
SoK: Secure Data Deletion

Joel Reardon, David Basin, Srdjan Capkun

Institute of Information Security
ETH Zurich

Zurich, Switzerland
{reardonj,basin,capkuns}@inf.ethz.ch

Abstract—Secure data deletion is the task of deleting data ir-
recoverably from a physical medium. In the digital world, data
is not securely deleted by default; instead, many approaches
add secure deletion to existing physical medium interfaces.
Interfaces to the physical medium exist at different layers, such
as user-level applications, the file system, the device driver, etc.
Depending on which interface is used, the properties of an
approach can differ significantly.

In this paper, we survey the related work in detail and
organize existing approaches in terms of their interfaces to
physical media. We further present a taxonomy of adversaries
differing in their capabilities as well as a systematization for the
characteristics of secure deletion approaches. Characteristics
include environmental assumptions, such as how the interface’s
use affects the physical medium, as well as behavioural prop-
erties of the approach such as the deletion latency and physical
wear. We perform experiments to test a selection of approaches
on a variety of file systems and analyze the assumptions made
in practice.

Keywords-Secure deletion, Flash memory, Magnetic memory,
File systems

I. INTRODUCTION

Secure data deletion is the task of deleting data from a

physical medium so that the data is irrecoverable. In the

physical world, the importance of secure deletion is well

understood: sensitive mail is shredded; published govern-

ment information is selectively redacted; access to top secret

documents is managed to ensure all copies can be destroyed.

In the digital world, the importance of secure deletion is

also well recognized. Legislative or corporate requirements,

particularly relating to privileged or confidential communi-

cations, may require secure deletion to avoid the disclosure

of sensitive data after physical medium disposal [1], [2].

Regulations may change or new ones enforced causing data

assets to become data liabilities, resulting in an immediate

need to securely delete a vast amount of data. An example of

this is the court ruling that Google’s collection of personal

wireless network data in Germany was illegal and this

data must be destroyed [3]. The importance of secure data

deletion is also well-understood by militaries [4].

All modern file systems allow users to “delete” their files.

However, they all implement file deletions by unlinking
files. Abstractly, unlinking a file only changes file system

metadata to indicate that the file is now “deleted”; the file’s

full contents remain available. The implicit assumption made

is that users delete data not to make the data inaccessible, but

simply to recover the consumed storage resources. Despite

that, clearing the web browsing history is labelled as a

privacy option in most modern web browsers. Mobile phones

offer users to delete individual text messages, to clear call

logs, etc. In all these systems, users typically assume, falsely,

that when they delete the data, it is from that moment on

irrecoverable.

There are also many security schemes that require secure

deletion to achieve other security goals. A tacit assumption

in many key negotiation protocols is that temporary values

used to negotiate session keys are not disclosed to an

adversary; these must be securely deleted from the system

to ensure that the session key is irrecoverable. Several

recently proposed systems such as Off-the-Record commu-

nication [5], Ephemerizer [6], Vanish [7] and others [8] aim

to protect the confidentiality of multi-party communication

even in the presence of coercive adversaries, and they explic-

itly require keys or other protocol parameters to be securely

deleted during or after protocol executions.

Secure data deletion has gone by many names, and

thus we hear of data being forgotten [6], [9], erased [9]–

[12], deleted [11], completely removed [9], [13], reliably

removed [12], purged [14]–[16], self-destructed [7], [17],

sanitized [12], [14], revoked [9], [13], assuredly deleted [6],

[13], [16], securely deleted [18], [19], and destroyed [6],

[9], [12]. Whether explicitly stated as a system requirement

or implicitly assumed, and however named, the ability to

securely delete data in the presence of an appropriate adver-

sary is required for the security of many schemes.

Secure Data Deletion: We say that data is securely
deleted from a system if an adversary that is given some
manner of access to the system is not able to recover the
deleted data from the system. This work concerns the secure

deletion of data that the owner can address by means of a

handle, such as a file name or a database record.

To clarify the scope of this systematization, we emphasize

that we limit our discussion to the context of secure data

deletion, not information deletion. We do not consider delet-

ing all copies of some information, or finding and deleting

all derivative works of data. We also do not address deleting

all database records containing some sensitive data on a

particular topic or all data based on tracking the flow of

2013 IEEE Symposium on Security and Privacy

1081-6011/13 $26.00 © 2013 IEEE

DOI 10.1109/SP.2013.28

301

information through a complex system. Moreover, we do not

consider forensic methods aimed at recovering data objects

from scattered pieces; we assume that an adversary capable

of recovering all pieces of a data object can thus recover the

data object itself. Finally, we do not consider steganographic

data storage or deniable encryption. We assume that the data

should be made irrecoverable, but we do not worry about

leaking the existence of tools to delete the data or encrypted

versions of data whose keys are irrecoverable.

Abstractly, the user stores and operates on data objects

on a physical medium through an interface. Data objects
are addressable units of data; these include data blocks,

database records, SMS messages, file metadata, entire files,

entire hard drives, etc. The physical medium is any device

capable of storing and retrieving these data objects, such as

a magnetic hard drive, a USB stick, or a piece of paper.

The interface is how the user interacts with the physical

medium; the interface offers functions to transform the user’s

data objects into a form suitable for storage on the physical

medium. This transformation can also include operations

such as encryption, error-correction, redundancy, etc. In the

case of encryption, we assume that computationally-bounded

adversaries are only able to recover the original data object

if they can also obtain the corresponding decryption key. A

coercive adversary may be able to obtain this information

while a non-coercive adversary may not. In fact, there are a

variety of adversaries one may consider and in Section III

we present an adversarial taxonomy.

Related Surveys: Past secure deletion surveys focused

on repurposing, where a user disposes a physical medium

at a known time and performs a complete sanitization of

the medium. Garfinkel et al. [20] survey secure deletion in

practice along with the results of the forensic analysis of

dozens of hard drives bought on the used market. Diesburg et

al. [11] extensively survey confidential data storage methods

including the secure deletion of data at its end of life. They

also include an analysis of cryptographic methods to store

data along with caveats regarding block cipher modes of

operation applied to long-term storage. NIST provides a

systematization of secure deletion for complete sanitization,

detailing precisely which steps must be taken to securely

delete data on dozens of media types [14].

However, much of the complexity and nuance of the

secure deletion problem is not relevant for repurposing a

storage medium, which has a known disclosure time and

aims to completely remove all stored data on the physical

medium without concern for efficiency, preserving data, or

physical wear. In this work we systematize these aspects

of secure deletion approaches and show which existing

approaches achieve them.

Summary: Our contributions in this paper are the fol-

lowing. We present the many dimensions of secure deletion,

consolidating existing notions. We provide a common lan-

guage to describe secure deletion that unifies the diverse ef-

forts of many researchers and we survey and systematize the

related work in detail. We present the approaches in terms

of interfaces to physical media: what can be done to achieve

secure deletion given a particular interface through which

to achieve it? We present a taxonomy of adversaries with

different capabilities—adversaries with different manners of

access to the storage medium. We explain the relationships

among adversaries such that an approach that defeats an

adversary also defeats weaker ones; we perform a similar

task for characteristics of secure deletion approaches, such

as efficiency and granularity. We perform experiments to

test a selection of approaches used in practice on a variety

of file systems, examining corner cases such as block-

unaligned truncations and sparse files. Finally, we analyze

which approaches work and what are the best ways to

develop a secure deletion solution.

This work is organized as follows. Section II introduces

the layers and interfaces involved in accessing a physical

medium and surveys secure deletion approaches based on

these interfaces. Sections III and IV then present a system-

atization of the properties of secure deletion adversaries and

approaches. Section IV also organizes the approaches from

Section II into this framework. Section V compares different

approaches and analyzes what works in practice. Finally,

Section VI draws conclusions.

II. SECURE DELETION BY LAYERS

In this section, we organize secure deletion approaches

into the layers through which they access the physical

medium. When deciding on a secure deletion approach,

one must consider both the interface given to the physical

medium and the behaviour of the operations provided by

that interface. Secure deletion is typically not implemented

by adding a new interface to the physical medium, but rather

it is implemented at some existing system layer (e.g., a

file system) that offers an interface to the physical medium

provided at that layer (e.g., a device driver). It is possible

that an interface to a physical medium does not support an

implementation of a secure deletion solution.

Once secure deletion is implemented at one layer, then the

higher layers’ interfaces can explicitly offer this functional-

ity. Care must still be taken to ensure that the secure deletion

approach has acceptable performance characteristics: some

approaches can be inefficient, cause significant wear, or

delete all data on the physical medium. These properties are

discussed in greater detail in Section IV. For now, we first

describe the layers and interfaces involved in accessing mag-

netic hard drives and flash memory on personal computers,

and we explain why there is no one layer that is always the

ideal candidate for secure deletion. Afterwards, we present

related work in secure deletion organized by the layer in

which the approach is integrated.

302

device
block

UBI file system
e.g., UBIFS

UBI
device

device
driver

user
applications

files
databaseemail

MTD
device

software FTL

SSD
FTL stick

USB
raw

software
user space

magnetic
hard drive

flash
memory

MTD interface

e.g., FAT, ext
block file system

interface
block device

file
e.g., JFFS2
flash file system

interface
POSIX file system

system

controller

vm

UBI interface

ATA/SCSI

hardware

OS

physical
medium

physical

interface

Figure 1. Some interfaces and layers involved in magnetic hard drive and
flash memory data storage.

A. Interfaces

Many abstraction layers exist between applications that

delete data objects and the physical medium that stores the

data objects. While there is no standard sequence of layers

that encompass all interfaces to all physical media, Figure 1

shows the typical ways of accessing flash and magnetic

storage medium on a personal computer. The lowest layer

is always the physical medium itself. Its interface is also

physical: depending on the medium it can be degaussed,

incinerated, or shredded. Additionally, whatever mechanism

controls its operation can be replaced with an ad hoc one;

for example, flash memory is often accessed through an

obfuscating controller, but the raw memory can still be

directly accessed by attaching it to a custom reader [21].

