when the pc is high is neces-

sary but not sufficient for stopping implicit flows. Implicit

flows can equally well affect purely functional code:

if h then true else false

Assuming the constants true and false are public even

when the pc is high, this code obtains a public copy of the se-

cret h. The restriction on side-effects alone does not prevent

this implicit flow, since in most existing FIFC systems [4]–

[6], [14], [15], [22], [23], [25] the pc is automatically

restored on control flow merge points. This means that,

without additional restrictions, the following code would

successfully exfiltrate h, since lref is only updated after

the two branches of the conditional are merged.

lref := (if h then true else false)

One way to soundly restore the pc automatically is to

let the pc “infect” the resulting value first [4], [5]. Then

whatever the conditional returns is at least as secret as h—

and therefore cannot be written to lref. However, as we

will see in the next section, automatically restoring the pc
is not sound when labels are publicly observable.

2.2 Public Labels and Brackets

Since FIFC enforces security dynamically, IFC labels have

a run-time representation and are automatically propagated

by the FIFC system. It is well known in the IFC commu-

nity [23], [26], [29, etc.] that dynamically varying labels

are themselves information channels. However, many of the

existing FIFC systems [4]–[6], [15], [22] do not completely

prevent leaking secrets into label channels. Instead, they

preserve soundness by preventing (some of) the labels from

being publicly observable. In a FIFC system, automatically

restoring the pc on control flow merge points allows in-

formation to be leaked into the label channel formed by

the labels on values. So in a FIFC system with automatic

pc restoring allowing any way of publicly observing in-

formation about the labels on values would be unsound.

For instance, adding a label inspection construct would be

unsound: the following simple example would leak the secret

bit h.

labelOf (if h then ()@high else ()@top) == high

This is similar to the purely functional implicit flow example

above, but here we are varying the label of the result of a

conditional based on the secret h—the result value is unit

on both branches. The labels we use for signaling (high and

top secret) are above or the same as the label of h (high),

so “infecting” the result of the conditional with the high

pc [4], [5], as discussed at the end of §2.1, does not have

any effect. If the pc is automatically restored at the end of

the conditional, the variation in the labels on values is made

public by labelOf, revealing the secret h.

Label inspection is, however, only one way of making

labels observable. Making IFC errors recoverable also re-

veals information about the labels, as we saw in §1. Since

we think that trying to restrict information about IFC errors

is counterproductive, we obtain soundness by preventing

secrets from being leaked into the label channels. For the

label channel formed by the labels on values, we do this by

restoring the pc only manually, using brackets [26]. With

brackets the pc is restored after a conditional only if the label
on the result has been chosen in advance, before looking at
any secrets. In a language with brackets the example above

is safe, because the pc is not automatically restored at the

end of the conditional, so it stays high and stops any low

side-effects even after the control flow merge point. In this

setting, each value is effectively protected both by its explicit

label and by the current pc. To restore the pc we must wrap

the conditional in a bracket, as in:

top[if h then ()@high else ()@top]

No matter which branch of the conditional is taken, the

result is labeled top, and the pc is restored to the value it

had before the bracket started. Brackets are always control

flow merge points, so the pc can be safely restored. The

label on the bracket is chosen outside the bracket, before

it runs, so it cannot depend on any secrets inspected inside.

However, the semantics of brackets also needs to ensure that

the label on the bracket is high enough to effectively protect

the result of the bracketed expression; i.e., brackets are not

a declassification construct. For instance, if we were to put a

lower label on the bracket, say high, in the example above,

then executing the else branch would cause an IFC error,

since high is not above top:

high[if h then ()@high else ()@top]

If availability were of no concern, one could make such

failed brackets be fatal errors and obtain a language

with public labels that has error-insensitive, termination-

insensitive non-interference (indeed, we do as much in our

λ[ ] calculus in §3). Error insensitivity means that this

soundness result ignores computations where brackets are

incorrectly labeled.

2.3 Delayed Exceptions
While we want IFC errors to be recoverable, failed brackets

cannot throw catchable exceptions: we can only soundly

restore the pc at control flow merge points, and throwing

exceptions would destroy the merge point at the end of a

bracket. The following example would exfiltrate h if failed

brackets threw an exception but still restored the pc:

lref := false
try

ignore high[if h then ()@high else ()@top];
lref := true

catch _ => ()
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The bracket would succeed when h is true; the bracket

would fail with a catchable exception when h is false

causing lref := true to be skipped. At the end of the

bracket, the pc returns to low, so when h is true the

update to lref would be allowed to exfiltrate the secret. As

illustrated in §1, a very similar problem occurs if exceptions

in the body of the bracket freely jump out of the bracket.

To prevent such behavior, brackets must either produce

a value or diverge. There needs to be exactly one control

flow edge leaving the bracket; they cannot throw catchable

exceptions. Moreover, since we do not want labels to be a

possible source of leaks, whatever comes out of the bracket

must be labeled with the bracket’s label. Nevertheless, in

order for the error handling mechanism to be useful in

practice, the produced value has to be as informative as

possible. In particular, this value should record if the bracket

has failed or not. If the bracket has failed, the value should

record the cause of the failure if possible. We believe that

any workable solution to these design constraints will have

to involve delayed exceptions in one form or another. Thus,

when a bracket fails, the result should be a delayed exception

protected with the label specified on the bracket.

2.4 Not-a-Values (NaVs)

One can design a language with both catchable and delayed

exceptions (we do that in §5). However, a more radical

solution is to get rid of catchable exceptions altogether and

to design a new error handling mechanism based solely on

delayed exceptions in the form of not-a-values (NaVs). We

outline the main ideas of this solution here and study the

details in §4 and §8. NaVs are first-class replacements for

values that are propagated solely via the data flow of the

program. Like values, NaVs are labeled. More importantly,

NaVs are pervasive: (a) all errors produce NaVs that remem-

ber the cause (e.g., dividing by zero will produce a different

NaV than trying to add a boolean to an int), and (b) all

non-parametric operations are NaV-strict (adding an int to a

NaV will return the original NaV). However, for parametric

operations, which do not inspect their arguments, there is a

choice whether to be NaV-strict or to be NaV-lax. There are

two questions one has to answer:

1) Should a function applied to a NaV argument fail and

return the NaV (NaV-strict) or just bind that argument

to the NaV and keep evaluating the function’s body

(NaV-lax)?

2) Should constructing a data value using NaV arguments

produce a NaV (NaV-strict) or simply produce a data

structure containing NaVs (NaV-lax)?

NaV-strictness has the advantage of short-cutting error

propagation and revealing errors earlier, but it also has

several big disadvantages.

1) NaV-strict function applications introduce a new control

flow edge: when the argument is a NaV, they jump over

the function body. In order to preserve soundness, the

pc must be raised by the label of the argument on all

NaV-strict function calls.

2) NaV-strict data constructors force the label on data

structures to be a summary of everything inside. Every

time we NaV-strictly cons onto a list, we must first

check that the value we are consing on is not a NaV.

The label on the list—and everything we get out of

it—will be higher than every cons cell’s label.

The λ
[ ]
NaV calculus in §4 gives the answer “NaV-lax” to

the two questions above. That is, we make all parametric

operations NaV-lax, while allowing NaVs to be “forced”

explicitly. In our prototype implementation (described in

§8), we allow the programmer to choose the desired be-

havior explicitly, on a case-by-case basis. While in theory

selective NaV-strictness is only a convenience, in practice

convenience makes a big difference.

