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László Szekeres†, Mathias Payer‡, Tao Wei∗‡, Dawn Song‡
†Stony Brook University

‡University of California, Berkeley
∗Peking University

Abstract—Memory corruption bugs in software written in
low-level languages like C or C++ are one of the oldest problems
in computer security. The lack of safety in these languages
allows attackers to alter the program’s behavior or take full
control over it by hijacking its control flow. This problem has
existed for more than 30 years and a vast number of potential
solutions have been proposed, yet memory corruption attacks
continue to pose a serious threat. Real world exploits show that
all currently deployed protections can be defeated.

This paper sheds light on the primary reasons for this
by describing attacks that succeed on today’s systems. We
systematize the current knowledge about various protection
techniques by setting up a general model for memory corrup-
tion attacks. Using this model we show what policies can stop
which attacks. The model identifies weaknesses of currently
deployed techniques, as well as other proposed protections
enforcing stricter policies.

We analyze the reasons why protection mechanisms imple-
menting stricter polices are not deployed. To achieve wide
adoption, protection mechanisms must support a multitude of
features and must satisfy a host of requirements. Especially
important is performance, as experience shows that only
solutions whose overhead is in reasonable bounds get deployed.

A comparison of different enforceable policies helps de-
signers of new protection mechanisms in finding the balance
between effectiveness (security) and efficiency. We identify some
open research problems, and provide suggestions on improving
the adoption of newer techniques.

I. INTRODUCTION

Memory corruption bugs are one of the oldest problems

in computer security. Applications written in low-level lan-

guages like C or C++ are prone to these kinds of bugs. The

lack of memory safety (or type safety) in such languages

enables attackers to exploit memory bugs by maliciously

altering the program’s behavior or even taking full control

over the control-flow. The most obvious solution would be to

avoid these languages and to rewrite vulnerable applications

in type-safe languages. Unfortunately, this is unrealistic not

only due to the billions of lines of existing C/C++ code, but

also due to the low-level features needed for performance

critical programs (e.g. operating systems).

The war in memory is fought on one side by offensive

research that develops new attacks and malicious attack-

ers, and on the other side by defensive researchers who

develop new protections and application programmers who
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try to write safe programs. The memory war effectively

is an arms race between offense and defense. Accord-

ing to the MITRE ranking [1], memory corruption bugs

are considered one of the top three most dangerous soft-

ware errors. Google Chrome, one of the most secure web

browsers written in C++, was exploited four times during

the Pwn2Own/Pwnium hacking contests in 2012.

In the last 30 years a set of defenses has been devel-

oped against memory corruption attacks. Some of them are

deployed in commodity systems and compilers, protecting

applications from different forms of attacks. Stack cook-

ies [2], exception handler validation [3], Data Execution

Prevention [4] and Address Space Layout Randomization [5]

make the exploitation of memory corruption bugs much

harder, but several attack vectors are still effective under all

these currently deployed basic protection settings. Return-

Oriented Programming (ROP) [6], [7], [8], [9], [10], [11],

information leaks [12], [13] and the prevalent use of user

scripting and just-in-time compilation [14] allow attackers

to carry out practically any attack despite all protections.

A multitude of defense mechanisms have been proposed

to overcome one or more of the possible attack vectors. Yet

most of them are not used in practice, due to one or more

of the following factors: the performance overhead of the

approach outweighs the potential protection, the approach

is not compatible with all currently used features (e.g., in

legacy programs), the approach is not robust and the offered

protection is not complete, or the approach depends on

changes in the compiler toolchain or in the source-code

while the toolchain is not publicly available.

With all the diverse attacks and proposed defenses it

is hard to see how effective and how efficient different

solutions are and how they compare to each other and

what the primary challenges are. The motivation for this

paper is to systematize and evaluate previously proposed

approaches. The systematization is done by setting up a

general model for memory corruption vulnerabilities and

exploitation techniques. The defense techniques are clas-

sified by the exploits they mitigate and by the particular

phase of exploit they try to inhibit. The evaluation is based

on robustness, performance and compatibility. Using this

evaluation, we also discuss common criteria that need to

be fulfilled for successful deployment of a new software

defense.
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Some related work already covers different memory cor-

ruption attacks [15], provides historical overview [16] or lists

different protection mechanisms [17]. This systematization

of knowledge paper extends the related survey papers by

developing a new general model for memory corruption

attacks and evaluating and comparing proposed defense

mechanisms using a new set of criteria that incorporates real-

world adoption as well. The paper does not aim to cover

or refer every proposed solution, but rather identifies and

analyzes the main approaches in a systematical way, sorts

out the most promising proposals and points out fundamental

problems and unsolved challenges.

With this systematization of knowledge paper we make

the following contributions:

• develop a general model of memory corruption at-

tacks and identify different enforceable security policies

based on the model;

• clarify what attack vectors are left unprotected by

currently used and previously proposed protections by

matching their enforced polices with separate phases of

different exploits;

• evaluate and compare proposed solutions for perfor-

mance, compatibility, and robustness;

• discuss why many proposed solutions are not adopted

in practice and what the necessary criteria for a new

solution are.

The paper is organized as follows. Section II sets up the

main model of attacks and classifies protections based on

the policies they enforce. Section III discusses currently

deployed protections and their main weaknesses. Our evalu-

ation criteria are set up in Section IV, and are used through

the analysis of defense approaches covered by the following

four sections. Section IX summarizes with a comparative

analysis and Section X concludes the paper.

II. ATTACKS

To solve the problem of memory error based attacks, we

first need to understand the process of carrying out such

an exploit. In this section we set up a step-by-step memory

exploitation model. We will base our discussion of protection

techniques and the policies they enforce on this model.

Figure 1 shows the different steps of exploiting a memory

error. Each white rectangular node represents a building

block towards successful exploitation and the oval nodes

on the bottom represent a successful attack. Each rhombus

represents a decision between alternative paths towards the

goal. While control-flow hijacking is usually the primary

goal of attacks, memory corruption can be exploited to carry

out other types of attacks as well.

A. Memory corruption

Since the root cause of all vulnerabilities discussed in this

systematization of knowledge paper is memory corruption,

every exploit starts by triggering a memory error. The first

two steps of an exploit in Figure 1 cover the initial memory

error. The first step makes a pointer invalid, and the second

one dereferences the pointer, thereby triggering the error.

A pointer can become invalid by going out of the bounds

of its pointed object or when the object gets deallocated.

A pointer pointing to a deleted object is called a dangling
pointer. Dereferencing an out-of-bounds pointer causes a so

called spatial error, while dereferencing a dangling pointer

causes a temporal error.

As Step 1, an attacker may force a pointer out of bounds

by exploiting various programming bugs. For instance, by

triggering an allocation failure which is unchecked, the

pointer can become a null pointer (in kernel-space null-

pointer dereferences are exploitable [18]). By excessively

incrementing or decrementing an array pointer in a loop

without proper bound checking, a buffer overflow/underflow
will happen. By causing indexing bugs where an attacker has

control over the index into an array, but the bounds check is

missing or incomplete, the pointer might be pointed to any

address. Indexing bugs are often caused by integer related

errors like an integer overflow, truncation or signedness

bug, or incorrect pointer casting. Lastly, pointers can be

corrupted using the memory errors under discussion. This

is represented by the backward loop in Figure 1.

As an alternative, the attacker may make a pointer “dan-

gling” by, for instance, exploiting an incorrect exception

handler, which deallocates an object, but does not reinitialize

the pointers to it. Temporal memory errors are called use-
after-free vulnerabilities because the dangling pointer is

dereferenced (used) after the memory area it points to has

been returned (freed) to the memory management system.