The physical medium is accessed through a controller. The

controller is responsible for translating the data format on the

physical media (e.g., electrical voltage) into a format suitable

for higher layers (e.g., binary values). Controllers offer a

standardized, well-defined, hardware interface, such as SCSI

or ATA [22], which allow reading and writing to logical

fixed-sized blocks on the physical medium. They may also

offer a secure erase command that securely deletes all data

on the physical device [23]. Like physical destruction, this

command cannot be used to securely delete some data while

retaining other data; we revisit secure deletion granularity
later in our systematization.

While hard disk controllers consistently map each logical

block to some storage location on the physical medium,

the behaviour of other controllers differs. Flash memory,

notably, behaves differently than magnetic hard drives as it

does not permit in-place updates. When raw flash memory is

accessed directly, a different controller interface is exposed.

For convenience, flash memory is often accessed through

a flash translation layer (FTL) controller, whose interface

mimics that of a hard drive. FTLs remap logical block

addresses to physical locations such that overwriting an old

location does not replace it but rather results in two versions,

with obvious complications for secure deletion.

Device drivers are software abstractions that consolidate

access to different types of hardware by exposing a common

simple interface. The block device driver interface allows the

reading and writing of logically-addressed blocks. Another

device driver—the memory technology device (MTD)—is

used to access raw flash memory directly. MTD permits

reading and writing, but blocks must be erased before being

written, and erasing blocks occurs at a large granularity. Un-

sorted block images (UBI) is another interface for accessing

flash memory, which builds upon the MTD interface and

simplifies some aspects of using raw flash memory [24].

Figure 1 illustrates all these layers and interfaces.

The device driver interface is used by the file system,

which is responsible for organizing logical sequences of data

(files) among the available blocks on the physical medium.

A file system allows files to be read, written, created, and

unlinked. While secure deletion is not a feature of this

interface, file systems do keep track of data that is no longer

needed. Whenever a file is unlinked, truncated, or overwrit-

ten, this is recorded by the file system. The POSIX standard

is ubiquitously used as the interface to file systems [25],

and the operating system restricts this interface further with

access control and permissions.

Finally, the highest layer is user applications. These offer

an interface to the user—such as a graphical user interface—

that is manipulated by human interface devices such as

keyboards and mice. Secure deletion at this layer can be

integrated into existing applications, such as an email client

with a secure deletion option, or it can be a stand-alone tool

that securely deletes all deleted data on the file system.

The choice of layer for a secure deletion approach is a

trade off between two factors. At the physical layer, we can

ensure that the data is truly irrecoverable. At the user layer,

we can easily identify the data object to make irrecoverable.

Let us consider these factors in more detail.

Each new abstraction layer impedes direct access to the

physical medium, thus complicating secure deletion. The

controller may write new data, but the physical medium

retains remnants; the file system may overwrite a logical

block, but the device driver remaps it physically. The further

one’s interface is abstracted away from the physical medium,

the more difficult it is to ensure that one’s actions truly result

in the irrecoverability of data.

303

While low-layer approaches are best suited to ensure

irrecoverability, high-layer approaches most easily identify

which data objects to delete, e.g., by deleting an email or

a file. Indirect information is given to the file system, e.g.,

by unlinking a file. However, no information is given to

the device driver or controller. Assuming the user cannot

identify the physical location of the deleted data object

on the medium, then an approach integrated at low layers

cannot identify where the deleted data object is located.

Approaches implemented in the file system tend to strike

a suitable balance in this trade off. When this layer is

insufficient to achieve secure deletion, it is also possible to

pass information on deleted data objects from the file system

down to lower layers [18], [26].

In the remainder of this section, we examine secure

deletion approaches at the different layers in Figure 1.

First, we look at device-level approaches and controller-
level approaches, which have no file system information and

therefore securely delete all data on the physical medium.

We then move to the other extreme and consider user-
level approaches, which are easy to install and use, but are

limited in their POSIX-level access to the physical medium

and are often rendered useless by advanced file system

features. Next, we look at file-system-level approaches for

a variety of systems: (i) those using in-place updates and

thus are suitable for magnetic physical media, and (ii) those

not using in-place updates and thus are suitable for other

physical media including flash memory. We conclude with

several approaches that extend existing interfaces to allow

information on deleted blocks to be sent to lower layers.

B. Physical-Layer and Controller-Layer Sanitization

Physical Layer: The physical layer’s interface is the set

of physical actions one can perform on the medium. Secure

deletion at this layer often entails physical destruction, but

the use of other tools such as degaussers is also feasible.

NIST describes the steps required to physically destroy a

variety of media [14]. For example, floppy disks must be

shredded or incinerated; compact discs must be incinerated

or subjected to an optical disk grinding device. Not all

approaches work for all media types. For example, most

media’s physical interfaces permit the media to be put into

a NSA/CSS-approved degausser, but this is only a secure

deletion approach for particular media types. Magnetic me-

dia are securely deleted in this way, while others, such as

flash memory, are not.

Controller-Layer: A physical medium is often operated

by a controller that translates between the analog medium’s

analog format and the data format used at higher layers.

Several standardized interfaces exist for controllers that

permit reading and writing of fixed-sized blocks.

Given these interfaces, there are different actions one can

take to securely delete data. Either a single block can be

overwritten with a new value to displace the old one, or

all blocks can be overwritten. As we noted earlier, with

knowledge of neither deleted data nor the organization of

data objects into blocks, sanitizing a single block cannot

guarantee that any particular data object is securely deleted.

Therefore, the controller must sanitize every block to achieve

secure deletion. Indeed, both SCSI and ATA offer such a

sanitization command, called either secure erase or security
initialize [23]. They work like a button that erases all data

on the device by exhaustively overwriting every block. The

use of these commands is encouraged by NIST as the non-

destructive way to securely delete magnetic hard drives.

An important caveat exists at the physical layer. Con-

trollers translate analog values into binary values such that

a range of analog values maps to a single binary value.

Gutmann observed that, for magnetic media, the precise ana-

log voltage of a stored bit offers insight into its previously

held values [27]. Gutmann’s approach to delete this data is

also at the controller layer: the controller overwrites every

block 35-times with specific patterns. While more recent

research was unable to recover overwritten data on modern

hard drives [28], it remains safe to say that each additional

overwrite does not make the data easier to recover—in the

worst case it simply provides no additional benefit. More

generally, Gutmann’s results highlight that analog remnants

introduced by the controller’s use of the physical medium

may exist for any storage media type and this must be

considered when developing secure deletion solutions.

Some flash-based solid-state drives also implement the

secure erase feature in their hardware controllers. A study

by Wei et al. [21] observed that the implementation of this

proceedure is not always correct; in some cases the device

reported a successful operation while the entire file system

remained available. In follow-up work, Swanson et al. [12]

describe an approach for verifiable full-device sanitization

that they compare to hard drive degaussing. They propose

to encrypt all data written to the physical medium with a

key stored only on the hardware controller. To sanitize the

device, first the controller’s key memory is erased. Every

block on the device is then erased, written with a known

pattern, and erased again. Finally, the device is reinitialized

and a new key given to the flash controller.

C. User-Level Approaches

Device-level approaches interact at the lowest layer and

securely delete all data, serving as a useful starting point

in our systematization. Now we move to the other extreme,

a secure deletion user-level application that can only inter-

act with a POSIX-compliant file system. There are three

common user-level approaches: (i) ones that call a secure

deletion routine in the physical medium’s interface, (ii) ones

that overwrite data before unlinking, and (iii) ones that

first unlink and then fill the empty capacity of the physical

medium.

304

Secure Erase: UCSD offers a free Secure Erase util-

ity [23]. It is a user-level application that securely erases

all data on a storage medium by invoking the Secure Erase

command in the hardware controller’s interface. This nicely

illustrates the propagation of an explicit secure deletion

approach to a higher layer interface.

File Overwriting Tools: Another class of user-level se-

cure deletion approaches opens up a file from user-space and

overwrites its contents with new, insensitive data, e.g., all

zeros. When the file is later unlinked, only the contents of the

most recent version are stored on the physical medium. To

combat analog remnants, overwriting is performed multiple

times; multiple tools [29], [30] offer 35-pass overwriting

as proposed by Gutmann [27]. Overwriting tools may also

attempt to overwrite file metadata, such as the file’s name,

size, and access times. However, the operating system’s

interface to the file system may not permit all types of

metadata to be arbitrarily changed.

Overwriting tools rely on the following file system prop-

erty: each file block is stored at known locations and when

the file block is updated, then all old versions are replaced

with the new version. If this assumption is not satisfied, user-

level overwriting tools silently fail. We explore this issue in

more detail in Section V.

Free-Space Filling Tools: A file system has valid and

unused blocks. The set of unused blocks is a superset of

the blocks containing deleted sensitive data, because it is

the unused blocks that may still store old, sensitive data.

A third class of secure deletion tools exploits this fact by

filling the entire free space of the file system. This ensures

that all unused blocks of the physical medium no longer

contain sensitive information and instead store new data.

These tools also allow secure deletion for file systems that

do not perform in-place updates of file data.

The cost of filling is proportional to the free space on

the physical medium: the larger the free space, the longer

it will take to fill it. In the case of flash memory, where

filling the physical medium incurs high wear, the efficiency

can be greatly improved by perpetually maintaining the free

space of the physical medium within a target range [31].

Examples include Apple’s Disk Utility’s erase free space
feature [32] and the open-source tool scrub [33]. Filling

is also the only user-level means of securely deleting data

on an Android phone running YAFFS [31].