One might wonder what would happen if one were to

make all constructs of the language NaV-strict. In such a

language NaVs would propagate very similarly to catchable

exceptions. However, brackets would be totally useless, since

as soon as the bracket would restore the pc, the bracket’s

context would perform a NaV check on its result, raising

the pc even higher than it was right after the bracket ended.

What’s in a NaV? Other than the cause of the error

(i.e., the error message), each NaV contains two additional

values that facilitate debugging: a stack trace that pinpoints

the origin of the error and a propagation trace that records

the way the NaV meandered from the place where it was

originally created to the place where it was eventually

detected. We have proved that providing these debugging

aids does not invalidate our soundness results (see §4.2).

3 λ[ ]: A FIFC Calculus with Public Labels
We begin with the basis of our FIFC calculi, λ[ ] (pro-

nounced “lambda bracket”), a simple calculus for fine-

grained purely dynamic IFC. In λ[ ] all labels are public but

errors are still fatal; in §4 and §5 we extend λ[ ] with two

different error handling mechanisms which make all errors

recoverable. For the sake of simplicity, we drop some of

the language features that we used in earlier examples (in

particular, channels and references) and work with pure core

calculi throughout our formal development.

The syntax of λ[ ] is in Figure 1; much of it is standard.

Information flow aside, λ[ ] is a dynamically typed lambda

calculus with tagged variants (Inl, Inr, and match), equal-

ity on constants (x == y), and reflection on type tags

(tagOf x ). To simplify our evaluation relations, we present

λ[ ] and its extensions in a syntactically restricted form

reminiscent of A-normal form (ANF). In the examples we

give throughout the paper we will, however, use standard

syntactic sugar.
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Constants
c ::= () | L | TFun | TSum | TUnit | TLab | TTag

Terms, constructors, and operations
t ::= x | c | let x = t in t ′ | λx .t | x y | C x |

tagOf x | x ⊗ y | getPc () | x [t ] | labelOf x |
(match x with | Inl x1 ⇒ t1| Inr x2 ⇒ t2)

C ::= Inl | Inr
⊗ ::= == | � | ∨
Values, environments, and atoms
v ::= c | C a | 〈ρ, λx . t〉
ρ ::= x1 �→ a1, . . . , xn �→ an
a ::= (V v)@L

Figure 1. Syntax of λ[ ]

In order to track information flow at a very fine level

of granularity, λ[ ] works with atoms: values labeled with

a security level. The security levels (or “labels”) are drawn

from an arbitrary join-semilattice with a bottom element,

which is denoted ⊥ and used for labeling public data (in

the examples from §1 and §2 we let ⊥ = low). Unlike

in most other FIFC systems [4]–[6], [14], [15], [22], [23],

[25], λ[ ]’s labels are public and first-class: labelOf performs

label inspection, returning an atom’s label—as an atom,

itself labeled with ⊥; the operator “∨” computes the join

of two labels; and the operator “�” compares two labels

according to the semi-lattice’s partial order. Additionally,

getPc () returns the current security context label, pc, which

is the join of all labels of values that have affected control

flow. The pc label is necessary for preventing implicit flows,

which can affect even purely functional code (see §2.1). In

λ[ ], every value is protected not only by its explicit label,

but also by the current pc label. That is, values labeled public

are still considered secret when the pc is secret.

A bracket x [t ] serves two main purposes: it labels the

result of evaluating t with the label x (classification); and,

after evaluating t , it reverts the pc to its original level before

the bracket. The latter is particularly important, since it is

unsound for a language with public labels to automatically

lower the pc at the end of conditionals or other control flow

branches (see §2.2). The only way to restore the pc in λ[ ]

is manually, using brackets. This is crucial for preventing

leaks into “the label channel” (see §2.2), since the label on

the final result is chosen in advance, before branching on

secrets inside the bracket. Note that the label on the bracket

need not be a constant—it can be computed at runtime, for

instance using labelOf and joins.

The operational semantics of λ[ ] in Figure 2 adds

FIFC to a completely standard environmental big-step se-

mantics. We have three kind of values: constants, tagged

variants, and closures. Values are heterogeneously labeled:

(V (Inl ((V ())@high)))@low is a high constant contained

inside a public value. The evaluation relation uses an explicit

environment ρ, mapping variables to atoms. The environ-

ment ρ implements lexical scoping, while the pc is threaded

through like a piece of state (rule BLet). In λ[ ] there are

only two kinds of errors: type errors and failed brackets.

Neither can be handled—there simply won’t be a derivation.

An implementation would have to treat these errors as fatal

and “stop the world”.

Variables are just looked up in the environment (rule

BVar). The standard introduction rules—BConst, BSum, and

BAbs—follow a similar pattern: the introduced value is

labeled with the public label, ⊥. Since in λ[ ] labels are

public, extracting the label from an atom (rule BLabelOf )

or from the current pc (rule BGetPc) produces a first-class

label value that is labeled ⊥, too.

In rule BApp the body of the closure is evaluated under

an extended environment and with a pc raised by the

closure’s label. We have to raise the pc because, due to first-

class functions, what function we invoke is generally data-

dependent. BMatch, the rule for pattern matching, also raises

the pc: the scrutinee influences control flow. Type tags can

also be used as an information channel, so when extracting

the tag of an atom, we protect the result with the original

atom’s label (rule BTagOf ). The rule for binary operations

(BBOp) is standard: the condition on tagsArgs ensures that

the operation is well typed, and the result of the operation

is labeled with the join of the labels on the arguments.

Finally, BBrk specifies the semantics of brackets. The

L′′ ∨ pc′ �L ∨ (pc ∨ L′) premise ensures that the value

returned from the bracket is more protected with the bracket

(L ∨ (pc ∨ L′)) than it would have been if we did not use

a bracket (L′′ ∨ pc′); i.e., brackets are not a declassification

construct. Keeping in mind that each value is protected by

the join of its explicit label and the pc, we illustrate this

condition below by means of examples.

In the simplest case, brackets merely classify data: the

term L[x ] classifies x to label L. Suppose that ρ(x ) =
(V v)@L′′ and that L′′ �L∨ pc; then we have ρ � L[x ], pc ⇓
(V v)@L, pc. The label L is not itself secret, since BConst
yields ⊥-labeled atoms. BVar does not change the pc, so

the pc stays the same throughout the bracket. The final

condition on the bracket is L′′ ∨ pc�L ∨ (pc ∨ ⊥), which

holds because pc ∨ ⊥ = pc, � is reflexive, and we have

assumed that L′′ �L ∨ pc. On the other hand, if L′′ 
� L∨pc
then the condition at the end of the bracket does not hold

(i.e., we are trying to declassify using a bracket), so there

is no derivation. An implementation would have to cause a

fatal error and “stop the world”—there is no safe way to

continue running the program.