Most of the attacks target heap allocated objects, but pointers

to a local variable can “escape” as well from the local scope

when assigned to a global pointer. Such escaped pointers

become dangling when the function returns and the local

variable on the stack is deleted.

Next, we show how either an out-of-bounds or a dangling

pointer can be exploited to execute any third step in our

exploitation model when the invalid pointer is read or

written in Step 2. The third step is either the corruption

or the leakage of some internal data.

When a value is read from memory into a register by

dereferencing a pointer controlled by the attacker, the value

can be corrupted. Consider the following jump table where

the function pointer defining the next function call is read

from an array without bounds checking.

func_ptr jump_table[3] = {fn_0, fn_1, fn_2};
jump_table[user_input]();

The attacker can make the pointer point to a location under

his or her control and divert control-flow. Any other variable

read indirectly can be vulnerable.

Besides data corruption, reading memory through an

attacker specified pointer leaks information if that data is
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Figure 1. Attack model demonstrating four exploit types and policies mitigating the attacks in different stages

included in the output. The classic example of this attack is

the printf format string bug, where the format string is

controlled by the attacker. By specifying the format string

the attacker creates invalid pointers and reads (and writes)

arbitrary memory locations.

printf(user_input); // input "%3$x" prints the
// 3rd integer on the stack

If an attacker controlled pointer is used to write the

memory, then any variable, including other pointers or even

code, can be overwritten. Buffer overflows and indexing

bugs can be exploited to overwrite sensitive data such as

a return address or virtual table (vtable) pointer. Corrupting

the vtable pointer is an example of the backward loop in

Figure 1. Suppose a buffer overflow makes an array pointer

out of bounds in the first round that is exploited (in Step 3)

to corrupt a nearby vtable pointer in memory in the second

round. When the corrupted vtable pointer is dereferenced (in

Step 2), a bogus virtual function pointer will be used. It is

important to see that with one memory error, more and more

memory errors can be raised by corrupting other pointers.

Calling free() with an attacker controlled pointer can also

be exploited to carry out arbitrary memory writes [19]. Write

dereferences can be exploited to leak information as well.

printf("%s\n", err_msg);

For instance, the attacker is able to leak arbitrary mem-

ory contents in the above line of code by corrupting the

err_msg pointer.
Temporal errors, when a dangling pointer is dereferenced

in Step 2, can be exploited similarly to spatial errors. A

constraint for exploitable temporal errors is that the memory

area of the deallocated object (the old object) is reused by

another object (new object). The type mismatch between

the old and new object can allow the attacker to access

unintended memory.
Let us consider first reading through a dangling pointer

with the old object’s type but pointing to the new object,

which is controlled by the attacker. When a virtual function

of the old object is called and the virtual function pointer is

looked up, the contents of the new object will be interpreted

as the vtable pointer of the old object. This allows the

corruption of the vtable pointer, comparable to exploiting

a spatial write error, but in this case the dangling pointer

is only dereferenced for a read. An additional aspect of

this attack is that the new object may contain sensitive

information that can be leaked when read through the

dangling pointer of the old object’s type.
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Writing through a dangling pointer is similarly exploitable

as an out of bounds pointer by corrupting other pointers

or data inside the new object. When the dangling pointer

is an escaped pointer to a local variable and points to

the stack, it may be exploited to overwrite sensitive data,

such as a return address. Double-free is a special case of

the use-after-free vulnerability where the dangling pointer

is used to call free() again. In this case, the attacker

controlled contents of the new object will be interpreted

wrongly as heap metadata, which is also exploitable for

arbitrary memory writes [19].

Memory errors in general allow the attacker to read and

modify the program’s internal state in unintended ways. We

showed that any combination of the first two steps in our

memory exploitation model can be used both to corrupt

internal data and to leak sensitive information. Furthermore,

more memory errors can be triggered by corrupting other

pointers. Programming bugs which make these errors possi-

ble, such as buffer overflows and double-frees, are common

in C/C++. When developing in such low-level languages,

both bounds checking and memory management are fully

the programmers responsibility, which is very error prone.

The above described errors are a violation of the Memory
Safety policy. C and C++ are inherently memory unsafe.

According to the C/C++ standards, writing an array be-

yond its bounds, dereferencing a null-pointer, or reading

an uninitialized variable result in undefined behavior. Since

finding and fixing all the programming bugs is infeasible,

we need automatic solutions to enforce Memory Safety in

existing programs or stop attacks in their later phases. The

policy mitigating a given set of attack steps is represented

in the figure by a colored area surrounding the white boxes.

The section number which discusses approaches enforcing

a given policy is also indicated in the figure, above the

policy names. We discuss approaches that try to stop any

exploit in the first (two) steps by enforcing Memory Safety in

Section VI. In the following subsections we discuss the steps

of different exploit paths and identify the policies mitigating

the given step. As shown in the figure, some policies include

other, weaker policies.

B. Code corruption attack

The most obvious way to modify the execution of a

program is to use one of the abovementioned bugs to

overwrite the program code in memory. A Code Integrity
policy enforces that program code cannot be written. Code

Integrity can be achieved if all memory pages containing

code are set read-only, which is supported by all modern pro-

cessors. Unfortunately, Code Integrity does not support self-

modifying code or Just-In-Time (JIT) compilation. Today,

every major browser includes a JIT compiler for JavaScript

or Flash. For these use-cases, Code Integrity cannot be fully

enforced because there is a time window during which the

generated code is on a writable page.

C. Control-flow hijack attack

Most often, memory corruption exploits try to take control

over the program by diverting its control-flow. If Code

Integrity is enforced then this alternative option tries to use

a memory error to corrupt a code pointer in Step 3. Code
Pointer Integrity policies aim to prevent the corruption of

code pointers. We discuss the potential code pointer targets

and limitations of this policy in Section VIII-A.

Suppose the attacker can access and modify a return

address due to a buffer overflow. For a successful exploit,

the attacker needs to know the correct target value (i.e., the

address of the payload) as well. We represent this as a

separate fourth step in Figure 1. If the target of the control-

flow hijack (the code address to jump to) is not fixed, the

attacker cannot specify the target and the attack fails at this

step. This property can be achieved by introducing entropy

to memory addresses using Address Space Randomization.

We discuss techniques randomizing the address space in

Section V-A.

Suppose a code pointer (e.g., a function pointer) has

been successfully corrupted in the first four steps. The

fifth step is that the execution needs to load the corrupted

pointer into the instruction pointer. The instruction pointer

can only be updated indirectly by executing an indirect

control-flow transfer instruction, e.g., an indirect function

call, indirect jump or function return instruction. Diverting

the execution from the control-flow defined by the source

code is a violation of the Control-flow Integrity (CFI) policy.

In Section VIII-B, we cover protections that enforce different

CFI policies by detecting corruption at indirect control

transfers.

The final step of a control-flow hijack exploit is the

execution of attacker specified malicious code. Classic at-

tacks injected so-called shellcode into memory, and diverted

execution to this piece of code. This kind of exploitation

is prevented by the Non-executable Data policy which can

be enforced using the executable bit for memory pages

to make data memory pages, like the stack or the heap,

non-executable. A combination of Non-executable Data and

Code Integrity results in the W⊕X (Write XOR Execute) [4]

policy, stating that a page can be either writable or exe-

cutable, but not both. Practically all modern CPU support

setting non-executable page permissions, so combined with

non-writable code, enforcing W⊕X is cheap and practical.