Filling tools rely on two assumptions: the user who runs

the tool must have sufficient privileges to fill the physical

medium to capacity, and when the file system reports itself

as unwritable it must no longer contain any deleted data. In

Section V, we perform experiments to determine in which

file systems the latter condition is satisfied.

Revocable Backup System: Boneh and Lipton propose

the first scheme that uses secure deletion of cryptographic

keys to securely delete encrypted data under computational

assumptions [9]. They created a revocable backup system

for off-line (i.e., tape) archives consisting of three user-level

applications. Backup files are made revocable before writing

them to tape. Backups are revoked and then securely deleted

without needing physical access to the tapes on which they

are stored. Each backup is encrypted with a unique key; each

key is then encrypted with a temporary master key. Time

is discretized into intervals and each interval is assigned a

new master key that encrypts all the backup keys. Backups

are periodically deleted from the archive simply by not re-

encrypting the corresponding encryption key with the new

master key. They extend their user interface to include

master key management with a secure deletion feature; in

their work they propose to write the new key on paper or on

a floppy disk and then physically destroy the previous one.

Database Secure Deletion: Databases such as

MySQL [34] and SQLite [35] store an entire database as a

single file within a file system [36]; databases are analogous

to file systems, where records can be added, removed, and

updated. This adds a new interface layer for users wanting

to delete entries from a database. Database files are long

lived on a system, however the data they contain may reside

within it very shortly. Many applications store sensitive user

data (e.g., emails and text messages) in databases; secure

deletion of such data from databases is therefore important.

Both MySQL and SQLite have secure deletion features. In

both cases, the interface for secure deletion is the underlying

file system and secure deletion is implemented by overwrit-

ing the data with zeros. For MySQL, researchers proposed an

approach where deleted entries are overwritten with zeros,

and the transaction log (used to recover after a crash) is

encrypted and securely deleted by deleting the encryption

key [36]. For SQLite, developers added a compile-time

option to enable a secure deletion feature that overwrites

deleted database records with zeros [37].

As previously discussed, overwriting the blocks with zeros

is one way to inform the file system that these blocks are

unneeded; necessary, but not sufficient, to achieve secure

deletion. SQLite’s approach relies on the file system below

to ensure that overwritten data results in its secure deletion.

D. File-System-Level Approaches with In-Place Updates

We have seen that the utility of user-level approaches

is hampered by the lack of direct access to the physical

medium. Device-level approaches suffer from being gen-

erally unable to distinguish deleted data from valid data

given that they lack the semantics of the file system. We

now look at secure deletion approaches integrated in the file

system itself, that is, approaches that access the physical

medium using the device driver interface. We first consider

approaches that perform in-place updates of data, and after-

wards consider those that do not perform such updates.

An in-place update means that the device driver replaces

a location on the physical medium with new content. Not all

device drivers offer this in their interface, primarily because

305

not all physical media support in-place updates. All the

approaches in this subsection assume that the device driver is

capable of such updates. This assumption is valid for block

device drivers, which are used for controlling magnetic hard

drives and floppy disks.

Secure Deletion for ext2: The second extended file

system ext2 [38] for Linux offers a sensitive attribute for

files and directories to indicate that secure deletion should

be used when deleting the file. While the actual feature

was never implemented by the core developers, researchers

provided a patch that implements it [19].

Their patch changed the functionality that marks a block

as free. It passes freed blocks to a kernel daemon that

maintains a list of blocks that must be sanitized. If the free

block corresponds to a sensitive file, then the block is added

to the work queue instead of being returned to the file system

as an empty block. The work queue is sorted to minimize

seek times imposed by random access on magnetic media.

The sanitization daemon runs asynchronously, performing

sanitization when the system is idle, allowing the user to

perceive immediate file deletion. The actual sanitization

method used is configurable, from a simple overwrite to

repeated overwrites in accordance with various standards.

Secure Deletion for ext3: The third extended file system

ext3 [39] succeeded ext2 as the main Linux file system and

extended it with a write journal: all data is first written

into a journal before being committed to main storage. This

improves consistent state recovery after unexpected losses

of power by only needing to inspect the journal’s recent

changes.

Joukov et al. [40] provide two secure deletion approaches

for ext3. Their first approach is a small change that provides

secure deletion of data (but not metadata) by overwriting

it once, which they call ext3 basic. Their second approach,

ext3 comprehensive, provides secure deletion of file data and

metadata by overwriting it using a configurable overwriting

scheme, such as the 35-pass Gutmann approach. They both

provide secure deletion for all data or just those files whose

extended attributes include a sensitive flag.

Secure Deletion via Renaming: Joukov et al. [40]

present another secure deletion approach through a file

system extension, which can be integrated into many existing

file systems [41]. Their extension intercepts file system

events relevant for secure deletion: unlinking a file and

truncating a file. (They assume overwrites occur in place and

are not influenced by a journal or log-structured file system.)

For unlinking, which corresponds to regular file deletion,

their approach instead moves the file into a special secure

deletion directory. For truncation, the resulting truncated file

is first copied to a new location and the older, larger file is

then moved to the special secure deletion directory. Thus, for

truncations, their approach must always process the entire

file—not just the truncated component. At regular intervals,

a background process runs the user-level tool shred [42]

on all the files in the secure deletion directory.

Purgefs: Purgefs is another file system extension that

conveniently adds efficient secure deletion to any block-

based file system [43]. It uses block-based overwriting when

blocks are returned to the file system’s free list, similar to

the approach used for ext2. It supports overwriting file data

and metadata for all files or just files marked as sensitive.

Secure Deletion for a Versioning File System: A ver-

sioning file system shares file data blocks with many ver-

sions of a file; one cannot overwrite the data of a particular

block without destroying all versions that share that block.

Moreover, user-level approaches such as overwriting the file

fail to securely delete data because all file modifications

are implemented using a copy-on-write semantics [44]—a

copy of the file is made (sharing as many blocks as possible

with older versions) with a new version for the block now

containing only zeros.

Peterson et al. [45] use a cryptographic approach to

optimize secure deletion for versioning file systems. They

use an all-or-nothing cryptographic transformation [46] to

expand each data block into an encrypted data block along

with a small key-sized tag that is required to decrypt the

data. If any part of the ciphertext is deleted—either the tag

or the message—then the entire message is undecipherable.

Each time a block is shared with a new version, a new

tag is created and stored for that version. Tags are stored

sequentially for each file in a separate area of the file system

to simplify sequential access to the file under the assumption

that a magnetic-disk drive imposes high seek penalties for

random access. A specific version of a file can be quickly

deleted by overwriting all of that version’s tags. Moreover,

all versions of a particular data block can easily be securely

deleted by overwriting the encrypted data block itself.

E. File-System-Level Approaches without In-Place Updates

While many of our surveyed approaches achieve secure

deletion by overwriting data, not all device drivers sup-

port these in-place updates. Notably, flash memory cannot

perform such overwrites and the MTD device driver [47],

which accesses raw flash, does not offer such functionality.

Therefore, secure deletion approaches integrated into MTD-

based file systems cannot rely on traditional secure deletion

approaches such as overwriting.

In-place updates are prohibited because of a particular

physical characteristic of flash memory [48]. Flash memory

must be erased before new data is written. The erasure

granularity is typically orders of magnitude larger than the

read and write granularities. This means that to securely

delete data, other physically colocated data must also be

deleted (after being replicated to another physical location)

even if it belongs to a different file not marked for deletion.

This asymmetry between the write and erase granulari-

ties is not limited to flash memory: it manifests itself in

physical media comprised of many write-once read-many

306

units; units that are unerasable but replaceable. Examples

include a library of write-once optical discs or a stack of

punched cards. All write-once media are unerasable—NIST

says they must be physically destroyed to achieve any form

of secure deletion [14]—but first valid colocated data must

be replicated onto a new disc or card and then the library

updated. Therefore, each erase operation performed on such

media destroys one of its constituent storage units.

Similarly, media that can be erased but only with a high

asymmetry in granularity also suffer from this problem. For

example, a tape archive consists of many magnetic tapes,

each storing, say, half a terabyte of data. Each tape must

be written end-to-end in one operation; data available for

archiving is heuristically bundled onto a tape. Later, to

securely delete a single backup on the tape, the entire tape

is re-written to a new tape with the backup removed or

replaced; the old tape is then erased and reused in the tape

archive. This operation incurs cost: tapes have a limited

erasure lifetime and tape-drive time is an expensive resource

for highly-utilized archives.

Flash memory’s erasure granularity asymmetry occurs at

a small scale. Flash memory consists of an array of erase
blocks, each of which is subdivided into pages. Erasing a

flash erase block prepares its pages to store new data, but all

existing data will be removed. Erasure on flash also incurs

a cost: each erasure causes a small amount of wear; the

long-term consequence is the generation of unusable bad
(erase) blocks. Any secure deletion approach for such media

can use the erasure count as a natural efficiency metric as

it encompasses both time complexity and physical wear; in

general one favours approaches with few erasures.

In what follows, we present solutions designed for flash

memory, but they also work for physical media with this

write/erasure asymmetry. (Of course, the difference in scale

may obviate some concerns while introducing others.) To

avoid flash-specific terminology and confusion between

blocks (in block devices) and erase blocks (in MTD devices),

we use the term erase unit for the unit of erasure and pages
for the unit of read/write.

Compaction: The naive secure deletion approach for

physical media with asymmetry between the write and erase

granularities is to immediately compact the erase unit that

contains the deleted data: copy the valid colocated data

elsewhere and execute the erasure operation. This is a costly

operation: copying the data costs time and erasing an erase

unit may additionally cause wear on the physical medium.

