
PRIVEXEC: Private Execution as an Operating System Service

Kaan Onarlioglu, Collin Mulliner, William Robertson and Engin Kirda

College of Computer and Information Science
Northeastern University

Boston, MA, USA
{onarliog,crm,wkr,ek}@ccs.neu.edu

Abstract—Privacy has become an issue of paramount im-
portance for many users. As a result, encryption tools such as
TrueCrypt, OS-based full-disk encryption such as FileVault,
and privacy modes in all modern browsers have become
popular. However, although such tools are useful, they are not
perfect. For example, prior work has shown that browsers
still leave many traces of user information on disk even if
they are started in private browsing mode. In addition, disk
encryption alone is not sufficient, as key disclosure through
coercion remains possible. Clearly, it would be useful and
highly desirable to have OS-level support that provides strong
privacy guarantees for any application – not only browsers.

In this paper, we present the design and implementation
of PRIVEXEC, the first operating system service for private
execution. PRIVEXEC provides strong, general guarantees of
private execution, allowing any application to execute in a mode
where storage writes, either to the filesystem or to swap, will not
be recoverable by others during or after execution. PRIVEXEC
does not require explicit application support, recompilation, or
any other preconditions. We have implemented a prototype of
PRIVEXEC by extending the Linux kernel that is performant,
practical, and that secures sensitive data against disclosure.

Keywords-privacy; operating systems;

I. INTRODUCTION

Privacy has become an issue of paramount importance for

for many users. The increasing significance of computers

in our daily lives, whether to work, to entertain, or to

communicate, has resulted in the present situation where our

computers store immense amounts of personal information.

Since, in many cases, users do not necessarily want to

share this information with others (e.g., political affiliation

with a superior, or records of communication with the

press) a number of approaches exist toward restricting the

disclosure of personal information to the wrong parties. For

the network, privacy-related goals can include data confi-

dentiality through encryption, or disassociation of endpoints

engaged in communication. Network-based approaches can

range from using simple steps such as social networks that

allow for fine-grained control of information disclosure,

to anonymizing virtual private networks, to onion routing

systems like Tor.

On the client, approaches to preserving user privacy often

involve preventing sensitive data from being exposed in

the clear on persistent storage. Web browsers serve as a

canonical example of such an approach. As part of their

normal execution, browsers store a large amount of personal

information that could potentially be damaging were it to be

disclosed, such as the browsing history, bookmarks, cache,

cookie store, or local storage contents. In recognition of the

fact that users might not want to leave traces of particularly

sensitive browsing sessions, browsers now typically offer a

“private browsing mode” that attempts to prevent persistent

modifications to storage that could provide some indication

of the user’s activities during such a session. In this mode,

sensitive user data that would normally be persisted to disk is

instead only stored temporarily, if at all, and when a private

browsing session ends, this data is discarded.

Private browsing mode has come to be a widely-used

feature of major browsers. However, its implementation

as an application-specific feature has significant disadvan-

tages that are important to recognize. First, implementing a

privacy-preserving execution mode is extremely difficult to

get right. For instance, prior work by Aggarwal et al. [12]

has demonstrated that all of the major browsers leave traces

of sensitive user data on disk despite the use of private

browsing mode. Second, if any sensitive data does reach

stable storage, it is difficult for user-level applications to

guarantee that this data will not be recoverable via forensic

analysis. For example, modern journaled filesystems make

disk-wiping techniques unreliable, and applications must be

careful to prevent sensitive data from being swapped to disk

through judicious use of system calls such as mlock on

Linux.

One way to avoid leaving traces of sensitive user data

in the clear on persistent storage is to use cryptographic

techniques such as full-disk encryption. Here, the idea is to

ensure that all application disk writes are encrypted prior to

storage. Therefore, regardless of the nature of the data that is

saved to disk, users without knowledge of the corresponding

secret key will not be able to recover any information. While

this is a powerful and realizable technique, it nevertheless

has the significant disadvantage that users can be coerced,

through legal or other means, into disclosing their keys, at

which point the encryption becomes useless.

These concerns suggest that a) private execution is a

feature that is best provided by the operating system, where

strong privacy guarantees can be provided to any application

and analyzed for correctness; and, b) standard cryptographic

2013 IEEE Symposium on Security and Privacy

1081-6011/13 $26.00 © 2013 IEEE

DOI 10.1109/SP.2013.24

206

techniques such as disk encryption do not satisfactorily solve

the problem.
In this paper, we present the design and implementation

of PRIVEXEC, a novel operating system service for private

execution. PRIVEXEC provides strong, general guarantees

of private execution, allowing any application to execute

in a mode where storage writes, either to the filesystem

or to swap, will not be recoverable by others during or

after execution. PRIVEXEC achieves this by binding an

ephemeral private execution key to groups of processes

that wish to execute privately. This key is used to encrypt

all data stored to filesystems, as well as process mem-

ory pages written to swap devices, and is never exposed

outside of kernel memory or persisted to storage. Once a

private execution session has ended, the private execution

key is securely wiped from volatile memory. In addition,

inter-process communication (IPC) restrictions enforced by

PRIVEXEC prevent inadvertent leaks of sensitive data to

public processes that might circumvent the system’s private

storage mechanisms.
PRIVEXEC does not require application support; any

unmodified, legacy binary application can execute privately

using our system. Due to the design of our approach,

users cannot be coerced into disclosing information from a

private execution. We also demonstrate that our prototype

implementation of PRIVEXEC, which we construct using

existing, well-tested technologies as a foundation, incurs

minimal performance overhead. Indeed, for many popular

application scenarios, PRIVEXEC has no discernable impact

on the user experience aside from its significant privacy

benefits.
In summary, our contributions are the following.

• We propose PRIVEXEC, a novel operating system ser-

vice for private execution, that provides strong privacy

guarantees to any application without requiring explicit

application support, recompilation, or any other precon-

ditions.

• We describe a prototype implementation of PRIVEXEC

for Linux, which leverages the short-lived nature of

the private execution model to associate protected,

ephemeral private execution keys with processes that

can be securely wiped after use such that they cannot

be recovered by a user or adversary.

• We evaluate the functionality and performance char-

acteristics of our implementation, and show that it is

performant, practical, and that it effectively secures

sensitive data against disclosure.

The remainder of the paper is structured as follows.

Section II describes the threat model we assume for this

work. Section III presents the design of PRIVEXEC, while

Section IV discusses our implementation of the system as

a modification to the Linux kernel. Section V presents

an evaluation of the functionality and performance of our

PRIVEXEC prototype. Section VI discusses the limitations

of PRIVEXEC. Finally, Sections VII and VIII present related

work and briefly conclude.

II. THREAT MODEL

Our primary motivation for designing PRIVEXEC is to

prevent the disclosure of sensitive user information involved

in short-lived private execution sessions. The model for

these private execution sessions is similar to the private

browsing mode implemented in most modern browsers, but

generalized to any user-level application.

We divide the threat model we assume for this work into

two scenarios, one for the duration of a targeted private

execution session, and another for after a session has ended.

For the first scenario, we assume that an adversary can

have remote access to the target system as a normal user.

Due to normal process-based isolation, the attacker cannot

inspect physical memory, kernel virtual memory, or process

virtual memory for processes labeled with a different user

ID. Furthermore, we assume that an active network attacker

can drop, reorder, or modify traffic, or could control a remote

endpoint, such as a web site, that the user communicates

with. As with private browsing mode, we rely on common

mechanisms such as SSL/TLS and user awareness to prevent

the disclosure of sensitive information in this case.

The threat model for the second scenario corresponds to

a technically sophisticated adversary with physical access

to a target system after a private execution session has

ended. In this scenario, the adversary has complete access

to the contents of any local storage such as hard disks or

non-volatile flash memory, as well as the system RAM. It

is assumed that the adversary has access to sophisticated

forensics tools that can retrieve insecurely deleted data from

a filesystem, or process memory pages from swap devices.

Common to both scenarios is the assumption of a “benign-

but-buggy”, or perhaps “benign-but-privacy-unaware”, ap-

plication. In particular, our threat model does not include

applications that maliciously transmit private information

to remote parties, or users that do the same. However, as

we describe in the next section, PRIVEXEC aims to avoid

inadvertent disclosure of private information.

