
Permacoin: Repurposing Bitcoin Work for Data Preservation

Andrew Miller1, Ari Juels, Elaine Shi1, Bryan Parno2 and Jonathan Katz1

1University of Maryland
2Microsoft Research

Abstract
Bitcoin is widely regarded as the first broadly successful e-

cash system. An oft-cited concern, though, is that mining

Bitcoins wastes computational resources. Indeed, Bitcoin’s

underlying mining mechanism, which we call a scratch-off

puzzle (SOP), involves continuously attempting to solve com-

putational puzzles that have no intrinsic utility.

We propose a modification to Bitcoin that repurposes its

mining resources to achieve a more broadly useful goal: dis-
tributed storage of archival data. We call our new scheme

Permacoin. Unlike Bitcoin and its proposed alternatives,

Permacoin requires clients to invest not just computational

resources, but also storage. Our scheme involves an al-

ternative scratch-off puzzle for Bitcoin based on Proofs-of-

Retrievability (PORs). Successfully minting money with this

SOP requires local, random access to a copy of a file. Given

the competition among mining clients in Bitcoin, this modi-

fied SOP gives rise to highly decentralized file storage, thus

reducing the overall waste of Bitcoin.

Using a model of rational economic agents we show that

our modified SOP preserves the essential properties of the

original Bitcoin puzzle. We also provide parameterizations

and calculations based on realistic hardware constraints to

demonstrate the practicality of Permacoin as a whole.

1 Introduction
“We are justified in supposing that the contents of

the Royal Library, if not wholly destroyed, were at

least seriously diminished in the fire of 48 B.C.” –

Peter M. Fraser, on the destruction of the Ancient

Library of Alexandria [1]

Bitcoin [2] is an exceptionally successful e-cash system

based on the equivalence “time = money.” Clients (nodes)

in Bitcoin’s peer-to-peer network invest computational time
in order to mint money in the form of a currency called Bit-

coins or BTC. The operation by which clients generate coins

is called mining. We refer to the basic unit of mining work in

Bitcoin as a scratch-off puzzle (SOP). In Bitcoin today, nodes

mine coins by solving SOPs that involve finding preimages

under a hash function. Correctly solving an SOP constitutes

a proof of work [3], i.e., computational investment.

At the time of writing, mining a Bitcoin block (batch

of coins) requires about 255 hash computations. (For per-

spective, this is also the expected effort required to crack a

DES key.) The Bitcoin network mines a block roughly ev-

ery ten minutes, and thus consumes massive computing re-

sources and natural resources such as electricity, prompting

widespread concern about waste. The Bitcoin FAQ1 says this

about the issue:

Question: Is [Bitcoin] not a waste of energy?

Answer: Spending energy on creating and securing a free
monetary system is hardly a waste.... [Banks] also spend en-
ergy, arguably more than Bitcoin would.

Question: Why don’t we use calculations that are also useful

for some other purpose?

Answer: To provide security for the Bitcoin network, the cal-
culations involved need to have some very specific features.
These features are incompatible with leveraging the compu-
tation for other purposes.

Indeed, researchers have struggled to identify useful com-

putational tasks outside Bitcoin, e.g., protein folding prob-

lems [4], that also have the predictable solution times and

efficient public verifiability required for Bitcoin.

1.1 Goal and approach

We show that Bitcoin resources can be repurposed for other,
more broadly useful tasks, thereby refuting the widespread

belief reflected in the Bitcoin FAQ. We propose a new scheme

called Permacoin. The key idea in our scheme is to make

Bitcoin mining depend upon storage resources, rather than

computation. Permacoin then utilizes storage resources in the

Bitcoin network.

Concretely, Permacoin involves a modified SOP in which

nodes in the Bitcoin network perform mining by constructing

a Proof of Retrievability (POR) [5]. A POR proves that a node

is investing memory or storage resources to store a target file

or file fragment. By building a POR-based SOP into Bitcoin,

our scheme creates a system of highly distributed, peer-to-
peer file storage suitable for storing a large, publicly valuable

digital archive F . Specifically, our aim is to distribute F to

protect it against data losses associated with a single entity,

e.g., the outages or wholesale data losses already incurred by

cloud providers [6].

In contrast to existing peer-to-peer schemes [7, 8], our

scheme doesn’t require an identity or reputation system to

ensure storage of F , nor does it require that F be a popu-

lar download. We achieve file recoverability based strictly on

clients’ incentives to make money (mine Bitcoins).

1Referenced 6 Apr. 2013 at https://en.bitcoin.it/wiki/FAQ.

2014 IEEE Symposium on Security and Privacy

© 2014, Andrew Miller. Under license to IEEE.

DOI 10.1109/SP.2014.37

475

1.2 Challenges

In constructing our SOP in Permacoin based on Proofs of Re-

trievability, we encounter three distinct challenges.

A standard POR involves a single prover holding a single

file F . In our setting, however, multiple clients collectively

store a large dataset F (too large for a single client) in a dis-

tributed manner. Of these an adversarially selected fraction
may act maliciously. The first challenge in creating our SOP

is to construct an adversarial model for this new setting, and

then present a distributed POR protocol that is secure in this

model. Assuming that clients have independent storage de-

vices, we prove that with our SOP, for clients to achieve a

high rate of mining, they must store F such that it is recover-

able.

Additionally, we must ensure that clients indeed maintain

independent storage devices. If, for instance, clients pooled

their storage in the cloud to reduce their resource investment,

the benefits of dataset-recovery robustness through distribu-

tion would be lost. Thus a second challenge in our SOP con-

struction is to ensure that clients must make use of local stor-

age to solve it.

To enforce locality of storage, we introduce into our POR

a pair of novel features. First, block accesses depend on a

client’s private key, which is used to secure her Bitcoins and

which she is therefore not likely to share but will instead

only store locally. Second, these accesses are made sequen-

tially and pseudorandomly. Thus fetching blocks remotely

from a provider would incur infeasibly high communication

costs (e.g., extremely high latency). We show using bench-

marks how our SOP scheme thus takes advantage of practi-

cal network-resource limitations to prevent dangerous storage

pooling.

Finally, to ensure incentives for client participation, it is

important for our new storage-based SOP to preserve the eco-

nomic structure of Bitcoin itself. We present an economic

model showing how to parameterize our SOP to achieve this

property.

1.3 Contributions

In summary, our contributions are as follows.

• Bitcoin resource recycling: Globally, our proposal Per-

macoin shows how to modify Bitcoin to repurpose the

computing and natural resources that clients invest in

mining for a general, useful goal and thus reduce waste.

We consider this our central contribution.

• POR distribution: We show how to construct a dis-

tributed POR in a peer-to-peer setting. By incentivizing

local storage of private keys and penalizing storage out-

sourcing, our scheme encourages local storage by par-

ticipants and thus physically robust file dispersion.

• Modeling: We introduce a new, general model for

Bitcoin tasks (Scratch-Off Puzzles) and accompanying

models of adversarial and economically rational partic-

ipant behavior and costs. We thereby expand the de-

sign space of Bitcoin and offer tools to analyze new

Bitcoin variants, including resource-recouping schemes

such as Permacoin.

Permacoin recovers a substantial portion of the resources

invested in coin-mining infrastructure. Repurposing a larger

fraction would be desirable, of course. We hope that Perma-

coin encourages new techniques for better repurposing, and

the harvesting of resources other than distributed storage.

2 Preliminaries and Background
We now introduce some general terminology for Bitcoin and

our proposed scheme, Permacoin.

Associated with every epoch in Bitcoin is a unique puzzle

ID (denoted puz) known to all participants. In a given epoch,

all miners attempt to solve an SOP specified by puz. Solving

the SOP involves making random guesses at solutions. An

SOP is defined in terms of the following two functions, which

any client may compute:

• Guess(puz) → ticket: A randomized algorithm that

generates a candidate solution to the SOP, which we call

a ticket.

• IsWinningTicket(puz, Z, ticket) → {0, 1}: A function

that outputs 1 if ticket represents a solution to the SOP

and outputs 0 otherwise. Input Z specifies the level of

hardness for the SOP determined by the Bitcoin net-

work.

If IsWinningTicket(puz, Z, ticket) = 1, then we call ticket
a winning ticket for the epoch.

All miners race to generate tickets via Guess until a win-

ning one is found. This ticket is published by the winning

miner, who receives coins as a reward. Publication of a win-

ning ticket marks the end of the current epoch and the begin-

ning of a new one.2 Therefore, the length of each epoch is

a random variable. (We model epoch lengths later in the pa-

per.) In the Bitcoin system, an epoch currently has an average

length of ten minutes.