However, there is no other immediate secure deletion ap-

proach based on erasures that can do better than one erase

unit erasure per deletion. Immediate secure deletion requires

a minimum of one erasure. Any improvement to further

reduce the number of erase units erased per deletion must

batch the deletions and perform intermittent secure deletion.

Batched Compaction: One obvious improvement over

the naive approach is to intermittently perform compaction-

based secure deletion on all the erase units that have ac-

cumulated deleted data since the last secure deletion. This

approach is no worse than the naive approach in terms of

the time and wear, although the deletion latency—the time

the user must wait until data is securely deleted—increases.

Each time that deleted data units are colocated on an erase

unit, the amortized time and wear cost of secure deletion de-

creases. Indeed, log-structured file systems already perform

a similar technique to recover wasted space, which is usually

called garbage collection [49]–[52]. In garbage collection,

unlike in our case, compaction is performed only on erase

units whose wasted space exceeds a heuristically-computed

threshold based on the file system’s current need for free

space. Garbage collection therefore tries to optimize the

number of erasures, but does not consider deletion latency.

Per File Secure Deletion: Lee et al. [53] propose a

secure deletion approach for YAFFS [51], which is also

generalizable to similar file systems. It performs immediate

secure deletion of an entire file at the fixed cost of one

erase unit compaction. It reduces the erasure cost of secure

deletion by only deleting data at the granularity of a file.

Their approach encrypts each file with a unique key stored

in every version of the file’s header. The file system is

modified to store all versions of a file’s header on the same

erase unit. Whenever erase units storing headers are full,

they are compacted to ensure that file encryption keys are

only stored on one erase unit. To delete a file, the erase

unit storing the key is compacted for secure deletion, thus

deleting all file data under computational assumptions with

only one erase unit erasure.

DNEFS: Reardon et al. [15] present a generic file

system modification that affords secure deletion for physical

media that have high erasure costs. They use encryption as

a compression technique to reduce the number of erasures

required to securely delete data. They modify the file system

by encrypting each data block with a unique key, and

colocate the keys in a key storage area. Secure deletion is

an intermittent operation that replaces the old key storage

area with a new version; keys corresponding to deleted data

blocks are not propagated to the new version. Thus, all

deleted blocks in the file system are securely deleted, under

computational assumptions, with a small number of erasures.

DNEFS is implemented for the flash file system UBIFS [50].

Scrubbing: We argued that an immediate approach can

only improve the erasure efficiency of the naive approach

by not using erasures. Wei et al. [21] propose exactly such

an approach for flash memory called scrubbing. Scrubbing

works by draining the electrical charge from flash memory

cells—effectively rewriting the memory to contain only

zeros. Erasing a flash memory erase unit is the only way to

restore the charge to a cell, but cells can be drained using

the write operation. The resulting cells are still unusable for

new data, but they are immediately void of the sensitive data.

Usefully, colocated data on the erase unit remains available.

307

A concern with scrubbing is that it officially results in un-

defined behaviour [48]. Due to the possibility of introducing

read errors, flash memory specifications discourage multiple

overwrites for some memory and prohibit it for others. The

authors examine error rates in practice for different memory

types and show that it varies widely; for some devices

scrubbing causes frequent errors while for others it causes

none.

F. Cross-layer Approaches

Recall that ensuring the irrecoverability of data is easiest

at the lowest layers, but there is no information available

on the stored location of deleted data objects. There are,

however, approaches that pass information on deleted data

down through the layers, permitting the use of efficient low-

layer secure deletion approaches.

Data objects contained in a file are discarded from a file

system in three ways: by unlinking the file, by truncating

the file past the block, and by updating the data object’s

value. The information about data blocks that are discarded

when unlinking or truncating files, however, remains only

known to the file system. The device-driver layer can only

infer the obsolescence of an old block when its logical

address is overwritten with a new value. Here we present two

approaches by which the file system passes information on

discarded blocks to the device driver: TRIM commands [26]

and TrueErase [18]. In both cases, the file system informs the

device that particular blocks are no longer valid, i.e., needed

for the file system. With this information, the device driver

can implement its own efficient secure deletion without

requiring data blocks to be explicitly overwritten by the file

system.

TRIM commands are notifications issued from the file

system to the device driver to inform the latter about data

blocks that no longer store valid file system data. TRIM

commands were not designed for secure deletion but rather

as an efficiency optimization for flash-based physical media:

without TRIM commands, flash memory eventually suffers a

thrashing effect where the device driver must assume that the

only deletable block on the physical medium is the one that

is being overwritten. Nevertheless, there is no reason that a

device driver cannot use information from TRIM commands

to perform secure deletion: TRIM commands indicate every

time a block is discarded—there are no false negatives.

However, it is not possible to restrict TRIM commands

only to sensitive blocks, which means that the underlying

mechanism that securely deletes the data must be efficient.

Diesburg et al. propose TrueErase [18], which provides

similar information as TRIM commands but only for all the

blocks belonging to files specifically marked as sensitive.

They add a new communication channel between the file

system and the device driver that forwards information on

blocks deleted from the file system. Device drivers are mod-

ified to implement immediate secure deletion when provided

a deleted block; the device driver is thus able to implement

secure deletion using its lower-layer interface. TrueErase is

more efficient than TRIM as it only securely erases a subset

of sensitive blocks.

G. Conclusions
This concludes our survey of related work on secure

deletion. We saw that physical media can be accessed from

a variety of layers and that different layers provide different

interfaces for secure deletion. In low-layer approaches, fewer

assumption must be made about the interface’s behaviour,

while in high-layer approaches the user can most clearly

mark which data objects to delete. For device-level ap-

proaches, we discussed different ways the entire device can

be sanitized. User-level secure deletion considers how to

securely delete data using a POSIX-compliant file system in-

terface. Secure deletion in the file system must use the device

driver’s interface for the physical medium. We considered

two different kinds of device drivers: those that permit in-

place updates and those that do not. For physical media that

do not have an erasure operation, physical destruction is the

only means to achieve secure deletion.
In the next two sections, we systematize the space of

secure deletion approaches. We first review adversarial mod-

els and afterwards compare the characteristics of existing

approaches.

III. ADVERSARIAL MODEL

Secure deletion approaches must be evaluated with re-

spect to an adversary. The adversary’s goal is to recover

deleted data objects after being given some access to a

physical medium that contained some representation of the

data objects. In this section, we present the secure deletion

adversaries. We develop our adversarial model by abstracting

from real-world situations in which secure deletion is rele-

vant, and identifying the classes of adversarial capabilities

characterizing these situations. Table I then presents a variety

of real-world adversaries systematized by their capabilities.

A. Classes of Adversarial Capabilities
Attack Surface: The attack surface is the physical

medium’s interface given to the adversary. If deletion is

performed securely, data objects should be irrecoverable to

an adversary who has unlimited use of the provided inter-

face. NIST divides the attack surface into two categories:

robust-keyboard attacks and laboratory attacks. Robust-

keyboard attacks are software attacks: the adversary acts as

a device driver and accesses the storage medium through

the controller. Laboratory attacks are hardware attacks: the

adversary accesses the physical medium through its physical

interface. As we have seen, the physical layer may have

analog remnants of past data inaccessible at any other

layer. While these two surfaces are widely considered in

related work, we emphasize that any interface to the physical

medium can be a valid attack surface for the adversary.

308

Access Time: The access time is the time when the

adversary obtains access to the medium. Many secure dele-

tion approaches require performing extraordinary sanitiza-

tion methods before the adversary is given access to the

physical medium. If the access time is unpredictable, the

user must rely on secure deletion provided by sanitization

methods executed as a matter of routine.

The access time is divided in two categories: user-

controlled and adversary-controlled. If the access time is

user-controlled, then the user can use the physical medium

normally and perform as many sanitization procedures as

desired before providing it to the adversary. If the access

time is adversary-controlled then we do not permit any

extraordinary sanitization methods to be executed: the secure

deletion approach must rely on some immediate or inter-

mittent sanitization operation that limits the duration that

deleted data remains available.

Number of Accesses: Nearly all secure deletion ap-

proaches consider an adversary who accesses a physical

medium some time after securely deleting the data. One

may also consider an adversary who strikes multiple times—

accessing the physical medium before the data is written as

well as after it is deleted [15].

We therefore differentiate between single- and multiple-

access adversaries. An example single-access adversary cor-

responds to the scenario when a used device is sold on the

market; a multiple-access adversary is someone who, for ex-

ample, deploys malware on a target machine multiple times

because it is discovered and cleaned. One could also imagine

multiple accesses escalating in strength at each attack.

Credential Revelation: Encrypting data makes it im-

mediately irrecoverable to an adversary that neither has the

encryption key (or user passphrase) nor can decrypt data

without the corresponding key. However, there are many

situations where the adversary is given this information: a

legal subpoena, border crossing, or information taken from

the user through duress. In these cases, encrypting data is

insufficient to achieve secure deletion.

We partition the credential revelation into non-coercive

and coercive adversaries. A non-coercive adversary does not

obtain the user’s passwords and the credentials that protect

the data on the physical medium. A coercive adversary, in

contrast, obtains this information. It may also be useful for

some to consider a weak-password adversary who can obtain

the user’s password by guessing, by the device not being

in a locked state, or by a cold-boot attack [54]. However,

this adversary is unable to obtain secrets such as the user’s

long-term signing key or the value stored on a two-factor

authentication token.

Computational Bound: Many secure deletion ap-

proaches rely on encrypting data objects and only storing

their encrypted form on the medium. The data is made

irrecoverable by securely deleting the decryption key [9],

[15], [46], [53]. Thus, encryption is used as a compression

technique to reduce secure deletion’s cost, as only the small

key is securely deleted. The security of such approaches

must assume that the adversary is computationally bounded

to prevent breaking the cryptographic scheme used.