III. PRIVEXEC DESIGN

In this section, we first outline the security guarantees that

our system aims to provide, and then elaborate on the privacy

policies that a PRIVEXEC-enabled system must enforce for

the filesystem, swap space, IPC, and memory isolation. We

defer a discussion of the details of our prototype implemen-

tation to Section IV.

A. Security Properties and Design Goals

PRIVEXEC provides private execution as a generic operat-

ing system service by creating a logical distinction between

public processes and private processes. While public pro-

cesses execute with the usual semantics regarding access

207

P1 P2

P3 P4

Public Processes

P6
{PEK }x

Private Process Group

Private
Container

Disk
reads, writes

P7
{PEK }y

Disk
reads, writes

Public
Filesystem

Disk readsDisk
reads, writes

P8
{PEK }y

Private
Container

Disk
reads, writesP5

IPC

IPC

IPC

x

Private Process Groupy

Figure 1. Overview of the design of PRIVEXEC. Public processes behave
as normal applications, with read-write access to one or more public
filesystems and unrestricted IPC in that they can write to all other processes.
Private processes, however, have read-only access to the public filesystem.
All private process writes are redirected to a dedicated temporary secure
storage container that persists only for the lifetime of the process and
is irrevocably discarded at process exit. Data stored in this container is
encrypted with a protected, process-specific private execution key (PEK)
that is never revealed. Private process swap is conceptually handled in
a similar fashion. Finally, private processes cannot write data to public
processes or unrelated private processes via IPC channels.

to shared system resources, private processes are subject to

special restrictions to prevent disclosure of sensitive data

resulting from private execution. In the PRIVEXEC model,

private processes might execute within the same logical

privacy context, where resource access restrictions between

processes sharing a context are relaxed. We refer to private

processes related in this way as private process groups.

The concrete security properties that our system provides

are the following.

(S1) Data explicitly written to storage must never be re-

coverable without knowledge of a secret bound to an

application for the duration of its private execution.

(S2) Application memory that is swapped to disk must

never be recoverable without knowledge of the ap-

plication secret.

(S3) Data produced during a private execution must never

be passed to processes outside the private process

group via IPC channels.

(S4) Application secrets must never be persisted, and never

be exposed outside of protected volatile memory.

(S5) Once a private execution has terminated, application

secrets and data must be securely discarded.

Together, (S1), (S2) and (S3) guarantee that data resulting

from a private execution cannot be disclosed without access

to the corresponding secret. (S4) ensures that users cannot

be coerced into divulging their personal information, as they

do not know the requisite secret, and hence, cannot provide

it. (S5) implies that once a private execution has ended, it

is computationally infeasible to recover the data produced

during that execution.

In addition, we set out to satisfy the following design

goals for the system.

(D1) PRIVEXEC must be generic; it must be applicable to

any type of application, running on any filesystem

and block I/O device. It must not require explicit

cooperation on behalf of applications that wish to

make use of the private execution service, including

source code modification, or recompilation against a

new API or library.

(D2) PRIVEXEC must be flexible; users should be able

to apply it selectively to arbitrary applications to

execute them privately as desired. At the same time,

PRIVEXEC must not have any negative impact on

other public processes running on the system.

(D3) After launching a private process, PRIVEXEC must

operate automatically, without requiring any manual

intervention on behalf of the user.

(D4) Finally, the system must introduce minimal perfor-

mance overhead relative to normal execution.

Figure 1 depicts an overview of the design of PRIVEXEC.

B. Filesystem

Public processes have the expected read-write access to

public filesystems. Private processes, on the other hand, are

short-lived processes that have temporary secure storage
containers. This storage container is allocated only for the

lifetime of a private execution and is accessible only to the

private process group it is associated with.

Each private process group is bound to a private execution
key, or PEK, which is the basis for uniquely identifying a

privacy context. This PEK is randomly generated at private

process creation, protected by the operating system, never

stored in non-volatile memory, and never disclosed to the

user or any other process. The PEK is used to encrypt all

data produced during a private execution before it is written

to persistent storage within the secure container. In this

way, PRIVEXEC ensures that sensitive data resulting from

private process computation cannot be accessed through the

filesystem by any process that does not share the associated

privacy context. Furthermore, when a private execution

208

terminates, PRIVEXEC securely wipes its PEK, and hence

makes it computationally infeasible to recover the encrypted

contents of the associated storage container.

Although all new files created by a private process must

clearly be stored in its secure container, applications of-

ten need to access files that already exist in the normal

filesystem in order to function correctly. For instance, most

applications load shared libraries and read configuration files

as part of their normal operation. The OS needs to ensure

that such read requests are directed to the public filesystem.

An even more complicated situation arises when a private

process attempts to modify existing files. In that case, we

need to create a separate private copy of the file in the

process’ secure container, and redirect all subsequent read

and write requests for that file to the new copy. PRIVEXEC

ensures that private processes can only write to the secure

storage container while they still have a read-only view of

the public filesystems by enforcing the following copy-on-

write policy.

• For a write operation,

– if the destination file does not exist in the filesys-

tem or in the secure container, a new file is created

in the container;

– if the file exists in the filesystem, but not in the

container, a new copy of the file is created in the

container, and the write is performed on this new

copy;

– if the file exists in the container, the process

directly modifies it regardless of whether it exists

in the filesystem.

• For a read operation:

– if the file exists in the container, it is read from

there regardless of whether it also exists in the

filesystem;

– if the file exists in the filesystem but not in the

container, the file is read from the filesystem;

– if the file exists neither in the filesystem nor in the

container, the read operation fails.

C. Swap Space

In addition to protecting data written to filesystems by a

private process, PRIVEXEC must also preserve the privacy

of virtual memory pages swapped to disk. This is different

from existing approaches to swap encryption, which use a

single key to encrypt the entire swap device, and fail to

meet our security requirements in the same way that full-

disk encryption also does not. Since swap space is shared

between processes with different user principals, PRIVEXEC

encrypts each private process memory page that is swapped

to disk with the PEK of the corresponding process as

in the filesystem case, and thus imposes a per-application

partitioning of the system swap.

D. Inter-Process Communication

The private storage mechanisms described in the previous

sections effectively prevent sensitive data resulting from

private computation from being stored in the clear. However,

applications frequently make use of a number of IPC chan-

nels during their normal operation. Without any restrictions

in place, private processes might use these channels to

inadvertently leak sensitive data to a public process. If that

public process in turn persists that data, it would circumvent

the protections PRIVEXEC attempts to enforce. Therefore,

PRIVEXEC must also enforce restrictions on IPC to prevent

such scenarios from occurring.

Specifically, PRIVEXEC ensures that a private process

can write data via IPC only to the other members of its

group that share the same privacy context. In other words,

a private process cannot write data to a public process, or

to an unrelated private process.

As usual, public processes can freely exchange data with

other public processes. Note that public processes can also

write data to private processes, since data flow from a public

process to a private process does not violate the security

properties of PRIVEXEC.

E. Memory Isolation

Enforcing strong memory isolation is essential to the

private execution model, not only for protecting the virtual

address space of a private process, but also for preventing the

disclosure of PEKs. To this end, PRIVEXEC takes measures

to enforce process and kernel isolation boundaries against

unprivileged users for private processes, in particular by

disallowing standard exceptions to system isolation policies

that would otherwise be allowed. This includes disabling fea-

tures such as debugging facilities or disallowing unprivileged

access to devices that expose the kernel virtual memory or

physical memory.

F. Discussion

The design we describe satisfies the goals we enumer-

ate in Section III-A. The PEK serves as the application

secret that ensures confidentiality of data produced during

private execution (S1), (S2). The PRIVEXEC-enabled OS is

responsible for protecting the confidentiality of the PEK,

ensures that the user cannot be expected to know the value

of individual PEKs, and prevents private processes from

inadvertently leaking sensitive data via IPC channels to other

processes (S3), (S4). Destroying the PEK after a private

execution has ended ensures that any data produced cannot

feasibly be recovered by anyone, including the user (S5).

IV. PRIVEXEC IMPLEMENTATION

In the following, we describe our prototype implementa-

tion of PRIVEXEC as a set of modifications to the Linux

kernel and a user-level helper application, and support its

satisfaction of the design goals we list in Section III-A. We

209

Table I
A SUMMARY OF MODIFICATIONS TO THE LINUX KERNEL TO SUPPORT

PRIVATE PROCESS MANAGEMENT.