Bitcoin specifics. In Bitcoin, solving an SOP validates a re-

cent history of transactions in the system, and is called min-
ing a block. A solution is called the header for the mined

block. The SOP involves repeatedly hashing candidate head-

ers, specifically a prefix puz and a guess ticket (usually called

a nonce in Bitcoin specifications), until an image results that

is less than a target value Z. (The smaller Z is, the harder the

SOP.) The two corresponding functions are:

2Ideally, an epoch ends when a winning solution is found. Due to prop-

agation delays in the actual Bitcoin network, however, collisions may occur

in which winning solutions compete for publication. This happens rarely,

and the resulting temporary fork is usually resolved in the next epoch when a

unique winning solution is identified by consensus in the network. The los-

ing block is referred to as a stale block. An estimated 2% of produced blocks

are stale in Bitcoin [9].

476

Guess(puz)
$→ ticket;

IsWinningTicket(puz, Z, ticket) = {H(puz||ticket) ?≤ Z},

where H is a hash function (SHA-256 in Bitcoin).

The header prefix puz = v ‖ Bl ‖ MR(x) ‖ T in-

cludes software version number v, previously mined block

header Bl, Merkle-tree root MR(x) over new transactions x,

and T , the current time expressed in seconds (since 1970-01-

01T00:00 UTC).

A successful miner obtains payment by including in x a

payment of freshly generated coins to herself.3 In general, a

miner j identifies herself via a pseudonymous public key pkj
that she publishes to enable verification of her digitally signed

transactions.

We defer further details, e.g., on parameter choices, until

later in the paper.

Bitcoin design challenge. The Bitcoin SOP was designed to

achieve several properties essential to the Bitcoin system:

1. Predictable effort: The Bitcoin system adjusts the hard-

ness of mining (via Z) once every 2016 blocks to ensure

an epoch length of approximately ten minutes. This on-

going calibration requires a simple and precise charac-

terization of the hardness of mining: To find a ticket sat-

isfying H(puz||ticket) ≤ Z in Bitcoin simply requires

R/Z computations on average, where R is the size of

the range of H (2256 for SHA-256).

2. Fast verification: While solving SOPs is resource-

intensive in Bitcoin, verification of solutions must be

inexpensive, to permit rapid verification of transactions

and coin validity by any user. Verifying the correctness

of a winning ticket, i.e., that H(puz||ticket) ≤ Z, re-

quires only one hash computation.

3. Precomputation resistance: Without knowledge of puz,
it is infeasible for a client to execute Guess or otherwise

perform useful precomputation of a winning ticket in

Bitcoin. As puz relies on transaction history, it cannot

feasibly be guessed prior to the beginning of an epoch.

In other words, puz may be modeled as a fresh, random

value in every epoch.

4. Linearity of expected reward: The expected reward per

unit of work is approximately constant, even for very

small investments of computational effort. This pre-

vents large participants from monopolizing the system

and driving out ordinary participants.

3In addition to freshly generated coins, miners also receive payment in the

form of “fees” attached to each transaction by users. The rate of new coin

generation is scheduled to gradually diminish and then (in 200 years) cease.

At this point the process of “mining” will nonetheless continue, sustained by

transaction fees alone. For simplicity, in the remainder of the paper we use

“the reward” to refer to either kind of payment.

There are few known puzzles that meet all of these criteria.

Our aim here is to construct a puzzle that also satisfies:

5. Repurposing: Resources committed to mining can be

repurposed for useful tasks that are independent of the

Bitcoin system.

Proofs of Retrievability. We address criterion 5 in our pro-

posed scheme Permacoin by recycling storage resources, thus

requiring Bitcoin / Permacoin puzzle solvers to store useful

data. A successful SOP solution, i.e., winning ticket, in our

scheme takes the form of a (partial) Proof of Retrievability

(POR).

We refer the reader to [5] for details on PORs, whose

use we briefly review here. A basic POR takes the form of

a challenge-response protocol in which a Prover P demon-

strates its possession of a file F , and the fact that it can be

correctly retrieved, to a Verifier V . To audit P ’s possession

of F , V may issue a random challenge c at any time; it re-

ceives a response r, which it can verify without possessing

F .

There are many variant POR schemes in the literature. (See

Section 9.) Let F := (F1, F2, . . . , Fn) denote a dataset con-

sisting of n sequential segments. We make use of a simplified

scheme with public verifiability.

• Setup(F) → (F̂ , digest). P encodes F using an era-

sure code. Then P computes a Merkle tree whose leaves

are segments of the encoded F (with their indices) and

whose root is digest. Let F̂ denote the encoded form of

F and its accompanying Merkle tree.

• Prove(puz, R, F̂) → {Fri , πri}ri∈R. Let R :=
{r1, . . . , rk} ∈ [n]k denote a set of random challenge

indices selected by V . P outputs a proof that for each

challenge index ri ∈ R, F̂ contains Fri and the accom-

panying path πri in the Merkle tree.

• Verify(digest, R, {Fri , πri}ri∈R) → {0, 1}. V vali-

dates the Merkle path πri for each segment Fri against

digest.

PORs provide a strong guarantee, namely that with over-

whelming probability, if P provides correct responses, F can

be retrieved completely from P . That is, thanks to erasure-

coding, every bit of F can be recovered.

Our adaptation of PORs for Permacoin, however, differs

from previously proposed PORs in two main ways. First, in

our case, V is the entire Bitcoin / Permacoin network. Unlike

previous schemes, however, we let the challenge c be gener-

ated non-interactively by a client executing Guess.

Second, in our setting, every client can act as a prover

(if it successfully mines blocks). So the number of possi-

ble provers is large (thousands of clients). Additionally, the

target dataset F is quite large, so each client j holds only a

portion of F . Thus we distribute F across multiple provers.

The POR generated by a prover / client is partial, in the sense

477

that it covers only the client’s stored portion of F . While dis-

tributed PORs have been previously explored in, e.g., [10],

previous schemes have involved small numbers of provers

acting synchronously. In our setting, not only is the number

of provers large, but proofs are generated asynchronously, as

a byproduct of mining.

Another distinctive feature of our setting is that most PORs

aren’t explicitly verified. In order to try to solve an SOP, a

client must generate PORs on its blocks of F . But a client that

never mines a block successfully may never release any POR.

In this sense, PORs implicitly incentivize correct storage: a

client stores Fi in order to be able to generate a correct POR,

whether or not the POR is ever in fact verified.

In Section 4, we specify how POR functions are integrated

into Guess and IsWinningTicket to construct Permacoin’s

SOP.

3 Security Assumptions
In the Bitcoin system, clients are pseudonymous. Each client

j has a key pair (skj , pkj) used to sign (validate) her trans-

actions. Additionally, there are no pre-established identities,

and clients may create new identities as desired at any time.

We retain these properties in our proposed scheme.

Permacoin makes use of an extremely large archival data

file F (notionally, F may be 1 petabyte in size). Conse-

quently, F is too large for storage by individual peers, which

must instead store fragments of F . A benefit of distributing

F across peers, however, is that it becomes more durable, i.e.,

able to survive infrastructure damage, as specifically desired

for high-value files. Even if a fraction of peers go offline or

behave maliciously, F remains recoverable.

Globally, therefore, our security goal is to preserve F even

in the face of failures, benign or malicious, of a fraction of

clients in the Bitcoin network.

We make the following three important assumptions in Per-

macoin that are distinct from those in Bitcoin.

File distribution. We assume (for the sake of presentation)

that F emanates from a single authoritative dealer that digi-

tally signs file blocks. We assume that newly created clients

can download fragments of F on demand. The dealer might

remain continuously online to serve these blocks. In this case,

storage of F in Bitcoin provides a hedge against a dealer fail-

ure. (For example, the Library of Congress might serve out its

collection F . But in case of a failure, as during the recent U.S.

government shutdown [11], F would be recoverable from the

Bitcoin network.)

In brief, we assume that fragments of an authoritatively

generated file F may be downloaded on demand by clients.

We make no further assumptions of centralization. In prac-

tice, we imagine that the functionality of the trusted dealer

will be provided by the Bitcoin network itself; we discuss

possible mechanisms for this in Section 8.

Limited adversary. We assume an adversary that controls a

small (minority) fraction of clients. Given a recent result [12]

showing that an adversary that controls 1/4 of clients can sub-

vert the Bitcoin network, limited adversarial control is a fun-

damental requirement of Bitcoin, and not just of our scheme.