In addition to classifying data, brackets are the only

way to lower the pc in λ[ ]. For example, t =
high[high[λx .x ] (λx .x )] starts a high bracket in which it

classifies λx .x to high and then applies it to an unclassi-

fied λx .x . We have the following derivation, starting and

ending with a ⊥ pc: (ρ � t ,⊥ ⇓ (V 〈∅, λx . x 〉)@high,⊥).
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ρ(x ) = a

ρ � x , pc ⇓ a, pc
(BVar)

ρ � t , pc ⇓ a, pc′ (ρ, x �→ a) � t ′, pc′ ⇓ a ′, pc′′

ρ � let x = t in t ′, pc ⇓ a ′, pc′′
(BLet)

ρ � c, pc ⇓ (V c)@⊥, pc
(BConst)

ρ(x ) = a

ρ � C x , pc ⇓ (V (C a))@⊥, pc
(BSum)

ρ � (λx .t), pc ⇓ (V 〈ρ, λx . t〉)@⊥, pc
(BAbs)

ρ(x ) = (V v)@L

ρ � labelOf x , pc ⇓ (VL)@⊥, pc
(BLabelOf)

ρ � getPc (), pc ⇓ (V pc)@⊥, pc
(BGetPc)

ρ(x1) = (V 〈ρ′, λx . t〉)@L ρ(x2) = a
(ρ′, x �→ a) � t , (pc ∨ L) ⇓ a ′, pc′

ρ � (x1 x2), pc ⇓ a ′, pc′
(BApp)

ρ(x ) = (V (C a))@L
(ρ, y �→ a) � tC , pc ∨ L ⇓ a ′, pc′

ρ � match x with
| Inl y ⇒ tInl
| Inr y ⇒ tInr

, pc ⇓ a ′, pc′
(BMatch)

ρ(x ) = (V v)@L

ρ � (tagOf x ), pc ⇓ (V (tagOf v))@L, pc
(BTagOf)

ρ(x1) = (V v1)@L1 ρ(x2) = (V v2)@L2

{tagOf v1, tagOf v2} ⊆ (tagsArgs ⊗) v � v1 ⊗ v2

ρ � (x1 ⊗ x2), pc ⇓ (V v)@(L1 ∨ L2), pc
(BBOp)

ρ(x ) = (VL)@L′ ρ � t , (pc ∨ L′) ⇓ (V v)@L′′, pc′

L′′ ∨ pc′ 
 L ∨ (pc ∨ L′)
ρ � x [t ], pc ⇓ (V v)@L, (pc ∨ L′)

(BBrk)

Where

tagsArgs (
) = tagsArgs (∨) = {TLab}
tagsArgs (==) = {TUnit,TLab,TTag}

Figure 2. Evaluation relation for λ[ ]

The BApp sub-derivation for the bracket body finishes

with pc′ = (⊥ ∨ high) = high and returns the atom

(V 〈ρ, λx . x 〉)@⊥. The condition at the end of the bracket

is ⊥ ∨ high� high ∨ (⊥ ∨ ⊥), which clearly holds. It is

therefore sound to lower the pc to ⊥ ∨ ⊥ = ⊥ and relabel

the closure as (V 〈ρ, λx . x 〉)@high. That is, the outer bracket

has moved taint from the pc to the resulting value.

The two examples above illustrate the most common

usage scenarios for brackets. There is another interest-

ing use case: brackets can also be used for moving

taint from values to the pc. For example, this usage of

brackets can make a heterogeneously labeled data struc-

ture into one classified by a single outer label; pulling

the inner label in (V (Inl (V ())@high))@high out, yielding

(V (Inl (V ())@low))@high. Or, suppose ρ(x ) = (V v)@high
and the pc is high. We can use low[x ] to obtain (V v)@low.

Atom equivalence
(V v1)@L

′ ≡L (V v2)@L
′ ⇐⇒ L′ �L =⇒ v1 ≡L v2

Value equivalence
c ≡L c
C a1 ≡L C a2 ⇐⇒ a1 ≡L a2
〈ρ1, λx . t〉 ≡L 〈ρ2, λx . t〉 ⇐⇒ ρ1 ≡L ρ2

Environment equivalence
∅ ≡L ∅
ρ1, x �→ a1 ≡L ρ2, x �→ a2 ⇐⇒ ρ1 ≡L ρ2 ∧ a1 ≡L a2

Figure 3. Equivalence below a given label L

This is not a declassification, since the high pc already

protects v . In this example the condition at the end of the

bracket is high ∨ high� low ∨ (high ∨ low), which holds

because (a) low ∨ high = high, (b) high ∨ high = high, and

(c) � is reflexive. Here the label on the result of the bracket

is above the label on the bracket. Joining the post-bracket

pc on the right-hand-side of the condition in BBrk gives us

the flexibility to permit this sound usage of brackets.

Non-interference λ[ ] enjoys non-interference: for every

computation, the high parts of the input do not affect the

low parts of the output. In λ[ ] the environment and the

initial pc constitute the input, while the resulting atom and

final pc constitute the output. The non-interference proof is

fairly standard [4]. First, in Figure 3 we define a family of

label-indexed equivalences ≡L on atoms, values, and envi-

ronments. Each equivalence distinguishes two classes: low

things are labeled below L, and high things are not labeled

below L. In each equivalence, low things must correspond

closely, while high things need not. Atom equivalence is

the crux of the ≡L equivalence; the equivalences on values

and environments are structural. Labels are public, so the

labels on atoms are treated as low data: equivalent atoms

have the same label. Low atoms labeled below L must have

equivalent values, while high atoms need not.

Theorem 1 (Non-interference for λ[ ]). Given a label L,
a term t , environments ρ1 and ρ2, and a starting pc label
pc, if: (1) ρ1 ≡L ρ2, (2) ρ1 � t , pc ⇓ a1, pc

′
1, (3) ρ2 �

t , pc ⇓ a2, pc
′
2, and (4) pc′1 �L or pc′2 �L then pc′1 = pc′2

and a1 ≡L a2.

Proof. By induction on (2), using the fact that the pc
increases monotonically. We have proved this in Coq.

Premise (4) of Theorem 1 is necessary because atoms

are protected by both their labels and the pc label—if the

computation finishes with a pc that is not below L, then

there are no low parts of the output, and non-interference is

immediately satisfied.

Non-interference in λ[ ] is error insensitive and termina-
tion insensitive. That is, since errors and divergence are

represented by absence of a derivation, Theorem 1 says

nothing in case of errors or divergence. Finally, we do not
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Exceptions and constants
ε ::= EBrk | EType | . . .
c ::= . . . | TExcp | ε
Terms
t ::= . . . | toSum x | mkNaV x
Boxes and atoms
b ::= V v | D ε
a ::= b@L

Figure 4. Syntax changes and extensions from λ[ ] to λ
[ ]
NaV

have a declassification construct in λ[ ], and if we added one,

our non-interference results would hold only for programs

that do not declassify. Addressing declassification is an

interesting topic for future work; our hope is that we can

adapt and reuse results from the static IFC setting [2, etc.].

4 Not-a-Values Formally
4.1 λ

[ ]
NaV: Calculus with NaVs

In λ
[ ]
NaV, we extend λ[ ] with NaV-based error handling.

The extensions to the syntax are in Figure 4. We introduce

exception names like EType and EBrk as constants; like the

other constants they are both values and terms. Every atom

in λ
[ ]
NaV is a labeled box, where a box contains either a value

(V v ) or a NaV (a delayed exception denoted D ε). Type and

bracket errors produce NaVs automatically. Programmers

can create their own NaVs using the mkNaV operation,

which turns an exception name into a NaV. Once created,

NaVs propagate automatically: e.g., trying to call a NaV

like a function yields the NaV. Since λ
[ ]
NaV lacks exceptional

control flow, there is no “catch” mechanism per se: instead,

the toSum operation is used to check whether or not a given

atom is a NaV. For the moment, we omit the stack and

propagation traces that are also contained in NaVs—we will,

however, consider them in §4.2 below.

Evaluating a λ
[ ]
NaV program yields one of two possible

outcomes: either it loops forever, or it terminates with an

atom. In particular, λ
[ ]
NaV has no fatal errors. We have proved

in Coq that the big-step semantics of λ
[ ]
NaV is equivalent to

a small-step semantics satisfying strong progress4.

The evaluation rules of λ
[ ]
NaV are largely similar to λ[ ].

