
SoK: P2PWNED — Modeling and Evaluating the Resilience of Peer-to-Peer Botnets

Christian Rossow∗‡, Dennis Andriesse‡, Tillmann Werner¶,

Brett Stone-Gross†, Daniel Plohmann§, Christian J. Dietrich∗, Herbert Bos‡

∗ Institute for Internet Security, Gelsenkirchen, Germany

{rossow,dietrich}@internet-sicherheit.de
‡ VU University Amsterdam, The Netherlands

{d.a.andriesse,h.j.bos}@vu.nl
§ Fraunhofer FKIE, Bonn, Germany, daniel.plohmann@fkie.fraunhofer.de

† Dell SecureWorks, bstonegross@secureworks.com
¶ CrowdStrike, Inc.

Abstract—Centralized botnets are easy targets for takedown
efforts by computer security researchers and law enforcement.
Thus, botnet controllers have sought new ways to harden the
infrastructures of their botnets. In order to meet this objective,
some botnet operators have (re)designed their botnets to use
Peer-to-Peer (P2P) infrastructures. Many P2P botnets are far
more resilient to takedown attempts than centralized botnets,
because they have no single points of failure. However, P2P
botnets are subject to unique classes of attacks, such as node
enumeration and poisoning. In this paper, we introduce a
formal graph model to capture the intrinsic properties and
fundamental vulnerabilities of P2P botnets. We apply our
model to current P2P botnets to assess their resilience against
attacks. We provide assessments on the sizes of all eleven active
P2P botnets, showing that some P2P botnet families contain
over a million bots. In addition, we have prototyped several
mitigation strategies to measure the resilience of existing P2P
botnets. We believe that the results from our analysis can
be used to assist security researchers in evaluating mitigation
strategies against current and future P2P botnets.

I. INTRODUCTION

Criminals use botnets for a myriad of malicious activities,

including denial-of-service attacks, spam, and banking fraud.

The most common type of architecture for existing botnets

is based around a central Command-and-Control (C&C)

server. Consequently, these C&C servers have received an

increasing amount of attention from security researchers

and law enforcement for takedown attempts [24, 6]. In

response, botnet controllers (botmasters) have designed and

implemented new architectures to make their botnets more

resilient. Some botnets use fast-flux DNS to assign addresses

from a large pool of IPs belonging to compromised systems

to C&C domains [16]. In addition, attackers have imple-

mented domain generation algorithms (DGA) to dynamically

generate domain names used for C&C (e.g., depending

on seed values such as the current date/time and Twitter

trends) [1]. A more radical and increasingly popular way

to increase botnet resilience is to organize the botnet as a

Peer-to-Peer (P2P) network. In a P2P botnet, bots connect

to other bots to exchange C&C traffic, eliminating the need

for centralized servers. As a result, P2P botnets cannot be

disrupted using the traditional approach of attacking critical

centralized infrastructure.

Even though active P2P botnets such as the Zeus P2P

variant, Sality, ZeroAccess and Kelihos have survived in the

wild for as long as five years, relatively little is known about

the sizes of these botnets. It is difficult to estimate a P2P

botnet’s size, for a number of reasons. P2P botnets often

use custom protocols, so that researchers must first reverse

engineer the protocol and encryption before they can track

the botnet’s population. In addition, approximations based

on IP addresses alone have been shown to be inaccurate

unless care is taken to account for IP address churn [24].

Another significant problem is that there is currently no

systematic way to analyze the resilience of P2P botnets

against takedown attempts. Previous work has shown sig-

nificant weaknesses in some P2P botnets, such as Storm [9]

and Waledac [23], but these studies focus on specific design

flaws that are unique to these P2P botnets.

In this paper, we present a graph-theoretical model of P2P

botnets that aids in analyzing the resilience of these botnets.

The proposed model captures the fundamental characteristics

of P2P botnets, covering intrinsic properties of their self-

organizing nature. We extend our model with mitigation

strategies that are generally applicable to any P2P botnet.

Our model highlights two resilience aspects:

1) Intelligence gathering resilience: We model intelligence

gathering (also referred to as reconnaissance) methods

and evaluate the resilience of current P2P botnets to

these methods. That is, we evaluate to what extent the

P2P botnets are able to deter malware analysts from

enumerating the bots in the network.

2) Disruption resilience: We formalize attacks that can be

used to disrupt P2P botnets. Examples of such attacks

include sinkholing, where all bots are redirected to

an attacker-controlled machine called a sinkhole, and

partitioning, which aims to split a botnet into unusable

sub-networks.

We apply our methods to real-world P2P botnets to evaluate

their resilience against the modeled attacks.

2013 IEEE Symposium on Security and Privacy

1081-6011/13 $26.00 © 2013 IEEE

DOI 10.1109/SP.2013.17

97

We use the reconnaissance methods described in our

model to gather intelligence about real-world P2P botnets.

In particular, we deploy two P2P node enumeration tech-

niques, namely crawling and sensor injection, to measure

the population sizes of current P2P botnets. Our experiments

show that some of these P2P botnets contain in the order

of a million infected systems, illustrating the magnitude of

the P2P botnet threat. Interestingly, we found significant

differences in the number of bots found by our crawlers

compared to our sensors. As we will show, crawling may

underestimate a botnet’s size by two orders of magnitude.

In addition, we identify an inherent limitation to crawling,

namely that crawlers cannot verify the authenticity of the

60–87% of enumerated nodes which are behind NATs,

proxies, or firewalls.

We also apply the disruption attacks defined in our model

to real-world P2P botnets. We show that some current

P2P botnets are quite resilient to disruption—a clear im-

provement over early botnets like Storm and Waledac. For

instance, Sality employs a peer reputation scheme which

significantly complicates attacks. As another example, the

Zeus P2P botnet uses automatic blacklisting of sinkholing

servers that communicate too aggressively. Moreover, as we

will show, several P2P botnets are able to repel initially

successful attacks against their P2P layers over the long

term through the use of backup C&C channels. Additionally,

we investigate to what extent P2P botnets are susceptible

to attacks like command injection (as opposed to attacks

against the botnet infrastructure).

In summary, our contributions are:

1) We propose a formal graph model for P2P botnets

and define attack methods that are applicable to any

P2P botnet. This model can be used to assist malware

analysts in P2P botnet mitigation efforts.

2) Based on our model, we implement intelligence gather-

ing attacks against current P2P botnets. We evaluate and

compare the accuracy of two P2P botnet enumeration

techniques, namely crawling and sensor injection. We

provide lower-bound approximations on the populations

of all current P2P botnets, and show that crawling

results for these botnets are limited in accuracy.

3) We evaluate the resilience of all active P2P botnets by

prototyping our formalized attacks. We find that some

P2P botnets are susceptible to disruption, while others

have a considerably more robust design that makes

takedown efforts more challenging.

The remainder of this paper is structured as follows.

Section II gives an overview of the P2P botnet landscape.

In Section III, we propose a model for P2P botnets, cov-

ering intrinsic characteristics of P2P botnets. Section IV

expands our model by formalizing intelligence gathering

and disruption attacks against P2P botnets. In Section V,

we describe new insights into P2P botnet node enumeration

by comparing results from crawling and sensor injection.

Section VI provides an analysis of the P2P resilience of

active and previously active botnets. Section VII discusses

ethical issues and the future of mitigation efforts against P2P

botnets. Finally, we outline related work in Section VIII and

summarize our work in Section IX.

II. OVERVIEW OF P2P BOTNETS

This section provides an overview of the most important

P2P botnet families that emerged between the beginning of

2007 and the middle of 2012. Our overview is based on

insights from the dynamic malware analysis platform SAND-

NET [19], combined with reverse engineering, first-hand

takedown experience and technical reports from malware

analysis companies. We restrict ourselves to botnets which

use a P2P channel as their primary means of communication.

We do not consider Conficker.C [17] or TDL4 [20], as these

botnets only use their P2P components as backup channels.

In the remainder of this paper, we distinguish between botnet

families, botnet variants and botnets. We use the term botnet

family to denote a specific strain of a botnet. The term

botnet variant is used to denote a variant within a botnet

family. Finally, we use the term botnet to refer to a coherent

collection of hosts infected with a specific botnet variant.

Some botnet variants contain several disjoint botnets.

A. P2P Botnet Characteristics

In this paper, we closely analyze twelve P2P botnet

variants. Figure 1 shows each of the P2P botnet variants that

are still active as of November 2012. As shown in the figure,

four P2P botnet families are currently active in the wild.

Each of the studied families, except Zeus, consists of several

major versions. Finally, for each major version, one or

more disjoint botnets exist. Botnets which have already been

successfully sinkholed are shown with a dark background in

the figure.

Figure 1: Active P2P botnet families, their variants, and instances.

Figure 2 shows the lifespans of the botnet variants we

study in detail, as well as the most important P2P botnets

which are no longer active. We see that the minimum botnet

family lifetime encountered so far is eight months (Miner),

while Sality has been active five years. The large differences

shown in P2P botnet lifespans can partly be explained by the

fact that some botnet families are more resilient than others.

However, the degree of resilience is not a sufficient metric

to explain the lifespans of all P2P botnets. For instance, we

show in Section VI that the ZeroAccess botnet family, one

98

Zeus
Miner

Kelihos v3
Kelihos v2
Kelihos v1

ZeroAccess v2
ZeroAccess v1

Waledac
Sality v4
Sality v3

Storm
Nugache

Jan 2006 Jan 2007 Jan 2008 Jan 2009 Jan 2010 Jan 2011 Jan 2012

abandoned
active

disabled

Figure 2: Lifespans of P2P botnet variants.

of the longest surviving P2P botnet families, is in principle

relatively straightforward to sinkhole.