However in the case of JIT compilation or self-modifying

code, W⊕X cannot be fully enforced. For the sake of

completeness, we note that another randomization approach,

Instruction Set Randomization (ISR) can also mitigate the

execution of injected code or the corruption of existing code

by encrypting it. But due to the support for page permissions,

the much slower ISR has become less relevant and because

of the limited space we will not cover it in more detail in

this paper.

5151



To bypass the non-executable data policy, attackers can

reuse existing code in memory. The reused code can be

an existing function (“return-to-libc” attack) or small in-

struction sequences (gadgets) found anywhere in the code

that can be chained together to carry out useful (malicious)

operations. This approach is called Return Oriented Pro-

gramming (ROP), because the attack chains the execution

of functions or gadgets using the ending return instructions.

Jump Oriented Programming (JOP) is the generalization

of this attack which leverages indirect jumps as well for

chaining. There is no policy which can stop the attack at this

point, since the execution of valid and already existing code

cannot be prevented. Recent research focuses on mitigating

techniques against code reuse only. Researchers propose

techniques to eliminate useful code chunks (for ROP) from

the code by the compiler [20], or by binary rewriting

[21]. While these solutions make ROP harder, they do not

eliminate all useful gadgets, and they do not prevent re-using

complete functions. For these reasons we will not cover these

techniques in more detail.

We classify a control-flow hijacking attack successful as

soon as attacker-specified code starts to execute. To carry

out a meaningful attack, the attacker usually needs to make

system calls, and may need high level permissions (e.g., file

access) as well. We will not cover higher-level policies

which only confine the attacker’s access, including per-

missions, mandatory access control or sandboxing policies

enforced by SFI [22], XFI [23] or Native Client [24]. These

policies can limit the damage that an untrusted program (or

plugin) or an attacker can cause after compromising a trusted

program. Our focus is preventing the compromise of trusted

programs, typically with extensive access (e.g., an ssh/web

server).

D. Data-only attack

Hijacking control-flow is not the only possibility for

a successful attack. In general, the attacker’s goal is to

maliciously modify the program logic to gain more control,

to gain privileges, or to leak information. This goal can be

achieved without modifying data that is expliclity related to

control-flow. Consider, for instance, the modification of the

isAdmin variable via a buffer overflow after logging into

the system with no administrator privileges.

bool isAdmin = false;
...
if (isAdmin) // do privileged operations

These program specific attacks are also called “non-control-

data attacks” [25] since neither code nor code pointers

(control data) are corrupted. The target of the corruption can

be any security critical data in memory, e.g., configuration

data, the representation of the user identity, or keys.

The steps of this attack are similar to the previous one

except for the target of corruption. Here, the goal is to

corrupt some security critical variable in Step 3. Since

security critical is a semantic definition, the integrity of all

variables has to be protected in order to stop the attack in

this step. We call this policy Data Integrity, which naturally

includes Code Integrity and Code Pointer Integrity. Data

Integrity approaches try to prevent the corruption of data

by enforcing only some approximation of Memory Safety.

We cover techniques enforcing such policies under VII-A.

As in the case of code pointers, the attacker needs to know

what should replace the corrupted data. Acquisition of this

knowledge can be prevented by introducing entropy into the

representation of all data using Data Space Randomization.

Data Space Randomization techniques extend and general-

ize Address Space Randomization, and we cover them in

Section V-B.

Similar to code pointer corruption, data-only attacks will

succeed as soon as the corrupted variable is used. Using the

running example, the if (isAdmin) statement has to be

successfully executed without detecting the corruption. As

the generalization of Control-flow Integrity, the use of any
corrupted data is the violation of Data-flow Integrity. We

cover enforcing this policy under Section VII-B.

E. Information leak

We showed that any type of memory error might be

exploited to leak memory contents, which would otherwise

be excluded from the output. This is typically used to cir-

cumvent probabilistic defenses based on randomization and

secrets. Real-world exploits bypass ASLR using information

leaks [13], [26]. The only policy beyond Memory Safety

that might mitigate information leakage is full Data Space

Randomization. We will discuss in Section V how effective

Data Space Randomization is and how information leakage

can be used to bypass other probabilistic techniques which

build on secrets.

III. CURRENTLY USED PROTECTIONS AND REAL WORLD

EXPLOITS

The most widely deployed protection mechanisms are

stack smashing protection, DEP/W⊕X and ASLR. The

Windows platform for instance, also offers some special

mechanisms e.g., for protecting heap metadata and exception

handlers (SafeSEH and SEHOP).

Stack smashing protection [2] detects buffer overflows of

local stack-based buffers, which overwrite the saved return

address. By placing a random value (called cookie or canary)

between the return address and the local buffers at function

entries, the integrity of the cookie can be checked before the

return of the function and thus the overflow can be detected.

SafeSEH and SEHOP also validate exception handler point-

ers on the stack before they are used, which makes them,

together with stack cookies, a type of Control-flow Integrity

solution. These techniques provide the weakest protection:

they place checks only before a small subset of indirect
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jumps, focusing checking the integrity of only some specific

code pointers, namely saved return addresses and exception

handler pointers on the stack. Furthermore, the checks can be

bypassed. Cookies, for instance, can detect a buffer overflow

attack but not a direct overwrite (e.g., exploiting an indexing

error).

DEP/W⊕X can protect against code injection attacks, but

does not protect against code reuse attacks like ROP. ROP

exploits can be generated automatically [27], and large code

bases like the C library usually provide enough gadgets

for Turing-completeness [10], [11]. ASLR provides the

most comprehensive protection as the most widely deployed

Address Space Randomization technique. It can randomize

the locations of various memory segments, including data

and code, so even if the attacker wants to reuse a gadget its

location will be random. While some ASLR implementa-

tions have specific weaknesses (e.g., code regions are left in

predictable locations, de-randomization attacks are possible

due to the low entropy), the fundamental attack against it is

information leakage [12].

As described in the attack model of the previous section,

any memory corruption error can be converted into an

information leak vulnerability, which can be used to obtain

current code addresses. The leaked addresses are needed to

construct the final exploit payload. When attacking remote

targets (i.e., servers), getting back this information used to

be very challenging. Today, however, it is not a problem for

a number of client targets. Web browsers, PDF viewers and

office applications run user controlled scripts (JavaScript,

ActionScript, VBScript), which can be used to dynamically

construct exploit payloads at run-time on the target machine.

Table I lists some recent exploits published by VUPEN [28],

which use information leaks and ROP to bypass ASLR and

W⊕X. In all examples, the control flow is hijacked at an

indirect call instruction (after corrupting a function pointer or

the vtable), so stack cookies are not an issue. In all cases, the

address leakage is done by exploiting an arbitrary memory

write in order to corrupt another pointer which is read later

(the fourth column gives more hints). One common way of

leaking out memory contents is by overwriting the length

field of a (e.g., JavaScript) string object before reading it

out (in the user script). As shown in the last column, in

case of browser targets, user scripting is used to leak current

addresses and to construct the exploit, while in case of

ProFTPD, the leaked information is sent back on the network

by corrupting a pointer to a status message.

IV. APPROACHES AND EVALUATION CRITERIA

The previously identified protection techniques can be

divided into two main categories: probabilistic and deter-

ministic protection. Probabilistic solutions, e.g., Instruction

Set Randomization, Address Space Randomization, or Data

Space Randomization, build on randomization or encryption.