We give only the most interesting rules in Figure 5. Rules

ending in E signal errors, using a helper function prEx
to propagate exceptions: when given a value, prEx returns

EType to signal a type error; when given a NaV, prEx
propagates it. For example, rule NAppE returns an EType
NaV when the value in the function position is not a closure:

ρ � (InlL) (λx .x ), pc ⇓ (DEType)@⊥, pc. It propagates

4Strong progress is, however, just a rough cut at formalizing robust error
handling—a calculus can have progress without providing robust handling
of errors. For example, it might loop forever on errors, only catch errors at
the top-level, or always hide error messages.

ρ(x1) = b@L tagOf b �= TFun

ρ � (x1 x2), pc ⇓ (D (prEx b))@⊥, pc ∨ L
(NAppE)

ρ(x ) = b@L tagOf b �= TSum

ρ � match x with . . . , pc ⇓ (D (prEx b))@⊥, pc ∨ L
(NMatchE)

ρ(x ) = (D ε)@L

ρ � (tagOf x ), pc ⇓ (D ε)@L, pc
(NTagOfE)

ρ(x1) = b1@L1 ρ(x2) = b2@L2

tagOf b1 �∈ (tagsArgs ⊗)

ρ � (x1 ⊗ x2), pc ⇓ (D (prEx b1))@(L1 ∨ L2), pc
(NBOpE1)

ρ(x1) = b1@L1 ρ(x2) = b2@L2

tagOf b1 ∈ (tagsArgs ⊗) tagOf b2 �∈ (tagsArgs ⊗)

ρ � (x1 ⊗ x2), pc ⇓ (D (prEx b2))@(L1 ∨ L2), pc
(NBOpE2)

ρ(x ) = (VL)@L′ ρ � t , (pc ∨ L′) ⇓ b@L′′, pc′

L′′ ∨ pc′ 
 L ∨ (pc ∨ L′)
ρ � x [t ], pc ⇓ b@L, (pc ∨ L′)

(NBrk)

ρ(x ) = (VL)@L′ ρ � t , (pc ∨ L′) ⇓ b@L′′, pc′

L′′ ∨ pc′ �
 L ∨ (pc ∨ L′)
ρ � x [t ], pc ⇓ (DEBrk)@L, (pc ∨ L′)

(NBrkEBrk)

ρ(x ) = b@L′ tagOf b �= TLab

ρ � x [t ], pc ⇓ (D (prEx b))@⊥, (pc ∨ L′)
(NBrkE)

ρ(x ) = b@L

ρ � labelOf x , pc ⇓ (VL)@⊥, pc
(NLabelOf)

ρ(x ) = (V ε)@L

ρ � mkNaV x , pc ⇓ (D ε)@L, pc
(NMkNaV)

ρ(x ) = b@L tagOf b �= TExcp

ρ � mkNaV x , pc ⇓ (D (prEx b))@L, pc
(NMkNaVE)

ρ(x ) = (V v)@L

ρ � toSum x , pc ⇓ (V (Inl ((V v)@⊥)))@L, pc
(NToSumV)

ρ(x ) = (D ε)@L

ρ � toSum x , pc ⇓ (V (Inr (V ε)@⊥))@L, pc
(NToSumD)

Where

tagsArgs (==) = {TUnit,TLab,TTag,TExcp}
prEx (V v) = EType
prEx (D ε) = ε

Note: Rules NVar, NConst, NLet, NAbs, NApp, NBOp, NSum,
NMatch, NTagOf, NGetPc are the same as in λ[ ].

Figure 5. Evaluation relation for λ
[ ]
NaV

NaVs from the function position:

ρ � (mkNaV (ε)) (InrL), pc ⇓ (D ε)@⊥, pc.

Rule NAppE raises the pc by the label on the function

position, just like NApp. NaV-propagation rules treat the

pc just like their success-path counterparts; NaVs do not

introduce new control flow edges, so the pc raises just as it

does in λ[ ]. This is one of the advantages of NaVs over the

more traditional mechanism based on catchable exceptions

from §5, which has to raise the pc more often to account

for exceptional control flow.

Rule NBrkEBrk applies when the body of a bracket yields
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Atom equivalence
b1@L

′ ≡L b2@L
′ ⇐⇒ L′ �L =⇒ b1 ≡L b2

Box and value equivalence
V c ≡L V c
V (C a1) ≡L V (C a2) ⇐⇒ a1 ≡L a2
V 〈ρ1, λx . t〉 ≡L V 〈ρ2, λx . t〉 ⇐⇒ ρ1 ≡L ρ2
D ε1 ≡L D ε2 ⇐⇒ ε1 = ε2

Figure 6. λ
[ ]
NaV’s atom, box, and value equivalence (below label L)

a value that is labeled too high or a pc that is too high.

(the precise condition is the same as in §3). The result of

evaluating the bracket is discarded, and replaced with an

EBrk NaV labeled with the label of the bracket. For example:

ρ � low[high[λx .x ]], pc ⇓ (DEBrk)@low, pc.

Since NaVs flow like data, throwing away the result of the

bracket can hide errors:

ρ � low[high[mkNaV (ε)]], pc ⇓ (DEBrk)@⊥, pc

The NaV generated by the bracket completely hides the

high-labeled NaV that the programmer constructed. This is

crucial for soundness.

Finally, running toSum x will yield a Inl-tagged value if

x holds a value (rule NToSumV); it will yield a Inr-tagged

exception constant if x holds a NaV (rule NToSumD). In

either case, the label is moved from x to the tag.

Non-interference for λ
[ ]
NaV

The equivalence ≡L changes slightly to account for NaVs as

shown in Figure 6. Otherwise, the definitions of environment

equivalence and non-interference remain the same as in §3.

Theorem 2 (Non-interference for λ
[ ]
NaV). Given a label L,

a term t , environments ρ1 and ρ2, and a starting pc label
pc, if: 1) ρ1 ≡L ρ2, 2) ρ1 � t , pc ⇓ a1, pc

′
1, 3) ρ2 �

t , pc ⇓ a2, pc
′
2, and 4) pc′1 �L or pc′2 �L then pc′1 = pc′2

and a1 ≡L a2.

Non-interference in λ
[ ]
NaV is termination insensitive, just

like λ[ ]. But unlike λ[ ], the non-interference theorem in

λ
[ ]
NaV is error sensitive. Since λ

[ ]
NaV has evaluation rules for all

potential errors, programs that have type or bracket errors (or

other, user-defined exceptions) still enjoy non-interference.

This is, as far as we are aware, the first error-sensitive non-

interference proof in the purely dynamic IFC setting where

there are no fatal errors whatsoever.

4.2 Adding Stack and Propagation Traces to λ
[ ]
NaV

To more closely model our implementation, we have ex-

tended λ
[ ]
NaV so that NaVs also carry stack and propagation

traces and we have reproved non-interference and progress in

Coq. This extension is fairly straightforward. We instrument

the semantics to keep the current stack trace alongside the

environment. For this we add a new kind of constant loc,

Exceptions and constants
ε ::= EBrk | EType | . . .
c ::= . . . | TExcp | ε

Terms
t ::= . . . | throw x | try t catch x ⇒ t ′

Results
res ::= a | T ε

Figure 7. Syntax extensions from λ[ ] to λ
[ ]
throw

drawn from a set of program locations. A new expression

traceloc t indicates that when executing t , we should push

the location loc onto the current stack trace; when t returns,

we pop loc off the stack trace. Whenever a NaV is created,

it stores a copy of the then-current stack trace. When a

traced computation returns a NaV, we add loc to the NaV’s

propagation trace. Finally, given a NaV, toSum returns a

triple holding the exception name, the stack trace, and the

propagation trace. Our formalization in Coq also extends

λ
[ ]
NaV with pairs, which make it particularly easy to encode

the stack trace as a language value—a list of locations, where

cons cells are pairs. These lists are labeled ⊥ throughout.