Table I shows the communication protocol, message prop-

agation method, communication direction, C&C architec-

ture, and the purpose of each P2P botnet. Note that all

recent P2P botnets have unstructured P2P protocols, that

is, they use message gossiping to propagate information. To

date, most academic work on P2P botnets has focused on

structured architectures [22, 31, 32, 10]. Bots in structured

P2P botnets typically maintain a distributed hash table that

is used to store and route commands. Unstructured networks

are not susceptible to many of the mitigation strategies for

structured networks discussed in the literature. Motivated

by the large number of unstructured P2P botnets that are

used in the wild today, we propose attacks that are generally

applicable to structured and unstructured P2P botnets.

The P2P botnets listed in Table I are used for a variety

of purposes, including malware distribution, spam, credential

theft, and Distributed Denial-of-Service (DDoS) attacks. The

table also shows the C&C architectures of all P2P botnets.

Nugache, Sality and ZeroAccess are purely P2P based. The

other botnets rely on hybrid architectures, which incorpo-

rate centralized servers, for instance to collect stolen data.

Unfortunately, shutting down these centralized components

usually has a minimal effect, as the P2P layer can easily be

used to redirect bots to alternative servers. Thus, we focus

specifically on the resilience of the P2P layer itself.

Family Protocol Prop. Dir. C&C Purpose

Kelihos custom gossip pull hybrid C,D,M,N,S
Miner custom gossip pull hybrid D,M,P
Nugache custom gossip pull P2P D,T
Sality custom gossip pull P2P D,N,P

Storm Overnet1 routing pull hybrid D,S,T
Waledac custom gossip pull hybrid D,S,T

ZeroAccess custom gossip pull2 P2P P
Zeus custom gossip both hybrid D,P,T

Table I: Overview of P2P botnet families showing their protocol,
message propagation method, communication direction, C&C ar-
chitecture, and purpose. The main purpose is highlighted in bold.
C = Click Fraud, D = DDoS, M = Bitcoin Mining, N = Network
Services, P = Pay-Per-Install, S = Spam, T = Credential Theft.

B. Botnet Descriptions

In this section, we describe the P2P botnets that we study

in this paper, ordered by the date of their introduction.

1) Nugache: Nugache was a P2P botnet based on a cus-

tom protocol, which first appeared in the beginning of 2006

[25]. Its main purpose was DDoS attacks. Earlier versions

used IRC for C&C, but over time the C&C infrastructure

was migrated to a P2P-based protocol. The Nugache botnet

was one of the first to use strong cryptography to protect its

communication. Some messages were signed with a 4096-

bit RSA key to prevent unauthorized control. Parts of the

inter-peer communication were encrypted using a hybrid

RSA/Rijndael scheme.

2) Storm: Storm (a.k.a. Peacomm) was a structured P2P

botnet based on Overnet, a Kademlia implementation. Storm

appeared in the wild in January 2007. The first version of

Storm was built upon an existing Overnet network used

for file sharing, which the Storm bots shared with benign

clients. Storm bots retrieved commands by using a time-

based algorithm to compute the IDs under which new

commands would be published by the botmaster, and then

searching for these IDs in the DHT. Holz et al. [9] showed

that in principle Storm could be mitigated by overwriting

the command IDs in the DHT.

3) Sality P2P: The P2P version of Sality first appeared in

early 2008 and is a variant of the centralized Sality malware

downloader. Sality uses a pull-based unstructured P2P net-

work to spread URLs where payloads are to be downloaded.

Peers regularly contact their neighbors to exchange new

URLs. We distinguish two disjoint Sality botnets, denoted

as version three and version four. Both networks share the

same P2P protocol, but version four of Sality fixes a critical

vulnerability in the file downloading mechanism [7].

4) Waledac: Waledac originated in December 2008, and

is assumed to be the successor of Storm [23]. The Waledac

network used a tiered infrastructure, with an upper layer of

centralized nodes providing commands and spam templates

to a middle layer of router nodes. Nodes at the router

1A later added XOR encryption separated the Storm botnet from Overnet.
2Bots can trigger pulls at other peers, which are effectively pushes.

99

layer were responsible for relaying messages to a lower

network layer consisting of regular P2P worker bots. Bots

at the worker layer formed the majority of the nodes in the

Waledac P2P network, and were connected via a pull-based

unstructured P2P network to the router layer.

5) Kelihos: Kelihos (a.k.a. Hlux) is an unstructured P2P

botnet mainly used for spamming and ID theft [3]. Kelihos

first appeared in late 2010, and is assumed to be the succes-

sor of Waledac. Researchers successfully sinkholed the first

two variants of Kelihos using peer list manipulation attacks.

The two sinkholing attacks took place in September 2011

and March 2012, respectively. A subsequent third Kelihos

variant is still operational, and is similar in architecture to

the first two Kelihos variants [29].

6) ZeroAccess: ZeroAccess (a.k.a. Sirefef) is a malware

downloader which uses an unstructured P2P architecture. It

exists in two variants and is organized into seven disjoint

networks. The two variants, ZeroAccess v1/v2, appeared in

mid 2009 and early 2012, respectively. ZeroAccess bots

regularly query their neighbors for new malware payloads.

Lists of new peers are pushed to all bots using a broadcast

mechanism [15, 30].

7) Miner: Miner was an unstructured P2P botnet which

appeared in August 2011, and included facilities for gener-

ating (“mining”) a digital currency called Bitcoins [18]. The

Miner botnet consisted of two disjoint networks contain-

ing around 38.000 non-NATed peers according to Kasper-

sky [28]. Miner ceased to operate in March 2012.

8) Zeus P2P: The first two variants of Zeus were central-

ized, and were extensively tracked and attacked by malware

researchers3. The development of Zeus forked into multiple

variants, including a new P2P variant of Zeus, which ap-

peared in the wild in September 2011. This P2P variant

of Zeus appears to be designed to withstand the attacks

routinely executed against traditional Zeus botnets. Note that

while the centralized variant of Zeus typically forms several

distinct botnets, the P2P variant spans one coherent botnet.

The P2P variant of Zeus uses an unstructured push/pull-

based P2P network to relay commands, stolen data, and

configuration/binary updates. Zeus is designed to steal cre-

dentials (particularly for financial institutions) from infected

systems. This stolen data is sent to dropzones via frequently

changing proxy bots, the locations of which are gossiped via

the Zeus P2P network.

III. A FORMAL MODEL FOR P2P BOTNETS

This section presents a formal model to capture the

fundamental characteristics of all previously described P2P

botnets. We define a non-routable peer as a peer that cannot

be reached by other peers, but has the ability to contact one

or more peers (e.g., the peer is behind a NAT or proxy). We

define a routable peer as a peer that can also be contacted

3https://zeustracker.abuse.ch

by other peers (via an ingress connection). Furthermore, we

define an unreachable peer as a peer that cannot be reached

by any peers nor contact other peers (e.g., the peer is offline),

but is still known to one or more peers.

Definition 1. A peer-to-peer (P2P) botnet is a directed graph

G := (V,E), where V is a set of peers and E ⊆ V×V edges

(u, v) with u, v ∈ V . The set of peers V := Vr∪̇Vn∪̇Vu is

the disjoint union of routable peers Vr, non-routable peers

Vn and unreachable peers Vu.

Note that the graph is not required to be a connected

digraph4 and that several disjoint connected components

are in accordance with Definition 1. This conforms with

our definition of P2P botnets as we consider two machines

infected with the same bot to be part of the same botnet,

even if they belong to separate partitions of the P2P graph

at a given point in time.

All P2P botnets implement the concept of peer lists to

keep track of neighboring peers. From Definition 1, we can

now describe a peer list as follows:

Definition 2. Let G = (V,E) denote a P2P botnet. The set

of edges Ev := {(v, u) ∈ E} for a peer v ∈ V is called the

peer list of v.

A peer list expresses relationships of neighboring peers in

the graph at a given time. In reality, peer lists can be highly

dynamic and do not necessarily have to be stored explicitly.

Note that a peer list may contain edges to routable, non-

routable and unreachable peers.

Definition 3. We call deg+(v) := |Ev| the out-degree of v.

deg−(v) := |{(u, v) ∈ E}| is called in-degree of v.

For P2P botnets, G is hardly complete, i.e., ∃u, v ∈ V :
(u, v) /∈ E. This follows from changes in the network (peers

joining or leaving the network) that would otherwise require

expensive operations to maintain the graph topology. In fact,

botnets usually implement sparse graphs, i.e., ∀v ∈ V :
deg+(v) � |V |. Since peer lists are usually limited in

size, the maximum possible out-degree is normally restricted

as well. The in-degree of a peer is not easily determined.

One would have to explore the entire graph and count the

edges (u, v) ∈ E for a peer v. However, the in-degree is an

important measure for the popularity of a peer. The more

popular a peer is in a botnet, the more influence it has on

the process of propagating information, like commands.

Using our formal model as a tool, we can express several

operations. The deletion of an edge (u, v) in the graph

is represented by a transformation D : G → G′ with

G′ := (V,E′) and E′ := E \ (u, v). This operation occurs,

for instance, when a peer performs its regular maintenance

for peer connectivity, and removes unreachable peer entries

4For simplicity reasons, we call a digraph G connected if its undirected
representation is connected, i.e., ∀v1, vn ∈ V ∃(v1, v2, ..., vn) with
(vi, vi+1) ∈ E, i = 1..(n− 1).