File Path Changes

include/linux/sched.h Extend task_struct to store PEK
Define PF_PRIVEXEC
Define CLONE_PRIVEXEC

kernel/fork.c Modify do_fork to create private processes
Set up CryptoAPI, generate the PEK

kernel/exit.c Modify do_exit to clean up private processes
Release CryptoAPI resources, destroy the PEK

center this discussion around five main technical challenges:

managing private processes, constructing secure storage con-

tainers, implementing private application swap, enforcing

restrictions on IPC channels, and running applications pri-

vately at the user level.

A. Private Process Management

The first requirement for implementing PRIVEXEC is to

enable the OS to support a private execution mode for

processes. The OS must be able to launch an application as

a private process upon request from the user, generate the

PEK, store it in an easily accessible context associated with

that process, mark the process and track it during its lifetime,

and, finally, destroy the PEK when the private process ter-

minates. Additionally, these new capabilities must not break

the established kernel process management functionality. At

the same time, the OS must expose a simple interface for

user-level applications to request private execution without

requiring modifications to existing application code.

The Linux kernel represents every process on the

system using a process descriptor, defined as struct

task_struct in include/linux/sched.h. The process

descriptor contains all the information required to execute

the process, including functions such as scheduling, virtual

address space management, and accounting. A new process,

or child, is created by copying an existing process, or parent,
through the fork and clone system calls. clone is a

Linux-specific system call that offers fine-grained control

over which system resources the parent and child share

through a set of clone flags passed as an argument, and is

typically used for creating threads. fork, on the other hand,

defines a static set of clone flags to create independent pro-

cesses with the usual POSIX semantics. These two system

calls, in turn, invoke the function do_fork implemented in

kernel/fork.c, which allocates a new process descriptor

for the child, initializes it, and prepares it for scheduling.

When the process is terminated, for example by invoking

the exit system call, the function do_exit, implemented

in kernel/exit.c, deallocates resources associated with

the process.

To implement our system, we first extended the process

descriptor by defining a new process flag, PF_PRIVEXEC,

that is set in the flags field of the process descriptor

to indicate that it is a private process. We defined a new

flag, CLONE_PRIVEXEC, that is passed to clone whenever a

private process is to be created. We introduced a field to store

the PEK in the process descriptor called privexec_key.

The final addition to the process descriptor was a pre-

allocated cryptographic transform struct that is used for

swap encryption. Here, we relied upon the Linux kernel’s

cryptography framework (Crypto API); we defer details of

its use to Section IV-C.

To handle private process creation, we modified do_fork

to check for the presence of CLONE_PRIVEXEC. In that

case, we set the PF_PRIVEXEC flag, and generate a fresh

PEK using a cryptographically-secure PRNG. The PEK is

stored inside the process descriptor, resides in the kernel

virtual address space, and is never disclosed to the user.

For private process termination, we adapted do_exit to

check for the presence of PF_PRIVEXEC in the flags bitset. If

present, the process cryptographic transform is deallocated,

and the PEK is securely wiped prior to freeing the process

descriptor. Since the Linux kernel handles both processes

and threads in the same functions, this approach also allows

for creating and terminating private threads without any

additional implementation effort.

Note that applications might spawn additional children

for creating subprocesses or threads during the course

of execution. This can lead to two critical issues with

multi-process and multi-threaded applications running under

PRIVEXEC. First, public children of a private process could

cause privacy leaks. Second, public children cannot access

the parent’s secure container, which could potentially break

the application. In order to prevent these problems, our

notion of a private execution should include the full set

of application processes and threads, despite the fact that

the Linux kernel represents them with separate process

descriptors. Therefore, we modified do_fork to ensure that

all children of a private process inherit the parent’s private

status and privacy context, including both the PEK and

the secure storage container. Reference counting is used

to ensure that resources are properly disposed of when the

entire private process group exits.

Also, note that our implementation exposes PRIVEXEC to

user applications through a new clone flag that is passed to

clone. As a result, when the private execution flag is not

passed to the system call, the original semantics of fork

and clone are preserved, maintaining full compatibility

with existing applications. Likewise, applications that are

not aware of the newly implemented PRIVEXEC interface

to clone could be made private by simply wrapping their

executables with a program that spawns them using the

private execution flag. We explain how existing applications

run under PRIVEXEC without modifications in Section IV-E.

A summary of all modifications to the Linux kernel

described in this section is presented in Table I.

210

Process 1 Process 2 Process 3

Virtual File System (VFS)

Page Cache

Ext3 Ext4 Reiserfs VFAT

Driver A Driver B

User space

Physical devices

Kernel space

Request Queues

read() write() write()

Figure 2. An overview of the Linux block I/O layers.

B. Private Disk I/O

PRIVEXEC requires the OS to provide every private

application with a dedicated secure storage container, to

which all application data writes must be directed. Upon

launching a private application, the OS must construct this

container, intercept and redirect I/O operations performed by

the private application, and encrypt writes and decrypt reads

on the fly.

Although the Linux file I/O API consists of simple system

calls such as read and write, the corresponding kernel

execution path crosses many different layers and subsys-

tems before the actual physical device is accessed. Block

I/O requests initiated by a system call first pass through

the virtual file system (VFS), which provides a unifying

abstraction layer over different underlying filesystems. After

a particular concrete filesystem processes the I/O request,

the kernel caches it in the page cache, and eventually

inserts the request into the target device driver’s request

queue. The driver periodically services queued requests by

initiating asynchronous I/O on the physical device, and then

notifies the OS when the operation is complete. We refer the

reader to Figure 2 for a graphical overview of these kernel

subsystems.

The choice of where to integrate PRIVEXEC into the file

I/O subsystems requires careful consideration. In particular,

in order to build a generic solution that is independent of

the underlying filesystem and physical device, we should

avoid modifying the individual filesystems, or the drivers

for the physical storage devices. One option is to intercept

I/O requests between the page cache and the device’s request

queue. However, this results in sensitive data being stored

as plaintext in the page cache, which is accessible to the

rest of the system. Thus, this is not an acceptable solution.

Likewise, encrypting the data as it enters the page cache is

insufficient, since direct I/O operations that bypass the page

cache would not be intercepted by our system. In addition,

a second major implementation question is how to handle

the redirection of I/O requests made by private processes per

our copy-on-write policy.

In order to build a generic system that addresses all of

the above challenges, we leverage stackable filesystems. A

stackable filesystem resides between the VFS and any un-

derlying filesystem as a separate layer. It does not store data

by itself, but instead interposes on I/O requests, allowing

for controlled modifications to these requests before passing

them to the filesystem it wraps. Since stackable filesystems

usually do not need to know the workings of the underly-

ing filesystem, they are often used as a generic technique

for introducing additional features to existing filesystems.

PRIVEXEC uses a combination of two stackable filesystems

to achieve its goals: A version of eCryptfs [5] with our

modifications to provide the secure storage containers, and

Overlayfs [7] to overlay these secure containers on top of

the root filesystem. In the following, we explain their use in

PRIVEXEC and our modifications to eCryptfs in detail.

1) Secure Storage Containers: eCryptfs is a stackable

cryptographic filesystem distributed with the Linux kernel,

and it provides the basis of PRIVEXEC’s secure storage

containers. eCryptfs provides filesystem-level encryption,

meaning that each file is encrypted separately, and all

cryptographic metadata is stored inside the encrypted files.

While this is likely to be less efficient compared to block-

level encryption (e.g., the approach taken by dm-crypt [4]),

eCryptfs does not require a full device or partition allocated

for it, which allows us to easily create any number of

secure containers on the existing filesystems as demand

necessitates.

Containers are structured as an upper directory and a

lower directory. All I/O operations are actually performed on

the lower directory, where files are stored in encrypted form.

The upper directory provides applications with a private

view of the plaintext contents.

The lower directory is provided by eCryptfs, using 256-bit

AES to encrypt not only file contents but directory entries

as well. However, while its cryptographic capabilities are

powerful, eCryptfs has a number of shortcomings that make

it unsuitable for use in PRIVEXEC on its own. First, once an

encrypted directory is mounted and a decrypted view is made

available at the upper directory, all users and applications

with sufficient permissions can access the decrypted content.