All other approaches enforce a deterministic safety policy

by implementing a low-level reference monitor [29]. A

reference monitor observes the program execution and halts

it whenever it is about to violate the given security policy.

Traditional reference monitors enforce higher level policies,

such as file system permissions, and are implemented in the

kernel (e.g., system calls).

Reference monitors enforcing lower level policies, e.g.,

Memory Safety or Control-flow Integrity, can be imple-

mented efficiently in two ways: in hardware or by embed-

ding the reference monitor into the code. For instance, the

W⊕X policy (Code Integrity and Non-executable Data) is

now enforced by the hardware, as modern processors support

both non-writable and non-executable page permissions.

Hardware support for a security policy results in negligible

overhead. The alternative to hardware support is adding the

reference monitor dynamically or statically to the code.

Since adding new features to the hardware is unrealistic,

from this point we focus only on solutions which transform

existing programs to enforce various policies. Dynamic
(binary) instrumentation (e.g., Valgrind [30], PIN [31],

DynamoRIO [32], or libdetox [33]) can be used to dy-

namically insert safety checks into unsafe binaries at run-

time. Dynamic binary instrumentation supports arbitrary

transformations but introduces some additional slowdown

due to the dynamic translation process. Simple reference

monitors, however, can be implemented with low overhead

(e.g., a shadow stack costs less than 6.5% performance

for SPEC CPU2006 in [33]). More sophisticated reference

monitors like taint checking [34] or ROP detectors [35]

result in overheads that exceed 100% and are unlikely to be

deployed in practice. Static instrumentation inlines reference

monitors statically. This can be done by the compiler or

by static binary rewriting. Inline reference monitors can

implement any safety policy and are usually more efficient

than dynamic solutions, since the instrumentation is not

carried out at run-time.

Next, we discuss the main properties and requirements

for solutions enforcing low-level policies. These properties

determine the practicality of a proposed method, more

precisely, whether or not it is suitable for wide adoption.

We set up our requirements for practicality while discussing

a given property.

A. Protection

Enforced policy. The strength of the protection is deter-

mined by the policy it enforces. The exact policy that

a solution enforces determines its effectiveness. Different

techniques enforce different types of policies (e.g., Memory

Safety or Data-flow Integrity) and at different levels. The

practical utility of a policy can be described by the attacks

it can protect against, out of the four we have identified.

Subtle differences in the policies allow or prevent individual

attacks. The accuracy of an approach is determined by the

relation between false negatives and false positives.
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CVE ID Software Vulnerability Address leakage User scripting

CVE-2011-0609 Adobe Flash JIT type confusion Read an IEEE-754 number ActionScript
CVE-2012-0003 Windows Multimedia

Library (affecting IE)
Heap buffer overflow Read a string after overwriting

its length
JavaScript

CVE-2011-4130 ProFTPD Use-after-free Overwrite the “226 Transfer
Complete” message

none

CVE-2012-0469 Mozilla Firefox Use-after-free Read a string after overwriting
its length

JavaScript

CVE-2012-1889 Microsoft Windows
XML Core Services
(affecting IE)

Uninitialized pointer Read as a RGB color JavaScript

CVE-2012-1876 Internet Explorer 9/10
(Pwn2Own 2012)

Heap buffer overflow Read a string after overwriting
its length

JavaScript

Table I
EXPLOITS THAT DEFEAT BOTH DEP AND ASLR USING ROP AND INFORMATION LEAKS

False negatives. The possibility of false negatives (pro-

tection failures) depends on the definition of the policy.

For probabilistic approaches, the probability of a successful

attack is always > 0 while it is ≥ 0 for deterministic

solutions. As shown in Section III, secrets that the protection

relies upon can not only be guessed, but also leaked.

False positives. The avoidance of false alarms (e.g., unnec-

essary crashes) is a very strict requirement for any practical

solution. Causing faults in normal operation is unacceptable

in production environments. In addition, compatibility issues

should not cause any false alarms.

B. Cost

Performance overhead. The cost of a solution is primar-

ily determined by the performance overhead it introduces.

Beside security, the most important requirement is speed.

To measure performance, both CPU-bound and I/O-bound

benchmarks can be used. CPU-bound benchmarks, such

as SPEC [36], are more challenging, because I/O-bound

programs spend more time in the kernel, relatively reducing

the impact of the user-space CPU overhead. Although some

proposals report good scores with selected benchmark pro-

grams or with I/O-bound server applications, their overheads

are much higher if measured using CPU-bound benchmarks.

We recommend that protection approaches considered for

wide adoption target CPU-bound client-side programs as

well, these being primary targets of today’s attacks.

Our comparison analysis in Section IX shows that tech-

niques introducing an overhead larger than roughly 10% do

not tend to gain wide adoption in production environments.

Some believe the average overhead should be less than

5% in order to get adopted by industry, e.g., the rules

of the Microsoft BlueHat Prize Contest [37] confirm this

viewpoint.

Memory overhead. Inline monitors often introduce and

propagate some kind of metadata, which can introduce

significant memory overhead as well. Some protection mech-

anisms (especially the ones using shadow memory) can even

double the space requirement of a program. In case of most

applications, however, this is much less of an issue than

runtime performance.

C. Compatibility

Source compatibility. An approach is source compatible

(or source agnostic) if it does not require application source

code to be manually modified to profit from the protection.

The necessity of even minimal human intervention or effort

makes a solution not only unscalable, but too costly as well.

Most experts from the industry consider solutions which

require porting or annotating the source code impractical.

Binary compatibility. Binary compatibility allows compat-

ibility with unmodified binary modules. Transformed pro-

grams should still link with unmodified libraries. Backward

compatibility is a practical requirement to support legacy

libraries. Using unprotected libraries may leave parts of

the program exploitable, but allows incremental deployment.

Also, for instance on the Windows platform, system libraries

are integrity protected and thus cannot be easily changed.

Modularity support. Support for modularity means that

individual modules (e.g. libraries) are handled separately. A

compiler based solution should support separate compilation

of modules, while a binary rewriter should support hardening

each file (main executable or library) separately. Because

dynamic-link libraries (.dll and .so) are indispensable for

modern operating systems, all practical protections must

support them as well.

V. PROBABILISTIC METHODS

Probabilistic methods rely on randomization and se-

crets. There are three main approaches: Instruction Set
Randomization, Address Space Randomization, and Data
Space Randomization. Figure 1 shows that Instruction Set

Randomization (ISR) [38] mitigates attacks based on code

corruption and injection of shellcode. Code corruption is

prevented by read-only page permissions, and shellcode

injection is prevented by non-executable page permissions.

Due to hardware improvements, ISR has become obsolete.
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Address Space Randomization (ASR) mitigates control-flow

hijacking attacks by randomizing the location of code and

data and thus the potential payload address. Data Space

Randomization (DSR) probabilistically mitigates all attacks

by randomizing (encrypting) the contents of the memory.

A. Address Space Randomization

Address Space Layout Randomization (ASLR) [5], [39]

is the most prominent memory address randomization tech-

nique. ASLR randomly arranges the position of different

code and data memory areas. If the payload’s address in the

virtual memory space is not fixed, the attacker is unable to

divert control-flow reliably. ASLR is the most comprehen-

sive currently deployed protection against hijacking attacks.

The diverted jump target can be some injected payload in

a data area or existing code in the code section. This is why

every memory area must be randomized, including the stack,

heap, main code segment, and libraries. The protection can

always be bypassed if not all code and data sections are

randomized. On most Linux distributions, for instance, only

library code locations are randomized but the main module

is at a fixed address. Most programs are not compiled as

Position Independent Executables (PIE) to prevent a 10%
on average performance degradation [40].