100

from its peer list. D∗ = Dn ◦Dn−1 ◦ . . . ◦D1 denotes the

composition of multiple delete operations. The insertion of

a new edge (u, v) in the graph (the introduction of a new

peer-to-peer relationship) can be phrased as a transformation

I : G→ G′ with G′ := (V ′, E′) where V ′ := V ∪ {v} and

E′ := E∪{(u, v)}. I∗ is the composition of multiple inserts.

A restriction of our model is that edge updates (modifying

existing peer list entries with more recent information) can-

not be expressed directly. This would require the ability to

parametrize and distinguish edges and significantly increase

the complexity of our model. However, if we regard edge

updates as part of a protocol logic at a higher level, we can

alter our model to include an update operation U := I ◦D,

defined as an edge deletion followed by an edge insertion.

U∗ denotes multiple subsequent updates.

The insert, update and delete operations on a P2P botnet

graph provide us with the primitives necessary to describe

the reconnaissance and mitigation strategies discussed in the

following section.

IV. ATTACKS AGAINST P2P BOTNETS

This section presents generic attacks against P2P botnets

and presents a formal description thereof. The attacks are

based on the following two observations: (1) In order for

a P2P botnet to be functional, participating peers must be

cooperative, i.e., they must communicate with other peers.

(2) Peers cannot be authenticated, as a secure authentication

scheme (which would involve a central trusted authority)

conflicts with the dynamic, self-organizing nature of P2P

networks. In summary, P2P botnets rely on the cooperation

of untrusted parties, two weaknesses that can be exploited.

In this section, we define generic attack methods, which

can be applied to any P2P botnet that is compliant with

our model. Then, we introduce classes of attacks against

the two intrinsic weaknesses that build on these methods:

Intelligence Gathering and Disruption and Destruction.

A. Attack Methods

The more basic attacks are represented by the Insert, Up-

date, and Delete primitives defined in the previous section.

For example, deleting an edge from a P2P graph results in

reduced overall connectivity and potentially has an influence

on the speed at which information propagates. Below, we

discuss four more advanced attack methods.

1) Graph Search: Many attacks rely on knowledge about

the P2P topology of a botnet. One approach to reconstruct

the P2P graph is visiting all nodes, requesting their peer

lists, and enumerating all edges. This can be achieved

through a graph search. We call the result a crawl graph of

G = (V,E) and denote it as GC = (V C⊆V, EC⊆E).
Peers v ∈ V : deg−(v) = 0 are invisible during the

graph search. This is a significant limitation of a graph

search. Furthermore, only routable peers can be contacted.

Consequently, the best possible graph search result is a

graph GC with EC = {(u, v) : u ∈ Vr, v ∈ V }. In

other words, in the optimal case, the graph search has

explored the peer lists of all routable peers. This is hard in

practice, since most P2P botnet topologies are so dynamic

that they change during the graph search, which leads to

inaccurate results. Also depending on the seed peer list,

some peers may not be explorable via graph search: Let

V = V ′ ∪ V ′′ and the graph search start with a peer in

V ′. Peers in V ′′ cannot be explored during graph search if

∀v ∈ V ′ ∩ V ′′ : v ∈ Vr ⇒ �(v, u ∈ V ′′) ∈ E.

Algorithm 1 describes a generic P2P botnet graph search

algorithm. In line 1, it is initialized with a set of seed

peers, which can be obtained through reverse engineering

bot samples or dynamic analysis. Peers that reply to peer list

requests are added to the set of cached routable peers V C
r in

line 5. Next, their neighboring peers are added to the peer

cache V C . The list of edges is updated in line 7. One can

obtain a snapshot of the P2P botnet’s state by stopping the

search process if it has not explored any new edges during a

pass over the peer cache. Better performance generally leads

to more accurate exploration results, because the longer a

cycle takes, the higher the chance that the topology changes

in the meantime. Another parameter is the peer selection

strategy (line 9). Most searches are performed breadth-first

by implementing V C as a queue to prioritize exploration of

local environments in rapidly changing topologies. Using a

stack instead would change it into a depth-first search.

Algorithm 1 P2P Botnet Graph Search

1: V C ← seed peer list
2: EC ← ∅
3: while true do

4: if peer list Lu ⊆ Eu received then

5: V C
r ← V C

r ∪ u
6: V C ← V C ∪ {v : (u, v) ∈ Lu}
7: EC ← EC ∪ Lu

8: else

9: select u ∈ V C

10: request peer list from u

2) Peer Injection: Most attacks against P2P botnets are

based on changes of the graph topology by manipulating

the set of edges or the set of vertices. The latter alone is not

reasonable, as a newly added peer can not affect the topology

as long as it is unknown to other peers. So in order to affect

the topology, manipulations of E are mandatory. If we let

I(v) : G → G′ = (V ′, E′) denote a parametrized insert

operation with V ′ = V ∪̇ v, E′ = E ∪̇ {(u, v)}, u ∈ V ,

we can define the injection of a peer v as a composition

I∗(v) := In(v) ◦ In−1(v) ◦ . . . ◦ I1(v). It follows that

deg−(v) ≥ 1. Note that v does not have to be routable.

3) Peer List Destruction: In contrast to peer injection,

peer list destruction describes “corrupting changes” to a

peer’s peer list. The context here is an individual peer,

101

not the entire P2P graph. To destroy a peer list, entries

can either be deleted or replaced with invalid (unreach-

able or non-routable) entries, i.e., peers from V \ Vr. We

let deg+
G
(v) denote the out-degree of v in G and define

D(v) : G → G′ = (V,E′) as a parametrized delete

operation with E′ = E \ (v, u), u ∈ V . D∗(v) is the

parametrized composition thereof, U(v) and U∗(v) are the

equivalent update operations. The destruction of v’s peer

list is a transformation R(v) := U∗(v) ◦ D∗(v) :
G → G′ = (V ′, E′). Note that updates may create new

vertices, thus the set of peers may change. It follows that

deg+
G′(v) ≤ deg+

G
(v) (reduced out-degree if edges were

deleted) and |{(v, u)}∩E′| < |{(v, u)}∩E|, u ∈ Vr (fewer

edges to routable peers through invalidation).

B. Class I: Intelligence Gathering

Attacks against P2P botnets are often preceded by at-

tempts to enumerate the infected hosts and collect infor-

mation about them. We distinguish two complementary

approaches, crawling and sensor nodes, and define attacks in

these categories based on the previously discussed methods.

1) Crawling: A standard approach for analyzing P2P

botnets is to visit as many peers as possible and collect

information about them. The collected information can be

anything that is accessible to other peers, which depends

on the specific communication protocol. For example, one

protocol may exhibit the operating system version, another

might include the current local time. Crawling is based

on graph search and represents an efficient way to gather

intelligence. However, the coverage that can be reached with

this approach depends heavily on the P2P protocol details.

If, for example, only routable peers are included in local

peer lists, the crawler’s view is very limited.

2) Sensor Nodes: If knowledge about the peers has

priority over graph reconstruction, an alternative strategy can

be used. Kang et al. introduced a method for enumerating

structured P2P botnets [12]. The authors proposed special

sensor nodes in the DHT space of a botnet. We generalize

this idea based on the observation that in current P2P botnets

peers are periodically contacted by their neighboring peers,

e.g., during regular peer list verification cycles. Introducing

a sensor can be achieved through peer injection. Sensors

can also be contacted by non-routable peers v ∈ Vn, which

potentially overcomes some of the shortcomings of crawling.

However, a sensor’s coverage depends on its popularity. The

in-degree deg−(s) of a sensor can be increased, for example,

by crawling the P2P graph and injecting s into any visited

peer’s peer list. Depending on the botnet protocol, s may

then be propagated further due to communication between

peers, thereby also reaching peers in Vn. Whether it is

necessary to continuously announce the sensor to maintain

its popularity, or peer list entries are long-lived and automat-

ically propagate, depends on the botnet’s peer list dynamics.

Thus, the characteristics of a botnet’s P2P protocol are vital

for the coverage achieved with this approach.

C. Class II: Disruption and Destruction

Reconnaissance is often only the first step in a series

of attacks that aim to render a botnet inoperable. We

further distinguish three disruptive attacks, of which two

are performed on the infrastructure layer (partitioning and

sinkholing) and one affects both the infrastructure and the

communication layer (poisoning).

1) Partitioning: One generic attack against a P2P botnet’s

infrastructure tries to prohibit the distribution of information

by partitioning the graph. For example, if certain nodes can

be identified as the source of new commands, one can try

to isolate these nodes by eliminating all edges with other

peers. To invalidate an edge, it can be deleted or replaced

by applying the peer list destruction method. The concrete

list of edges to eliminate depends on whether the protocol

is push or pull-based: If commands are to be pushed from

a peer v to its neighbors, one would execute R(v). If

commands are to be pulled from a peer v, one would execute

R(u) ∀u : (u, v) ∈ E. Note that in the latter case the edges

(u, v) are not easily determined, and that the attack may

require preceding reconnaissance steps.

Let R∗ denote a series of consecutive peer list destruction

operations. We define partitioning as a transformation R∗ :
G→ G′ = (V ′ ∪̇ V ′′, E) such that (u, v) ∈ E : u ∈ V ′ ⇒
v /∈ V ′′ ∧ u ∈ V ′′ ⇒ v /∈ V ′. In other words, the set of

peers is split into two disconnected subgraphs by removing

all edges between them.

In the most extreme scenario, each peer represents its

own partition, which makes propagation of information com-

pletely impossible. That is, the set of edges to routable peers

in the P2P graph is empty: ∀u ∈ V, v ∈ Vr : (u, v) /∈ E.