It might seem surprising that the stack and propagation

traces are not protected using IFC labels. In a language

without declassification each NaV is protected enough (by

its explicit label and by the pc) so that no information can

be leaked via the traces inside. We expect that if we added

declassification we would need to explicitly label each new

cons cell we add to the traces with the then-current pc
label. However, for the simple calculus we consider here

this explicit labeling is not necessary. We have proved in

Coq that this extension of λ
[ ]
NaV is non-interfering.

5 Catchable Exceptions
5.1 λ

[ ]
throw: Calculus Where Brackets Delay Exceptions

Our third calculus, λ
[ ]
throw, demonstrates an alternative design

that eschews delayed exceptions where possible, resulting

in a language that has a more traditional treatment of

exceptions and control flow. However, as noted in §1 and

§2.3, we cannot soundly allow exceptions to propagate

outside of brackets. Thus, in λ
[ ]
throw, brackets catch and delay

all exceptions. The syntax extensions compared to λ[ ] are

presented in Figure 7. We add two new term forms: throw x ,

which raises an exception x , and a standard try/catch

construct: try t catch x ⇒ t ′. In λ
[ ]
throw delayed exceptions

are only produced by brackets. To keep the calculus simple,

we have brackets return tagged values: Inl means success and

Inr means failure. Although they are represented as tagged

variants, values of the form Inr (V ε)@⊥ are a simple form

of delayed exceptions. In §5.2 we propose a more complex

calculus that lifts this simplification by adding primitive

delayed exceptions to λ
[ ]
throw.

The evaluation relation for λ
[ ]
throw differs slightly from λ[ ]
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and λ
[ ]
NaV: evaluation produces a result rather than an atom.

Results are either atoms or uncaught exceptions T ε. We

can relate λ
[ ]
NaV and λ

[ ]
throw’s approach to error handling by

thinking about the set of elements produced by evaluation:

let V , E, and L denote the sets of values, errors, and labels,

respectively. Evaluation in λ
[ ]
NaV yields an atom and a pc

label, in the set ((V + E) × L) × L. Evaluation in λ
[ ]
throw

yields a result and a pc label, in the set ((V ×L)+E)×L.

In both λ
[ ]
NaV and λ

[ ]
throw, everything is protected by the pc.

Both values and errors get their own labels in λ
[ ]
NaV; in λ

[ ]
throw,

errors do not get their own label—they are protected only by

the pc. Since in λ
[ ]
throw errors are propagated via the control

flow of the program the pc needs to raise more often than

in λ[ ] and λ
[ ]
NaV.

The semantics of brackets is the most interesting part of

λ
[ ]
throw. When the label check at the end of a bracket fails

(since the value and/or pc are labeled too high) the result of

the bracket is an appropriately labeled bracket error, i.e., a

delayed exception:

ρ � low[high[λx .x ]], pc ⇓ (V (Inr (V EBrk)@⊥))@low, pc

We have already established that it would be unsound for

brackets to throw exceptions—brackets must instead catch

and delay all exceptions. There are two cases for this: If the

exception caught by the bracket is thrown when the pc is

low enough, we can reveal the source of the failure—after

raising the exception’s label to the bracket’s label:

ρ � high[throw (ε)], pc ⇓ (V (Inr (V ε)@⊥))@high, pc

But if an exception is thrown with a too high pc, then it

would be unsound to reveal the exact failure that occurred.

In this case, we hide the precise cause of the failure and

return an EBrk. For example, if t = (λx .throw (ε)) then:

ρ � low[high[t ] (λx .x )], pc ⇓ (V (Inr (V EBrk)@⊥))@low, pc

The following example shows that it is necessary to hide the

exceptions thrown with a too high pc:

match low[if h then throw Ex else ()] with
| Inl _ => ()
| Inr Ex => lref := true
| Inr EBrk => lref := false

This kind of error-hiding also occurs in λ
[ ]
NaV, though it is

less obvious. Since λ
[ ]
NaV does not have exceptional control

flow, rule NBrkEBrk hides any bracket result that is labeled

too high, whether it is a value or a NaV.

The semantics of try/catch is also interesting. First,

since the exception handler itself can raise exceptions we

cannot soundly restore the pc at the end of a catch block. In

λ
[ ]
throw only ending brackets are guaranteed to be control flow

join points, so brackets are the only construct to restore the

pc. Second, in λ
[ ]
throw the pc does not raise before executing

the exception handler—this is an important difference com-

pared to the LIO exception handling mechanism [27] that is

further discussed in §9. Due to space constraints, we omit the

formal details of λ
[ ]
throw (see [1]). Like for the other calculi in

this paper, we have proved in Coq that λ
[ ]
throw satisfies non-

interference. Just like for λ
[ ]
NaV, non-interference for λ

[ ]
throw is

error sensitive and termination insensitive.

5.2 Adding Primitive Delayed Exceptions to λ
[ ]
throw

The brackets in λ
[ ]
throw caught exceptions and, for simplicity,

produced labeled tagged variants: (V (Inl a))@L for success

and (V (Inr (V ε)@⊥))@L for failure. With a bit more work,

we can make delayed exceptions primitive, as in λ
[ ]
NaV. We

have devised another calculus we call λ
〈〉
throw+D, in which

evaluation produces results like in λ
[ ]
throw, but atoms contain

boxes like in λ
[ ]
NaV—i.e., λ

〈〉
throw+D evaluation produces ele-

ments in the set (((V +E)×L)+E)×L. Brackets must still

catch exceptions, but the various bracket rules from λ
[ ]
throw

now return atoms instead of tagged values.

Finally, there were many choices to be made about how

to produce and propagate exceptions in λ
〈〉
throw+D. Like in

λ
[ ]
throw, we chose that type errors cause catchable exceptions

(not delayed exceptions like in λ
[ ]
NaV). Additionally, the user

can raise her own catchable exceptions using throw. Delayed

exceptions are only produced by brackets and later propagate

as follows: For parametric operations, which do not inspect

their arguments, we chose to be lax with respect to delayed

exceptions (like in λ
[ ]
NaV). So, in λ

〈〉
throw+D, calling a function

with a delayed exception argument will succeed and bind

the formal argument to the delayed exception. On the other

hand, non-parametric operations need to fail when one of

their arguments is a delayed exception. In λ
〈〉
throw+D we chose

to fail by rethrowing the delayed exception. This is different

than λ
[ ]
NaV where we were making the result be the delayed

exception. This is, however, quite similar to the exception

mechanism very recently proposed for LIO [27] (see §9

for a precise comparison). Due to space constraints, we

omit the details of λ
〈〉
throw+D (they are available in an online

appendix [1]). Like for the other calculi in this paper, we

have proved in Coq that λ
〈〉
throw+D satisfies non-interference.