Second, eCryptfs expects to find the secret key in the Linux

kernel keyring associated with the user before the filesystem

can be mounted. This makes it possible for other applications

running under the same user account to access the keyring,

dump the key, and access data belonging to another private

211

Table II
A SUMMARY OF MODIFICATIONS TO THE ECRYPTFS IMPLEMENTATION IN THE LINUX KERNEL.

File Path Changes

fs/ecryptfs/ecryptfs kernel.h Extend ecryptfs_sb_info to store privexec_token

fs/ecryptfs/main.c Modify ecryptfs_mount to derive and save privexec_token on mount by a private process
Modify ecryptfs_kill_block_super to destroy privexec_token on unmount

fs/ecryptfs/crypto.c Modify encrypt_scatterlist to check for PRIVEXEC, use PEK for encryption
Modify decrypt_scatterlist to check for PRIVEXEC, use PEK for decryption

fs/ecryptfs/inode.c Modify ecryptfs_permission to check for correct privexec_token on file access

application. Therefore, we modified eCryptfs in order to

address these issues and restrict access to private process

data in line with our system design.

Our first set of modifications aim to uniquely associate

mounted eCryptfs containers with a single privacy con-

text. In Linux, each filesystem allocates and initializes a

super_block structure, defined in include/linux/fs.h,

when it is mounted. The s_fs_info field in super_block

is available for each filesystem to freely use for their

specific needs. eCryptfs uses this field to store superblock

private data in a structure called ecryptfs_sb_info de-

fined in fs/ecryptfs/ecryptfs_kernel.h. We extended

this structure to include a new field, privexec_token.

This field serves as a secret token that identifies the pri-

vacy context associated with the mounted eCryptfs con-

tainer. We then modified ecryptfs_mount implemented

in fs/ecryptfs/main.c, the function called by the VFS

when a eCryptfs container is mounted, to check whether

the mount operation is requested by a private process.

Since this function runs in the process context inside the

kernel, we can bind a container to a privacy context by

simply checking for the presence of the PF_PRIVEXEC flag

we introduced in Section IV-A in the process descriptor.

If the flag is set, we populate privexec_token with a

value derived from the PEK. These extensions allow us

to use privexec_token as a unique identifier in order to

determine whether a process performing eCryptfs operations

is the owner of the container. We also modified the function

ecryptfs_kill_block_super in fs/ecryptfs/main.c

to destroy the contents of privexec_token when the con-

tainer is unmounted.

To enforce access control on containers, we modified the

two cryptographic functions encrypt_scatterlist

and decrypt_scatterlist implemented in

fs/ecryptfs/crypto.c to check the identity of the

requesting process using privexec_token. If the process

is not the owner of the container, the I/O request is

blocked. Otherwise, if the private process is the owner of

the container, we fetch the PEK from the current process

descriptor and use it as the cryptographic key. This ensures

that the PEK never appears in the user’s kernel keyring,

and is never exposed outside of the private process group.

Although these extensions to eCryptfs address the root

cause of the aforementioned privacy issues, one last problem

remains: Once an encrypted file is accessed by an autho-

rized private process, eCryptfs caches the decrypted content

and directly serves subsequent I/O requests made by other

processes from the cache, bypassing our privacy measures.

Therefore, we perform a final token check inside the func-

tion called by the VFS for file access permission checks,

ecryptfs_permission in fs/ecryptfs/inode.c, to en-

sure that access to the eCryptfs upper directory is denied to

the rest of the system, regardless of the directory’s UNIX

permissions.

As a result, our modified eCryptfs layer provides a secure

storage container that is only accessible to a single private

process group. Also, note that all of the security checks we

inserted only trigger if eCryptfs is mounted by a private

process in the first place. This guarantees that normal

applications can still use eCryptfs as before, without being

restricted by our additional privacy requirements.

A summary of all modifications to eCryptfs in the Linux

kernel described in this section is presented in Table II.

2) Overlaying Secure Storage Containers: Once a ded-

icated secure container has been constructed for a private

process group, we need to redirect I/O operations to that con-

tainer as appropriate, as previously discussed. We achieve

this through the use of a stackable union filesystem. Union

filesystems are used to overlay several different filesystem

trees – sometimes referred to as branches – in a unified

hierarchy, and merge their contents as if they were a single

filesystem together. Although every implementation supports

different unioning capabilities, in theory, a union filesystem

can be used to overlay any number of branches in a defined

order, with specific read and write policies for each branch.

Overlayfs is an implementation of this idea, and we

leverage it as part of our prototype. It is not distributed with

the main kernel source tree, but is available as a separate

kernel patchset. While Overlayfs implements only a limited

set of unioning features compared to other alternatives such

as Aufs [1] or Unionfs [10], it is sufficient for PRIVEXEC’s

requirements, making its simplicitly an advantage. In par-

ticular, Overlayfs is restricted to overlaying two branches,

with the lower branch always being read-only.

212

root
/

eCryptfs
~/private/

P

r/w

r/w

root
/

Overlayfs
/tmp/fakeroot/

P

r/w

r/w

eCryptfs
~/private/

r/w

root
/

r/w

eCryptfs
~/private/

ro

U

chroot
/tmp/fakeroot/ P

r/w

Overlayfs
/tmp/fakeroot/

root
/

r/w

eCryptfs
~/private/

ro

U

Step I Step II Step III

Figure 3. Setting up the secure storage container and overlaying it on the root filesystem.

We use Overlayfs to layer secure storage containers on top

of the root filesystem tree. The root filesystem is mounted

as a read-only lower branch, while the secure container is

made the read-write upper branch. In this way, through an

Overlayfs mount point, a private process has a complete

view of the root filesystem, while all write operations are

actually performed on the secure container. Overlayfs also

supports copy-on-write; in other words, when an application

attempts to write to a file in the lower read-only root

filesystem, it first makes a copy of the file in the writable

secure container and performs the write on the copy. The

files in an upper branch take precedence over and shadow

the same files in the lower branch, which also ensures that

all subsequent read and write operations are redirected to

the new encrypted copies.

The entire process of setting up a secure container for a

private process P and overlaying it on the root filesystem is

illustrated in Figure 3. Note that the given path names are

only examples; PRIVEXEC actually uses random paths to

support multiple private execution sessions that run simul-

taneously. Before launching a private process, in step one,

PRIVEXEC creates a secure container using our modified

version of eCryptfs and mounts it on ~/private. In step 2,

Overlayfs is used to overlay the container on the root filesys-

tem, and this new view is mounted on /tmp/fakeroot.

In the final step, the private process is launched in a

chroot environment, with its root filesystem the Overlayfs

mount point. In this way, the private process still has a

complete view of the original filesystem, and full read-write

access; however, all writes are transparently redirected to

the secure container. When the private process terminates,

PRIVEXEC destroys the secure container and PEK, rendering

the encrypted data in ~/private irrecoverable.

Together, the combination of Overlayfs with our modified

eCryptfs satisfies all of our desired security properties and

stated design goals for PRIVEXEC filesystem I/O.

C. Private Swap Space

Since the Linux kernel handles swap devices separately

from block filesystem I/O, PRIVEXEC must also interpose

on these operations in order to preserve the privacy of virtual

memory pages swapped to disk. To this end, each page

written to a swap device must be encrypted with the PEK

of the corresponding private process.

Concretely, this is a straightforward modification to the

kernel swap routines. The cryptographic primitives we use

for this are provided by the kernel Crypto API framework;

specifically, AES in CBC-ESSIV mode, with a page-specific

IV consisting of the page’s process virtual address and a

random nonce.

We implemented per-application swap encryption as a

patch to the pageout function in mm/vmscan.c. First, a

check is performed to determine whether a page to be written

belongs to a private process. If so, the pre-allocated cipher

transform in the process task_struct is initialized with a

page-specific IV, and the page is encrypted with PEK prior

to scheduling an asynchronous write operation.

For page-in, the situation is more complex. The kernel

swap daemon (kswapd) is responsible for scanning memory

to perform page replacement, and operates in a kernel

thread context. Therefore, once a page has been selected

for replacement, process virtual memory structures must be

traversed to locate a task_struct that owns the swap page.

Once this has been done, however, the inverse of page-out

can be performed. Specifically, once the asynchronous read

of the page from the swap device has completed, a check

is performed to determine whether the owning process is in

private execution mode. If so, the process cipher transform

is initialized with the page-specific IV, and the page is

decrypted with PEK prior to resumption of the user process.