We distinguish between computationally bounded and

unbounded adversaries. There is a wealth of adversarial

bounds corresponding to a spectrum of non-equivalent com-

putational hardness problems, so others may benefit from di-

viding this spectrum further. However, for all the approaches

discussed in this paper, it suffices to distinguish between

adversaries who can break cryptographic standards such as

AES [55] and those who cannot.

B. Summary

Adversaries are defined by their capabilities. Table I

presents a subset of the combinatorial space of adversaries

that correspond to real-world adversaries. The name column

gives a name for the adversary, taken from related work

when possible; this adversarial name is later used in Table II

when describing the adversary a solution defeats. The second

through sixth columns correspond to the classes of capabili-

ties defined in this section. The example column describes a

real-world example where the adversary may be found. For

instance, while computationally-unbounded adversaries do

not really exist, the consideration of such an adversary may

reflect a corporate policy on the export of sensitive data or

the consequence of using a broken cryptographic scheme.

Observe that each class of adversarial capabilities is or-
dered based on adversarial strength: lower-layer adversaries

get richer data from the physical medium, coercive adver-

saries get passwords in addition to the physical medium, and

an adversary who controls the disclosure time can prevent

the user from performing an additional extraordinary secure

deletion measure. This yields a partial order on adversaries,

where an adversary A is weaker than or equal to an adver-

sary B if all of A’s capabilities are weaker than or equal to

B’s capabilities. A is strictly weaker than B if all of A’s

capabilities are weaker than or equal to B’s and at least

one of A’s capabilities is weaker than B’s. Consequently,

a secure deletion approach that defeats an adversary also

defeats all weaker adversaries, under this partial ordering.

Finally, as expected, A is stronger than B if B is weaker

than A.

IV. ANALYSIS OF SECURE DELETION APPROACHES

Secure deletion approaches have differing characteristics,

which we divide into assumptions on the environment and

behavioural properties of the approach. Environmental as-
sumptions include the expected behaviour of the system

underlying the interface; behavioural properties include the

deletion latency and the wear on the physical medium. If the

environmental assumptions are satisfied then the approach’s

behavioural properties should hold, the most important of

309

Adversary’s Name Disclosure Credentials Bound Accesses Surface Example
internal repurposing user non-coercive bounded sing/mult controller loan your account
external repurposing user non-coercive bounded single physical sell old hardware
advanced forensic user non-coercive unbounded single physical unfathomable forensic power
border crossing user coercive bounded sing/mult physical perjury to not reveal password
unbounded border crossing user coercive unbounded sing/mult physical corporate policy on encrypted data
malware adversary non-coercive bounded sing/mult user-level malicious application
compromised OS adversary non-coercive bounded sing/mult block device malware in the operating system
bounded coercive adversary coercive bounded single physical legal subpoena
unbounded coercive adversary coercive unbounded single physical legal subpoena and broken crypto
bounded peek-a-boo adversary coercive bounded multiple physical legal subpoena with earlier spying
unbounded peek-a-boo adversary coercive unbounded multiple physical legal subpoena, spying, broken crypto

Table I
TAXONOMY OF SECURE DELETION ADVERSARIES.

which is that secure deletion occurs. No guarantee is pro-

vided if the assumptions are violated. It may also be the case

that stronger assumptions yields an approach with improved

properties.

In this section, we describe standard classes of assump-

tions and properties. Table II organizes the approaches from

Section II into this systematization.

A. Classes of Environmental Assumptions

Adversarial Resistance: An important assumption is on

the strength and capabilities of the adversary, as defined in

Section III. For instance, an approach may only provide

secure deletion for computationally-bounded adversaries;

the computational bound is an assumption required for the

approach to work. An approach’s adversarial resistance is

a set of adversaries; adversarial resistance assumes that the

approach need not defeat any adversary stronger than an

adversary in this set.

System Integration: Our survey organizes secure dele-

tion approaches by the interface through which they ac-

cess the physical medium. The interface that an approach

requires is an environmental assumption, which assumes

that this interface exists and is available for use. System

integration may also include assumptions on the behaviour

of the interface with regards to lower layers (e.g., that

overwriting a file securely deletes the file at the block layer).

For instance, a user-level approach assumes that the user is

capable of installing and running the application, while a

file-system-level approach assumes that the user can change

the operating system that accesses the physical medium. The

ability to integrate approaches at lower-layer interfaces is a

stronger assumption than at higher layers because higher-

layer interfaces can be simulated at a lower layer.

System integration also makes assumptions about the

interface’s behaviour. For example, various approaches over-

write data with zeros, assuming that this operation actually

replaces all versions of the old data with the new version.

As the in-place update assumption is common among ap-

proaches, we mark the ones that require it in Table II using

the label “in” after the integration layer name.

B. Classes of Behavioural Properties

Deletion Granularity: The granularity of an approach

is the approach’s deletion unit. We divide granularity into

three categories: per-physical-medium, per-file, and per-
data-block. A per-physical-medium approach deletes all data

on a physical medium. Consequently, it is an extraordi-

nary measure that is only useful against a user-controlled
access time adversary, as otherwise the user is required

to completely destroy all data as a matter of routine. At

the other extreme is sanitizing deleted data at the smallest

granularity offered by the physical medium: the data block

size (also known as the sector size or page size). Per-data-

block approaches securely delete any deleted data from the

file system, no matter how small.

Between these extremes lies per-file secure deletion,

which targets files as the deletion unit: a file remains

available until it is securely deleted. While it is common

to reason about secure deletion in the context of files, we

caution that the file is not the natural unit of deletion; it

often provides similar utility as per-physical-medium dele-

tion. Long-lived files such as databases frequently store user

data; the Android phone uses them to store text messages,

emails, etc. A virtual machine may store an entire file system

within a file: anything deleted from this virtual file system

remains until the user deletes the entire virtual machine’s

storage medium. Consequently, in such settings, per-file

secure deletion requires the deletion of all stored data in the

DB or VM, which is an extraordinary measure unsuitable

against adversaries who control the disclosure time.

Scope: Many secure deletion approaches use the notion

of a sensitive file. Instead of securely deleting all deleted

data from the file system in an untargeted way, they only

securely delete known sensitive files, and require the user

to mark sensitive files as such. We divide the approach’s

scope into untargeted and targeted. A targeted approach only

securely deletes sensitive files, and can substitute for an un-

targeted approach simply by marking every file as sensitive.

While targeted approaches are more efficient than untar-

geted ones, we have some reservations about their useful-

ness. First, the file is not necessarily the correct unit to

classify data’s sensitivity; an email database is an example

of a large file whose content has varying sensitivity. The

310

benefits of targeting therefore depend on the deployment

environment. Second, some approaches do not permit files

to be marked as sensitive after their initial creation, such

as approaches that must encrypt data objects before writing

them onto a physical medium. Finally, targeted approaches

introduce usability concerns and consequently false classifi-

cations due to user error. Users must take deliberate action

to mark files as sensitive. A false positive costs efficiency

while a false negative may disclose confidential data. While

usability can be improved with a tainting-like strategy for

sensitivity [56], this is still prone to erroneous labelling and

requires user action. Previous work has shown the difficulty

of using security software correctly [57] (even the concept

of a deleted items folder retaining data confounds some

users [58]) and security features that are too hard to use are

often circumvented altogether [11].

A useful middle ground is to broadly partition the storage

medium into a securely-deleting user-data partition and a

normal operating system partition. Untargeted secure dele-

tion is used on the user-data partition to ensure that there

are no false negatives and this requires no change in user

behaviour or applications. No secure deletion is used for the

OS partition to gain efficiency for files trivially identified as

insensitive.

Metadata: Deleting a file from a file system deletes

the file’s data as well as the file’s name and other metadata

associated with the file. However, most file systems store

file metadata separately from the data itself. Consequently,

additional steps may be required to securely delete this data

when deleting a file. We categorize approaches based on

whether they delete metadata as well as data.

Device Lifetime: Some secure deletion approaches in-

cur device wear. We divide device lifetime into complete

wear, some wear, and unchanged. Complete wear means

that the approach physically destroys the medium. Some
wear means that a non-trivial reduction in the medium’s

expected lifetime occurs, which may be further subdivided

with finer granularity based on notions of wear specific to the

physical medium. Unchanged means that the secure deletion

operation has no significant effect on the physical medium’s

expected lifetime.

Deletion Latency: Secure deletion latency refers to the

timeliness when secure deletion guarantees are provided.

There are many ways to measure this, such as how long one

expects to wait before deleted data is securely deleted. Here,

we divide latency into approaches that offer immediate and

delayed secure deletion.

An immediate approach is one whose deletion latency is

negligibly small. The user is thus assured that data objects

are irrecoverable promptly after their deletion. This includes

applications that immediately delete data as well as file

system approaches that only need to wait until a kernel

sanitization thread is scheduled for execution.

A delayed approach is one that intermittently executes

and provides a larger deletion latency. Such approaches, if

run periodically, provide a fixed worst-case upper bound on

the deletion latency of all deleted data objects. Delayed ap-

proaches involve batching: collecting many pieces of deleted

data and securely deleting them simultaneously. This is typ-

ically for efficiency reasons [15], [31]. An important factor

for delayed approaches is crash-recovery. If data objects are

batched for deletion between executions and power is lost,

then either the approach must recover all the data to securely

delete when restarted (e.g., a commit and replay mechanism

like UBIFSec [15]) or it must securely delete all deleted

data without requiring persistent state (e.g., filling the hard

drive [30], [31], [33], [59]).

Efficiency: Approaches often differ in their efficiency.

Wear and deletion latency are two efficiency metrics we

explicitly consider. However, other metrics are relevant

depending on the application scenario and the physical

medium, and so comparing solutions based on these prop-

erties may be helpful. Other metrics include the ratio of

bytes written to bytes deleted, battery consumption, storage

overhead, execution time, etc. The metric chosen depends

on the underlying physical medium and use case.