This is generally hard to achieve, as the foremost goal of

most P2P protocols is to keep a peer’s connectivity up.

Note that partitioning requires knowledge about the graph

topology, i.e., the edges to eliminate. Such knowledge can be

obtained by crawling, for example. However, the more edges

are eliminated, the harder it becomes to crawl the network.

Injecting a sensor node can help alleviate this problem.

A more general destructive transformation does not nec-

essarily create partitions, but it decreases the popularity

of nodes by deleting certain edges from the P2P graph,

resulting in a reduced in-degree for a peer. The respective

notation for this kind of attack is R∗ : G → G′ =
(V,E′), ∃v ∈ V : deg−

G′(v) < deg−
G
(v). Note that a reduced

in-degree of v implies a reduced out-degree of some u ∈ V
with (u, v) ∈ E, and vice versa. The more peers are attacked

in this manner, the more sparse the resulting graph becomes,

which potentially slows down information propagation. At-

tacks against “hot spots“ (very popular nodes) can have a

significant effect on the time required to propagate data.

102

2) Sinkholing: Another disruptive attack against a P2P

botnet infrastructure is called sinkholing. In this attack, all

edges are either invalidated or replaced with edges point-

ing to special nodes called sinkholes. A sinkholing attack

effectively transforms the infrastructure into a centralized

network, with the set of sinkholes S := {s1, s2, . . . , sn}
being the central component for all P2P communication.

The attack can be described as a transformation T : G→ G′

where T := I∗ ◦R∗ consists of peer injections and peer list

destructions. The goal is to reach a state where every live

peer knows at least one sinkhole but no other routable peer:

∀v ∈ Vr ∪̇ Vn ∃s ∈ S : (v, s) ∈ Ev ∧ (v, u �= s) ∈ Ev ⇒
u /∈ Vr.

A sinkholing attack is usually combined with a strategy to

announce the sinkholes’ existence in the botnet. Sometimes,

this part is performed by the sinkhole itself, since it has

comprehensive knowledge about other peers: Due to its

popularity, lots of peers contact the sinkhole on a regular

basis. If the sinkhole also performs graph searches (i.e., it

requests peer lists from connecting peers), it can reconstruct

parts of the botnet infrastructure and use this information

to announce itself. Other options are to utilize crawling, or

special injected peers that announce the sinkholes.

The sinkhole peers do not necessarily have to exist;

sometimes, they merely act as a “black hole” that absorbs

all incoming traffic. However, depending on a specific P2P

botnet’s program logic, sinkholes may have to implement a

subset of the protocol to retain their popularity. For example,

a sinkhole may have to exchange actual P2P messages to

remain in the local peer list of a bot.

3) Communication Layer Poisoning: The term poisoning

describes a class of attacks where specially crafted infor-

mation is injected into a botnet. This requires access to the

P2P infrastructure, which can be achieved by peer injection.

The range of poisoning attacks is huge: Depending on a

botnet’s command protocol one could distribute commands

to other bots or transmit invalid messages that put recipients

in a non-functional state. Botnets can be attacked both on

the infrastructure and on the communication layers. Well-

known examples are the Sybil Attack, where an attacker

introduces a peer with multiple identities, and the Eclipse

Attack, in which peers are strategically placed in the botnet

graph such that certain communication has to pass through

them on the route to their destination [26]. Since the concrete

implementation of poisoning attacks depends heavily on the

C&C protocol used, they cannot easily be captured in our

infrastructure-focused model without losing simplicity and

generality. We will provide examples of poisoning attacks

against specific botnets in Section VI-A.

V. P2P BOTNET INTELLIGENCE GATHERING

A P2P botnet topology offers unique possibilities to

gather intelligence about the bots. For example, botnet

researchers may attempt to estimate the population size

of a P2P botnet by enumerating infected hosts. Lists of

enumerated bot addresses can be used by CERTs and

ISPs to inform infected customers, or by banks to identify

fraudulent transactions. Furthermore, it is usually possible to

collect additional information, such as the operating system

version of infected systems, current C&C commands, or

hints about the geographical location of bots. In this section,

we experimentally evaluate and compare the reconnaissance

techniques described in Section IV, namely crawling and the

injection of sensor nodes, by applying them to the botnets

from Section II.

A. Resilience Against Peer Enumeration

We performed an initial analysis of how botnets are

protected against peer enumeration by reverse engineering

the communication protocols of six active botnet variants

(Figure 1). Table II summarizes our analyses of the different

peer list management strategies, augmented with data from

technical reports [2, 30, 7, 3, 21]. A vital aspect for peer

enumeration is the ability to uniquely identify peers. Our

comparison shows that not all botnet protocols use unique

peer identifiers. The lack of unique IDs can skew enumer-

ation results considerably. If a bot changes its IP address

during a crawl, the number of counted bots will be too high.

Similarly, if multiple bots share an Internet-facing IP ad-

dress, e.g., because they are behind a common NAT gateway,

the number of infections is underestimated. Storm, Waledac,

Zeus and Kelihos implement unique identifiers which we can

use to distinguish between bots. The Miner botnet does not

have any notion of peer IDs, while ZeroAccess, Nugache

and Sality do not typically exchange IDs.

Botnet IDs Vn # Preference Period

Kelihos v1 16 bytes 250 more recent 10m
Kelihos v2 16 bytes 250 more recent 10m
Kelihos v3 16 bytes 250 more recent 10m
Miner none all n/a 30m
Nugache (not shared) 100 more recent random
Sality v3 (not shared) 1 random 40m
Sality v4 (not shared) 1 random 40m
Storm 16 bytes � 10 small distance 10m
Waledac 20 bytes 100 more recent 30s
ZA v1 (not shared) � all n/a 15m
ZA v2 (not shared) � 16 more recent 256s
Zeus 20 bytes � 10 small distance 30m

Table II: P2P botnet properties relevant for crawling. IDs shows if
bots have unique identifiers. Vn indicates if non-routable peers are
included in peer lists. # shows the maximum number of peers that
can be exchanged at once. Preference describes how new peers are
included in a peer list. Period is the period between communication
rounds of peers with their neighbors.

In general, the set of peers V C learned through crawling

is limited to routable peers and their neighbors: V C ⊆
{(u, v)} : u ∈ Vr. Most botnets listed in Table II limit peer

list entries even further to only routable peers, with three

exceptions. Storm activated port forwarding using UPnP to

tunnel through NAT gateways. The two ZeroAccess variants

103

do not filter peer list entries in any way, and thus have no

restrictions on what entries they store.

The number of peers shared with other peers (as opposed

to the number stored in the local peer list Ev) also influences

peer enumeration. Only Miner and ZeroAccess v1 share their

complete list Ev; all others select a subset of it.

The peer selection strategy influences enumeration results

as well. Table II shows how many and which peers are

shared by the various botnets. The Sality variants choose

peers from their list Ev at random, whereas Storm and Zeus

compute XOR distances to a target ID (contained in the

peer list request) and share peers close to the target. The

remaining botnets share a subset of their Ev that contains

peers which have recently been verified to be alive.

Lastly, we look at the frequency with which peers contact

their neighbors. This frequency is especially important for

sensor nodes, as they rely on communication established by

other peers. The shorter the period shown in Table II, the

more timely the intelligence gathered at a sensor. Waledac

has an extremely short period of 30 seconds; Sality contacts

its neighbors every 40 minutes. Nugache implements a

random timeout of up to 4.5 hours between rounds of

communication.

B. Peer Enumeration: Real-World Observations

To evaluate how the peer enumeration methods (Sec-

tion IV-B) perform in practice, we implemented crawling

and sensor injection attacks for all four active P2P bot-

net families. In total, we enumerated eleven botnets that

were active in November 2012. We chose a measurement

period of 24 hours to account for diurnal patterns and

to limit the effects of IP churn. Due to the nature of

connectionless protocols, UDP-based botnets can generally

be crawled faster, resulting in greater coverage. Similarly,

peer injection is more efficient for UDP. Thus, we deployed

sensor nodes only in the seven UDP-based botnets, where

protocol limitations have less impact on the comparability

of the results. A comparison of the two methods for TCP-

based botnets (Kelihos v3 and ZeroAccess v1) is work

in progress. We injected our sensor nodes three weeks

before the measurements so that they had sufficient time

to become popular in each botnet. We monitored the daily

number of peers contacting our sensors to verify that the

popularity of our sensors had stabilized before performing

our measurements.

Table III details the enumeration results for a typical

weekday in November 2012 from 00:00 GMT on. All

values are based on the number of unique IP addresses

that were logged during the respective time period. While

using bot IDs would be more accurate, we chose to use

IP addresses in this comparison, as most botnets do not

share peer IDs. The Botnet column names the enumerated

botnets, augmented with the bot version number and the

fixed UDP/TCP port the botnet binds to, where applicable.

The Crawling section of the table represents our crawling

results, and the Sensor section displays the results for our

sensor injection experiments. In the crawling results, we

distinguish between peers that responded to peer list requests

(V C
r) and all peers found during crawling (V C). The column

|V C
r |/|V

C | contains the ratio of routable peers. This value

varies between 13% (Kelihos) and 40% (Sality) and depends

on the protocol properties in Table II, as discussed above.

The number |V S | in the Sensor column is the number of

peers that connected to our sensor during the 24 hour period.

The section Overlap shows the number of peers that were

identified by both methods. The numbers in parentheses

display the percentage of peers found by the crawler that

were also logged by the sensor. Finally, the Sensor Gain

Factor is the ratio of the number of peers found by the sensor

divided by the number of peers found through crawling.