A summary of all modifications to the Linux kernel

described in this section is presented in Table III.

213

Table III
A SUMMARY OF MODIFICATIONS TO THE LINUX KERNEL TO ENABLE

ENCRYPTED SWAP PAGES.

File Path Changes

mm/vmscan.c Modify pageout to encrypt page writes with PEK

mm/memory.c Modify do_swap_page to decrypt page reads with PEK

D. Private Inter-Process Communication

PRIVEXEC also imposes restrictions on private process

IPC to prevent data leaks from a privacy context. In general,

our approach with respect to private IPC is to modify each

IPC facility available to Linux applications as follows.

Similarly to secure storage containers, we embedded a

privexec_token in the kernel structures corresponding to

IPC resources. We then modified the kernel IPC functions

to perform a check to compare the tokens of the endpoint

processes at the time of channel establishment, or before

read and write operations, augmenting the usual UNIX per-

mission checks as appropriate. The policy we implemented

ensures that private processes with the same token can freely

exchange data, while private processes with different tokens

are prevented from communicating with a permission denied

error. In addition, private processes are allowed to read from

public processes, but prevented from writing data to them.

Of course, IPC semantics for communication between public

processes remains unchanged.

The specific Linux IPC facilities that we modified to

conform to the policy described above include UNIX SysV

shared memory and message queues, POSIX shared memory

and message queues, FIFO queues, and UNIX domain sock-

ets. Due to space restrictions, we elide details of the specific

changes as they are similar in nature to those described for

the case of secure storage containers.

E. Launching Private Applications

While PRIVEXEC-aware applications can directly spawn

private subprocesses or threads as they require by passing

the CLONE_PRIVEXEC flag to the clone system call, we

implemented a PRIVEXEC wrapper as the primary method

for running existing applications in private mode.

The PRIVEXEC wrapper first creates a private copy of

itself by invoking clone with the CLONE_PRIVEXEC flag.

Then, this private process creates an empty secure storage

container and mounts it in a user-specified location. Recall

that, as explained in Section IV-B1, our modifications to

eCryptfs ensure that only this specific private process and

its children can access the container from this point on. The

wrapper then creates the filesystem overlay as described in

Section IV-B2. Finally, it loads the target application exe-

cutable in a chroot environment, changing the application’s

root filesystem to our overlay. As explained in Section IV-A,

the application inherits the PEK of the wrapper, and starts

its private execution. When the application terminates, the

PRIVEXEC wrapper cleans up the mounted overlay and

exits.

Note that the final destruction of the container is simply

for user convenience. Even if the wrapper or the private

application itself crashes or is killed such that the container

and the overlay remain mounted, the container is accessible

only to the processes that have the corresponding PEK;

that is, the private application that created it. Since that

application and its PEK have been destroyed, the private data

remains inaccessible even if the container remains mounted.

V. EVALUATION

The primary objective of our evaluation is to demonstrate

that PRIVEXEC is practical for real-world applications that

often deal with sensitive information, without detracting

from the user experience. To this end, we first tested whether

our system works correctly, without breaking program func-

tionality, by manually running popular applications with

PRIVEXEC. Next, we tested PRIVEXEC’s performance using

standard disk I/O and filesystem benchmarks. Finally, we

ran performance experiments with well-known desktop and

console applications that are representative of the use cases

PRIVEXEC targets.

A. Running Popular Applications

To demonstrate that our approach is applicable to and

compatible with a wide variety of software, we manually

tested 50 popular applications with PRIVEXEC. We selected

our test set from the top rated applications list reported by

Ubuntu Software Center. Specifically, we selected the top

50 applications, excluding all non-free or Ubuntu-specific

software. The tested applications include software in many

different categories such as developer tools (e.g., Eclipse,

Emacs, Geany), graphics (e.g., Blender, Gimp, Inkscape), In-

ternet (e.g., Chromium, FileZilla, Thunderbird), office (e.g.,

LibreOffice), sound and video (e.g., Audacity, MPlayer), and

games (e.g., Battle for Wesnoth, Teeworlds). We launched

each application with PRIVEXEC, exercised their core fea-

tures, and checked whether they worked as intended.

This experiment revealed two important limitations of

PRIVEXEC regarding our measures to block IPC channels.

First, private X applications failed to start because they

could not communicate with the public X server through

UNIX domain sockets. This led us to modify our system

to launch these applications in a new, private X session,

which resolved the issue. Alternatively, the IPC protection

for stream type UNIX domain sockets could be disabled as

a tradeoff in order to run private and public applications in

the same X session.

Second, a number of X applications that utilized the MIT

Shared Memory Extension (MIT-SHM) to draw to the X

display failed to render correctly since SysV shared memory

writes to the public X server were blocked. This issue

214

Table IV
DISK I/O AND FILESYSTEM PERFORMANCE OF PRIVEXEC. ECRYPTFS-ONLY PERFORMANCE IS ALSO SHOWN FOR COMPARISON.

Original eCryptfs-only PRIVEXEC

Performance Performance Overhead Performance Overhead

Write 110694.60 KB/s 97536.83 KB/s 13.49 % 97979.47 KB/s 12.98 %
Rewrite 48724.53 KB/s 38800.78 KB/s 25.58 % 38790.07 KB/s 25.61 %
Read 111217.67 KB/s 107134.53 KB/s 3.81 % 106293.73 KB/s 4.63 %

Seek 196.27 seeks/s 147.53 seeks/s 33.04 % 138.37 seeks/s 41.84 %

Create 13906.73 files/s 8312.73 files/s 67.29 % 8181.10 files/s 69.99 %
Stat 217734.60 files/s 126326.23 files/s 72.36 % 117844.75 files/s 84.76 %
Delete 42012.87 files/s 25232.67 files/s 66.50 % 23017.00 files/s 82.53 %

could also be resolved by running a private X session, or

simply by disabling the MIT-SHM extension in the X server

configuration file.

Once the above problems were dealt with, all 50 ap-

plications worked correctly, without exhibiting any unusual

behavior or noticeable performance issues.

B. Disk I/O and Filesystem Benchmarks

In order to evaluate the disk I/O and filesystem per-

formance of PRIVEXEC, we used Bonnie++ [3], a well-

known filesystem benchmark suite for UNIX-like operating

systems.

We first configured Bonnie++ to use 10 × 1 GB files to

test the throughput of block write, rewrite, read, and random

seek operations. Next, we benchmarked filesystem metadata

operations such as file creation and deletion rates, and small-

file access performance by configuring Bonnie++ to create,

access, and delete 102,400 files, each containing 512 bytes

of data, in a single directory. We ran Bonnie++ as a normal

process and then using PRIVEXEC for comparison, repeated

all the experiments 10 times, and calculated the average

scores to get the final results. We present our findings in

Table IV.

These results show that PRIVEXEC performs reasonably

well when doing regular reads and writes, incurring an over-

head of 12.98% and 4.63%, respectively. However, private

applications can experience slowdowns ranging from 70%

to 85% when dealing with large numbers of small files in a

single directory. In fact, unoptimized filesystem performance

with large amounts of files is a known deficiency of eCryptfs,

which could provide an explanation for this performance

hit.1 When we adjusted our benchmarks to decrease the

number of files used, or when we configured Bonnie++ to

distrubute the files evenly to a number of subdirectories, the

performance gap decreased drastically.

To see the impact of eCryptfs on PRIVEXEC’s perfor-

mance in general, we repeated the measurements by running

1See an eCryptfs developer’s response to a similar
performance-related issue at http://superuser.com/questions/397252/
ecryptfs-and-many-many-small-files-bad-performance, also linked from
the official eCryptfs web page.

Bonnie++ on an eCryptfs-only partition. The results, also

shown in Table IV for comparison, indicate that a significant

part of PRIVEXEC’s disk I/O and filesystem overhead is

introduced by the eCryptfs layer. This suggests that a more

optimized encrypting filesystem, or the use of block-level

encryption via dm-crypt (despite its various disadvantages

such as the requirement to create separate partitions of fixed

size to be utilized by PRIVEXEC) could greatly increase

PRIVEXEC’s disk I/O and filesystem performance. We report

the worst-case figures in this paper and leave the evaluation

of these alternative techniques for future work.