C. Summary

Table II presents the spectrum of secure deletion ap-

proaches systematized into the framework developed in this

section. For brevity, we do not list all adversaries that an

approach can defeat, but instead state what we inferred was

the target adversary for which the approach was designed.

The classes of environmental assumptions and behavioural

properties are each ordered based on increased deployment
requirements. Approaches that cause wear and use in-place

updates have stronger deployment requirements (i.e., that

wear is permitted and the interface allows and correctly im-

plements in-place updates) than approaches that do not cause

wear or use in-place updates. Approaches that defeat weak

adversaries have stronger deployment requirements (i.e., that

the adversary is weak) than approaches that defeat stronger

adversaries. The result is a partial ordering on approaches

that reflects substitutability: an approach with weaker de-

ployment requirements can replace one with stronger de-

ployment requirements as it requires less to correctly deploy.

V. CASE STUDY: USER-LEVEL APPROACHES

In the previous section, we saw that secure deletion

approaches come with assumptions, which, if violated, un-

dermine secure deletion. Understanding the environmental

assumptions and determining when they are satisfied is

therefore critical to the correct deployment of secure deletion

approaches. In this section, we analyze and compare two

user-level approaches: overwriting and filling. We describe

the assumptions they make on the file-system interface and

experimentally determine which file systems satisfy these

assumptions.

311

So
lu

tio
n

N
am

e
Ta

rg
et

A
dv

er
sa

ry
In

te
gr

at
io

n
G

ra
nu

la
ri

ty
Sc

op
e

M
et

ad
at

a
L

ife
tim

e
L

at
en

cy
E

ffi
ci

en
cy

o
v
er

w
ri

te
[2

9
],

[3
0
],

[4
2
]

u
n
b
o
u

n
d

ed
co

er
ci

v
e

u
se

r-
le

v
el

(i
n
)

p
er

-fi
le

ta
rg

et
ed

v
ar

ie
s

u
n

ch
an

g
ed

im
m

ed
ia

te
n

u
m

b
er

o
f

o
v
er

w
ri

te
s

fi
ll

[3
2
],

[3
3
],

[5
9
]

u
n
b
o
u

n
d

ed
co

er
ci

v
e

u
se

r-
le

v
el

p
er

-b
lo

ck
u
n
ta

rg
et

ed
v
ar

ie
s

u
n

ch
an

g
ed

im
m

ed
ia

te
d

ep
en

d
s

o
n

m
ed

iu
m

si
ze

N
IS

T
cl

ea
r

[1
4
]

in
te

rn
al

re
p
u
rp

o
si

n
g

v
ar

ie
s

p
er

-m
ed

iu
m

u
n
ta

rg
et

ed
v
ar

ie
s

v
ar

ie
s

im
m

ed
ia

te
v
ar

ie
s

w
it

h
m

ed
iu

m
ty

p
e

N
IS

T
p
u

rg
e

[1
4
]

ex
te

rn
al

re
p
u
rp

o
si

n
g

v
ar

ie
s

p
er

-m
ed

iu
m

u
n
ta

rg
et

ed
v
ar

ie
s

v
ar

ie
s

im
m

ed
ia

te
le

ss
ef

fi
ci

en
t

th
an

cl
ea

ri
n

g
N

IS
T

d
es

tr
o
y

[1
4
]

ad
v
an

ce
d

fo
re

n
si

c
p
h

y
si

ca
l

p
er

-m
ed

iu
m

u
n
ta

rg
et

ed
y
es

co
m

p
le

te
w

ea
r

im
m

ed
ia

te
v
ar

ie
s

w
it

h
m

ed
iu

m
ty

p
e

A
T

A
se

cu
re

er
as

e
[2

3
]

ex
te

rn
al

re
p
u
rp

o
si

n
g

co
n
tr

o
ll

er
p
er

-m
ed

iu
m

u
n
ta

rg
et

ed
y
es

u
n

ch
an

g
ed

im
m

ed
ia

te
d

ep
en

d
s

o
n

m
ed

iu
m

si
ze

fl
as

h
S

A
F

E
[1

2
]

ex
te

rn
al

re
p
u
rp

o
si

n
g

co
n
tr

o
ll

er
p
er

-m
ed

iu
m

u
n
ta

rg
et

ed
y
es

so
m

e
w

ea
r

im
m

ed
ia

te
d

ep
en

d
s

o
n

m
ed

iu
m

si
ze

re
n
am

in
g

[4
0

]
u
n
b
o
u

n
d

ed
co

er
ci

v
e

k
er

n
el

(i
n
)

p
er

-b
lo

ck
ta

rg
et

ed
n
o

u
n

ch
an

g
ed

im
m

ed
ia

te
tr

u
n

ca
ti

o
n

s
co

p
y

th
e

fi
le

ex
t2

se
c

d
el

[1
9
]

u
n

b
o
u
n
d
ed

co
er

ci
v
e

k
er

n
el

(i
n
)

p
er

-b
lo

ck
ta

rg
et

ed
y
es

u
n

ch
an

g
ed

im
m

ed
ia

te
b

at
ch

es
to

m
in

im
iz

e
se

ek
ex

t3
b
as

ic
[4

0
]

u
n

b
o
u
n
d

ed
co

er
ci

v
e

k
er

n
el

(i
n
)

p
er

-b
lo

ck
ta

rg
et

ed
n
o

u
n

ch
an

g
ed

im
m

ed
ia

te
b

at
ch

es
to

m
in

im
iz

e
se

ek
ex

t3
co

m
p
re

h
en

si
v
e

[4
0
]

u
n

b
o
u
n
d
ed

co
er

ci
v
e

k
er

n
el

(i
n
)

p
er

-b
lo

ck
ta

rg
et

ed
y
es

u
n

ch
an

g
ed

im
m

ed
ia

te
sl

o
w

er
th

en
ex

t3
b

as
ic

p
u
rg

ef
s

[4
3
]

u
n

b
o
u
n
d

ed
co

er
ci

v
e

k
er

n
el

(i
n
)

p
er

-b
lo

ck
ta

rg
et

ed
y
es

u
n

ch
an

g
ed

im
m

ed
ia

te
n

u
m

b
er

o
f

o
v
er

w
ri

te
s

ex
t3

co
w

se
c

d
el

[4
5
]

b
o
u
n
d

ed
co

er
si

v
e

k
er

n
el

(i
n
)

p
er

-b
lo

ck
u
n
ta

rg
et

ed
u
n
k
n
o
w

n
u

n
ch

an
g

ed
im

m
ed

ia
te

d
el

et
es

m
u

lt
ip

le
v
er

si
o

n
s

co
m

p
ac

ti
o

n
u
n
b
o
u

n
d

ed
co

er
ci

v
e

k
er

n
el

p
er

-b
lo

ck
u
n
ta

rg
et

ed
y
es

so
m

e
w

ea
r

im
m

ed
ia

te
in

ef
fi

ci
en

t,
lo

ts
o

f
co

p
y

in
g

b
at

ch
ed

co
m

p
ac

ti
o
n

u
n
b
o
u

n
d

ed
co

er
ci

v
e

k
er

n
el

p
er

-b
lo

ck
u
n
ta

rg
et

ed
y
es

so
m

e
w

ea
r

d
el

ay
ed

n
o

w
o

rs
e

th
an

co
m

p
ac

ti
o

n
p
er

-fi
le

en
cr

y
p

ti
o
n

[5
3
]

b
o
u
n
d

ed
co

er
si

v
e

k
er

n
el

p
er

-fi
le

ta
rg

et
ed

y
es

so
m

e
w

ea
r

im
m

ed
ia

te
o

n
e

er
as

u
re

at
fi

le
d

el
et

io
n

D
N

E
F

S
[1

5
]

b
o
u
n
d

ed
p
ee

k
-a

-b
o

o
k
er

n
el

p
er

-b
lo

ck
u
n
ta

rg
et

ed
y
es

so
m

e
w

ea
r

d
el

ay
ed

p
er

io
d

ic
d

u
ra

ti
o

n
tr

ad
e-

o
ff

sc
ru

b
b

in
g

[2
1

]
u
n

b
o
u
n
d

ed
co

er
ci

v
e

k
er

n
el

(i
n
)

p
er

-b
lo

ck
u
n
ta

rg
et

ed
y
es

u
n

ch
an

g
ed

im
m

ed
ia

te
v
ar

ie
s

w
it

h
m

em
o

ry
ty

p
e

S
h

re
d
D

ro
id

[3
1
]

u
n

b
o
u
n
d

ed
co

er
ci

v
e

u
se

r-
le

v
el

p
er

-b
lo

ck
u
n
ta

rg
et

ed
y
es

so
m

e
w

ea
r

d
el

ay
ed

d
ep

en
d

s
o

n
m

ed
iu

m
si

ze

Table II
SPECTRUM OF SECURE DELETION APPROACHES

Overwriting and filling are two general user-level ap-

proaches introduced in Section II-C. Overwriting is a tar-

geted per-file approach, while filling is an untargeted per-

block approach. Moreover, filling is less efficient than over-

writing and is therefore usually run periodically to amortize

the deletion cost over multiple data objects. Overwriting

requires that every file data block is uniquely stored in the

file system, and when it is updated, the old value must be

irrecoverable to the adversary, e.g., by overwriting it in place

on the physical medium. Filling requires that when the file

system claims that it cannot store any more data, then no

deleted data remains available on the physical medium. After

filling, all the data on the physical medium is used by the

current file system.

We performed our experiments using a virtual memory

storage medium. We tested block-based file systems using a

loop device, and MTD-based file systems using nandsim.