The results show that crawling is less complete compared

to sensor based enumeration in all P2P botnets we have

evaluated. In particular, the Sality crawlers identified less

than 3% of the IP addresses that our sensor found, and got

responses from less than 1%. This means that crawls on

the Sality network underestimate the population by a factor

of 110.6 (version 3), and 113.3 (version 4), respectively.

A similar effect can be observed for other botnets that

rarely propagate peers v /∈ Vr, such as Zeus. If, on the

other hand, a botnet allows for such entries in its peer lists,

as ZeroAccess does, the divergence between crawling and

sensor based enumeration is reduced. This shows that one

has to be careful when extrapolating the size of the total

botnet population from crawling results.

Table III shows that the sensors identified 87.1–98.5%

of the peers verified by the crawlers (V C
r). Only in the

case of ZeroAccess does the sensor show less than 80%

completeness compared to the crawl of all peers (V C),

presumably because of the significant fraction of invalid IP

addresses obtained by the crawler. Our sensors enumerated

more than a million infections per day (unique IP addresses)

for ZeroAccess and Sality. Another interesting detail that can

be seen from the enumeration results is the distribution of

CPU architectures for ZeroAccess v2: 37% of the bots run

on 64 bit (ports 16465 and 16470), and 63% on 32 bit (ports

16464 and 16471). Despite biases caused by IP address

churn, we believe that our combination of crawling and

sensor injection results provides reasonable lower bounds

for the sizes of the botnets.

Depending on the protocol, a sensor may have the op-

portunity to perform additional validity checks for peers in

Vn. By sending packets to the sensor, a peer behind a NAT

establishes a punchhole which the sensor can use to send

requests to the peer to check if it responds in a protocol-

conformant way. Whether this is possible depends on the

transport layer protocol and the message dialogue used for

P2P communication. For example, if the botnet uses one

TCP session per message, NAT traversal is not possible.

104

Crawling Sensor Overlap Sensor Gain Factor

Botnet |V C | |V C
r | |V C

r |/|V
C | |V S | |V S ∩ V C | |V S ∩ V C

r | |V S |/|V C | |V S |/|V C
r |

Sality v3 22,351 8244 36.9% 912,090 19,583 (87.6%) 7508 (91.1%) 110.6 40.8
Sality v4 2113 846 40.0% 95,809 1928 (91.2%) 833 (98.5%) 113.3 45.3
ZAv2 16464 346,069 92,531 26.7% 438,511 241,052 (69.7%) 87,251 (94.3%) 4.7 1.3
ZAv2 16465 186,290 50.684 27.2% 227,328 147,554 (79.2%) 35,654 (91.9%) 4.5 1.2
ZAv2 16470 271,534 46,512 17.1% 294,871 147,780 (54.4%) 44,062 (94.7%) 6.3 1.9
ZAv2 16471 350,436 88,804 25.3% 443,039 254,946 (72.8%) 85,646 (96.4%) 5.0 1.3
Zeus 63,976 8306 13.0% 193,495 55,989 (87.5%) 7234 (87.1%) 23.3 3.0

Kelihos v3 15,017 1877 12.5% n/a n/a n/a n/a n/a
ZAv1 22292 7854 2757 35.1% n/a n/a n/a n/a n/a
ZAv1 25700 4701 3057 65.0% n/a n/a n/a n/a n/a
ZAv1 34354 35,046 9723 27.7% n/a n/a n/a n/a n/a

Table III: Comparison of P2P node enumeration techniques, measured in numbers of IP addresses found in 24 hours.

In the case of ZeroAccess v2, verification of NATed bots

by sensors is possible. Our results show that 98% of the

ZeroAccess v2 peers contacting the sensor also responds to

peer list requests. This type of peer verification is generally

impossible for crawlers, as they cannot reach peers in Vn.

Unverified IP addresses are a problem when reporting

potential infections to CERTs and affected institutions for

incident response. For this reason, we provide high quality

feeds of verified IP addresses based on our enumeration

efforts to the security community. We also take great care

of identifying other researchers participating in the analyzed

P2P botnets. For example, we identified two parties who

crawled the Zeus botnet and we excluded their randomly

generated peer IDs from our counts.

We summarize that, although helpful in certain situa-

tions, crawling can generally only provide a limited view

on the overall botnet population. As a result, previously

published botnet population estimates based on crawling

may be skewed. Having said that, we acknowledge that

crawling does have its purpose, as it is not always feasible to

apply sensor injection to a botnet. Another methodological

difference is that crawlers actively enumerate peers, while

sensors are reactive in that they wait to be contacted by

peers. Thus, for an ideal enumeration, one may need to

combine crawling and sensor injection.

C. Convergence Analysis

Another challenge when estimating the size of a botnet

is discussed by Kanich et al. [13]. Infected machines may

have dynamic IP addresses that change regularly. If an IP

address switch happens during the peer enumeration period,

a peer may be counted multiple times, unless the botnet uses

unique IDs (cf. Table II). Therefore, we counted both IP

addresses and peer IDs in our experiments, where possible.

Figure 3 compares these two values for the Zeus botnet. The

upper two lines show the peers that contacted the sensor, the

middle two lines show all crawled nodes (V C), and the lower

two lines depict the number of reachable nodes that were

found during crawling (V C
r). Each set of two lines shows

the number of IP addresses (upper line) and peer IDs (lower

0

20k

40k

60k

80k

100k

120k

140k

160k

180k

 0 2 4 6 8 10 12 14 16 18 20 22 24

n
u

m
b

e
r

o
f

ID
s
/I

P
s

hours since enumeration start at 00:00 GMT

sensor: IPs

sensor: IDs

crawl: all IPs

crawl: all IDs

crawl: active IPs

crawl: active IDs

Figure 3: Comparison of enumeration methods for Zeus.

line). For both enumeration methods, the lines showing IP

addresses and IDs deviate over time due to IP address churn.

While the number of IDs collected at the sensor converges

towards 140.000 near the end of the time period, there is

no obvious convergence in the other lines. An analysis of a

long-term enumeration run showed that the IP address churn

is significant for Zeus. On average, 19% of the bot IDs were

observed on multiple IP addresses during a 24 hour period.

We measured that 3/5 of these IDs appeared on a single

/8 network (possibly IP address churn due to ISP-enforced

redialing), whereas 2/5 of the IDs were observed in multiple

networks (possibly laptops moving among networks). Thus,

the IP address count is a less accurate metric for the true

number of infected hosts than the ID count.

Figure 3 also shows how the crawling and the sensor

node counts develop over time. The steep increase of the

sensor count at the beginning is caused by the fact that all

Zeus peers contact their neighbors every 30 minutes. After

this period, only peers that just learned about the sensor’s

presence and peers that just entered the botnet still contact

the sensor for the first time, and the curve flattens. The slight

variations in the lines for both methods are caused by the

105

0

5k

10k

n
u

m
b

e
r

o
f

c
ra

w
le

d
 I

P
s

Sality v3

0

0.5k

1k

Sality v4

0

5k

10k

ZeroAccess v1

0

50k

100k

ZeroAccess v2

0

1k

2k

Kelihos v3

0

5k

10k

0 2 4 6 8 10 12 14 16 18 20 22 24

time (hours)

Zeus

Figure 4: IP address count convergence during a 24h crawl.

0

500k

1m

n
u

m
b

e
r

o
f

o
b

s
e
rv

e
d

 I
P

s
 a

t
s
e
n

s
o

r

Sality v3

0

50k

100k

Sality v4

0

250k

500k

ZeroAccess v2

0

100k

200k

0 2 4 6 8 10 12 14 16 18 20 22 24

time (hours)

Zeus

Figure 5: IP address count convergence at a sensor over 24h.

start of working hours in Europe and in the United States.

Note that we were forced to rate-limit the crawling process,

as Zeus blacklists IP addresses that contact a peer too often.

Consequently, the crawling curve is much less steep than the

sensor node curve.

Figure 4 compares the IP address count convergence over

24 hours for all the active P2P botnets. A first observation

is that only for Kelihos this number converges relatively

quickly. This is due to the size of the set {v : ∃(u, v) ∈ E}.
Kelihos prefers more recent peers and shares them with

timestamps, thus new peers spread rapidly over the majority

of all peer lists. In all other botnets, crawling converges only

slowly – independent of their actual sizes. Figure 5 shows

that enumerations via sensor nodes converge at a similar

pace. In all cases, though, the sensors enumerate peers faster

than the crawlers, and the sensors find many more peers

than the crawlers. While IP address churn is one of the

reasons for slow node enumeration convergence, it is not

the only reason. The next subsection discusses our additional

observations regarding the dynamics of botnet populations.

-30k

-20k

-10k

0

10k

20k

30k

40k

50k

60k

70k

80k

90k

09/29 10/06 10/13 10/20 10/27 11/03 11/10

 new peer IDs / day
dead peer IDs / day
uniq peer IDs / hour

Figure 6: Zeus population footprint graph over six weeks. The
curve shows the hourly number of peer IDs contacting our sensor.
The bars show the daily number of peers joining (positive bars)
and leaving (negative bars) the botnet.

D. Dynamics of Botnet Populations

Apart from IP address churn, machines joining and leav-

ing the network (e.g., through new infections and disin-

fections) also cause a steady churn of peers. We assessed

this phenomenon for the Zeus botnet, by looking at sensor

data from six consecutive weeks. Zeus derives unique peer

IDs from host-based information – the peer ID is a hash

over the Windows ComputerName and the first hard drive’s

volume ID string, meaning that it remains static even across

cleanups and reinfections. We used the static IDs to uniquely

identify infected machines in order to measure population

sizes independently from IP address churn. The curve in

Figure 6 shows the number of peers that contacted our

sensor per hour. Clearly, the network footprint is larger

on weekdays and during working hours in Europe and the

United States. Similar diurnal patterns were observed for all

other monitored P2P botnets. The bars in Figure 6 represent

the number of joining (positive values) and leaving (negative

values) bots per hour. The figure shows that there is a steady

change in the network, with up to 25,000 new infections per

day. This highly dynamic behaviour means that P2P botnets

change significantly during node enumeration runs, so that

enumeration efforts are never completely accurate.