We assume that the remaining clients act independently and,

in particular, assume that they behave in an economically ra-

tional manner. That is, they seek to maximize their gain in

Bitcoin mining and limit their resource investment.

Local private-key storage. We assume that a substantial

fraction of clients do not share their private signing keys with

external entities. It is the signing key skj of a client j that en-

titles him to the reward of Bitcoins associated with successful

block mining. Consequently, sharing this key means sharing

a client’s coins—and exposing them to theft with no ability to

trace them and thus no recourse or indemnification should a

provider be breached or embezzle coins. Additionally, many

Bitcoin miners today perform mining on special-purpose lo-

cal devices, such as ASIC miners [13]. Thus, we assume that

a substantial fraction of clients in the Bitcoin network store

their private keys locally.

We construct our SOP such that efficiently solving it re-

quires continuous use of a miner’s private key. Given our

assumption of local key storage, therefore, we are able to

show that clients in Permacoin perform mining locally and

thus that fragments of F are distributed across distinct clients

and enjoy the full physical distribution and robustness of a

true peer-to-peer network.

4 Scheme
Our idea, at a high level, is to build a scratch-off-puzzle out

of a Proof-of-Retrievability, such that the only way effective

way to solve the puzzle is to store portions of the public

dataset. In the following sections, we describe how we de-

sign the puzzle to ensure that (a) users reliably store a subset

of the data, (b) participants assign themselves mostly non-

overlapping subsets of data to ensure good diversity, and (c)
the entire dataset is recoverable with high probability from

the contents of participants’ local storage devices.

4.1 A Simple POR Lottery

To reduce the energy wasted by Bitcoin’s current proof-

of-computation lottery, we propose replacing it in Perma-

coin with a POR lottery. In a POR lottery, every scratch-off

attempt can be associated with the effort of computing a POR.

There are at least two issues that must be addressed:

• Choosing a random subset of segments based on each
participant’s public key. Since each participant may not

have sufficient storage to store the entire dataset, we

have each participant choose a random subset of seg-

ments of the data to store, based on the hash of their

public key.

• Non-interactive challenge generation. In traditional

PORs, a verifier sends a random challenge to a prover,

and the prover answers the challenge. In our system, the

verifier is the entire Bitcoin network, and the challenge

must be generated non-interactively.

478

Thus, we have the participants generate challenges based

on the publicly known epoch-dependent puzzle ID puz.
A valid challenge is computed as H(puz||s) for some

string s of the prover’s choice.

Our strawman protocol is described in Figure 1.

4.2 Local-POR Lottery

One drawback of the strawman POR lottery (Figure 1) is that

it does not incentivize distributed storage, which undermines

our goal of long-term, resilient data-storage.

In particular, participants can potentially benefit from

economies of scale if they outsource the puzzle solving pro-

cess to a cloud server, including the storage and computa-

tion necessary. In fact, several companies have begun to offer

hosted Bitcoin mining services [14].

If most users outsource the puzzle solving process to the

cloud, then Permacoin’s distributed computational and stor-

agee network would effectively become centralized with a

few companies. To increase our resilience against correlated

disasters, we wish to increase the geographical diversity of

the storage. Therefore, we wish to disincentivize users from

outsourcing their storage to cloud providers.

We now propose a new local-POR lottery mechanism (see

Figure 2) that discourages users from outsourcing puzzle

solving to the cloud.

Idea 1: Tie the payment private key to the puzzle solution.
Our first idea is to tie to the puzzle solution to the private key

to which the lottery reward is paid out. This key must be kept

private in order to claim the reward for oneself. By tying the

payment private key to the puzzle solution, a user must reveal

her private key to the cloud if she wishes to reduce her own

costs by outsourcing the puzzle to the cloud.

As mentioned earlier (Section 3), we assume that at least a

fraction of the users will choose not to entrust the cloud with

their payment private keys.

Idea 2: Sequential and random storage access. We also

need to discourage a user from outsourcing storage to the

cloud, but performing computation locally on her own ma-

chine. To achieve this goal, we craft our puzzle such that

access to storage is sequentialized during the scratch-off at-

tempt. Furthermore, the storage access pattern is random

(based on outcomes of calling a random oracle) and cannot be

precomputed ahead of time. Thus, if the data is stored in the

cloud and the computation is performed locally, many round-

trips must be incurred during the scratch-off attempt, which

will reduce the user’s chance of finding a winning ticket.

Boosting recoverability with erasure codes. As in stan-

dard proof-of-retrievability schemes, we boost the probability

of successful recovery through erasure coding. In the setup

phase, we erasure code a dataset containing f segments into

rf segments, where r > 1, such that any f segments suffice

to recover the dataset.

���� �������� ���� ���� ���� ���� �	�� �	��������� ������

���������	������
�

�	�����	����

�	����

����������
	������
����
������	���	

�� ����
	���	���
�����

����������
�������	����

���	���������������

���� ������

Figure 3: Illustration of the floating preimage signature sig-

nature scheme.

4.3 Floating-Preimage Signature Scheme

For the signing operation in Figure 2, one simple op-

tion would be to use the commonly adopted RSA signa-

ture scheme. However, RSA signatures (and most other

commonly-used signatures) require asymmetric operations,

which impose a high computational overhead. This is un-

desirable for our purposes; for every dollar a participant in-

vests in mining equipment, we would prefer as much of it

as possible to be spent on storage devices (which simultane-

ously provide additional utility through our scheme) rather

than signature-computing processors (which do not). From

a back-of-the-envelope calculation, if an RSA signature were

used, and if we choose parameters to ensure half of each in-

vested dollar is spent on storage, then each puzzle iteration

would have to add a half-megabyte of data to the correspond-

ing proof (see Section 7), which would place an impractical

burden on the Bitcoin network.

Instead, we propose a highly efficient multi-use hash-based

signature scheme which we call a floating preimage signature
(FPS). This scheme is an instance of the generalized Bos-

Chaum signature scheme [15], to which we refer for a better

description of standard hash-based signatures. In brief, the

secret key consists of a set of randomly generated strings;

the public key is the root digest of a Merkle tree with these

strings at the leaves. A message is signed by pseudorandomly

selecting a subset of leaves to reveal.

Our puzzle requires a multi-use signature scheme allow-

ing k + 1 signed messages, where the first k are performed

during the k iterations of the scratch-off, and the additional

(k+1)-th is used to spend the Bitcoin reward after successful

mining. However, we cannot directly employ any standard

multi-use signature scheme (e.g., those based on Merkle sig-

natures [15]), since we require a special non-outsourceable

property.

[Non-outsourceability:] During a scratch-off, successfully
computing the k signatures necessary for a ticket requires
possession of a large fraction of the private keys (preimages),
such that with high probability, anyone able to produce k sig-
natures will be able to produce the (k+1)-th signature (used
to pay the reward).

Our basic, stateful FPS signature scheme is illustrated in

479

• Setup. The dealer computes and publishes the digest of the entire dataset, consisting of n segments

A participant with public key pk chooses a subset Spk of segments to store:

∀i ∈ [�] : let u[i] := H0(pk||i) mod n, Spk := {u[i]}i∈[�]
where � is the number of segments stored by each participant. The participant stores {(F[j], πj)|j ∈ Spk}, where πj is

the Merkle proof for the corresponding segment F[j].

• Scratch-off. Every scratch-off attempt is seeded by a random string s chosen by the user. Let puz denote a publicly

known, epoch-dependent, and non-precomputable puzzle ID. A participant computes k random challenges from its stored

subset Spk:

∀i = 1, 2, . . . , k : ri := u[H(puz||pk||i||s) mod �] (1)

The ticket is defined as:

ticket := (pk, s, {F[ri], πi}i=1,2,...,k)

where πi is the Merkle proof for the ri-th segment F[ri].

• Verify. The Verifier is assumed to hold the digest of F . Given a ticket := (pk, s, {F[ri], πri}i=1,2,...,k) verification first

computes the challenged indices using Equation (1), based on pk and s, and computing elements of u as necessary. Then

verify that all challenged segments carry a valid Merkle proof.

Figure 1: A simple POR lottery.

Figure 3 and defined in Figure 4. Next we describe the mod-

ifications needed to achieve the non-outsourceable property.

Adjustments to the basic FPS scheme. Based on the basic

scheme in Figure 4, we make the following modifications to

ensure non-outsourceability, i.e., to ensure that the server can

make the (k + 1)-th signature with high probability if it can

successfully sign the first k messages during the scratch-off.