6 Encodings
We have devised global translations between four of the

five calculi presented above (see Figure 8), and used

Coq extraction together with extensive random testing with

QuickCheck [9] to validate that these translations are se-

mantics preserving. Based on this evidence, we conjecture

that λ
[ ]
NaV, λ

[ ]
throw, and λ

〈〉
throw+D can all encode each other,

which is an indication that the error handling mechanism

based on NaVs and the ones based on catchable exceptions

have similar expressive power. The fact that we can faithfully

encode λ
[ ]
NaV into λ

[ ]
throw might be a bit surprising, since in

λ
[ ]
throw the pc raises more often that in λ

[ ]
NaV. However, we

use brackets to bring the pc back down to the same level

12



λ
[ ]
NaV λ

[ ]
throw λ

〈〉
throw+D

λ[ ]

Figure 8. Encodings

it would have been in λ
[ ]
NaV, and our translation can always

generate the expression needed to compute the label on each

of these brackets. Moreover, we conjecture that λ
[ ]
NaV, λ

[ ]
throw,

and λ
〈〉
throw+D can all be encoded in λ[ ], but, because of

brackets, these encodings are more complicated than the

standard “error monad” encodings. We hope to prove these

conjectures formally in the future. The fact that these encod-

ings are whole-program translations restricts their practical

applicability. They are, however, interesting for studying

the theoretical properties of the calculi and for transferring

non-interference results instead of reproving them for each

calculus, as recently done for state by Austin et al. [7].

7 Bulletproofing the Max Server
We can now return to the simple max server from §1 and

show how to protect it against poison-pill attacks using the

two mechanisms we have described—NaVs and catchable

exceptions. For illustrating NaVs we will work in an exten-

sion of λ
[ ]
NaV, letting all parametric operations be NaV-lax,

with the exception of the sequencing operator (semicolon).

The original max_server_loop executes as follows when

receiving a poison pill (1@high,2@high)@low. Branching

on the result of (1@high) <= (2@high) raises the pc to

high to account for potential implicit flows and the result of

process_max is 2@high, which the server attempts to send

over the low channel. The send fails and returns a “send

error” NaV labeled low; then the whole sequence returns

the same NaV. The tail call to max_server_loop no longer

happens, effectively killing the server.

A first step in fixing the server is to make sure the tail

call always executes, regardless of what happens with the

send. We replace the NaV-strict semicolon with a NaV-lax

let, branch on whether the result of the send is a success

or a failure, and log the error, in case of failure. No matter

what, we do the tail call.

fun rec max_server_loop_n1 () =
let res = send out (process_max (recv in))
match toSum res with
| Inl () => max_server_loop_n1()
| Inr x => send log x; max_server_loop_n1 ()

This is not sufficient, however, for protecting the server. The

pc of the server raises when comparing the secret numbers

in the poison pill, but never goes back down, preventing

the server from answering future requests. In this case the

server does not crash and keeps processing requests, but the

high pc prevents it from ever sending an answer back. The

solution to this problem is simple: wrap the recv, the call

to process_max, and the send into a bracket that restores

the pc back to its original low state.

fun rec max_server_loop_n2 () =
let res = low[send out (process_max (recv in))]
match toSum res with
| Inl () => max_server_loop_n2 ()
| Inr x => send log x; max_server_loop_n2 ()

Since the send always returns a low result (either a unit or a

NaV) the bracket can be annotated with low, which means

that matching its result below does not change the pc. This

variant of the server is immune to poison pills.

Protecting the max server with catchable exceptions

is quite similar. Wrapping the body of the server loop

in a try/catch, as done in max_server_loop’ (see

§1), is not enough to protect the server, because, as in

max_server_loop_n1 above, the pc is never restored after

the comparison, preventing the server from answering future

requests. The solution is again to use a bracket, this time

instead of a try/catch block.

fun rec max_server_loop_t1 () =
let res = low[send out (process_max (recv in))]
(match res with

| Inl () => ()
| Inr x => send log res);

max_server_loop_t1 ()

The bracket also catches all exceptions, but additionally it

restores the pc to its original low state after each request,

no matter how high it got while processing the request. If

something fails while processing the request, the error is

delayed by the bracket and labeled low, so the server can

write it to a public log. While this implementation is immune

to poison pills, the server never answers requests that cause

failures, which causes those clients to block. If we want to

make the server always respond to requests, we need to take

the send out of the bracket. Since the label on the bracket

is low the send cannot cause an IFC violation.

fun rec max_server_loop_t2 () =
let res = low[process_max (recv in)]
(match res with

| Inl m => send out m
| Inr x => send log res; send out "error");

max_server_loop_t2 ()

8 Implementation and Experience
We have implemented NaVs in a new dynamically typed

functional language called Breeze, with purely dynamic

FIFC, declassification, concurrency and channel-based com-

munication in the style of Concurrent ML, and higher-order

dynamic contracts and coercions (annotations that look like

contracts but can alter inputs). To help prevent untrusted

code from leaking secrets via covert channels, Breeze also

includes a mechanism for discretionary access control called

clearance [26]—a label that acts as an upper bound on the
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pc. Declassification (i.e., lowering labels on values or the pc)

and raising the clearance are distinct privileged operations.

The Highs & Lows of NaVs
We ported the language’s existing standard library and test

suite, consisting of 8336 lines of code originally designed

for “stop the world” errors in an earlier version of Breeze.

We also singled out applications demanding robustness,

including a heterogeneously labeled key-value store and a

web server. Our initial experience exposed both positive

and negative aspects of NaVs. The web server turned out

to be particularly easy to protect—the server simply checks

whether the serialized response it is about to send to the

browser is a NaV, and if so, sends an error page instead.

We expected to stumble over cases where it would be

difficult to predict a bracket’s label, but in practice this was

not an issue for application-level code. In general, we found

that NaVs mitigate some pitfalls of traditional exceptions,

while adding a few new ones. One shortcoming common

to both mechanisms is that error paths in the code are

difficult to exercise exhaustively, especially errors involving

IFC labels. Another is the ease with which code review

can overlook missing error-handling code. Property-based

random testing [9] with a focus on label coverage is an

interesting direction for future work.

Early debugging impediments in the implementation in-

volved imprecise or insufficiently detailed error messages.

One specific source of pain was that NaVs generated from

failed contracts did not clearly note which contract had

failed. Accurate provenance for such errors makes a world

of difference when debugging.

Mixing NaVs and Imperative Code
The Breeze standard library implements reference cells

using (labeled) channels, with the invariant that the channel

backing a ref cell contains exactly one value. The reference

assignment operation is the only place where this invariant

is temporarily broken. Prior to implementing NaVs, putting

a mislabeled value into the channel resulted in a fatal error

that terminated the whole program. With the introduction

of NaVs, this previously fatal error was silently swallowed,

leaving the ref cell in an inconsistent (empty) state. When

other code eventually tried to read from the empty channel,

it failed with a cryptic error that made no mention of the

NaV generated by the channel send.

This example illustrates two issues exposed by the NaV

scheme. First is the danger of ignoring NaVs: it is natural to

ignore the result of an operation that returns a unit value, but

doing so in the NaV world can result in dropping errors on

the floor. (One can make the same mistake with exceptions,

but an empty catch block is more obviously suspicious than

simply discarding a value, at least with Breeze’s current ML-

like syntax.) Thus, programmers must take extra care not to

accidentally ignore potential NaVs in imperative code. The

second issue is the need to protect stateful invariants. While

a NaV records the history of its origin and propagation, it

only propagates via dataflow. So if a discarded NaV results

in stateful invariants being broken, this will manifest as a

failure that does not cite the culpable NaV. In this particular

case, ignoring the channel-send NaV led to a low-level

interpreter deadlock.

Managing NaV Propagation
Reference cells provide a concise example of how imperative

code must deal with NaVs to avoid or restore broken

invariants. But the need to reason about NaVs also applies

to purely functional code, as discussed in §2.4.