To summarize, current P2P botnets are not very resilient to

intelligence gathering. However, some botnets do implement

simple countermeasures against crawling, like rate limiting

of peer list exchanges and automated blacklisting of hard

hitters. While none of these measures renders crawling

impossible, they can slow down the enumeration process,

leading to less accurate results. The use of sensor nodes,

when possible, avoids these anti-crawling countermeasures,

and typically provides more reliable results.

VI. P2P BOTNET DISRUPTION AND DESTRUCTION

In this section, we evaluate the resilience of all currently

known P2P botnet families against the disruption and de-

struction attacks introduced in Section IV.

106

A. Communication Layer Poisoning Resilience

Depending on the implementation, it may be possible

to poison a P2P botnet using its own commands, or to

disrupt the C&C channel to prevent legitimate commands

from spreading. For example, if commands are not properly

authenticated to originate from the botnet operators (e.g.,

through digital signatures), defenders could issue arbitrary

commands, such as a removal instruction or a command to

stop spam activities. Storm is an example of a P2P botnet

that was vulnerable to both kinds of attacks. Commands

were published under periodically changing keys in a DHT.

The bots generated a set of time-dependent hashes and

queried the DHT for them. The responses encoded the

location of a C&C server, which was then contacted to

request orders. Holz et al. [9] showed how to perform an

Eclipse attack against the botnet by predicting the hash

generation algorithm and injecting peers with an ID close to

the current hashes. This effectively prevented bots from con-

necting to their C&C servers. In 2008, a group of researchers

also demonstrated how the Storm botnet is vulnerable to

command injection, and that anybody can push arbitrary

executables and run them on the infected machines5. Both

attacks were possible because the protocol lacked basic

security measures that would have prevented these attacks.

Botnet Crypto Signing Replay Possible

Kelihos v1 Blowfish, 3DES RSA2048
Kelihos v2 Blowfish, 3DES RSA2048
Kelihos v3 Blowfish, custom RSA2048
Miner none none � (no signing)
Nugache RSA, Rijndael RSA4096 �

Sality v3 RC4 RSA1024
Sality v4 RC4 RSA2048
Storm XOR none � (no signing)
Waledac RSA1024, AES none � (no signing)
ZeroAccess v1 RC4 RSA512 �

ZeroAccess v2 XOR RSA1024

Zeus chained XOR6 RSA2048 �

Table IV: Protocol security properties of P2P botnets.

Table IV summarizes the most important security aspects

of the P2P botnets that we analyzed. All bots, except Miner,

encrypt their communication. However, the used encryption

does not secure the botnets against disruptive attacks, as the

keys and algorithms can in all cases be found through reverse

engineering. Zeus and Sality also add random padding to

their messages, which is meant only to thwart network-

based signature detection. Additionally, all active botnets

secure their command layers with RSA signatures. This does

provide real security by preventing third parties from inject-

ing unauthorized new commands into the botnets. Although

Nugache, ZeroAccess v1, and Zeus prevent the forging of

5Presentation Stormfucker: 0wning the Storm Botnet, Chaos Communi-
cation Congress 25C3, Berlin, Germany, December 2008.

6Encrypts a message by performing a bytewise XOR operation with the
preceding byte, starting at the end of the message.

new commands through signing, they do not prevent replay

attacks because their commands do not carry nonces.

B. Sinkholing Resilience

As we discussed in Section IV-C2, sinkholing a P2P

botnet involves manipulation of the peer lists for all bots

in the botnet such that the bots’ peer list entries no longer

point to other bots, but instead to sinkholes. It is a very

effective way to disrupt the communication within a P2P

botnet. When performing a sinkholing attack, we distinguish

the following general steps.

1) Sinkhole announcement: We bootstrap the sinkholing

attack by announcing some sinkholes to as many peers

as possible.

2) Node isolation: We then try to eliminate all edges in the

P2P graph that do not point to a sinkhole. The goal of

this step is to isolate the bots from each other as much

as possible, rendering them unable to communicate

with other peers.

3) Fallback prevention: Some P2P botnets have other C&C

mechanisms that they fall back to under certain circum-

stances, e.g., if they have not received a new command

in some time. A sinkholing attack must ensure that bots

do not activate backup C&C channels to recover. This

step requires that either (1) the botnet’s backup channel

is somehow disabled, or (2) the bots are prevented from

entering into their fallback mode.

Botnet 1) Sinkhole 2) Node 3) Backup
announcement isolation C&C

Kelihos replace less recent all fast-flux
Miner append to existing not possible central
Nugache replace less recent 100 per message central
Sality replace low-rated 1 per IP address none
Storm replace any 20 per message none
Waledac replace less recent all fast-flux
ZeroA. v1 replace less recent all none
ZeroA. v2 replace less recent 16 per message none
Zeus replace any 10 per message DGA

Table V: Sinkholing resilience properties of P2P botnets.

Table V summarizes the sinkholing resilience properties

for all botnets, following the three strategic steps proposed

above. The first column shows how a sinkhole can replace

peer list entries. In the second column, we denote how many

entries can be destroyed in a single P2P exchange. The

third column lists fallback command-and-control channels, if

any. During our analysis, we evaluated how these properties

influence the feasiblity of sinkholing attacks against all

current P2P botnets by developing attack prototypes and

testing them in the wild. The results are described in the

remainder of this section.

1) Kelihos:

a) Sinkhole announcement: Kelihos has major weak-

nesses in all of its versions, since they are all based on

the same underlying protocol. The bots favor more recent

107

peers when merging received peer lists into their local

list Ev . It is possible to actively push new peer lists to

other peers, replacing their local entries all at once. As

shown in sinkholing attacks against Kelihos v1 and v2,

Kelihos can be sinkholed quite effectively by crawling the

network and poisoning every visited peer [3]. Although

only a few routable peers can be attacked initially, the

poisoned entries will then propagate across the network.

Since the Kelihos v3 botnet uses effectively the same P2P

protocol and architecture as Kelihos v1 and v2, a full scale

sinkholing attack analogous to the previous ones would

succeed again.

b) Node isolation: Node isolation in the Kelihos botnet

works very similar to sinkhole announcement. Since it

is possible to replace the entire peer list of a peer with

arbitrary entries, unlinking it from the P2P graph is trivial.

c) Fallback prevention: Kelihos implements a number

of backup channels that are activated by a bot if none

of its peers can be reached. The most important one

is a DNS fast-flux network. Every bot contains a hard-

coded domain name that points back to another infected

machine. This machine can be used as a seed node to

recover connectivity in the P2P network. If the botnet is

sinkholed correctly, Kelihos will not resort to the fast-flux

domains – as long as the sinkholes are responsive.

2) Sality:

a) Sinkhole announcement: Sality uses specialized “an-

nounce” messages to advertise itself to routable peers in

the P2P network. The protocol implements a reputation

scheme, in which each bot keeps track of a reputation

for all of its neighboring peers. A peer’s reputation is in-

creased if it correctly responds to requests, and decreased

otherwise [7]. An important detail of this scheme is that

bots only share peer list entries with high reputations with

each other. So in order to propagate an injected sinkhole

entry to non-routable peers we need to ensure that this

entry gains a high reputation by conforming strictly to

the Sality protocol. In our experiments, we were able to

achieve a high reputation, causing our sinkhole addresses

to be propagated to many non-routable peers.

b) Node isolation: The reputation system significantly

hardens the botnet against sinkholing attacks, because

Sality only allows peer list entries with low reputations

to be overwritten. Thus, while we succeeded in achieving

high reputations for our sinkholes, it is significantly more

difficult to evict existing high-reputation peers. However,

in current Sality implementations, we found a weakness

which allows us to poison even high-reputation peer list

entries. This requires knowledge of which IP addresses to

overwrite, which could for instance be gathered through

crawling. The vulnerability lies in the fact that a Sality

announcement message can be used to overwrite the port

associated with a peer list entry. This requires sending

an announcement with a spoofed IP address matching the

address of the entry to overwrite, but from a different

port. Such a message causes an update of the existing port

value, rendering the entry invalid. However, this method

can only be used against routable peers, as it is not

possible to send unsolicited announcement messages to

non-routable nodes. We were unable to find any other

ways to poison existing high-reputation Sality peer list en-

tries. Thus, we conclude that Sality’s design is extremely

resilient to sinkholing.

c) Fallback prevention: Sality does not implement a

backup C&C mechanism. However, as Sality is a down-

loader, it could recover from a sinkholing operation with

the help of previously dropped malware. Consequently,

prior to sinkholing P2P-based downloaders, one must

ensure that none of the downloaded files contain function-

ality (such as the ability to download and execute binaries)

that the botmaster could use to recover from the attack.