Furthermore, on 32 bit machines the maximum possible

entropy allowed by the virtual memory space is ineffective

against brute-force or de-randomization attacks [41]. De-

randomization is often carried out by simply filling the

memory with repeated copies of the payload, which is called

heap-spraying or JIT-spraying [14], [42]. Another potential

attack vector is partial pointer overwrites. By overwriting

the least significant byte or bytes of a pointer, it can be

successfully modified to point to a nearby address [43].

Even if everything is randomized with very high entropy

(e.g., on x64 machines), information leaks can completely

undermine the protection. Information leaks are the primary

attack vector against probabilistic techniques, and as Fig-

ure 1 shows, they are always possible if (some level of)

Memory Safety is not enforced.

Since the wide deployment of W⊕X the focus of ran-

domization has become code. As illustrated by Step 6 of

Figure 1, code reuse attacks became the primary threat. To

increase the entropy in code locations, researchers proposed

the permutation of functions [44] and instructions inside

functions [45] as well. Self-Transforming Instruction Relo-

cation (STIR) [46] randomly re-orders the basic blocks of

a binary at launch-time. While these techniques make ROP

attacks harder, they usually do not protect against return-

to-libc attacks. These techniques also assume that a code

reuse (ROP) exploit needs several gadgets, in which case

the provided entropy is high enough. However, sometimes

a single gadget is enough to carry out a successful attack.

The address of a single instruction, gadget, or function is

relatively easy to acquire via an information leak.

A technique in the border-land between Address Space

and Data Space Randomization is pointer encryption. Cowan

et al. [47] proposed PointGuard, which encrypts all pointers

in memory and only decrypts them right before they are

loaded into a register. This technique can be considered the

dual of ASLR, since it also introduces entropy in addresses,

but in the “data space”: it encrypts the stored address,

i.e., pointers’ values. To encrypt the pointers PointGuard

uses the XOR operation with the same key for all pointers.

Since it used only one key, by leaking out one known

encrypted pointer from memory, the key can be easily

recovered [12]. However the primary reason what prevented

PointGuard from wide adoption was that it was neither

binary nor source code compatible.

B. Data Space Randomization

Data Space Randomization (DSR) [48] was introduced

by Bhatkar and Sekar to overcome the weaknesses of

PointGuard and to provide stronger protection. Similarly

to PointGuard, DSR randomizes the representation of data

stored in memory, not the location. It encrypts all variables,

not only pointers, and using different keys. For a variable v,

a key or mask mv is generated. The code is instrumented

to mask and unmask variables when they are stored and

loaded from memory. Since several variables can be stored

and loaded by the same pointer dereference, variables in

equivalent “points-to” sets have to use the same key. The

computation of these sets requires a static pointer analysis

prior to the instrumentation. The protection is stronger,

because encrypting all variables not only protects against

control-flow hijacks, but also data-only exploits. Also, the

use of multiple keys prevents the trivial information leak

described in PointGurad’s case, but not in all cases [12].

The average overhead of DSR is 15% on a custom

benchmark. The solution is not binary compatible. Protected

binaries will be incompatible with unmodified libraries.

Also, whenever points-to analysis is needed, modularity will

be an issue. Different modules cannot be handled separately,

because the points-to graph has to be computed globally.

To overcome this issue the authors propose computing

partial points-to graphs for separate modules and leave the

computation of the global graph to the dynamic linker.

VI. MEMORY SAFETY

Enforcing Memory Safety stops all memory corruption

exploits. For complete Memory Safety, both spatial and

temporal errors must be prevented without false negatives.

Type-safe languages enforce both spatial and temporal safety

by checking object bounds at array accesses and using

automatic garbage collection (the programmer cannot de-

stroy objects explicitly). Our focus is transforming existing

unsafe code to enforce similar policies by embedding low-

level reference monitors. The instrumentation may be in the

source code, intermediate representation, or binary level.
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A. Spatial safety with pointer bounds

The only way to enforce complete spatial safety is to

keep track of pointer bounds (the lowest and highest valid

address it can point to). CCured [49] and Cyclone [50]

use “fat-pointers” by extending the pointer representation

to a structure which includes the extra information. Un-

fortunately these systems need source-code annotations and

are therefore impractical for large code bases. Furthermore,

changing the pointer representation changes the memory

layout, which breaks binary compatibility.

SoftBound [51] addresses the compatibility problem by

splitting the metadata from the pointer, thus the pointer

representation remains unchanged. A hash table or a shadow

memory space is used to map pointers to the metadata.

The code is instrumented to propagate the metadata and to

check the bounds whenever a pointer is dereferenced. For

new pointers, the bounds are set to the starting and ending

address of the object it is pointed to. Runtime checks at

each pointer dereference ensure that the pointer stays inside

bounds. These checks stop all spatial errors in the second

step of our exploit model.

Pointer based bounds checking is capable of enforcing

spatial safety completely without false positives or false

negatives if and only if every module is protected. Soft-

Bound is formally proven to provide complete spatial vi-

olation detection. Unfortunately, the performance overhead

of SoftBound is high, 67% on average. While pointer based

approaches, e.g., SoftBound, provide a limited compatibility

with unprotected libraries, full compatibility is hard to

achieve. Consider, for instance, a pointer created by the pro-

tected module. If that pointer is modified by an unprotected

module, the corresponding metadata is not updated, causing

false positives. We summarize the properties of the main

approaches we cover at the end of the paper in Table II.

B. Spatial safety with object bounds

Because of the compatibility issues caused by pointer

based approaches, researchers proposed object based alter-

natives. Instead of associating the bounds information with

pointers, these systems associate the information with the

objects. Knowing only the bounds of allocation regions is not

enough information to catch errors at pointer dereferences,

because we do not know if the pointer points to the right
object. Hence, object based techniques focus on pointer

arithmetic (Step 1 in the model) instead of dereferences

(Step 2) to protect the bounds of pointers. Binary compatibil-

ity is possible because the metadata is only updated at object

creation and deletion. Consider the previous example. The

metadata this time is associated with the object rather than

with the pointer. If a pointer is updated in an unprotected

module, then the metadata will not go out-of-sync.

One problem with this approach, however, is that pointers

can legitimately go out of bounds as long as they are not

dereferenced. For instance, during the last iteration of a loop

over an array, a pointer typically goes off the array by one,

but it is not dereferenced. The first binary compatible object

based solution to enforce spatial safety is a GCC patch by

Jones and Kelly (J&K) [52], which solved this problem

by padding allocated objects with an extra byte. This still

caused false alarms when a pointer legitimately went out of

bounds more than one byte. A more generic solution to this

problem was later provided by CRED [53].

The main problem with object based approaches is that

they cannot provide complete spatial safety. False nega-

tives can occur, because memory corruption inside objects

or structures remains undetected. This is because the C

standard allows pointer arithmetic within struct fields.

E.g., for memset(&strct,0,sizeof(strct)); the

pointer needs to be allowed to iterate through the whole

structure.

J&K suffers a large performance overhead of 11-12x.

CRED decreased this overhead to around 2x, but by reducing

the checked data structures to character arrays only. Dhurjati

et al. [54] extend J&K’s work by building on a technique

called “automatic pool allocation” [55]. Automatic pool

allocation partitions the memory based on a static points-

to analysis. Partitioning allows using a separate and much

smaller data structures to store the bounds metadata for each

partition, which can decrease the overhead further to around

120%.