Two variants of a finite map abstraction illustrated differ-

ent subtleties about writing code—even pure code—in the

presence of FIFC and NaVs. We started with a straight-

forward implementation using an (unordered) list of key-

value pairs. This implementation was written before NaVs

existed. When running on homogeneously labeled data, it

worked smoothly. However, keys with unexpectedly high

labels would trigger the generation of NaVs, which could

corrupt the spine of the list. Thus corrupted, a putative

“finite map” value would behave innocuously under some

operations; for example, insertion into such a map would

succeed. However, membership queries would sometimes

fail, depending on the insertion order of the keys. This

violation of the finite map abstraction stemmed from a

failure to account for additional invariants required in a

language with NaVs and FIFC. Simply tightening the finite

map’s interface to strictly enforce the contract {x|x==x}

constituted a partial fix. This ensures that keys must not

be NaVs, and must be comparable using ==. However, a

complete fix must also add a label bound to that contract,

which in turn requires modifying the interface to the finite

map abstraction itself. We do not yet know how common

such invasive changes are when bulletproofing existing code.

In this and other examples, we have found it is usually

better to fail early, by marking function arguments as NaV-

strict, than to run a function when the assumptions it was

written under may not hold. Beyond function arguments, it

is also useful to reason about constraining the set of possible

function return values. We might imagine a contract which

says “this value cannot be a NaV,” but what happens when

that contract fails? All errors are signaled via NaVs, but

producing another NaV is obviously unhelpful.

We dealt with this issue in the implementation of a map

with heterogeneously labeled keys. Clients of this library

look up values in the map by providing a comparison

predicate on keys, which can be imbued with authority to

inspect data labeled as off-limits to the map library itself.

A correct comparison function will always return booleans,

never NaVs. To be robust, the map library cannot simply

trust the client—it must enforce this invariant.

Our solution is to wrap the client’s function with a
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coercion—effectively a contract that might alter its input—

that replaces NaVs with a default value. The coercion states

a NaV-management policy in a centralized and declarative

manner à la contracts. When client code passes a comparison

function to the heterogeneously labeled map, the library

specifies the function’s intended behavior using the con-

crete syntax Any=>Any=>(Bool ‘ReplacingNAVsWith‘

false). If the comparison function is not permitted to read

a map entry’s key, the map library will treat the client’s

resulting information-flow error as a response of “this isn’t

the right key”—precisely the behavior we want.

The Continuum From Lax To Strict, In Practice
As presented, λ

[ ]
NaV is NaV-lax—that is, the only control

flow arising from NaVs is due to pattern matches explicitly

written by the programmer. However, as discussed above,

unrestricted propagation of NaVs can lead to subtle bugs,

and manually writing out every explicit check would be cum-

bersome. We extended our contract system with coercions

that make functions NaV-strict: programmers can choose

where NaV strictness happens (with its associated pc raises),

rather than setting a language-wide policy.

We have found in practice that two different informal rea-

soning principles apply when making NaV-strictness/laxness

explicit. In a generally NaV-lax landscape, we add strictness

in order to preclude NaVs from appearing—typically to

enforce application-specific invariants. In contrast, when

strictness is the default, we add laxness annotations in places

where we do not know or control what the label of a value

will be. Whenever a function deals with a polymorphic

value, the arrow for that argument should be lax. Usually the

programmer’s aim is not to allow NaVs per se, but rather to

avoid the pc raises which accompany strictness checks.

NaNs and Null Pointer Exceptions
The idea of NaVs obviously invites comparison to null

pointers and IEEE 754 floating-point NaN values [16].

Names aside, NaVs are actually only superficially similar

to NaNs. First, NaNs are restricted to a single type—

double-precision floating point numbers—whereas NaVs are

injected into every value type of the language. As a result,

NaVs propagate freely and are not subject to premature

coercion. For instance, when we compare a NaV to an

integer, the result is a NaV, whereas with IEEE, the result

is constrained to be a (poorly chosen) boolean. The other

crucial difference is that a NaN carries little provenance
about its origins or propagation history.

Null pointer exceptions carry stack traces, but of a dif-

ferent nature than those carried by NaVs. The exception’s

stack trace records the point at which the null pointer was

erroneously dereferenced, which is often far from where the

culpable null pointer was generated. In contrast, NaVs carry

a stack trace pinpointing the location in the code where the

NaV was generated and a trace of its subsequent journey;

we have found these debugging aids very useful in practice.

NaVs do have some downsides when compared to tra-

ditional exceptions. One is the added worry of properly

managing strictness, both for data structures and function

arguments. Another is the NaV hiding phenomenon pre-

sented in §4.1. Finally, while NaVs avoid issues of premature

coercion, they also require more pervasive reasoning about

where they might be generated, precisely because NaVs are

not limited to any particular type of value.

9 Related Work
The work that is most closely related to ours is LIO [26],

a recent dynamic IFC library for Haskell. LIO is the first

FIFC language with public labels and a construct called

toLabeled that is very similar to brackets. Stefan et al. [27]

have very recently extended the core LIO calculus with

catchable exceptions that get delayed (and labeled) by

brackets and reactivated when unlabeled. This independently

discovered exception mechanism is quite similar to our

λ
〈〉
throw+D calculus (see §5.2). We additionally provide a

systematic exploration of the entire solution space and

thoroughly investigate a more radical design based on NaVs.

The subtle but important differences between LIO exceptions

and λ
〈〉
throw+D shed further light on the design space. While

LIO brackets also delay exceptions, they do not hide the

error message of exceptions thrown in too high contexts.

Instead the throw-time pc is remembered inside delayed

exceptions. The throw-time pc is not used when exceptions

are reactivated, but when they are caught by a try/catch

block. In the exception handler, the pc is raised by the

throw time pc of the caught exception. For this to be sound,

delayed exceptions cannot be inspected— they must be

reactivated and then caught. That is, the throw-time pc inside

a delayed exception is not a public label in LIO.

LIO also features clearance—a label that acts as an upper

bound on the pc. In order to ensure that the clearance bounds

the pc, catch blocks do not catch exceptions that would

bring the pc higher than the clearance. Strictly speaking,

only maximally privileged code (clearance top) can catch

all exceptions in LIO. In order to prevent poison pills in

code that cannot catch all exceptions, a low clearance can

be set for a try block (e.g., the body of the server loop) in

order to control the pc of all exceptions thrown in that block.

This ensures that all exceptions that might occur can also be

caught with the privilege of the code—including exceptions

caused by (inadvertent) attempts to exceed the clearance. By

contrast, the exception handling mechanism we propose in

§5 does not rely on clearance in order to control how high

the pc goes on a catch block—in λ
[ ]
throw and λ

〈〉
throw+D the

pc does not raise at all in a catch block. The downside

is that, in order to preserve soundness, brackets sometimes

hide error messages, replacing them with EBrk. However, in

Breeze running brackets with a low clearance prevents the
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pc from ever getting high enough to require error message

hiding. While our choices subtly differ from Stefan et

al. [27], clearance helps both approaches.

One can imagine further bridging the gap between

λ
〈〉
throw+D and LIO exceptions by making failed brackets

in λ
〈〉
throw+D remember the cause of the error together

with the pc at the time the error occurred in an opaque

package. For instance, a low bracket that fails because

of an EType exception thrown in a high context could

return (EBrk ETypehigh)@low. To preserve soundness, the

ETypehigh part can only be inspected with a special construct

that raises the pc to high before returning EType—otherwise,

the label on the inner exception would leak.