We formatted the device for a particular file system and

wrote, overwrote, truncated, and unlinked files with distinct

patterns. Afterwards, we unmounted the device and searched

for the patterns in memory. We then remounted the device

and ran various secure deletion tools, observing the results

on the recoverability of the patterns.

File System Data Duplication: Intuitively, overwriting

a file’s contents makes its previous contents inaccessible.

However, many file systems do not replace this data imme-

diately and leave copies of data in multiple locations. An

adversary who may access the storage medium at a lower

level than the file system can easily recover such copies.

The main reason for data duplication is a file system

consistency technique called journalling. Journals colocate

the freshest data so that, after an unanticipated power loss,

the file system can easily recover to a consistent state by

replaying the contents of the journal instead of scanning the

entire storage medium. Intermittently, the journal is emptied

by committing it to main storage. The journal itself is not

securely deleted, so deleted data remains available after

committing.

A log-structured file system is a file system that consists

only of a journal [60]; there is no notion of main storage.

All new data is appended to the journal’s end. Consequently,

overwriting data writes the new version in an unused loca-

tion, leaving the old version available until it is later cleaned.

Another class of file systems that do not overwrite old

data are copy-on-write file systems. By design, these file

systems implement all file writes by copying the old data and

updating it at a new location. Both versions remain available,

although the old version, if unreferenced, is later deleted

to recover the wasted space. Copy-on-write file systems

facilitate deduplication, snapshotting, and version control.

Overwriting: We tested secure deletion by overwriting

using three different tools: srm, shred, and wipe. The

results of these tools are identical and depend only on the

file system where the overwritten data is stored. The second

312

File Data File Metadata
File Updates Filling Zeroes Updates Filling
System In-place Works Tail In-place Works
btrfs no yes yes no no
exfat yes no no no no
ext2 yes yes yes no no
ext3/ext4 no yes yes no no
f2fs no yes yes no yes
hfs yes yes no no no
hfsplus no yes no no no
jffs2 no no no no yes
reiserfs yes yes yes no no
ubifs no yes yes no yes
vfat yes no no no no
yaffs no yes yes no yes

Table III
SECURE DELETION AND FILE SYSTEMS

column of Table III shows which file systems overwriting

tools manage to securely delete data. As expected, only

the simple file systems do this; journalling, log-structured,

and copy-on-write file systems all leave old data easily

accessible on the file system. Journalling file systems are

more amenable to secure deletion by overwriting, however,

because committing the journal does indeed securely delete

the old version of the data. The original version of the

data is still available in the journal, until it is eventually

overwritten by new data written to the file system. A user-

space overwriting tool can address this by writing sufficient

data to overwrite the entire journal. Of course, without the

size of the journal (or with a log-structured file system that

only consists of a journal), filling the journal effectively

requires filling the file system.

Filling: Filling is another user-level approach for secure

data deletion that, depending on the file system’s implemen-

tation, securely deletes all data blocks unreferenced by the

file system. This includes truncated and unlinked files, as

well as overwritten parts of files for file systems that do not

update data in place. The third column of Table III shows

the file systems where filling securely deletes data.

Metadata: A file’s metadata is data about the file’s

contents, such as the file’s name, access permissions, and

creation time. This metadata may also require secure dele-

tion. While overwriting the file’s data clearly does not affect

its metadata, renaming a file may not actually overwrite

the old metadata. Different file systems organize metadata

differently; some mix blocks of data and metadata indis-

criminately while others store file metadata separately from

file data.

The fifth and sixth columns of Table III contain the

results of file metadata deletion for overwriting and filling

respectively. We used different approaches to securely delete

metadata: changing a file using libc’s rename function [25]

(the technique used by shred, srm, and wipe) and un-

linking a file and then filling the storage medium. We

tested these approaches on different file systems to determine

which combinations securely delete metadata. Surprisingly,

(i) (ii) (iii) (iv)

end of file0

file blocks

Figure 2. Truncation points in experiments

in all file systems we tested, renaming files rarely removed

the old file’s name. Even in simple, non-journalling file

systems such as FAT and ext2, file metadata is stored in a

log-structured manner: an unused directory entry is found

to write the new version and then the old version is marked

as unused. Naive filling of the file system deletes metadata

only for some file systems; however a filling operation that

is file-system aware may succeed by creating an appropriate

number of files in the appropriate directories to ensure that

all metadata storage locations are overwritten.

Truncations: Truncation is an operation on a file that

shrinks or extends its size to a specified value. When a trun-

cation extends a file’s size, the new data must be initialized

to zero. When the file is shrunk, the truncated-over data

is discarded. Shrinking truncations are relevant to secure

deletion because the discarded data remains available on the

storage medium despite it no longer being stored in the file.

We tested truncation behaviour for the following situa-

tions: (i) a complete file truncation (size 0), (ii) a block-

aligned file truncation, (iii) a block-unaligned file truncation,

and (iv) a small file truncation that does not change the file’s

block count. These situations are illustrated in Figure 2. We

then tested different user-level tools’ secure deletion of trun-

cated data. For all the file systems we tested, the behaviour

of truncation can be expressed with only two components:

what the file system does with entirely discarded blocks,

and what the file system does with the new last block of the

file—called the file’s tail—during unaligned truncations.

Our results show that no file system performed any

sanitization on entirely discarded blocks. The data they

contained remains until the blocks are allocated to a new

file. Moreover, overwriting tools no longer delete this data

because the size of the file no longer includes this truncated

component. Filling tools—if the file system is amenable to

filling—securely delete all entirely discarded blocks.

Interestingly, among the file systems we tested, there are

two different behaviours after a block-unaligned truncation

for the final block. Either the file system rewrites the tail

block with zeros from the end of the data to the end of

the block, or it leaves it untouched with whatever data was

there before truncation. This is listed in the fourth column

of Table III. This difference illustrates an eager versus lazy

optimization: file systems that rewrite the tail block do not

later rewrite them as zeros if the file is truncated to a larger

size—it assumes the zero writing has already occurred. In

either case, filling solutions are unable to write into tail

blocks as the fragmented, unused component is unavailable

for allocation. Secure deletion of this data therefore relies

313

on an interface behavioural assumption: that the file system

implements eager overwriting.

Sparse Files: Many file systems offer sparse files: the

file’s data is assumed to be all zeros unless some data is

explicitly stored. In fact, sparse files may have much larger

sizes than the physical medium’s capacity, which means

that overwriting its reported size cannot succeed. None of

the overwriting tools treat sparse files in their manuals and

all of them overwrite sparse files by naively overwriting

their entire reported size. When this size exceeds that of

the file system, then they do not securely delete the data

once the file system became full: srm unlinks the file and

exits successfully without output, shred fails noisily when

it runs out of space, and wipe unlinks the file and outputs

that the operation was successful, but also reports that the

file system became full during the operation.

Currently, once a sparse file part stores data, that part

of the file will always explicitly store data. We recommend

that future file systems provide hole-punching features for

sparse files. This means the file system interprets the explicit

writing of zeros blocks as sparse components and does not

store the data. Overwriting-based approaches that only write

zeros will only unlink the corresponding blocks, leaving the

data intact and thus fail to securely delete the data.

Results: Our analysis shows that user-level approaches

are generally limited and cannot securely delete data in all

cases. However, when users must use such approaches, then

a filling-based user-space approach is often preferable to

overwriting. It works without complications for a wide range

of file systems. Its main drawback is that its run time is

proportional to the free space available in the file system.

This can be improved, even in user-space, by artificially

restricting the free space to a target range [31]. Overwriting,

alternatively, requires many assumptions on the file system’s

behaviour, which do not hold for most file systems. In

particular, they only hold for older, simpler file systems,

not newer ones with sophisticated features. These unsatisfied

assumptions result in many corner-cases where data is not

securely deleted. Using the language of our systematization,

the environmental assumptions required by overwriting are

stronger—and less often satisfied in deployed systems—

than those of filling. While overwriting may have prefer-

able behavioural properties (in particular, efficiency), secure

deletion and these behavioural properties are only provided

if the environmental assumptions are met.

VI. CONCLUSIONS

We have explored secure deletion in detail. We defined

the simple problem of removing data objects from a physical

medium and showed that this problem has many complex-

ities and nuances. We surveyed related work in detail by

organizing the approaches in terms of interfaces to the

physical medium. We systematized the space of adversaries

based on classes of ordered capabilities and related the

adversaries to real-world examples; we did the same for

the classes of environmental assumptions and behavioural

properties. Additionally, we examined two common user-

level approaches—showing the limitations of their interfaces

by illustrating the complexity of ensuring secure deletion.

Naturally, this survey can be extended. Other storage

media types and interfaces exist. Moreover, future develop-

ments in physical media may necessitate new kinds of device

drivers, while cloud storage may introduce new high-level

interfaces. We hope that future work in secure deletion takes

advantage of this systematization by also dividing access to

the physical medium into layers and implementing secure

deletion at the appropriate interface and level of abstraction.

VII. ACKNOWLEDGMENTS

This work was partially supported by the Zurich Informa-

tion Security Center. It represents the views of the authors.

We would like to thank our anonymous reviewers as well

as Kari Kostiainen, Srdjan Marinovic, Christina Pöpper,

Thomas Themel, and Nils Ole Tippenhauer for their many

helpful comments.

REFERENCES

[1] Privacy Commissioner of Canada, “Personal Information
Protection and Electronic Documents Act,” 2011.

[2] United States Department of Health and Human Services,
“HIPAA Security Guidance,” 2006.

[3] Electronic Privacy Information Center, “Investigations of
Google Street View,” 2012. [Online]. Available:
https://epic.org/privacy/streetview/

[4] “United States National Industrial Security Program
Operating Manual,” July 1997. [Online]. Available:
http://www.usaid.gov/policy/ads/500/d522022m.pdf

[5] N. Borisov, I. Goldberg, and E. Brewer, “Off-the-record
communication, or, why not to use PGP,” in ACM workshop
on Privacy in the electronic society, 2004, pp. 77–84.