While these results clearly indicate that PRIVEXEC might

not be suitable for workloads involving many small files,

such as running scientific computation applications or com-

piling large software projects, we must stress that such

workloads do not represent the use cases PRIVEXEC is de-

signed to target. Indeed, in the next section we demonstrate

that these benchmark scores do not translate to decreased

performance when executing real-world applications with

concrete privacy requirements using PRIVEXEC.

C. Real-World Application Performance

In a final set of experiments, we measured the overhead

incurred by various common desktop and console appli-

cations when running them with PRIVEXEC. Specifically,

we identified 12 applications that are representative of the

privacy-related scenarios and concerns that PRIVEXEC aims

to address, and designed various automated tests to stress

those applications. We ran each application first as a normal

process, then with PRIVEXEC, and compared the elapsed

times under each configuration.

Note that designing custom test cases and benchmarks in

this way requires careful consideration of factors that might

influence our runtime measurements. In particular, a major

challenge we faced was automating the testing of desktop

applications with graphical user interfaces. Although several

GUI automation and testing frameworks exist for Linux,

most of them rely on recording and issuing X server events

without any understanding of the tested application’s state.

As a result, the test developer is often expected to insert

fixed delays between each step of the test in order to give

215

Table V
RUNTIME PERFORMANCE OVERHEAD OF PRIVEXEC FOR TWO POPULAR WEB BROWSERS.

Firefox Chromium

Orig. Runtime (s) PRIVEXEC Runtime (s) Overhead Orig. Runtime (s) PRIVEXEC Runtime (s) Overhead

Alexa 98.43 103.56 5.21 % 91.63 94.69 3.34 %
Wikipedia 37.80 39.96 5.71 % 39.25 40.12 2.22 %
CNN 66.61 69.15 3.81 % 49.21 50.83 3.29 %
Gmail 58.43 61.36 5.02 % 30.61 30.98 1.21 %

the application enough time to respond to the issued events.

For instance, consider a test that involves opening a menu

by clicking on it with the mouse, and then clicking on a

menu item. When performing this task automatically using

a tool that issues X events, the developer must insert a delay

between the two automated click events. After the first click

on the menu, the second click must be delayed until the

tested application can open and display the menu on the

screen. This technique works well for simple automation

tasks, but for runtime measurements, long delays can easily

mask the incurred overhead and lead to inaccurate results.

Taking this into consideration, in our tests, we refrained from

using any artificial delays, or employing tools that operate

in this way.

First, we tested PRIVEXEC with two popular web

browsers, Firefox and Chromium. We designed four test

cases that represent different browsing scenarios.

Alexa
In this test, we directed the browsers to visit the top

50 Alexa domains. While some of these sites were

relatively simple (e.g., www.google.com), others

included advertisement banners, embedded Flash,

multimedia content, JavaScript, and pop-ups (e.g.,

www.bbc.co.uk).

Wikipedia
In this test, we visited 50 Wikipedia articles. As

is typical of Wikipedia, these web pages mostly

included text and images.

CNN
In this test, we navigated within the CNN web

site by clicking on different news categories and

articles. We cycled 5 times through 10 CNN pages

with many embedded images, videos and Flash

content in order to exercise the browser’s cache.

Gmail
In this test, we navigated to and logged into Gmail,

composed and sent 5 emails, and then logged out

of the web site.

To execute these tests, we used Selenium WebDriver [8],

a popular browser automation framework. Selenium com-

mands browsers natively through browser-specific drivers,

and is able to detect when the page elements are fully

loaded without requiring the user to introduce fixed delays.

We repeated each test 10 times, and calculated the average

Table VI
RUNTIME PERFORMANCE OVERHEAD OF PRIVEXEC FOR VARIOUS

DESKTOP AND CONSOLE APPLICATIONS.

Orig. Runtime (s) PRIVEXEC Runtime (s) Overhead

Audacious 61.27 62.30 1.68 %
Feh 51.86 52.52 1.27 %
FFmpeg 105.47 111.31 5.54 %
grep 245.37 253.82 3.44 %
ImageMagick 96.16 101.41 5.46 %
LibreOffice 99.64 100.62 0.98 %
MPlayer 122.98 129.39 5.21 %
Pidgin 116.49 117.87 1.19 %
Thunderbird 75.45 78.78 4.41 %
Wget 71.48 71.89 0.57 %

runtime over all the runs. We present a summary of the

results in Table V.

Next, we tested 10 popular Linux applications, including

media players, an email client, an instant messenger, and

an office suite. These applications and their corresponding

test cases are described below.

Audacious
We configured Audacious, a desktop audio player,

to iterate through a playlist of 2500 MP3 audio files

totaling 15 GB, load each file, and immediately

skip to the next file without playing them.

Feh
Feh is a console-based image viewer. We config-

ured Feh to load and cycle through 1000 JPEG

images, totaling 1.5 GB.

FFmpeg
FFmpeg, a video and audio converter, was config-

ured together with libmp3lame to convert 25 AAC

formatted audio files to the MP3 format.

grep
grep is the standard Linux command-line utility for

searching files for matching regular expressions.

We used grep to search the entire root filesystem

for the string “linux”, and dumped the matching

lines into a text file. This process resulted in 16186

matching lines, leading to a 3 MB dump.

ImageMagick
ImageMagick is a software suite for creating,

editing and viewing various image formats. Using

216

ImageMagick’s convert utility, we converted 150

JPEG images to PNG images.

LibreOffice
LibreOffice is a comprehensive office software

suite. We used LibreOffice to open 5 large word

documents and 5 spreadsheets, and print them to

PostScript files.

MPlayer
We configured MPlayer, a console and desktop

movie player, to iterate through a playlist of 100

Matroska files totaling 30 GB containing videos

in various formats, load each file, and immediately

skip to the next one without displaying the content.

Pidgin
Pidgin is a multi-protocol instant-messaging client.

Using Pidgin, we sent 500 short text messages

between two Gtalk accounts.

Thunderbird
Thunderbird is a desktop email client. We com-

posed and sent 5 emails with 1 MB attachments in

our test.

Wget
Wget is a console-based network downloader. We

used Wget to download 10 small video clips, each

sized 10-25 MB, from the Internet.

To carry out these tests, we utilized the synchronous

command line interfaces provided by the applications them-

selves, and also used xdotool [11], an X automation tool

that can simulate mouse and keyboard events. We stress that

we only used xdotool for simple tasks such as bootstrapping

some of the GUI applications for testing, and never included

any artificial delays. Similar to the previous experiments,

we repeated each test 10 times, and we present the average

runtimes in Table VI. Note that in the tests above, we had the

option to supply inputs to the applications from the secure

storage containers or from the public filesystems. For each

application, we tested both and have reported the worse

case. Also note that PRIVEXEC would normally prevent

us from writing to the secure container from outside the

private process. Therefore, we implemented a backdoor in

PRIVEXEC during the evaluation phase in order to copy the

test data to the secure container.

In our experiments, the overhead of private execution

was under 6% in every test case, and, on average, private

applications took only 3.31% longer to complete their tasks.

These results suggest that PRIVEXEC is efficient, and that

it does not detract from the user experience when used with

popular applications that deal with sensitive data. Finally,

these experiments support our claim in Section V-B that

the Bonnie++ benchmark results do not necessarily indicate

poor performance for common desktop and console applica-

tions. On the contrary, PRIVEXEC can demonstrably provide

a private execution environment for real applications without

a significant performance impact. Still, we must stress that if

a user runs PRIVEXEC with a primarily I/O bound workload,

lower performance should be expected as indicated by the

Bonnie++ benchmarks.
Finally, we note that the authors deployed and used

PRIVEXEC on their computers during the testing phase, and

did not experience any performance issues under normal

workloads.