Other than LIO, the only FIFC system with an error

handling mechanism was recently proposed by Hedin and

Sabelfeld [15] in the context of a JavaScript core language

with objects, higher-order functions, catchable exceptions,

and dynamic code evaluation. They use special upgrade
instructions [5] to gain precision (flow sensitivity), and

introduce a similar upgrade mechanism for their new ex-

ception security label. This leads to an exception handling

mechanism that is very different from what we propose

in §5. In their setting labels are not publicly observable,

and exceptions are never delayed, but IFC violations are

fatal errors. Moreover, in order to preserve soundness,

their system has to treat exceptions raised in high security

contexts as fatal IFC violations, as well. Such limitations

seem unavoidable when retrofitting FIFC to an existing

programming language with exceptions (barring invasive

changes to the semantics). We avoid such limitations by

exploring new language designs that safely combine reliable

error handling and FIFC.

Like our annotations on brackets, the upgrade instructions

of Hedin and Sabelfeld do not need to be correct in order

to achieve non-interference. This means that unsound tech-

niques like random testing and symbolic execution can be

used to infer such upgrade instructions, as recently proposed

by Birgisson et al. [8]. Bracket annotations and upgrade

instructions are in this respect very different from the oracles
used by the early FIFC systems [14], [22], [23], since the

soundness of these early systems crucially depended on the

soundness of a static analysis tool providing information

about the branches not taken.

The proof technique used to formally show non-

interference for the calculi in this paper was devised by

Austin and Flanagan [4]. They were amongst the first [4],

[25] to discover that non-interference can be enforced by a

conservative purely-dynamic mechanism, without resorting

to oracles. Russo and Sabelfeld [23] have studied the trade-

offs between static and dynamic IFC, especially in terms

of flow-sensitivity: allowing the label of mutable references

to change on updates opens up a label channel. As usual,

preventing leaks can be done by imposing additional restric-

tions, which either prevent secret information from leaking

into this label channel (e.g., no-sensitive-upgrade [4]) or

from leaking out of this label channel (e.g., permissive

upgrades [5]). Since Breeze has no legacy constraints, we

could easily avoid the flow-sensitivity problem for references

completely: we require the label on all references (and

channels) to be fixed at creation time.

Error handling is problematic beyond the FIFC setting.

In the static IFC setting, exceptions are a significant source

of imprecision [3], [20]. In order to keep their typing rules

for arrays precise, Deng and Smith [11] replace throwable

exceptions with default values (out-of-bounds array reads

yield 0) and silent failures (out-of-bounds array writes are

simply skipped). King et al. [18] report that exceptions are

responsible for the overwhelming majority of false alarms in

JLift. It will be interesting to see if NaVs are an acceptable

error handling mechanism for new languages with static IFC.

10 Conclusion and Future Work
In this paper we show that FIFC does not have to punt on

availability. We propose the first error handling mechanisms

that are sound in this setting, while allowing all errors to be

recoverable, even IFC violations. Although quite different at

the surface, the main ingredients of the two mechanisms we

propose are the same: public labels and delayed exceptions.

We show formally that these two ingredients are sufficient

for making all errors recoverable—and we believe that they

are also necessary for achieving this in a sound and usable

system. Our practical experience with NaVs suggests that

the issues introduced by delayed exceptions can be tricky,

but are not insurmountable. We have proposed mitigations

for most of the difficulties we have encountered with NaVs,

and they seem to help in practice. Fundamentally, identifying

useful invariants and writing good error recovery code is

hard even without the additional constraints imposed by

sound FIFC—we do not claim that adding FIFC into the mix

will magically make error handling easy. What we propose

here are mechanisms that make recovering from all errors

possible, even in a FIFC setting.

Future work Our current practical experience with NaVs

is limited to running Breeze code in an interpreter. We are,

however, working on two compilers for Breeze, one targeting

a conventional architecture, and another targeting a novel

architecture with hardware support for FIFC and NaVs [10],

[12]. In both cases NaVs promise to simplify compilation

compared to catchable exceptions, especially if the compiler

has the freedom to produce imprecise error messages, stack

and propagation traces [17].
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J. M. Smith, G. Malecha, G. Morrisett, T. F. Knight, Jr.,
A. Sutherland, T. Hawkins, A. Zyxnfryx, D. Wittenberg, P. Trei,
S. Ray, G. Sullivan, and A. DeHon. Hardware support for
safety interlocks and introspection. In SASO Workshop on
Adaptive Host and Network Security, September 2012.

[13] P. Efstathopoulos, M. Krohn, S. VanDeBogart, C. Frey,
D. Ziegler, E. Kohler, D. Mazières, F. Kaashoek, and R. Morris.
Labels and event processes in the Asbestos operating system.
In 20th Symposium on Operating Systems Principles, SOSP.
2005.

[14] G. L. Guernic. Automaton-based confidentiality monitoring
of concurrent programs. In 20th Computer Security Founda-
tions Symposium, CSF. 2007.

[15] D. Hedin and A. Sabelfeld. Information-flow security for a
core of JavaScript. In 25th IEEE Computer Security Founda-
tions Symposium, CSF. 2012.

[16] IEEE. IEEE Standard for Binary Floating-Point Arithmetic,
July 1985. ANSI/IEEE Std 754-1985.

[17] S. L. P. Jones, A. Reid, F. Henderson, C. A. R. Hoare, and
S. Marlow. A semantics for imprecise exceptions. In ACM
SIGPLAN Conference on Programming Language Design and
Implementation, PLDI. 1999.

[18] D. King, B. Hicks, M. Hicks, and T. Jaeger. Implicit flows:
Can’t live with ’em, can’t live without ’em. In 4th International
Conference on Information Systems Security, ICISS, 2008.

[19] M. N. Krohn, A. Yip, M. Z. Brodsky, N. Cliffer, M. F.
Kaashoek, E. Kohler, and R. Morris. Information flow control
for standard OS abstractions. In 21st Symposium on Operating
Systems Principles, SOSP. October 2007.

[20] G. Malecha and S. Chong. A more precise security type
system for dynamic security tests. In 5th Workshop on
Programming Languages and Analysis for Security, PLAS.
2010.

[21] T. Murray, D. Matichuk, M. Brassil, P. Gammie, T. Bourke,
S. Seefried, C. Lewis, X. Gao, and G. Klein. sel4: from general
purpose to a proof of information flow enforcement. In 34th
IEEE Symposium on Security and Privacy. 2013. To appear.

[22] M. Pistoia, A. Banerjee, and D. A. Naumann. Beyond
stack inspection: A unified access-control and information-flow
security model. In Proceedings of the Symposium on Security
and Privacy, SP. 2007.

[23] A. Russo and A. Sabelfeld. Dynamic vs. static flow-sensitive
security analysis. In Proceedings of the 23rd Computer Security
Foundations Symposium, CSF. 2010.

[24] A. Sabelfeld and A. Myers. Language-based information-flow
security. IEEE Journal on Selected Areas in Communications,
21(1):5–19, January 2003.

[25] A. Sabelfeld and A. Russo. From dynamic to static and back:
Riding the roller coaster of information-flow control research.
In Ershov Memorial Conference. 2009.

[26] D. Stefan, A. Russo, J. C. Mitchell, and D. Mazières. Flexible
dynamic information flow control in Haskell. In Proceedings
of the 4th Symposium on Haskell. 2011.

[27] D. Stefan, A. Russo, J. C. Mitchell, and D. Mazières. Flexible
Dynamic Information Flow Control in the Presence of Excep-
tions. ArXiv e-print 1207.1457, July 2012.

[28] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières.
Making information flow explicit in HiStar. Communications
of the ACM, 54(11):93–101, 2011.

[29] L. Zheng and A. C. Myers. Dynamic security labels and static
information flow control. International Journal of Information
Security, 6(2-3):67–84, 2007.

17