Particularly, for the (k + 1)-th message, we allow the server

(i.e., signer) to reveal any q′ out of 4q′ randomly chosen un-

used leaves to produce a valid signature.

Lemma 1. Let q denote the number of leaves revealed for
the first k signatures. For the (k + 1)-th signature, suppose
that q′ out of 4q′ leaves must be revealed. Let the number of
leaves L = 2kq + 8q′.

Suppose that the client reveals L/2 or more leaves to the
server. Then, 1) the server can sign the (k + 1)-th message
except with negligible probability; and 2) anyone else with-
out knowledge of the leaves cannot forge a valid (k + 1)-th
signature for a different message (except with negligible prob-
ability).

Proof. (sketch.) For the final, (k + 1)-th message, 4q′ un-

used leaves are drawn randomly as a challenge using the hash

function, and the server is allowed to select any q′ of these

to reveal. We know that among the 4q′ leaves, the server in

expectation has 2q′ of them, since it knows half of the leaves.

It is not hard to show using a Chernoff-like bound that the

server can successfully produce the final signature (contain-

ing q′ out of 4q′ signatures). Based on this argument, for the

server to succeed in signing during scratch-off with any non-

negligible probability, it must know enough of the leaves to

be able to sign the (k + 1)-th message with overwhelming

probability.

It is not hard to show that the probability the (k + 1)-th
signature happens to be a valid signature for any other given

message is negligible in the security parameter if q′ = O(λ).
In particular, to compute the probability for the (k + 1)-th
signature to be a valid signature for a different message, con-

sider the probability that a randomly chosen 4q′ leaves out of

8q′ contains q′ specific leaves contained in the (k+1)-th sig-

nature. This probability is
(
8q′

3q′
)
/
(
8q′

4q′
) ∝ exp(−cq′) for some

appropriate constant c > 0.

Parameterizations and security. In order for this to be a se-

cure, unforgeable signature scheme for all k+1 messages, we

can set L = 2kq + 8q′, q = O(λ) and q′ = O(λ). The proof

of this is standard and deferred to our online full version. [16]

However, we observe that the first k signatures (performed

during scratch off) actually need not be unforgeable signa-

tures. In fact, due to the above Lemma 1, we just have to set

our parameters such that any rational user will store at least

L/2 leaves on the server.

Therefore, in practice, we can set q = 1 for all the inter-

nal signatures during scratch off. However, for the (k+1)-th
signature, we set q′ = O(λ), and the signer must choose 4q′

leaves and reveal any q′ of them. In this case, if the client

withholds L/2 leaves from the server, the server must in ex-

pectation contact the client k/2 times during the scratch-off

attempt – in Section 5, we show that the cost of transmitting

even small packets of data greatly exceeds the cost of simply

computing scratch-off iterations locally. Therefore, a rational

user would not outsource its computation yet withhold L/2
or more leaves.

480

• Setup. Let r > 1 denote a constant. Suppose that the original dataset F0 contains f segments.

First, apply a maximum-distance-separable code and encode the dataset F0 into F containing n = rf segments, such

that any f segments of F suffice to reconstruct F0. Then, proceed with the Setup algorithm of Figure 1.

• Scratch-off. For a scratch-off attempt seeded by an arbitrary string s chosen by the user, compute the following:

σ0 := 0
r1 := u[H(puz||pk||s) mod �]

For i = 1, 2, . . . , k :
hi = H(puz||pk||σi−1||F[ri]) (∗)
σi := signsk(hi)
ri+1 := H(puz||pk||σi) mod �

The ticket is defined as:

ticket := (pk, s, {F[ri], σi, πri}∀i=1,2,...,k)

where πri is the Merkle proof of F[ri].

• Verify. Given ticket := (pk, s, {F[ri], σi, πri}∀i=1,2,...,k), verification is essentially a replay of the scratch-off, where

the signing is replaced with signature verification. This way, a verifier can check whether all iterations of the scratch-off

were performed correctly.

Figure 2: Local-POR lottery.

5 To Outsource or Not to Outsource

As mentioned earlier, since we tie possession of newly minted

coins to a user’s private key in Permacoin, we assume that a

substantial fraction of users will not entrust their private keys

to a service provider and risk theft of their coins.

A user j who only stores her private key skj locally can

choose between two ways of storing her assigned blocks of

F : a local storage device or outsourced storage leased from

a remote cloud storage service. (A combination of the two is

also possible.) We now analyze the storage choice of rational

participants, those seeking to maximize their return on mining

by achieving the lowest expected cost per SOP. We argue that

rational users will choose local storage to drive down their

resource costs.

In both the local storage and outsourced storage scenarios,

the user locally provisions a basic computational resource (in-

curring the hardware costs of a motherboard, CPU, and RAM

and power costs, but not of a substantial storage medium).

The cost differences for the two storage scenarios—again, fa-

voring local storage—stem from the following:

Cost of Storage and I/O: In the local scenario, a client’s

costs are its investment in storage equipment for mining,

specifically, for the purchase of RAM or SSD. (These costs

may be characterized in terms of equipment depreciation.)

In the outsourced scenario, a client’s costs include the: 1)

Cost of storage and disk I/O charged by the service provider;

2) Cost of network bandwidth, including that of the network

link provided by an ISP, and the cost per GB of network trans-

fer charged by a service provider. In our setting, storage of the

file F can be amortized across multiple users, so we assume

the storage cost and disk I/O cost are close to zero. What

remains is the cost of network I/O.

We show that based on typical market prices today, the

costs of storage and I/O are significantly cheaper for the local

storage option.

Latency: By design, our SOP sequentially accesses blocks

in F in a random (pseudorandom) order. The resulting, un-

predictable fetches penalize outsourced storage, as they intro-

duce substantial latency: a single round-trip for every fetched

block, which is vastly larger than disk I/O latency. This la-

tency overhead reduces a miner’s chance of finding a valid

puzzle solution and winning the reward when the number k
of outsourced fetches is large.

If each block fetch incurs roundtrip latency τ , then for large

k, the total incurred latency kτ may be quite large. For ex-

ample, with k = 6000, one iteration parameter we analyze

below, and a 45ms roundtrip latency, typical for regional in-

ternet accesses, kτ would be 4.5 minutes—almost half the

length of an epoch. Boosting to k > 13, 333 would render kτ
larger than an average epoch, making outsourcing infeasible.

Of course, if kτ is small enough, a client can parallelize

fetches across SOP guesses. It is helpful to quantify formally

the value of time, and penalties associated with latency, as we

do now.

5.1 Stochastic model

We now present a stochastic model that offers a quantitative

comparison of the economics of local vs. outsourced storage.

The notation used for the parameters of our scheme are sum-

marized in Table 1.

We consider a stochastic process in which a single-

threaded mining process is trying to find a ticket. This min-

481

• KeyGen(y, �): Let L denote the number of Merkle leaves. Pick {σ1, . . . , σL} at random from {0, 1}O(λ). Construct a

Merkle tree on top of the L leaves {σ1, . . . , σL}, and let digest denote the root’s digest.

The secret key is sk := {σ1, . . . , σL}, and the public key is pk := digest. The signer and verifier’s initial states are

Ωs = Ωv := ∅ (denoting the set of leaves revealed so far).

• Sign(sk,Ωs,m): Compute H(m) where H is a hash function modelled as a random oracle. Use the value H(m) to

select a set I := sk− Ωs of q unrevealed leaves. The signature is

σ := {(σi, πi)}i∈I in sorted order of i

where πi is the Merkle proof for the i-th leaf. Update signer’s state Ωs := Ωs ∪ σ.

• Verify(pk,Ωv,m, σ): Use H(m) to select an unused set I of leaves, of size q. Parse σ := {(σi, πi)}i∈I (in sorted order

of i). Verify that each πi is a correct Merkle proof for the i-th leaf node σi where i ∈ I . Output 1 if all verifications pass.

Otherwise output 0.

Finally, update verifier’s state Ωv := Ωv ∪ σ.

Figure 4: An FPS signature scheme.

Table 1: Notation used for system parameters

f # segments necessary for recovery

m total # segments stored by good users during recovery

n total # encoded segments

� # segments assigned to each identity

k # iterations per puzzle

B # size of each block (bytes)

ing thread will keep computing the iterations sequentially as

described in Figure 2. At any time, if another user in the net-

work finds a winning ticket first, the current epoch ends, and

the mining thread aborts the current scratch-off attempt and

starts a new attempt for the new epoch.