VI. LIMITATIONS

While our prototype aims to provide a complete imple-

mentation of private execution for Linux, there are some

important limitations to be aware of.
One limitation is that the current prototype does not

attempt to address system hibernation, which entails that

the contents of physical memory are persisted to disk. As a

result, if a hibernation event occurs while private processes

are executing, sensitive information could be written to disk

as plaintext in violation of system design goals. We note that

this is not a fundamental limitation, as hibernation could be

handled in much the same manner as per-process encrypted

swap. However, we defer the implementation of private

execution across hibernation events to a future release.
By design, PRIVEXEC relies upon memory isolation

to protect both private process memory as well as the

corresponding PEK, which resides in kernel memory. If

malicious code runs as a privileged user, such as root on

UNIX-like systems, then that code could potentially bypass

PRIVEXEC’s protection mechanisms. One example of this

would be for a malicious user to load a kernel module that

directly reads out PEKs, or simply introspects on a private

process to access its memory directly. For this reason, we

explicitly consider privileged malicious users or code as

outside the scope of PRIVEXEC’s threat model.
As previously discussed in Section V, certain X ap-

plications do not interact well with the current prototype

implementation of stream-based UNIX domain socket and

SysV shared memory IPC privacy restrictions. In the former

case, UNIX domain socket restrictions must be relaxed for

X applications, while disabling the MIT-SHM extension

is sufficient to work around the second case. A related

limitation is the possibility for malicious code to extract

sensitive data by capturing screenshots of private graphical

elements through standard user interface facilities. However,

we again note that these are not fundamental limitations of

the approach, and we plan to address these cases in a future

release of the system.

VII. RELATED WORK

To the best of our knowledge, there exists no work that

aims to provide private execution for any existing binary as

a generic operating system service. However, there is a large

body of work that has studied privacy attacks and defenses,

filesystem and disk encryption, and sensitive information

leakage in various contexts.

217

A. Privacy Leaks in Web Browsers

Privacy attacks and defenses have been studied exten-

sively specifically in the context of web browsers. For ex-

ample, Felten and Schneider [21] introduce the first privacy

attacks exploiting DNS and browser cache timing. In other

works, Clover et al. [19] demonstrate a technique for stealing

browsing history using CSS visited styles, and Janc and

Olejnik [28] show the real-world impact of this attack. On

the defense side, solutions have been proposed for prevent-

ing sniffing attacks and session tracking (e.g., [13], [24],

[26], [37]). However, these works are largely orthogonal

to ours in that they target information leaks on the web,

while PRIVEXEC addresses the problem of privacy leaks

for persistent storage.

Aggarwal et al. [12] and Said et al. [36] analyze the

private browsing modes of various browsers, and reveal

weaknesses that would allow a local attacker to recover

sensitive data saved on the disk. The former study also shows

that poorly designed browser plug-ins and extensions could

undermine well-intended privacy protection measures. These

studies underline the value of PRIVEXEC, as our approach

aims to mitigate the attacks described in these papers. More-

over, PRIVEXEC is designed as a generic solution that is not

only limited to protecting web browsers. In other words,

our approach can be used to run any arbitrary application in

private sessions, including browsers that already have private

browsing modes and that have been shown to be vulnerable.

B. Privacy Leaks in Volatile Memory

Studies have demonstrated that it is possible to recover

sensitive data, such as disk encryption keys, from volatile

memory [22], and many others have proposed solutions

to address this problem. While PRIVEXEC stores PEKs in

memory, we are careful to wipe them after the associated

process has ended. Anti-cold boot measures could also be

deployed to complement PRIVEXEC if so desired by users.

Secure hardware architectures such as XOM [40] and

AEGIS [38] extensively study memory encryption tech-

niques to prevent information leakage, and support tamper-

resistant software and processing. Alternatively, Crypt-

keeper [32] proposes a software-encrypted virtual memory

manager that works on commodity hardware by partitioning

the memory into a small plaintext working set and a large

encrypted area.

Likewise, secure deallocation [18] aims to reduce the

lifetime of sensitive data in the memory by zeroing memory

promptly after deallocation. In a recent study, Lacuna [20]

utilizes a modified QEMU virtual machine manager, a

patched host operating system, custom drivers, and hardware

support to run applications inside special virtual machines

that provide them with encrypted communication channels to

peripheral devices. Provos [34] proposes encrypting swapped

out memory pages in order to prevent data leaks from

memory to disk.

In contrast, PRIVEXEC is designed as an operating system

service that guarantees storage writes to the filesystem or to

swap cannot be recovered during or after a private execu-

tion session. As such, encrypted memory is complementary

to PRIVEXEC’s private processes. Furthermore, PRIVEXEC

works on commodity hardware, does not necessitate archi-

tectural changes to existing systems or virtualization, and

incurs only minimal performance and resource overhead.

C. Disk and Filesystem-Based Encryption
Many encrypted filesystems (e.g., CFS [15], Cryptfs [41],

eCryptfs [5], EncFS [6]), and full-disk encryption technolo-

gies (e.g., dm-crypt [4], BitLocker [2]) have been proposed

to protect the confidentiality of data stored on disk. In

a recent study, CleanOS [39] extends this idea to a new

Android-based operating system that protects the data on

mobile devices against device loss or theft by encrypting

local flash and storing keys in the cloud. Borders et al. [17]

propose a system that takes a system checkpoint, stores

confidential information in encrypted file containers called

Storage Capsules, and finally restores the previous state to

discard all operations that the sensitive data was exposed to.
Although many of these solutions provide confidentiality

while the encrypted drives or partitions are locked, once

they are unlocked, sensitive data may become exposed to

privacy attacks. Moreover, encryption keys can be retrieved

by exploiting insecure key storage, or through malware

infections. Approaches that may be resilient to such attacks

(e.g., Storage Capsules) remain open to key retrieval via

coercion (e.g., through a subpoena issued by a court). In

contrast, PRIVEXEC destroys encryption keys promptly after

a process terminates, guaranteeing that recovery of sensitive

data on the disk is computationally infeasible. Furthermore,

it can be applied selectively to specific processes on demand,

as opposed to encrypting an entire device or partition.

Finally, PRIVEXEC is a flexible solution that can work with

any filesystem supported by the kernel.

D. Secure File Deletion
The idea of securely deleting files using ephemeral en-

cryption keys was introduced by Boneh and Lipton [16],

and was later used in various other systems (e.g., [31], [33],

[35]). We borrow this idea, and apply it to a new context.
Other more general secure wiping solutions, includ-

ing user space tools such as shred [9] and kernel ap-

proaches [14], [29] provide only on-demand secure removal

of files. In contrast, PRIVEXEC provides operating system

support for automatically rendering all files created and

modified by a private process irrecoverable, and does not

require users to manually identify files that contain sensitive

data for deletion.

E. Application-Level Isolation
Various mechanisms have been proposed to sandbox

applications and undo the effects of their execution. For

218

example, Alcatraz [30] and Solitude [25] provide secure

execution environments that sandbox applications while

allowing them to observe their hosts using copy-on-write

filesystems. Other works utilize techniques such as system

transactions, monitoring and logging to roll back the host to

a previous state (e.g., [23], [27]). Unlike PRIVEXEC, these

systems are primarily concerned with executing untrusted

applications and recovery after a compromise; they do not

provide privacy guarantees.

VIII. CONCLUSIONS AND FUTURE WORK

Privacy is of paramount importance for many users.

Whereas most commodity operating systems did not support

disk encryption a decade ago, today, all major operating

systems provide a standard implementation (e.g., Apple

FileVault, Microsoft BitLocker, and Linux dm-crypt). Fur-

thermore, “private browsing mode” has become a widely-

used feature of popular web browsers, with the aim of

allowing users to surf the Internet privately without leaving

behind sensitive information on disk. Indisputably, there is a

large demand from users for privacy-enabling technologies.

Unfortunately, although existing approaches such as

application-specific privacy modes are useful in practice,

prior work has shown that such systems still leave behind

much sensitive information on disk that can be retrieved

using forensic analysis techniques [12]. In addition, disk

encryption alone is not sufficient, as key disclosure through

technical means or coercion remains possible.

In this paper, we presented the design and implementation

of PRIVEXEC, the first operating system service for private

execution of arbitrary applications. PRIVEXEC does not

require explicit application support, recompilation, or any

other preconditions. It provides strong, general guarantees

of private execution, allowing any application to execute in

a mode where storage writes, either to the filesystem or to

swap, will not be recoverable during or after execution. We

have implemented a prototype of PRIVEXEC as a modifi-

cation to the Linux kernel that is performant, practical, and

that secures sensitive data against disclosure. We hope that

PRIVEXEC will pave the way for creating similar services

on other operating systems to enable private execution.

As future work, one avenue we plan to investigate is

whether cooperative applications can benefit from a fine-

grained private execution API that would allow for more

control over the degree or types of privacy an application

would like to provide.