3) ZeroAccess:

a) Sinkhole announcement: ZeroAccess uses a constant

stream of broadcast messages to announce live peers in

the network. These broadcast messages can be leveraged

to announce sinkholes, too. However, due to the contin-

uous announcements of other peers, peer list entries are

very volatile and are typically overwritten within a few

seconds. Therefore, in order to remain in peer lists, it

is necessary to keep flooding the botnet with sinkhole

announcements. One issue is that the broadcast messages

are unable to reach non-routable peers. Nevertheless, the

more routable peers that contain sinkhole entries, the more

likely they are to propagate these entries to non-routable

peers. As soon as this occurs, the fact that these peers are

not reachable from the outside turns into an advantage;

subsequent peer announcements will not be able to easily

replace the sinkhole entries.

b) Node isolation: When a ZeroAccess bot receives a

new list of peers from another bot, it merges it with its

current peer list and keeps the most recent 256 entries,

as determined by a timestamp associated with every peer

list entry (“future” timestamps are not allowed). Thus,

bots can be isolated by sending them peer lists containing

invalid entries with very recent timestamps. The two

ZeroAccess variants differ in their peer list exchange pro-

tocols. In ZeroAccess v1, peer lists are only shared upon

request. Thus, poisoning peers in this network requires

serving poisoned peer list exchange messages from a

sinkhole whenever it is asked for a peer list. In contrast,

ZeroAccess v2 accepts unsolicited peer list messages,

which makes poisoning almost trivial. In either case, our

sinkholing prototype is able to completely overwrite the

peer lists of bots for each variant.

108

c) Fallback prevention: ZeroAccess does not implement

a fallback command-and-control channel. However, it is

potentially able to recover from sinkholing attacks by

using its downloaded malware plugins to repair damage

and reconnect bots to the P2P network. We did not find

such functionality when manually reverse engineering the

downloaded plugins (as of Nov 2012), although we found

one plugin that tracks all bots via centralized servers.

4) Zeus:

a) Sinkhole announcement: In the case of Zeus, we are

able to announce a sinkhole simply by sending requests to

bots. When receiving a request, a Zeus bot adds the source

to its peer list if it knows fewer than 50 peers. Because the

non-routable peers Vn cannot receive incoming requests,

this approach only allows us to announce our sinkholes

to routable peers Vr. However, our prototype has shown

that non-routable peers learn about our sinkholes through

peer list exchanges with peers in Vr. We refer to this

phenomenon as sinkhole propagation.

b) Node isolation: When a Zeus bot receives a request

from a peer whose unique ID is already in the peer list,

it updates the respective entry accordingly. This allows

us to overwrite peer list entries by sending requests with

spoofed source IDs to bots (every Zeus message carries

a source ID in its header). In our prototyped attack, we

continuously crawl the botnet to find edges between bots,

and then redirect as many of these edges as possible to

our sinkholes by using the strategy described above. Our

sinkhole then poisons non-routable peers by responding

to their periodic peer list requests with manipulated peer

list replies. Each request allows us to update up to ten

entries in the remote peer’s peer list (see Table V). Note

that we are forced to rate-limit this process because recent

versions of Zeus feature an automated IP-based blacklist,

which blocks IP addresses with high request rates.

c) Fallback prevention: Because Zeus bots periodically

verify that their neighboring peers are alive and re-

sponsive, our sinkhole is required to implement the full

P2P protocol to remain in bots’ peer lists. Additionally,

Zeus uses a backup strategy which severely complicates

long-term sinkholing. If a bot is unable to update itself

or its configuration file for seven days, it attempts to

obtain a fresh peer list by the following strategy: First, it

attempts to contact a set of hardcoded IP addresses to re-

establish contact with the P2P network. If this fails, the bot

attempts to download a new peer list by triggering a DGA

and randomly contacting one of 1,000 weekly generated

domains. Because both binaries and configuration files are

signed, they cannot be forged. As long as these secondary

channels remain intact, sinkholing operations against Zeus

are only temporarily successful.

We conclude that sinkholing attacks against Zeus or

Sality are difficult. Zeus requires a coordinated effort among

multiple domain registries and an attack on the P2P layer.

Sality makes it hard to isolate peers, as peers with a high

reputation cannot be eliminated from the peer lists of non-

routable bots. In the case of ZeroAccess, it is feasible to

execute a long-term sinkholing attack against all routable

peers. Since routable bots propagate sinkhole entries to non-

routable peers, we expect an attack to be successful over

time. Kelihos is relatively easy to sinkhole, but requires in-

tensive tracking by researchers due to its frequent encryption

and protocol changes.

C. Partitioning Resilience

Partitioning and sinkholing are closely related attacks.

They both destroy existing links in a botnet. Depending on

the goals of a botnet takedown operation, partitioning may

have advantages over sinkholing. For example, the injected

sinkholes are generally easily identified, as they stand out

against other bots due to their popularity. Thus, botnet

operators may start counter attacks against these sinkholes to

regain control over their infrastructure. Partitioning attacks

do not expose such attack surfaces and are immune to this

type of counter attack.

However, once a botnet has been partitioned, it is next to

impossible to regain control over it and perform additional

mitigation attempts — this is after all the exact goal of

a partitioning attack. There is usually no way to reverse

the effects. In contrast, sinkholing adheres control over the

botnet and allows for adapted attack strategies at a later

point, should that become necessary. More importantly, it

generates accurate logs of infected machines and can record

the exact time when an infected systems was last active.

These logs can be used to coordinate cleanups to ultimately

eliminate infections.

We believe that sinkholing is generally the preferred

attack, and that partitioning attacks should be seen as a last

resort. For this reason, we did not perform and evaluate

large-scale partitioning attacks against the live botnets we

studied. Instead, we restricted our tests to the smallest

possible sub-graph, consisting of only a single peer. We

were able to prove that in all cases isolation of nodes is

possible. Non-routable peers v ∈ Vn can remain isolated

forever, as there is no way for them to recover unless some

backup mechanism re-establishes contact with the botnet.

We found routable peers to recover quickly in the botnets

we studied, as they are still known to other peers even if their

out-degree deg+(v) = 0. Depending on the P2P protocol,

these peers may contact the attacked peer and propagate

new peer list entries to it. A partitioning attack may not

be successful unless it affects the whole P2P network by

aggressively eliminating edges until all nodes are isolated.

109

VII. DISCUSSION AND FUTURE WORK

Attacking P2P botnets raises some controversy. In this

section, we discuss the most pressing controversial issues,

as well as directions for future work.

To begin with, attacks like sinkholing involve unsolicited

communication with infected hosts, which could be consid-

ered unethical by some. Proponents of such attacks might

argue that sinkholing does not cause additional harm, as

infected hosts already communicate with other bots.

Another ethical concern is the level of detail our work

should reveal to the public about botnet resilience. The

concern is that botmasters could use our insights to harden

their botnet designs. Therefore, we describe our results such

that they cannot be directly applied by botmasters to harden

their botnets. On a reassuring note, several detailed strategies

for resilient P2P botnet designs have been publicly proposed,

but we do not know of any real botnets that make use of

these ideas [22, 31, 32, 10]. We believe that the potential of

our work to assist security experts justifies its publication.

We hope that our insights will help avoid damage to innocent

third parties caused by the common takedown problems

pointed out by Dittrich et al. [6].

While our evaluation shows that some P2P botnets exhibit

a high level of resilience, we also find that all real-world

P2P botnets are susceptible to at least one of the mitigation

strategies we model. Regardless, implementing mitigation

strategies against new P2P botnets remains non-trivial due

to the need to understand the peculiarities of each botnet’s

C&C protocol. Additionally, attacking networks containing

millions of peers requires significant resources which may

need to remain available over the long term. We believe that

a discussion is required concerning alternative mitigation

strategies against P2P botnets. Moreover, we think there is a

pressing need for debate to establish clear boundaries on how

far authorities are allowed to go when disabling P2P botnets.

We currently see several alternative mitigation possibilities

which we believe are deserving of further analysis.

First, it is sometimes possible to disinfect bots remotely

by exploiting vulnerabilities in bot software. This strategy

is currently considered unethical because it could cause

collateral damage to the hosts being disinfected if executed

without great care. Nevertheless, it is a method which may

need to be considered if future P2P botnets become immune

to more conventional countermeasures.

A second vector for mitigating P2P botnets is to imper-

sonate the botmaster by forging commands for the bots. Sec-

tion VI-A has shown that this approach is often prohibited by

the use of signed commands. However, it may sometimes be

possible for law enforcement to capture infrastructure used

by the botmaster to create commands, in which case infected

hosts could be commanded to clean up.

Finally, some botnets could be mitigated by attacking their

monetization models. For example, Zeus gathers banking

credentials, and its botmaster relies on the accuracy of the

stolen data. Inserting large amounts of invalid banking data

could render the botnet unprofitable for the botmaster. For

spamming botnets, node enumeration could be used to create

spam blacklists, reducing the botnets’ revenue.

VIII. RELATED WORK

In this work, we have discussed the resilience of several

current and past P2P botnets. For a full discussion of each

of the botnets, we refer the interested reader to malware

analysis reports [14, 2, 15, 30, 7, 3, 21]. We have used results

from these works to aid our manual code analyses, although

in most cases the P2P resilience was yet undocumented.

As noted earlier, a few examples of enumeration and

takedown operations against past P2P botnets exist. For

instance, Holz et al. performed an early crawl of the Storm

botnet, and also discussed some general resilience aspects

of structured P2P botnets [9]. The sinkholing results of

Stock et al. against Waledac represent the first successful

attack against an unstructured P2P botnet [23]. Sinclair et al.

have described the vulnerabilities of Waledac in detail [21].

The attacks against previous variants of Kelihos are also

examples of recent sinkholing successes against unstructured

P2P botnets [27]. Although several works on the resilience

of individual botnets exist, our work is the first to system-

atically compare the resilience of all live P2P botnets.