We consider the following cost metric: expected cost in-
vested until a user succeeds in finding one ticket. Every time a

user finds a ticket (before anyone else finds a winning ticket),

the user has a certain probability of having found a winning

ticket, and hence being rewarded.

Game with a giant. We can think of this stochastic process

as a user playing a game against a giant. The giant models

the rest of the network, which produces winning tickets at a

certain rate. The stochastic process in which the giant pro-

duces winning tickets is a memoryless process. At any time,

the remaining time T it takes for the giant to find a winning

ticket follows an exponential distribution. The expectation of

T is also the expected epoch length. In Bitcoin, as noted, the

difficulty of its SOP is periodically adjusted with respect to

the computational power of the network to keep the expected

epoch length at about 10 minutes.

If the giant generates a puzzle solution, it is immediately

communicated to the user, who aborts her current attempt.

Thus the stochastic process can be modeled as a Markov

chain as follows:

• Every iteration takes t time, and costs c.

• If k iterations are finished (before the giant wins), a

user finds a ticket (which may or may not be a winning

ticket). In this case the user gets a positive reward in

expectation.

• Let si denote the state in which the user has finished

computing the i-th iteration of the puzzle.

• If i < k − 1: with probability p, the giant does not

win in the current iteration, and the state goes from si
to si+1. With probability 1 − p, the giant wins, and the

state goes back to s0, i.e., the current epoch ends, and a

new scratch-off attempt is started. Suppose that the ex-

pected epoch length is T ; then it is not hard to see that

p = 1−t/T given that the stochastic process of the giant

winning is memoryless.

• In state sk−1, with probability 1, the state goes back to

s0. Furthermore, in state sk−1, with probability p, the

user will finish computing all k iterations — in which

case another random coin is drawn to decide if the ticket

wins.

s0 s1 s2 . . . sk−1

1

1− p
1− p

1− p

pppp

Figure 5: Markov chain model for a sequential mining pro-

cess that resets if the epoch ends during an iteration.

We analyze the stationary distribution of the above Markov

chain. Let πk−1 denote the probability that it is in state sk−1.

482

It is not hard to derive that πk−1 = (1 − p)pk−1/(1 − pk).
Therefore, in expectation, 1/πk−1 time is spent between two

visits to the state sk−1. Every time the state sk−1 is visited,

there is a p probability that the user will finish all k iterations

of the puzzle. Therefore, in expectation, 1/(πk−1p) time (in

terms of number of iterations) is spent before the user finds a

ticket before the giant does. If a user finds a ticket before the

giant does, we call this a “success”. Hence, we have that

E[expected cost per success] =
c(1− pk)

(1− p)pk

5.2 Local Storage vs. Outsourced Storage

Based on the above analysis, we now plug in typical practical

values for the parameters and investigate the economics of

local vs. outsourced storage.

Local storage. The cost of a scratch-off attempt depends on

two things, the power consumed and the cost of the equip-

ment. We consider two hardware configurations,

1. with SSD drives as the storage medium; and

2. using RAM as the storage medium.

Both are typical configurations that an amateur user can eas-

ily set up. Note that while it is possible to optimize the local

hardware configuration further to have better amortized cost,

it is outside the scope of this paper to do so, since our goal is

to show that, even for an amateur user, local mining is eco-

nomically superior to outsourced storage mining.

First we estimate the cost of local mining using an SSD

and standard CPU. Today, the cost of a desktop containing

a high-end processor (Intel Core i7, 3.4GHz and 8 virtual

cores) is approximately $500. The cost of a 100GB SSD is

about $100. Amortized over three years, the effective cost

is 6.34e-6 $/second. We measured the power consumption

while mining to be about 40 watts; assuming an electricity

cost of 15 cents/kWh, the energy cost of mining is 1.67e-6
$/second in power. Note the mining cost is dominated by

equipment, not power. The latency for a single disk read of

up to 4096 bytes is measured at approximately 30 microsec-

onds.

We assume for now that the size of a file segment is 64

bytes, and every puzzle iteration requires hashing a single

leaf with two 120-bit secrets (y = 1). Computing a hash

over a message of less than 128 bytes takes no more than

∼ 15 microseconds on an ordinary CPU, suggesting that for

a single-threaded mining program, the SSD and CPU would

be in approximately equal utilization. Thus assuming an aver-

age of 30 microseconds per iteration, the cost of mining with

a local SSD is roughly 3.2e-10 $/iter.

Next we consider the cost of local mining using RAM

rather than an SSD. A 2GB stick of DDR3 SDRAM can

be purchased for about $20, and has a data transfer rate of

12, 800 megabytes per second. Assuming a segment size of

64 bytes, the average throughput of this memory is approx-

imately 200 million puzzle iterations per second. This is

faster than a single-threaded CPU performing signing oper-

ations can keep up with. On the other hand, many desktop

computers have a graphics processor (GPU) that can be used

to accelerate Bitcoin mining. Taking one example, the ATI

Radeon 6750 costs $100, consumes 150 watts, and can per-

form 150 million Bitcoin hashes per second. Thus, under this

scheme the GPU would be utilized approximately as much as

the RAM.

Outsourced storage. The cost of outsourced storage min-

ing may vary according to the pricing of the specific service

provider. Our goal is to show that under most conceivable

scenarios for outsourced mining, local mining will be supe-

rior. To demonstrate this, we consider a wide spectrum of

cost ranges for the outsourced storage setting, and show that

even when we unfairly favor the outsourced option by assum-

ing aggressive lower bounds for its cost, the local option is

still more more economical.

We consider multiple cost configurations for the out-

sourced storage option:

1. EC2. First, we rely on the pricing representative of to-

day’s high-end cloud providers. In particular, our esti-

mates are based of Amazon EC2’s pricing. EC2 charges

10 cents per gigabyte of transfer, and a base rate of 10

cents for the smallest virtual machine instance.

2. Bandwidth + CPU. Amazon EC2’s setup is not op-

timized for constant-use high-bandwidth applications.

Other rental services (such as http://1gb.com/
en/) offer “unmetered” bandwidth at a fixed monthly

cost. To model this, we consider a cost lower bound by

assuming that the cloud provider charges nothing, and

that the user only needs to pay for its local CPU and the

bandwidth cost charged by the ISP.

Internet transit costs are measured in $ per mbps, per

month. Costs have diminished every year; the median

monthly cost of bulk bandwidth during 2013 has been

estimated at $1.71/mbps, corresponding to 0.53 cents

per gigabyte under constant use.4 Each puzzle iteration

requires transferring a file segment.

Since the SSD accounts for about 16% of the equipment

cost in the local SSD configuration, and the CPU is ap-

proximately matched with the SSD in terms of utiliza-

tion, for this model we assume that the latency is equiv-

alent, but reduce the local equipment and power cost by

16%.

3. CPU only or bandwidth only. We consider an even more

aggressive lower bound for outsourcing costs. In par-

ticular, we consider a scenario in which the user only

needs to pay for the local CPU; or she only needs to pay

the ISP for the bandwidth.

4According to an October 2013 press release by market re-

search firm TeleGeography: http://www.telegeography.
com/press/press-releases/2013/10/08/ip-transit-
port-upgrades-yield-steeper-price-declines-for-
buyers/index.html

483

While this is not realistic today, this lower bound models

a hypothetical future world where cloud costs are signif-

icantly lowered, or the scenario where a powerful adver-

sary can reimburse users’ mining costs assuming they

join its coalition.

Findings. Table 2 compares the costs of local mining to those

of outsourced storage.

Notice that in our protocol in Figure 2 one tunable param-

eter is the number of bytes that must be transferred between

the server and the client per iteration if storage were to be

outsourced to a server. In general, when more bytes are trans-

ferred per iteration, the bandwidth cost per iteration also in-

creases. In Table 2 we assume a conservative parameter set-

ting where only 64-byte segments are transferred.

Although latency is listed in the second-leftmost column,

the effect of latency is not accounted for in the rightmost To-

tal cost column, since this depends on the number of itera-

tions of the puzzle. Figure 6 illustrates that cost effective-

ness diminishes when the number of iterations is increased

sufficiently. The figure suggests that under almost all scenar-

ios, local mining is strictly more economical than outsourc-

ing storage, regardless of the number of iterations k for the

scratch-off attempt. We stress that this is true even when 1)

the local mining user did not spend too much effort at opti-

mizing its hardware configuration; and 2) we give the out-

sourced storage option an unfair advantage by using an ag-

gressive lower bound for its costs. Recall that local mining

saves in cost for two reasons: 1) local storage and I/O costs

less than remote (in the latter case the client has to pay for

both the storage, disk I/O, and network bandwidth); and 2)

lower storage I/O latency gives the user an advantage in the

stochastic lottery against the “giant”.