ACKNOWLEDGMENT

We would like to thank our shepherd Helen J. Wang

and the anonymous reviewers for their precious time and

helpful comments. This work was partially supported by

ONR grant N000141310102 and Secure Business Austria.

Engin Kirda also thanks Sy and Laurie Sternberg for their

generous support.

REFERENCES

[1] Aufs. http://aufs.sourceforge.net/.

[2] BitLocker. http://windows.microsoft.com/en-US/windows7/
products/features/bitlocker.

[3] Bonnie++. http://www.coker.com.au/bonnie++/.

[4] dm-crypt. http://code.google.com/p/cryptsetup/wiki/
DMCrypt.

[5] eCryptfs. https://launchpad.net/ecryptfs.

[6] EncFS. www.arg0.net/encfs.

[7] Overlayfs. http://git.kernel.org/?p=linux/kernel/git/mszeredi/
vfs.git.

[8] Selenium – Web Browser Automation. http://seleniumhq.org/.

[9] shred(1) - Linux Man page. http://www.gnu.org/software/
coreutils/.

[10] Unionfs. http://unionfs.filesystems.org/.

[11] xdotool. http://www.semicomplete.com/projects/xdotool/
xdotool.xhtml.

[12] G. Aggarwal, E. Bursztein, C. Jackson, and D. Boneh. An
Analysis of Private Browsing Modes in Modern Browsers. In
Proceedings of the USENIX Security Symposium, Berkeley,
CA, USA, 2010. USENIX Association.

[13] A. Alsaid and D. Martin. Detecting Web Bugs with Bugnosis:
Privacy Advocacy through Education. In Proceedings of the
International Conference on Privacy Enhancing Technolo-
gies, Berlin, Germany, 2003. Springer-Verlag.

[14] S. Bauer and N. B. Priyantha. Secure Data Deletion for
Linux File Systems. In Proceedings of the USENIX Security
Symposium, Berkeley, CA, USA, 2001. USENIX Association.

[15] M. Blaze. A Cryptographic File System for UNIX. In
Proceedings of the ACM Conference on Computer and Com-
munications Security, New York, NY, USA, 1993. ACM.

[16] D. Boneh and R. J. Lipton. A Revocable Backup System. In
Proceedings of the USENIX Security Symposium, Berkeley,
CA, USA, 1996. USENIX Association.

[17] K. Borders, E. V. Weele, B. Lau, and A. Prakash. Protecting
Confidential Data on Personal Computers with Storage Cap-
sules. In Proceedings of the USENIX Security Symposium,
Berkeley, CA, USA, 2009. USENIX Association.

[18] J. Chow, B. Pfaff, T. Garfinkel, and M. Rosenblum. Shredding
Your Garbage: Reducing Data Lifetime through Secure Deal-
location. In Proceedings of the USENIX Security Symposium,
Berkeley, CA, USA, 2005. USENIX Association.

[19] A. Clover. CSS visited pages disclosure. http://seclists.org/
bugtraq/2002/Feb/271, 2002.

219

[20] A. M. Dunn, M. Z. Lee, S. Jana, S. Kim, M. Silberstein,
Y. Xu, V. Shmatikov, and E. Witchel. Eternal Sunshine of
the Spotless Machine: Protecting Privacy with Ephemeral
Channels. In Proceedings of the USENIX Conference on
Operating Systems Design and Implementation, Berkeley,
CA, USA, 2012. USENIX Association.

[21] E. W. Felten and M. A. Schneider. Timing Attacks on Web
Privacy. In Proceedings of the ACM Conference on Computer
and Communications Security, New York, NY, USA, 2000.
ACM.

[22] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson,
W. Paul, J. A. Calandrino, A. J. Feldman, J. Appelbaum, and
E. W. Felten. Lest We Remember: Cold Boot Attacks on
Encryption Keys. In Proceedings of the USENIX Security
Symposium, Berkeley, CA, USA, 2008. USENIX Association.

[23] F. Hsu, H. Chen, T. Ristenpart, J. Li, and Z. Su. Back to
the Future: A Framework for Automatic Malware Removal
and System Repair. In Proceedings of the Annual Computer
Security Applications Conference, 2006.

[24] C. Jackson, A. Bortz, D. Boneh, and J. C. Mitchell. Protecting
Browser State from Web Privacy Attacks. In Proceedings of
the International World Wide Web Conference, New York,
NY, USA, 2006. ACM.

[25] S. Jain, F. Shafique, V. Djeric, and A. Goel. Application-Level
Isolation and Recovery with Solitude. In Proceedings of the
European Conference on Computer Systems, New York, NY,
USA, 2008. ACM.

[26] M. Jakobsson and S. Stamm. Invasive Browser Sniffing and
Countermeasures. In Proceedings of the International World
Wide Web Conference, New York, NY, USA, 2006. ACM.

[27] S. Jana, D. E. Porter, and V. Shmatikov. TxBox: Building
Secure, Efficient Sandboxes with System Transactions. In
Proceedings of the IEEE Symposium on Security and Privacy,
Washington, DC, USA, 2011. IEEE Computer Society.

[28] A. Janc and L. Olejnik. Web Browser History Detection
as a Real-world Privacy Threat. In Proceedings of the
European Conference on Research in Computer Security,
Berlin, Germany, 2010. Springer-Verlag.

[29] N. Joukov, H. Papaxenopoulos, and E. Zadok. Secure Dele-
tion Myths, Issues, and Solutions. In Proceedings of the ACM
Workshop on Storage Security and Survivability, New York,
NY, USA, 2006. ACM.

[30] Z. Liang, W. Sun, V. N. Venkatakrishnan, and R. Sekar.
Alcatraz: An Isolated Environment for Experimenting with
Untrusted Software. ACM Transactions on Information and
System Security, 12(3):14:1–14:37, 2009.

[31] R. Perlman. The Ephemerizer: Making Data Disappear.
Technical report, Sun Microsystems, Inc., Mountain View,
CA, USA, 2005.

[32] P. A. H. Peterson. Cryptkeeper: Improving Security with
Encrypted RAM. In Proceedings of the IEEE International
Conference on Technologies for Homeland Security, Waltham,
MA, USA, 2010.

[33] Z. N. J. Peterson, R. Burns, J. Herring, A. Stubblefield,
and A. D. Rubin. Secure Deletion for a Versioning File
System. In Proceedings of the USENIX Conference on
File and Storage Technologies, Berkeley, CA, USA, 2005.
USENIX Association.

[34] N. Provos. Encrypting Virtual Memory. In Proceedings of
the USENIX Security Symposium, Berkeley, CA, USA, 2000.
USENIX Association.

[35] J. Reardon, S. Capkun, and D. Basin. Data Node Encrypted
File System: Efficient Secure Deletion for Flash Memory. In
Proceedings of the USENIX Security Symposium, Berkeley,
CA, USA, 2012. USENIX Association.

[36] H. Said, A. N. Mutawa, A. A. Ibtesam, and M. Guimaraes.
Forensic Analysis of Private Browsing Artifacts. In Pro-
ceedings of the International Conference on Innovations in
Information Technology, Abu Dhabi, United Arab Emirates,
2011.

[37] U. Shankar and C. Karlof. Doppelganger: Better Browser
Privacy Without the Bother. In Proceedings of the ACM
Conference on Computer and Communications Security, New
York, NY, USA, 2006. ACM.

[38] G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and
S. Devadas. AEGIS: Architecture for Tamper-Evident and
Tamper-Resistant Processing. In Proceedings of the Annual
International Conference on Supercomputing, New York, NY,
USA, 2003. ACM.

[39] Y. Tang, P. Ames, S. Bhamidipati, A. Bijlani, R. Geambasu,
and N. Sarda. CleanOS: Limiting Mobile Data Exposure with
Idle Eviction. In Proceedings of the USENIX Conference
on Operating Systems Design and Implementation, Berkeley,
CA, USA, 2012. USENIX Association.

[40] D. L. C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh,
J. Mitchell, and M. Horowitz. Architectural Support for
Copy and Tamper Resistant Software. In Proceedings of
the International Conference on Architectural Support for
Programming Languages and Operating Systems, New York,
NY, USA, 2000. ACM.

[41] E. Zadok, I. Badulescu, and A. Shender. Cryptfs: A Stackable
Vnode Level Encryption File System. Technical report,
Computer Science Department, Columbia University, 1998.

220