Baggy Bounds Checking (BBC) [56] is currently one

of the fastest object based bounds checkers. BBC trades

memory for performance and adds padding to every object

so that its size will be a power of two and aligns their

base addresses to be the multiple of their (padded) size.

This property allows a compact bounds representation and

an effective way to look up object bounds. The authors of

BBC claim that their solution is around twice as fast than the

previously mentioned Dhurjati’s automatic pool allocation

based optimization. BBC’s average performance overhead is

60% on the SPECINT 2000 benchmark. PAriCheck [57] was

developed concurrently with BBC. It pads and aligns objects

to powers of two as well for efficient bounds checking. It

has slightly better performance cost and memory overhead

than BCC.

The motivation for object based approaches is to remain

compatible with unprotected libraries to reduce false posi-

tives. If an allocation or de-allocation happens in an unpro-

tected library, the metadata is set by intercepting malloc
and free. For every other object created in an unprotected

library, default values are used, allowing arbitrary arithmetic.

C. Temporal safety

Spatial safety alone does not prevent all vulnerabilities.

Use-after-free and double-free vulnerabilities remain unde-

tected by the previously discussed bounds checkers. Nu-

merous approaches have been proposed to enforce temporal

safety.
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1) Special allocators: The naı̈ve approach to protect

against use-after-free exploits would be to never reuse the

same virtual memory area, but that would be overly wasteful.

Special memory allocators, like Cling [58], are designed

to thwart dangling pointer attacks without significant mem-

ory or performance overhead. Cling is a replacement for

malloc, which allows address space reuse only among

objects of the same type and alignment. This policy does not

prevent dereferences through dangling pointers, but enforces

type safe memory reuse, preventing the described use-after-

free attack. Dynamic memory allocator replacements of

course cannot prevent unsafe reuse of local, stack allocated

objects.

2) Object based approaches: Perhaps the most widely

used tools to detect memory errors in practice is Valgrind’s

Memcheck [30] tool and AddressSanitizer [59]. These tools

try to detect use-after-free bugs by marking locations which

were de-allocated in a shadow memory space. Accessing

a newly de-allocated location can be detected this way.

This approach, however, fails to detect errors after the area

is re-allocated for another pointer: the area is registered

again and the invalid access remains undetected. The object

based bounds checkers described in the previous subsection

offer the same protection, since de-allocation invalidates the

object in the metadata table. Valgrind, being a dynamic

translator, causes a 10x slowdown in average, while Ad-

dressSanitizer causes 73% slowdown by instrumenting code

at compile time. The only way to detect a use-after-free

attack reliably is to associate the temporal information with

the pointer and not with the object.

3) Pointer based approaches: Maintaining not only

bounds but also allocation information with pointers allows

enforcing full Memory Safety. Allocation information tells

if the pointed to object is still valid. It is not enough to just

keep an extra bit associated with each pointer indicating

the object’s validity, because all pointers pointing to it

have to be found and updated when the object is freed.

CETS [60] extends SoftBound and solves the problem by

eliminating the redundancy of the above described naı̈ve

idea. The validity bit is stored only at one place in a global

dictionary. Each new object gets a unique identifier used as

the key to the dictionary and pointers are associated with

this unique ID. A special data structure for the dictionary

allows the quick and easy invalidation of objects and also

fast lookups to check object validity. CETS is formally

proven to enforce temporal safety, if spatial safety is also

enforced. In other words, together with SoftBound, CETS

enforces Memory Safety. The average execution overhead

of the instrumentation enforcing temporal safety alone is

48%. When coupled with SoftBound to enforce complete

Memory Safety, the overhead is 116% on average on the

SPEC CPU benchmark. As a pointer based solution, CETS

suffers the same binary compatibility issues as SoftBound

when it comes to unprotected libraries.

VII. GENERIC ATTACK DEFENSES

Data Integrity and Data-flow Integrity are weaker policies

than Memory Safety. They aim to protect against both control

data (hijacking) and non-control data attacks, but not against

e.g., information leaks. While the former policy prevents

data corruption, the latter detects it.

A. Data Integrity

Data Integrity solutions enforce an approximation of spa-

tial memory integrity. These techniques focus on the most

common attacks, which start by writing through an out of

bounds pointer. They do not enforce temporal safety, and

they only protect against invalid memory writes, not reads.

Furthermore, they only approximate the spatial integrity

enforced by the previously covered bounds checkers in order

to minimize the performance overhead. In all cases the

approximation is due to a static pointer analysis carried out

prior to the instrumentation.

1) Integrity of “safe” objects: The technique proposed

by Yong et al. [61] first identifies the subset of “unsafe

pointers”. A pointer is considered unsafe if it might go out

of bounds, e.g., because it is a computed value (p[i]). A

static pointer analysis identifies the unsafe pointers together

with their points-to sets, i.e., their potential target objects.

Let us call the union of the identified points-to sets unsafe
objects. The code is instrumented to mark each byte of

an unsafe object in a shadow memory area at its creation

and clear it at deallocation. Checks are inserted before each

write dereference of an unsafe pointer to check whether the

location is marked in the shadow memory. This prevents the

corruption of any data in a memory area that does not belong

to an unsafe object.

This policy is sufficient to protect not only variables

which are never accessed through pointers, but, for instance,

saved return addresses as well. However, sensitive variables

can still be identified as unsafe objects and thus remain

unprotected. The authors also mention that out of 101

function pointers in their benchmark suite, two ended up

in the set of unsafe objects, which means that in case of a

memory error, these values can be corrupted. Since reads are

left unchecked, any value can be corrupted when read into

a register via a bad pointer. This allows certain control-flow

hijack attacks, program specific attacks, and information leak

attacks as well.

The reported runtime overhead of Yong’s system varies

between 50-100% on the SPEC 2000 benchmark. Uninstru-

mented libraries raise compatibility issues. If a pointer is

dereferenced in the transformed module, accessing an object

created by an unprotected module, then a false alarm is

triggered. This problem can be mitigated in case of heap

objects by wrapping memory allocating functions to mark

every allocated area in the shadow memory.
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2) Integrity of points-to sets: The previous technique

restricts pointer dereferences to write only unsafe object.

Write Integrity Testing (WIT) [62] further strengthens the

above policy by restricting each pointer dereference to write

only objects in its own points-to set. Naturally, the pointer

analysis only results in a conservative approximation of the

set of objects a pointer may point to. The calculated distinct

points-to sets are associated with different ID numbers,

which are used to mark the objects in the shadow memory

area. While Yong’s approach only uses two IDs: 1 for

unsafe objects and 0 for everything else, WIT marks objects

belonging to separate points-to sets with different IDs.

Furthermore, WIT checks indirect calls as well to stop

hijacking attacks, which the previous policy left possible.

It protects indirect calls by calculating the points-to set

of pointers used by indirect call instructions and associate

them with IDs as well. The IDs are placed in the shadow

memory for valid code target addresses and, as in case

of indirect writes, before each indirect call the IDs are

checked. Functions associated with the same ID are still

interchangeable.

The policy enforced by WIT is stronger than Yong’s

approach due to distinguishing different points-to sets, but

objects assigned to the same ID remain vulnerable. Since

WIT does not protect reads, data can be corrupted when

read into a register, and information leaks are possible as

well. Due to the missing read checks function pointers

can be corrupted, too. This is why WIT checks indirect

calls instead in order to detect the corruption. Checking the

target of indirect control transfers makes WIT a Control-
flow Integrity approach, which is covered in Section VIII-B.