The only exception is the “CPU only” entry in Table 2 — in

this case, the user is not paying anything for bandwidth, and

the only cost is for the CPU hashing operation. In this case,

the cost per iteration is lower for the outsourced option than

for the local CPU/SSD option (though even here GPU/RAM

with local storage remains more efficient). However, longer

roundtrip latency to the remote storage will penalize the user

during the mining. Therefore, even in this case, we could dis-

courage outsourced storage by setting k very large (thousands

of iterations), so that the effect of longer storage I/O latency

dominates. For the rest of our analysis, we do include the

price of bandwidth in our model and so small values of k are

sufficient.

5.3 Partial Storage Analysis

While the above analysis shows that a puzzle-solving con-

figuration using local storage is typically more cost-effective

than a configuration using remote cloud storage, we also wish

to consider a hybrid-strategy, in which the user chooses to

store just a fraction γ < 1 of her assigned segments on the

cloud. When a puzzle iteration calls for one of the remotely

stored blocks, the client decides either to fetch it from the

server or abort the attempt. For space, we include this analy-

Figure 6: Cost effectiveness versus number of iterations k,

for different hardware configurations. Note that for k > 4e3
iterations, the CPU/SSD configuration with local storage is

more cost effective than the CPU-only (zero-cost bandwidth)

with remote storage.

sis only in the full version, and here just describe our result.

For all configurations that globally favor local storage in our

analysis above, an economically rational client will favor full

local storage over any partial local storage and for any hybrid

strategy.

6 File-Recovery Analysis
We now give further details on our adversarial model in

Permacoin—as well as our assumptions about the behavior

of rational players, as motivated by our economic analyses

above. Then we present a bound on the probability of recov-

ering the archived dataset F .

Adversarial model. Our adversarial model includes two

main assumptions:

• Bounded control. An adversary may control a coali-

tion of clients in the network (e.g., through malware,

bribery, etc.). We assume, however, that this coalition

is of bounded size and, in particular, the adversary can-

not control the entire network, i.e., that at least a fraction

of clients are uncompromised. We call these clients ra-
tional.

• Recoverable file segments. We assume that among the

rational users, a fraction will contribute all their seg-

ments in local storage during file recovery. We call these

clients good, and denote their number by g.

In favor of this second assumption, we note that any entity

interested in recovering F may be willing to pay users to do

so under extraordinary circumstances. (In this sense, Perma-

coin is a globally distributed analog of the Amazon Glacier

service, in which it is cheap to archive data, but relatively

expensive to perform recovery.)

484

Table 2: Costs per iteration for different mining configurations in Permacoin (mining with local storage vs. three forms of

cloud storage). Latency is the time to compute one iteration of the puzzle. Effective Latency accounts for the pipelining of

computation and storage requests. Equipment is the fixed cost of the system. Total cost per iteration is shown assuming the

transfer of a 64-byte segment.
Model Latency Eff. Lat. Equipment Power Bandwidth Total

CPU & SSD 45μs 30μs $600 40W n/a $2.10e-10/iter

GPU & RAM 600ns 300ns $700 190W n/a $5.04e-14/iter

EC2 30ms 0 $0.10/s n/a $.10/GB $8.39e-7/iter

CPU + BW 30ms 15μs $500 33.6W $5.3e-3/GB $4.04e-10/iter

CPU Only 30ms 15μs $500 33.6W n/a $8.76e-11/iter

BW Only 30ms n/a n/a n/a $5.33e-3/GB $3.16-10/iter

Rational-client model. The design of Permacoin incen-

tivizes a rational player to adopt the following behaviors,

which we assume in our security analysis:

• Honestly generated keys. As discussed in Section 3

economically rational players choose their public/secret

keys honestly.

• Local storage. As shown in our economic analysis in

Section 5, rational clients will store all of their assigned

segments locally. Further, we show below that the addi-

tional cost of omitting any fraction of the assigned seg-

ments increases sharply with the fraction omitted.

Recoverability bound. Rational users will store their as-

signed segments entirely. Some, however, may not choose

to contribute their segments during the process of recovering

F . (They may, for instance, be offline or have dropped out

of the system.) We now show how to bound the probability

of recovery failure under a relatively weak assumption: that

the total number of segments contributed by rational players

to recovery is at least a constant fraction of all assigned seg-

ments.

The proof is omitted due to space limitations, but may be

found in the full version of our paper [16]. It proceeds in

two steps. First, we first prove recoverability of F with high

probability assuming that segments thrown away by users are

selected randomly. Then, we show that even if these seg-

ments are selected arbitrarily (e.g., if the users favor certain

segments over others—or even act maliciously), recoverabil-

ity still holds, except with negligible probability.

Let m = �g be the total number of file segments stored by

good users, where g is the number of good users, and � is the

number of segments stored by each user. The m file segments

are chosen randomly from the set of n encoded segments. We

model this as throwing m balls into n bins, and we wish to

cover f = (1 − 1
α)n number of bins, where α > 1 is some

constant related to the coding rate of the MDS code. Let X
be the random variable denoting the number of empty bins

after m throws.

Lemma 2 (Recoverability under randomly chosen stored

set.). Let f
n = 1 − 1

α for some constant α > 1. Let

m
n = r > lnα > 1− 1

α for some constant r. Then,

Pr[recovery failure] = Pr[X > n− f] < exp(−nε)

where ε = ε(α, r) > 0 is some constant dependent on α and
r.

The proof (included in the full version of this paper) fol-

lows from a standard balls and bins analysis. The lemma can

be strengthened to allow the adversary to selectively choose

to omit up to a constant fraction of the total segments stored

by good users.

7 Parameterization and Microbenchmarks
In this section we provide evidence of the feasibility of Per-

macoin and suggest how in practice to determine the remain-

ing parameters. We are particularly interested in determining

the size of the largest dataset we could reasonably store by

repurposing the Bitcoin network. To calculate this value, we

assess the storage capacity of the network and determine what

verification costs can be tolerated by the network.

In every Bitcoin epoch, a block containing a sequence of

transactions and an SOP solution is broadcast to every node in

the network. Each node must verify both the transactions and

the proof-of-work. Our scheme only affects the SOP solution

(this is in contrast to other proposed Bitcoin modifications,

such as Zerocoin [17], which leave the SOP unchanged but

change the procedure of transaction validation). In addition

to validating each new block as it is broadcast, new clients

that join the network for the first time, or clients that rejoin

the network after some dormant period (e.g., mobile clients),

must download and validate all of the blocks generated during

some offline period. The maximum tolerable validation cost

should certainly be less than 10 minutes (the average epoch

time), since otherwise even the online participants would not

be able to keep up. We show reasonable parameter settings

for which an ordinary computer can still validate a week’s

worth of segments in approximately 6 seconds.

Cost of Validation. The cost of validating one iteration of our

SOP consists of (a) computing the hash of one file segment

(equal to m = F/b) and two 120-bit secrets, (b) verifying a

Merkle tree proof for the segment by recomputing log2(rF)
hashes, and (c) verifying a Merkle tree branch for the secrets

485

by computing log2(k + λ) hashes. Note that the validation

cost does not depend on δ, the storage capacity of the network

relative to the file.

In Figure 7, we show the validation cost for k = 20 iter-

ations of a puzzle using a 20-terabyte file, as a function of

the segment size. Figure 7(a) shows the cost in terms of ver-

ification time, and Figure 7(b) in terms of proof size. For a

reasonable choice of r ≈ 4, the cost of validating a proof

is approximately 6 milliseconds (based on measured time to

compute SHA1 hashes). One new (valid) proof is generated

in each epoch; assuming the average epoch time remains 10

minutes, it would take a participant 6 seconds to validate a
week’s worth of blocks. For comparison, this is approximately

a thousand times more expensive than Bitcoin’s current puz-

zle proof, which requires computing only a single hash (two

invocations of SHA256). The proof size in this case would

be about 20KB. The average Bitcoin block is approximately

200KB, so our scheme would only increase the average block

size by about 10%.

Parameter Choice and ASIC Mining. An underlying as-

sumption about Bitcoin’s incentive structure is that a pow-

erful miner cannot earn disproportionately more revenue in

expectation than an ordinary individual (i.e., “one-CPU-one-

vote” [2]). Because the original hash-based proof-of-work

operation is simple, it can be computed efficiently with a

small circuit, and the only way to effectively mine faster is

to replicate the basic circuit.