The problem of crawling P2P botnets was first addressed

by Kanich et al., based on lessons learned while crawling

the Storm botnet [13]. An alternative concept to enumerate

infected hosts (included NATed hosts) in structured P2P

botnets was proposed by Kang et al. [11]. Their method

involves the introduction of many fake nodes (sensors) into

the target structured botnet. These sensors find infected

hosts by monitoring search requests from bots looking for

commands. We extended this approach and applied it to

several unstructured P2P botnets, providing us with much

more accurate enumeration results than traditional crawling.

In several previous works, graph models have been used

to describe network structures. Holme et al. used graph

models to study the response of complex networks to several

attacks [8]. The first application of random graphs, small

world structures, and scale free networks in the context of

botnets was given by Dagon et al. [4]. Davis et al. used graph

simulations to analyze the impact of bot disinfections on the

communication effectiveness of P2P botnets [5]. Recently

Yen and Reiter discussed the role of assortative mixing in

P2P botnets and its consequences for network resilience

and recovery [33]. However, to the best of our knowledge,

our work is the first to introduce formal definitions for the

systematization of attacks against P2P botnets.

To explore the threats we may expect from future P2P

botnets, several researchers have designed their own theo-

retical highly resilient P2P botnets [22, 31, 32, 10]. We are

not aware of existing P2P botnets based on these proposals.

110

IX. CONCLUSION

We have presented a model which formalizes reconnais-

sance and disruption attacks to support mitigation efforts

against P2P botnets. We have used this model to analyze

several live real-world P2P botnets in two ways.

First, we have estimated and compared the population

sizes of current P2P botnets using crawlers and sensor nodes.

We have shown that sensor nodes reveal large numbers of

bots which cannot be found using crawlers. We conclude

that combining crawlers and sensor nodes can provide much

more accurate population estimates than crawling alone.

Second, we have evaluated the disruption resilience of

all four current P2P botnet families through a combination

of static analysis and attack prototyping. Our evaluation

has shown weaknesses which could be used to disrupt

the Kelihos and ZeroAccess botnets. However, we have

also shown that the Zeus and Sality botnets are highly

resilient to sinkholing attacks, the currently most used class

of disruptive attacks against P2P botnets. We believe our

findings demonstrate that research on alternative P2P botnet

mitigation methods is urgently needed.

X. ACKNOWLEDGEMENTS

We sincerely thank The Shadowserver Foundation and

SURFnet for their friendly support. We also thank Dave

Dittrich for his insights on Nugache, James Wyke and Kevin

McNamee for the exchange on ZeroAccess, and Tomasz

Bukowski for the collaboration on Zeus. This work was

supported by the Federal Ministry of Education and Re-

search of Germany (Grant 16BY1110, MoBE), the European

Research Council Starting Grant “Rosetta” and the EU FP7-

ICT-257007 SysSec project.

REFERENCES

[1] M. Antonakakis, R. Perdisci, Y. Nadji, N. Vasiloglou, S. Abu-Nimeh,
W. Lee, and D. Dagon. From Throw-Away Traffic to Bots: Detecting
the Rise of DGA-Based Malware. In Proceedings of the 21st USENIX
Security Symposium, 2012.

[2] T. Bukowski. ZeuS v3 P2P Network Monitoring, 2012. Technical
Report by CERT.pl.

[3] P.-M. Bureau. Same Botnet, Same Guys, New Code: Win32/Kelihos.
In VirusBulletin, 2011.

[4] D. Dagon, G. Gu, C. P. Lee, and W. Lee. A Taxonomy of Botnet
Structures. In Proceedings of the 23rd Annual Computer Security
Applications Conference, 2007.

[5] C. R. Davis, S. Neville, J. M. Fernandez, J.-M. Robert, and
J. McHugh. Structured Peer-to-Peer Overlay Networks: Ideal Botnet
Command and Control Infrastructures? In Proceedings of the 13th
European Symposium on Research in Computer Security, 2008.

[6] D. Dittrich. So You Want to Take Over a Botnet. In Proceedings of
the 5th USENIX conference on Large-Scale Exploits and Emergent
Threats, 2012.

[7] N. Falliere. Sality: Story of a Peer-to-Peer Viral Network, 2011.
Technical Report by Symantec Labs.

[8] P. Holme, B. J. Kim, C. N. Yoon, and S. K. Han. Attack Vulnerability
of Complex Networks. Physical Review E, vol. 65, 2002.

[9] T. Holz, M. Steiner, F. Dahl, E. Biersack, and F. Freiling. Measure-
ments and Mitigation of Peer-to-Peer-based Botnets: A Case Study
on Storm Worm. In Proceedings of the 1st USENIX Workshop on
Large-Scale Exploits and Emergent Threats, 2008.

[10] R. Hund, M. Hamann, and T. Holz. Towards Next-Generation Botnets.
In Proceedings of the 2008 European Conference on Computer
Network Defense, 2008.

[11] B. Kang, E. Chan-Tin, C. P. Lee, J. Tyra, H. J. Kang, C. Nunnery,
Z. Wadler, G. Sinclair, N. Hopper, D. Dagon, and Y. Kim. Towards
Complete Node Enumeration in a Peer-to-Peer Botnet. In Proceedings
of the 4th International Symposium on Information, Computer, and
Communications Security, 2009.

[12] J. Kang and J.-Y. Zhang. Application Entropy Theory to Detect New
Peer-to-Peer Botnets with Multi-chart CUSUM. In Proceedings of the
2nd International Symposium on Electronic Commerce and Security.
IEEE Computer Society, 2009.

[13] C. Kanich, K. Levchenko, B. Enright, G. M. Voelker, and S. Savage.
The Heisenbot Uncertainty Problem: Challenges in Separating Bots
from Chaff. In Proceedings of the 1st USENIX Workshop on Large-
Scale Exploits and Emergent Threats, 2008.

[14] A. Lelli. Zeusbot/Spyeye P2P Updated, Fortifying the Botnet,
2012. Technical Report by Symantec Labs: http://www.symantec.
com/connect/node/2135671.

[15] K. McNamee. Malware Analysis Report: ZeroAccess/Sirefef, 2012.
Technical Report by Kindsight Security Labs.

[16] J. Nazario and T. Holz. As the Net Churns: Fast-Flux Botnet Ob-
servations Tracking Fast-Flux Domains. In Proceedings of the 3rd
International Conference on Malicious and Unwanted Software, 2008.

[17] P. Porras, H. Saidi, and V. Yegneswaran. Conficker C Analysis, 2009.
SRI International Technical Report.

[18] D. Plohmann and E. Gerhards-Padilla. Case Study of the Miner
Botnet. In Proceedings of the 4th International Conference on Cyber
Conflict, 2012.

[19] C. Rossow, C. J. Dietrich, H. Bos, L. Cavallaro, M. van Steen, F. C.
Freiling, and N. Pohlmann. Sandnet: Network Traffic Analysis of
Malicious Software. In ACM EuroSys BADGERS, 2011.

[20] V. R. Sergey Golovanov. TDSS, 2010. Technical Report: http://www.
securelist.com/en/analysis/204792131/.

[21] G. Sinclair, C. Nunnery, and B. Kang. The Waledac Protocol: The
How and Why, 2009. Technical Report by Infrastructure Systems
Research Lab/University of North Carolina.

[22] G. Starnberger, C. Kruegel, and E. Kirda. Overbot: A Botnet Protocol
Based on Kademlia. In Proceedings of the 4th International Confer-
ence on Security and Privacy in Communication Networks, 2008.

[23] B. Stock, M. Engelberth, F. C. Freiling, and T. Holz. Walowdac –
Analysis of a Peer-to-Peer Botnet. In Proceedings of the European
Conference on Computer Network Defense, 2009.

[24] B. Stone-Gross, M. Cova, L. Cavallaro, B. Gilbert, M. Szydlowski,
R. Kemmerer, C. Kruegel, and G. Vigna. Your Botnet is My Botnet:
Analysis of a Botnet Takeover. In Proceedings of the 16th ACM
Conference on Computer and Communications Security, 2009.

[25] S. Stover, D. Dittrich, J. Hernandez, and S. Dietrich. Analysis of the
Storm and Nugache Trojans: P2P is here. In USENIX; login, vol. 32,
no. 6, 2007.

[26] G. Urdaneta, G. Pierre, and M. van Steen. A Survey of DHT Security
Techniques. ACM Computing Surveys, vol. 43, 2011.

[27] T. Werner. Botnet Shutdown Success Story: How Kaspersky Lab
Disabled the Hlux/Kelihos Botnet, 2011. Technical Report: http:
//www.securelist.com/en/blog/208193137/.

[28] T. Werner. The Miner Botnet: Bitcoin Mining Goes Peer-To-Peer,
2011. Blog article by Kaspersky Lab: http://www.securelist.com/en/
blog/208193084/.

[29] T. Werner. Kelihos.C: Same Code, New Botnet, 2012. Blog article
by CrowdStrike: http://blog.crowdstrike.com/2012/03/kelihosc-same-
code-new-botnet.html.

[30] J. Wyke. ZeroAccess, 2012. Technical Report by SophosLabs.
[31] G. Yan, S. Chen, and S. Eidenbenz. RatBot: Anti-enumeration Peer-

to-Peer Botnets. In Lecture Notes in Computer Science, vol. 7001,
2011.

[32] G. Yan, D. T. Ha, and S. Eidenbenz. AntBot: Anti-Pollution Peer-to-
Peer Botnets. In Journal of Computer Networks, vol. 55, 2011.

[33] T.-F. Yen and M. K. Reiter. Revisiting Botnet Models and Their
Implications for Takedown Strategies. In Proceedings of the 1st
Conference on Principles of Security and Trust, 2012.

111