[6] R. Perlman, “The Ephemerizer: Making Data Disappear,”
Tech. Rep., 2005.

[7] R. Geambasu, T. Kohno, A. A. Levy, and H. M. Levy,
“Vanish: increasing data privacy with self-destructing data,”
in USENIX Security Symposium, 2009, pp. 299–316.

[8] C. Pöpper, D. Basin, S. Capkun, and C. Cremers, “Keeping
Data Secret under Full Compromise using Porter Devices,”
in Computer Security Applications Conference, 2010, pp.
241–250.

[9] D. Boneh and R. J. Lipton, “A Revocable Backup System,”
in USENIX Security Symposium, 1996, pp. 91–96.

[10] N. Provos, “Encrypting virtual memory,” in USENIX
Security Symposium, 2000, pp. 35–44.

[11] S. M. Diesburg and A.-I. A. Wang, “A survey of
confidential data storage and deletion methods,” ACM
Computing Surveys, vol. 43, no. 1, pp. 1–37, 2010.

[12] S. Swanson and M. Wei, “SAFE: Fast, Verifiable
Sanitization for SSDs,” UCSD, Tech. Rep., October 2010.

[13] Y. Tang, P. P. C. Lee, J. C. S. Lui, and R. Perlman, “FADE:
Secure Overlay Cloud Storage with File Assured Deletion,”
in SecureComm, 2010, pp. 380–397.

[14] R. Kissel, M. Scholl, S. Skolochenko, and X. Li,
“Guidelines for Media Sanitization,” September 2006,
National Institute of Standards and Technology.

314

[15] J. Reardon, S. Capkun, and D. Basin, “Data Node Encrypted
File System: Efficient Secure Deletion for Flash Memory,”
in USENIX Security Symposium, 2012, pp. 333–348.

[16] A. Rahumed, H. C. H. Chen, Y. Tang, P. P. C. Lee, and
J. C. S. Lui, “A Secure Cloud Backup System with Assured
Deletion and Version Control,” in ICPP Workshops, 2011,
pp. 160–167.

[17] R. Geambasu, T. Kohno, A. Krishnamurthy, A. Levy,
H. Levy, P. Gardner, and V. Moscaritolo, “New directions
for self-destructing data systems,” University of Washington,
Tech. Rep., 2010.

[18] S. Diesburg, C. Meyers, M. Stanovich, M. Mitchell,
J. Marshall, J. Gould, A.-I. A. Wang, and G. Kuenning,
“TrueErase: Per-File Secure Deletion for the Storage Data
Path,” To appear, ACSAC, 2012.

[19] S. Bauer and N. B. Priyantha, “Secure Data Deletion for
Linux File Systems,” Usenix Security Symposium, pp.
153–164, 2001.

[20] S. Garfinkel and A. Shelat, “Remembrance of Data Passed:
A Study of Disk Sanitization Practices,” IEEE Security &
Privacy, pp. 17–27, January 2003.

[21] M. Wei, L. M. Grupp, F. M. Spada, and S. Swanson,
“Reliably Erasing Data from Flash-Based Solid State
Drives,” in USENIX conference on File and Storage
Technologies, Berkeley, CA, USA, 2011, pp. 105–117.

[22] P. T. McLean, “AT Attachment with Packet Interface
Extension (ATA/ATAPI-4),” 1998. [Online]. Available:
http://www.t10.org/t13/project/d1153r18-ATA-ATAPI-4.pdf

[23] G. Hughes, T. Coughlin, and D. Commins, “Disposal of
disk and tape data by secure sanitization,” Security Privacy,
IEEE, vol. 7, no. 4, pp. 29–34, 2009.

[24] T. Gleixner, F. Haverkamp, and A. Bityutskiy, “UBI -
Unsorted Block Images,” 2006. [Online]. Available: http:
//www.linux-mtd.infradead.org/doc/ubidesign/ubidesign.pdf

[25] S. Loosemore, R. M. Stallman, R. McGrath, A. Oram, and
U. Drepper, “The GNU C Library Reference Manual,”
2012. [Online]. Available:
http://www.gnu.org/software/libc/manual/pdf/libc.pdf

[26] Intel Corporation, “Intel Solid-State Drive Optimizer,” 2009.
[Online]. Available: http://download.intel.com/design/flash/
nand/mainstream/Intel SSD Optimizer White Paper.pdf

[27] P. Gutmann, “Secure Deletion of Data from Magnetic and
Solid-State Memory,” in USENIX Security Symposium,
1996, pp. 77–89.

[28] C. Wright, D. Kleiman, and R. S. S. Sundhar, “Overwriting
Hard Drive Data: The Great Wiping Controversy,”
Information Systems Security, pp. 243–257, 2008.

[29] D. Jagdmann, “srm - Linux man page.”
[30] B. Durak, “wipe - Linux man page.”
[31] J. Reardon, C. Marforio, S. Capkun, and D. Basin, “Secure

Deletion on Log-structured File Systems,” ASIACCS, 2012.
[32] Apple, Inc., “Mac OS X: About Disk Utility’s erase free

space feature,” 2012. [Online]. Available:
https://support.apple.com/kb/HT3680

[33] J. Garlick, “scrub - linux man page.”
[34] Oracle Corporation, “About MySQL,” 2012. [Online].

Available: http://www.mysql.com/about/
[35] Hipp, Wyrick & Company, Inc., “About SQLite,” 2012.

[Online]. Available: http://www.sqlite.org/about.html
[36] P. Stahlberg, G. Miklau, and B. N. Levine, “Threats to

privacy in the forensic analysis of database systems,” in
ACM SIGMOD conference on Management of data, 2007,
pp. 91–102.

[37] SQLite, “Pragma statements.” [Online]. Available:

http://www.sqlite.org/pragma.html#pragma secure delete
[38] R. Card, T. Ts’o, and S. Tweedie, “Design and

Implementation of the Second Extended Filesystem,” Dutch
International Symposium on Linux, 1995. [Online].
Available: http://web.mit.edu/tytso/www/linux/ext2intro.html

[39] S. C. Tweedie, “Journaling the Linux ext2fs Filesystem,”
LinuxExpo’98, 1998.

[40] N. Joukov, H. Papaxenopoulos, and E. Zadok, “Secure
Deletion Myths, Issues, and Solutions,” ACM Workshop on
Storage Security and Survivability, pp. 61–66, 2006.

[41] E. Zadok and J. Nieh, “FiST: A Language for Stackable File
Systems,” in USENIX Technical Conference, 2000, pp. 55–70.

[42] C. Plumb, “shred(1) - Linux man page.”
[43] N. Joukov and E. Zadokstony, “Adding Secure Deletion to

Your Favorite File System,” Third International IEEE
Security In Storage Workshop, pp. 63–70, 2005.

[44] Z. Peterson and R. Burns, “Ext3cow: A Time-Shifting File
System for Regulatory Compliance,” Trans. Storage, vol. 1,
no. 2, pp. 190–212, 2005.

[45] Z. Peterson, R. Burns, and J. Herring, “Secure Deletion for
a Versioning File System,” USENIX Conference on File and
Storage Technologies, 2005.

[46] R. L. Rivest, “All-Or-Nothing Encryption and The Package
Transform,” in Fast Software Encryption Conference, 1997,
pp. 210–218.

[47] “Memory Technology Devices (MTD): Subsystem for
Linux,” 2008. [Online]. Available:
http://www.linux-mtd.infradead.org/

[48] Open NAND Flash Interface, “Open NAND Flash Interface
Specification, version 3.0,” 2011. [Online]. Available:
http://onfi.org/specifications/

[49] D. Woodhouse, “JFFS: The Journalling Flash File System,”
in Ottawa Linux Symposium, 2001. [Online]. Available:
http://sources.redhat.com/jffs2/jffs2.pdf

[50] A. Hunter, “A Brief Introduction to the Design of UBIFS,”
2008. [Online]. Available:
http://www.linux-mtd.infradead.org/doc/ubifs whitepaper.pdf

[51] Charles Manning, “How YAFFS Works,” 2010.
[52] J. Kim, “f2fs: introduce flash-friendly file system,” 2012.

[Online]. Available: https://lkml.org/lkml/2012/10/5/205
[53] J. Lee, S. Yi, J. Heo, and H. Park, “An Efficient Secure

Deletion Scheme for Flash File Systems,” Journal of
Information Science and Engineering, pp. 27–38, 2010.

[54] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson,
W. Paul, J. A. Calandrino, A. J. Feldman, J. Appelbaum,
and E. W. Felten, “Lest we remember: cold-boot attacks on
encryption keys,” Communications of the ACM, vol. 52, pp.
91–98, May 2009.

[55] National Institute of Standards and Technology,
“Announcing the Advanced Encryption Standard,” 2001.

[56] D. Y. Zhu, J. Jung, D. Song, T. Kohno, and D. Wetherall,
“TaintEraser: protecting sensitive data leaks using
application-level taint tracking,” SIGOPS Oper. Syst. Rev.,
vol. 45, no. 1, pp. 142–154, 2011.

[57] A. Whitten and J. D. Tygar, “Why Johnny can’t encrypt: a
usability evaluation of PGP 5.0,” in USENIX Security
Symposium, 1999, pp. 169–184.

[58] B. Klimt and Y. Yang, “Introducing the Enron Corpus,” in
Conference on Email and Anti-Spam, 2004.

[59] van Hauser, “sfill(1) - Linux man page.”
[60] M. Rosenblum and J. K. Ousterhout, “The Design and

Implementation of a Log-Structured File System,” ACM
Transactions on Computer Systems, vol. 10, pp. 1–15, 1992.

315