During the first few years after Bitcoin’s introduction, min-

ing participants primarily used ordinary CPUs, but shortly

thereafter transitioned to repurposed graphics cards (GPUs)

which provided much more cost-effective hashing power.

Now, five years since Bitcoin’s introduction, the most cost

effective mining is performed using efficient ASICs designed

and manufactured solely for the purpose of Bitcoin mining.

These ASICs consist of multiple copies of the same circuit

on a small chip, which means that the most cost-effective

technology remains accessible in small quantities to ordi-

nary users, at approximately a proportional price. The small-

est ASIC available on the market today is the ASICMINER

“Block Erupter Sapphire”, which costs $30, and achieves a

cost-effectiveness of 11 megahashes/sec/$. Another ASIC

company, Butterfly Labs, also sells a reel of unpackaged

chips, for $75 per chip (in minimum lots of 100) at a cost-

effectiveness of 53 megahashes/sec/dollar5. The feasibility

of our system relies on choosing parameters to preserve this

economic structure as much as possible.

We model the economics of participation among large and

small users by considering cost-effectiveness of configura-

tions attainable given a fixed equipment budget. Our storage-

based puzzle alters the economic structure by introducing a

base cost: the amount of storage assigned to each identity, m,

determines the minimum cost of a suitable storage device. A

smaller value of m means users with small budgets can par-

5See https://products.butterflylabs.com/homepage-
subproducts/65nm-asic-bitcoin-mining-chip.html

ticipate more effectively. On the other hand, larger users have

little incentive to use additional identities; they could instead

achieve proportionally increased mining power by purchas-

ing more devices and filling them with multiple copies of the

same dataset segments, thus contributing less to the recov-

ery probability. We would like to set m as large as possible,

while preserving the low “barrier-to-entry” that enables ordi-

nary users to participate with the most cost-effective configu-

ration.

We consider two mining configurations, based on two

widely available choices for storage: a) a solid-state stor-

age device SSD, and b) random access memory (DDR3

SDRAM). In either case, it is also necessary to perform hash-

ing operations. Since existing Bitcoin mining ASICs perform

essentially the same operation, we can use them as a bench-

mark: the $30 Block Erupter ASIC could compute approxi-

mately 333 million puzzle iterations per second.

The throughput of a high-performance SSD is on the order

of 25,000 per second for random reads of 4KB blocks [18],

whereas a DDR3-1600 memory module can support 200 mil-

lion fetches per second (of 64B segments). Thus it would take

thousands of SSDs to saturate the computational capacity of

a small ASIC, but a single small ASIC would roughly match

the fetch rate of one set of RAM.

Next we consider several possible settings for the per-

identity storage requirement �. We assume that the most

cost effective strategy for � > 2GB is to purchase sets of

RAM and ASICs in approximately equal amounts (illustrated

in Figure 8). This is because we are not modeling the cost

of memory buses (i.e., the motherboard), and so two sets of

2GB RAM cost about as much as one set of 4GB of RAM,

yet results in twice the total throughput. Thus the effect of

increased � is to raise the minimum cost of participation. We

believe it would be reasonably consistent with Bitcoin’s ex-

isting economic structure to choose � = 4GB, in which case

the minimum equipment investment to participate with an ef-

ficient configuration is only $60.

Storage Capacity of the Permacoin Network. If every-

one in the Bitcoin network had always used our scheme

rather than the original protocol, investing an equal amount of

money to acquire and operate mining equipment, how much

storage capacity could we expect to recycle? Miners in Bit-

coin are essentially anonymous, so it is difficult to precisely

estimate the number of distinct participants and the distribu-

tion of the computational power contributed. Nonetheless,

we have several available approaches. First, at the time of

writing, there are estimated to be about 30,000 known nodes

on the network. We may be willing to suppose, as an upper

bound, that each node participates an equal amount. How-

ever, not all connected nodes necessarily mine at all, and in

fact not every miner needs to operate a network-visible node

(instead, miners may connect directly to mining pool opera-

tors). If each user contributes 4GB of storage, we would have

a total capacity of 120 terabytes.

Another approach is to observe the overall hashing capac-

486

(a) (b)

Figure 7: Estimated cost of validation (in seconds) vs. segment size, for a puzzle with k = 20 iterations, using a 20 terabyte

dataset F for varying coding rates r.

ity (“hashpower”) of the network and estimate the amount

of money spent on mining equipment. The current hash-

power of the network is 4e15 hashes per second. The most

cost-effective currently available mining equipment is the

line of Avalon ASICs, whose costs is approximately 50e6

hashes per second per dollar. As a lower bound, if every-

one used these ASICs, then at least $80 million dollars has

been spent on equipment.6 If this infrastructure investment

were entirely redirected toward SSD drives, assuming $70 for

100GB, the result would be a total network storage capacity

of 100 petabytes. The cost-density of RAM is lower ($20

for 2 gigabytes); given an approximately equal investment in

hashing devices to saturate it, the result would be an overall

network storage capacity of 4 petabytes.

Feasibility example. Assuming we’ve identified the storage

capacity of the network – suppose we take it to be 1 petabyte

— what is the largest size file we could hope to safely store?

Could we store 208 TB of data (one popularly cited estimate

of the storage requirement for the print collection of the Li-

brary of Congress [19])? We find that yes, using our scheme

this is possible. Using parameters r = 4, and assigning seg-

ments in contiguous segments of 1 MB, we achieve a valida-

tion cost of less than 3 milliseconds and an error probability

less then e−1010 .

8 Enhancements and Discussions

Stealable Puzzles. In Permacoin, local storage of private

keys is essential to ensure strong physical distribution of data.

We assumed in our adversarial model that users do not share

their private keys in order to outsource mining to an exter-

6This is an underestimate, since older FPGA and GPU mining equipment

contributes less proportionally (relative to its cost) to the overall hashpower.

Also, although some hashpower also comes from the “idle cycles” of ordi-

nary CPUs, the extreme disparity in cost effectiveness between ASICs and

ordinary CPUs leads us to conclude that the vast majority of mining income

is awarded to participants with dedicated hardware.

Figure 8: Cost effectiveness for various per-identity storage

requirements (�), as a function of per-user equipment budget.

nal entity, as this entity could then steal a user’s mined coins.

However, there are numerous defenses the user may employ

against this theft, which make it less effective as a deterrent.

For the service provider to steal the reward, it would have to

reveal the user’s public key, which would alert the user and

lead to a race condition as both try to get their version of

the block accepted. Additionally this would allow the user to

provide evidence of the server’s theft, tarnishing the server’s

reputation, and potentially enabling legal contract enforce-

ment. A variant of our scheme uses generic zero-knowledge

SNARKs (e.g., [20]) to nullify these defenses, allowing any

server to steal the reward and evade detection. In the full

version of our paper, [16] we provide the details of this con-

struction and show that it adds no overhead for ordinary par-

ticipants, yet is practical as a deterrent against outsourcing.

487

Supporting Updates. So far we have considered the archiv-

ing of a static dataset. While it is plausible that archival data

may not often need to change, we would prefer to incorporate

additional data incrementally, and to garbage collect data that

is no longer desired. We describe some standard techniques

that can be added to our system to efficiently support updates.

We first consider the case where some file segments update,

but the file size remain unchanged. Later, we will discuss how

to support additions and deletions.

Incrementally updatable erasure codes. Using a standard

maximum-distance-separable erasure code, updates to a sin-

gle segment may result in a constant fraction of the encoded

segments needing to be updated. This would not only result

in high computational cost during updates, but would also re-

quire each user responsible for storing the updated segment

to download the new segment.

To address this issue, we could instead employ an in-

crementally updatable erasure code [21, 22]. One suitable

scheme [21] relies on the following main idea: updates are

not applied to the main encoded file, but instead are ag-

gregated in a hierarchical log that is merged incrementally.

Using a special FFT-like encoding scheme, each update re-

sults in updates to O(log n) segments in an amortized sense.

Standard deamortization techniques for such hierarchical data

structures can be used to achieve O(log n) worst-case cost in-

stead of amortized cost, at the cost of a constant-factor larger

storage requirement. Using this scheme, for each update,

each user would have to update O(� logn
n) segments on av-

erage, where � is the number of segments allocated to a user.

In other words, a user needs to download a new segment ev-

ery O(n
� logn) update operations. On average, the total storage

utilized in these schemes at any time is over-provisioned by a

factor of two compared to the size of the dataset.