Notice that while calls are checked, returns are not. This is

because returns can only be corrupted via writes, as they

are never read by dereferencing a pointer, and thus they are

considered protected. Since WIT does not deal with temporal

errors either, overwriting a return address via an escaped

dangling pointer is still possible, however such bugs are rare

in practice.

The reported performance overhead of WIT is around 5-

25% for the SPEC benchmark. The approach is not binary

compatible. Using uninstrumented libraries can create false

alarms, because they do not maintain the object IDs at

allocations. Like in case of DSR, or other solutions dealing

with distinct points-to sets, modularity is also an issue, since

the resulting IDs depend on the global points-to graph. While

WIT works at compile time, BinArmor [63] aims to enforce

a similar policy with binary rewriting. Since the pointer

analysis the policy requires is infeasible to do in binaries,

the system tries to identify potentially unsafe dereferences

and their valid targets dynamically, by running and tracing

the program with various inputs. This approach can neither

guarantee the lack of false negatives, nor false positives, and

its performance overhead can go up to 180%.

B. Data-flow Integrity

Data-Flow Integrity (DFI) as proposed by Castro et

al. [64] detects the corruption of any data before it gets used

by checking read instructions. DFI restricts reads based on

the last instruction that wrote the read location. In program

analysis terms, DFI enforces the reaching definition sets.

The reaching definition set of an instruction is the set of

instructions which might have last written (defined) the

value that is used by the given instruction based on the

control-flow graph. For instance, the policy ensures that the

isAdmin variable was last written by the write instruction

that the source code defines and not by some rogue attacker-

controlled write. Or it ensures that the return address used by

a return was last written by the corresponding call instruc-

tion. DFI also builds on static points-to analysis in order

to compute the global reaching definition sets. Similarly to

WIT, the resulting reaching definition sets are assigned a

unique ID. Each written memory location is marked in the

shadow memory with the writing instruction’s ID. Before

each read, this ID is checked whether it is the element of

the statically computed set of allowed IDs.

The previously discussed solutions checked every indirect

memory write, so the shadow memory area was automat-

ically protected. Contrarily, the Data-flow Integrity policy

dictates the instrumentation of only reads. Unfortunately, in

order to protect the integrity of its metadata, DFI has to

check all indirect writes as well, and make sure that their

target addresses are outside of the shadow memory area.

The performance overhead of the technique varies be-

tween 50-100% on the SPEC 2000 benchmark. Similarly

to previous solutions, it is not binary compatible, since false

alarms can be caused by the lack of metadata maintenance

in unprotected libraries.

VIII. CONTROL-FLOW HIJACK DEFENSES

The following two policies focus only on hijacking at-

tacks. While the Code Pointer Integrity aims to prevent the

corruption of code pointers, Control-flow Integrity detects it.

A. Code Pointer Integrity

While the integrity of some code pointers can and should

be protected, enforcing Code Pointer Integrity alone is

infeasible. Immutable code pointers, such as the ones in the

Global Offset Table or in virtual function tables (vtable), can

be easily protected by keeping them in read-only memory

pages. Most code pointers however, such as programmer

defined function pointers or saved return addresses, must

remain writable. Furthermore, even if the integrity of all

code pointers in memory could be enforced, the hijacking

attack would still be possible, by exploiting an erroneous

indirect memory read to load the wrong value into the

register. Most use-after-free exploits, for instance, divert

the control-flow by reading the “wrong” virtual function

table through a dangling pointer, which does not involve
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overwriting code pointers in memory at all. It follows from

this discussion that detecting a code pointer corruption

before its usage would be better.

B. Control-flow Integrity

Control-flow Integrity (CFI) solutions enforce some policy

regarding indirect control transfers, mitigating the hijacking

attack in Step 5. Note that direct control transfers cannot be

diverted, and hence they need no protection.

1) Dynamic return integrity: The most well known

control-flow hijacking attack is the “stack smashing” at-

tack [65]. Stack smashing exploits a buffer overflow in

a local variable to overwrite the return address on the

stack. Stack cookies or canaries [66] are the first proposed

solution against this attack. A secret value (cookie/canary)

is placed between the return address and the local variables.

If the return address is overwritten by a buffer overflow,

the cookie changes as well, what is detected by the check

placed before the return instruction. Stack cookies do not

protect indirect calls and jumps, and they are vulnerable

to direct overwrite attacks and information leaks. However,

stack cookies are popular and widely deployed, because the

performance overhead is negligible (less than 1%) and no

compatibility issues are introduced.

Shadow stacks [67] can solve some of the problems of

canaries, like information leaks and direct overwrites. To

eliminate the reliance on a secret, the saved return addresses

are pushed to a separate shadow stack as well, so upon

function return, the shadow copy can be compared with

the original return address. Simply making a copy and

checking if it still matches before the return makes the

attack much harder, even when the shadow stack is not

protected, since the attacker has to corrupt the return address

in two separate locations. To protect the shadow stack itself,

RAD [68] proposes the use of guard pages or switching

write permission to protect the shadow stack area. While

the former does not protect against direct overwrites, the

latter causes 10x slowdown. To estimate the performance

overhead of an unprotected shadow stack mechanism, we

implemented one as an LLVM plugin, which has an average

overhead of 5% on the SPEC2006 benchmark. Shadow

stack mechanisms also has to deal with compatibility issues,

e.g., to handle exceptions. However, we believe that false

positives can be avoided by a careful implementation.

2) Static control-flow graph integrity: To prevent all

control-flow hijacks, not only returns, but indirect calls and

jumps have to be protected as well. Section VII covers

how WIT identifies and enforces the set of valid targets

(i.e., the points-to set) of each call instruction. This idea,

together with the term Control-flow Integrity was originally

introduced by Abadi et al. [69]. Their work focuses on

statically determining the valid targets of not only calls, but

also function returns, and thus enforcing the resulting static

control-flow graph. Unlike WIT, which stores the IDs in a

protected shadow memory, the CFI authors propose storing

them inside the code itself, by placing the ID right to the

target location, so it can be protected by Code Integrity.

To avoid compatibility issues, the IDs can be encoded into

instructions, which, if inserted, will not affect the semantics

of the code. Calls and returns are instrumented to check the

target address whether it has the right ID before jumping

there. Note, that this requires Non-executable Data as well,

to prevent forging valid targets.

As for returns, enforcing any statically predetermined

set of valid targets is a weaker policy than enforcing the

dynamic call stack enforced by a shadow stack. At run-time,

there is always exactly one correct target of a function return,

but since a function can be called from multiple call sites,

the statically determined set will include all of them as valid

targets.

Another issue with enforcing the unique points-to sets

of indirect control transfers is modularity support, as in

the case of all previously covered pointer analysis based

solutions. The precise points-to sets can only be determined

globally, which makes modularity and dynamic library reuse

challenging. This the main reason why this solution works

great with monolithic kernels [70] or hypervisors [71], where

every module is statically linked together, but has not been

deployed for dynamically linked applications. A weaker, but

more practical policy is restricting indirect control transfers

to the union of all their points-to sets (cf. Yong et al. in

Section VII-A). The original CFI implementation also uses

this approach, meaning that all indirectly callable function

is marked by the same ID. The advantage of this policy is

that it does not even need pointer analysis, because it is

enough to enumerate all functions whose address is taken.

This is a much more conservative policy, but it allows the

modular transformation and interchanging of libraries. For

many functions, this policy means that the allowed set of

return targets has to include all call sites in a program.

Since this is overly permissive, the authors suggest using

a shadows stack mechanism instead for checking returns.

The average performance overhead of the Abadi imple-

mentation is 15%, while the maximum measured is as high

as 45%. The implementation which uses a shadow stack

mechanisms for returns has an additional 10% overhead.

This solution is not binary compatible either, and since it

relies on the W⊕X policy, it can not be enforced in case of

JIT compilation.

IX. DISCUSSION

We summarize the properties of a selected set of solutions

in Table II, grouped by the policy categories identified

in Section II, except the following two: (i) Code Pointer

Integrity, because enforcing it is infeasible without any

level of Memory Safety; (ii) Instruction Set Randomization,

because the same attack vectors can be defeated with page

permission enforcing Code Integrity and Non-executable
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Policy type (main approach) Technique Perf. % (avg/max) Dep. Compatibility Primary attack vectors
G

en
er

ic
pr

ot
.

Memory Safety
SofBound + CETS 116 / 300 × Binary —
SoftBound 67 / 150 × Binary UAF
Baggy Bounds Checking 60 / 127 × — UAF, sub-obj

Data Integrity WIT 10 / 25 × Binary/Modularity UAF, sub-obj, read corruption
Data Space Randomization DSR 15 / 30 × Binary/Modularity Information leak
Data-flow Integrity DFI 104 / 155 × Binary/Modularity Approximation

C
F-

H
ija

ck
pr

ot
.

Code Integrity Page permissions (R) 0 / 0 � JIT compilation Code reuse or code injection
Non-executable Data Page permissions (X) 0 / 0 � JIT compilation Code reuse

Address Space Randomization
ASLR 0 / 0 � Relocatable code Information leak
ASLR (PIE on 32 bit) 10 / 26 × Relocatable code Information leak

Control-flow Integrity

Stack cookies 0 / 5 � — Direct overwrite
Shadow stack 5 / 12 × Exceptions Corrupt function pointer
WIT 10 / 25 × Binary/Modularity Approximation
Abadi CFI 16 / 45 × Binary/Modularity Weak return policy
Abadi CFI (w/ shadow stack) 21 / 56 × Binary/Modularity Approximation

Table II
THIS TABLE GROUPS THE DIFFERENT PROTECTION TECHNIQUES ACCORDING TO THEIR POLICY AND COMPARES THE PERFORMANCE IMPACT,

DEPLOYMENT STATUS (DEP.), COMPATIBILITY ISSUES, AND MAIN ATTACK VECTORS THAT CIRCUMVENT THE PROTECTION.

data. The comparison neither covers overly specific Data

Integrity protections like heap metadata protection or ca-

nary/redzone/guards based protections, nor too special cases

of Control-flow Integrity, like exception handler validation.

It does not include dynamic binary instrumentation solutions

due to their high performance cost, or others which are not

fully automatic (e.g., needs source code modification). The

upper half of the table covers protections aiming to protect

against memory corruption in general and thus mitigate all

four different attacks identified in Section II. The lower half

covers approaches which aim to protect against control-flow

hijacks only.

The performance is represented as the average and maxi-

mum overhead using either the SPEC CPU 2000 or 2006

benchmarks. We rely on the numbers reported by the

developers of the tools, since several of them are not

publicly available. We stress that since the values represent

measurements in different environments, different config-

urations, and sometimes with different sets of programs,

they only provide rough estimates. We present some of the

fastest solutions for enforcing Memory Safety and Data-

flow Integrity but even those can double the execution

time. WIT and DSR report much lower overhead then

other general protection techniques and even smaller then

the Abadi CFI system under the hijacking protections. The

deployment status column represents whether a solution is

used in practice. The case of enforcing full ASLR on Linux

shows that even a 10-25% overhead prevents deployment.

This is the overhead that Position Independent Executables

(relocatable executables) cause on 32-bit machines and the

reason why ASLR is enforced only for libraries by default

on most distributions. As the table shows, only solutions

with negligible overhead are adopted in practice.

Not only performance but also compatibility issues pre-

vent the deployment of many proposed techniques. In the ta-

ble, “binary” represents binary compatibility issues, meaning

interfacing with unmodified binaries (e.g., legacy libraries).

This will not only cause false negatives, but false positives

as well, which contradicts with our practical requirements.

All solutions which build on points-to analysis have “mod-

ularity” issues, because the enforcement of stricter policies

require consideration of the dependencies between modules,

which makes re-usable libraries challenging.

None of the shown policies are perfect regarding robust-

ness, except enforcing complete Memory Safety with pointer

based techniques. Protections enforcing weaker Memory

Safety policies have more attack vectors, like use-after-free

(UAF), corruption of sub-objects (sub-obj) or corrupting

values in registers via read dereferences. DSR and ASLR

provide the most comprehensive solutions as a generic and

hijacking protection respectively, but both of them can be

circumvented by information leaks. The protection level

of DFI (as a generic protection) and CFI (as a hijack

protection) is only bounded by the “approximation” due

the static analysis. This means (i) enforcing a static set

of valid reaching definitions or jump targets, and not the

single dynamically valid ones, and (ii) the conservativeness

of the analysis establishing those sets. WIT is shown twice

in the table as a generic protection and as a control-flow

hijacking protection. As a generic protection, it enforces

an “approximation” of Memory Safety, i.e., Data Integrity,

which has some weaknesses, but protects against most of

the attacks, including program specific data-only attacks as

well. As a control-flow hijacking protection, it enforces the

same policy as Abadi CFI with a shadows stack, but with

less overhead. Unfortunately, neither the Abadi CFI nor

the WIT approach has been adopted in practice, although

their overhead can be considered low. We attribute this to

the beforementioned compatibility and modularity problems

raised by points-to analysis.
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X. CONCLUSION

Both academia and industry have been fighting memory

corruption bugs for decades. From time to time, pundits

have proclaimed that the problem had finally been solved,

only to find their assertions falsified by subsequent attacks.

With the wide deployment and hardware support for Non-

executable Data, research has been focusing on ROP attacks

within hijack protections. The latest solution seemed to be

randomization, such as fully enforced, high entropy, 64-

bit ASLR or other in-place randomization techniques. But

the increased use of JIT compilation limits the usability

of a W⊕X policy, while the prevalence of user scripting

simplifies defeating randomization. The ability of running

attacker provided scripts helps leaking secrets and on-the-

spot dynamic exploit construction. Researchers have to step

back, and instead of focusing on specific attacks, we need

to look at the big picture. Hopefully, this paper helps in this

regard by setting up its general attack model and by placing

different policy types in this model.

This systematization suggests that stronger policies are

needed, such as Data Integrity; or, when only hijacking

attacks are considered a valid threat, Control-flow Integrity.

While the research direction of enforcing such policies

is promising, existing solutions are still impractical. Our

requirement analysis and the summarization of current tech-

niques show that performance, and especially compatibility

problems, are the main barriers of wide adoption. We remind

researchers in the security area to recognize the significance

of these properties in the real world.

There is a pressing need for research, development, and

deployment of better publicly available software protection

techniques, especially built into commonly used compilers,

such as LLVM and GCC. These open-source platforms can

be of great value, where some of the compatibility problems

can be solved by the community so researchers can release

their robust but possibly slow protections to interested users.

Such experiments interacting mutually with real applications

will improve research further, and they might be able to lift

the performance threshold people impose on security. We

hope that this systematization of knowledge will help other

researchers in finding new ways to make progress in this

area. The war is not over.
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