Decentralized Update Approval. One option would be to

allow the trusted dealer to approve each update, and to sign

each new Merkle root digest resulting from adding (or modi-

fying) a segment to the data set. A more satisfying way would

be to rely on the majority voting mechanism already inher-

ent to Bitcoin. Specifically, Bitcoin provides a mechanism

by which a majority of participants vote on transactions that

extend an append-only log; users attach fees to their transac-

tions in order to pay the participants to include them. It would

be natural to extend this mechanism to approve updates, so

that users would pay fees to add new data to the global data

set; additionally, segments could be removed if periodic fees

are not added.

Upon on approval of an update, the trusted dealer (or its

distributed instantiation by Bitcoin majority voting), must

compute the new digest of the dataset. Using an incremen-

tally updatable erasure code [21, 22], updating each segment

results in updates to O(log n) encoded segments, resulting in

O(log2 n) cost for the Merkle tree digest update.

Note that the updates added by a user are public; if privacy

is desired, the user should use a standard encryption algo-

rithm and only publish ciphertexts. To avoid linking multiple

ciphertexts to the same origin, the user should connect to the

network via an anonymizing overlay such as Tor [23], using

a separate circuit for each update.

Encouraging Honest Identity Generation. As mentioned in

Section 6, our security holds when rational users choose their

identities honestly, leading to a random (rather than adver-

sarially chosen) storage assignments. We therefore wish to

design a system that provides the right incentives. Our idea is

to associate a proof-of-work with the identity generation pro-

cess, thus making selective identity generation more costly.

Encouraging Better Use of Additional Storage. Although

we have set the per-identity storage requirement � in Perma-

coin small enough so that an ordinary user can afford to par-

ticipate, we expect that many users will purchase additional

storage devices to participate competitively. We would like

to encourage them to store many different segments, rather

than multiple copies of the same assigned segments, thus in-

creasing the diversity of storage. It would seem difficult to

achieve such an incentive while preserving the linearity-of-

expected-reward requirement. Our approach here is to sug-

gest that the behavior of Bitcoin participants may in fact be

better predicted by prospect theory [24] rather than expected
utility; participation in our scheme more closely resembles

participation in state lottery gambles (hence our use of the

term scratch-off lottery puzzle). Evidence from the Power-

ball lottery suggests that affluence correlates positively with

the variance and the size of the jackpot [25]. Using this as a

heuristic, we suggest that participants who can afford to pur-

chase many storage devices may prefer a puzzle lottery with a

higher difficulty (i.e., higher variance) and a commensurately

larger reward, even if the expectation is the same.

A Weaker Trusted Dealer Assumption. In practice, the

trusted dealer in Permacoin would be replaced by the function

of the network itself. While our scheme incentivizes the stor-

age of files, there is no built-in incentive to distribute files to

other users. However, even a fraction of altruistic users may

form an effective distribution network by sharing segments

voluntarily, in which case the storage incentive still helps by

offsetting the storage cost. Note that this is similar to how Bit-

coin already operates, where the network distributes copies of

historical data to new users despite the mining incentives hav-

ing nothing to do with this function.

Overall Impact. How much would actually be gained if Per-

macoinwere fully successful (for example, if Permacoin were

adopted as a modification to Bitcoin – or, alternately, if Per-

macoin as an independent system surpasses Bitcoin, just as

Facebook surpassed MySpace in the 2000’s)?

First, note that in the previous section, we estimated the

storage capacity of the network if Permacoin had hypotheti-

cally been used instead of Bitcoin from the beginning. The

distinction is that the current hardware investment in Bitcoin

has already been made – at best, we can hope Permacoin

leads to better utilization of future equipment investments in

Bitcoin-like systems. We remark that the observed hashpower

488

of the Bitcoin network has grown steadily since its inception,

and has at least doubled every two months between March

2013 and March 2014.7 If growth continues, then repurpos-

ing the additional investment will lead to a benefit.

Although Permacoin reclaims additional benefit from min-

ing hardware that is simultaneously employed in maintaining

the currency, the performance of the storage service we obtain

is poor compared to typical cloud storage. Large datacen-

ters enjoy economies of scale and save costs on bulk power

and cooling; even Amazon Glacier, which, as mentioned in

Section 6, most closely matches our operating points (cheap

to store, expensive to recover), is much cheaper per gigabyte

and offers similar features like geographic replication of data.

However, Permacoin offers a greater degree of geographic

diversity, and, more importantly, dispersion across more ad-

ministrative domains. Indeed, full decentralization is the key

design goal in Bitcoin, and our approach confers the same

property to data preservation.

9 Related Work
Permacoin spans three main areas of literature.

Proofs of Storage. There is an expansive literature on PORs.

The original construction [5] has been followed by variants,

including some with improved efficiency [26, 27], public ver-

ifiability [5, 27], distributed variants, e.g., [10], and, most re-

cently, the ability to support file systems, rather than the static

files of the original construction [21]. A related vein of lit-

erature on Proofs of Data Possession (PDPs) [28] considers

proofs that most, but not necessarily all of a file is stored.

PORs, unlike PDPs, also support a feature called extraction,

that allows file recovery through the challenge-response inter-

face. We don’t make use of extraction in our proposal here.

Bitcoin. A purely digital implementation of money has been

a sought-after goal since the development of blind signa-

tures by Chaum in 1982 [29]. Previous attempts (e.g., [30])

awarded monetary value to computational work, but required

an external timestamp service to process transactions in se-

quence. The novel approach underlying Bitcoin [2] is to re-

late the problem of committing transactions to the problem

of Byzantine consensus in a public p2p network, for which

the use of computational puzzles can overcome a lack of pre-

established identities [31]. The result is a system which is

computationally very expensive, yet encourages a high degree

of participation and tolerates substantial misbehavior without

relying on strong identities. The economic assumptions un-

derlying Bitcoin are not yet fully understood. When com-

putational resources are allocated equally among individuals,

cooperation according to Bitcoin’s reference implementation

has been shown to be a Nash equilibrium, but not a unique

one [13]; when an individual or coalition wields a third or

more of the overall power, then it is more profitable to devi-

ate from the protocol [12]. Numerous variations of Bitcoin

have been proposed, such as Litecoin, which use different

7Read from http://blockchain.info/charts/hash-rate
on March 11.

puzzle schemes to alter the incentive structure, for example

to encourage participation with commodity (rather than cus-

tomized) hardware. Ours is among the first proposals for puz-

zles with beneficial side-effects. In Primecoin [32], mining

yields Cunningham chains of prime numbers, though these

have no known uses and the puzzle scheme is not proven

to satisfy any security definition. The “proof-of-stake” [33]

technique proposes to eliminate computational work alto-

gether; this could be an even greater benefit than our ap-

proach, although the security tradeoffs are as of yet unclear.

P2P File Systems and Incentives. Since 2000 there has

been substantial research on peer-to-peer systems for persis-

tent storage of data [8, 34] based on distributed-hash-table

routing techniques (e.g., Pastry [35]). The most popular sys-

tems reward users for contributing their resources to the net-

work. Most incentive schemes are based on reciprocation,

and are designed to prevent free-riding (i.e., users that con-

sume resources without contributing their fair share). In par-

ticular, BitTorrent [7] users that contribute upstream band-

width are rewarded with bandwidth from other users and thus

can download files faster. Peer-to-peer document backup sys-

tems [36] have been proposed in which users swap contracts

by which they agree to store copies of others’ files.

Our peer-to-peer storage system in Permacoin is distin-

guished from these in two main ways. First, the entire tar-

get archive is replicated throughout the entire global network,

rather than among a small cross section of peers. This yields

the highest probability of file recovery, and thus is especially

suitable for data of great public significance. Second, the high

cost of global redundancy is offset by the fact that our system

recycles computational resources that are already consumed

on the Bitcoin network.

10 Conclusion
We have presented Permacoin, a modification to Bitcoin that

recycles the enormous investment of computational resources

in order to serve a useful auxiliary purpose. Our approach

has been to replace the underlying computational SOP in Bit-

coin with one based on Proofs-of-Retrievability. We have

shown that in a model involving rational participants and a

resource-limited adversary, participants in Permacoin must

locally store diverse portions of a large dataset F , ensuring

full data recovery with high probability. Our analysis has

shown that the system would be feasible, preserving the es-

sential incentive structures underlying Bitcoin and imposing

only a minor overhead. Given the size of the existing Bitcoin

network, we estimate that our scheme would recycle enough

resources to store at least a “Library of Congress” worth of

data (i.e., two hundred terabytes) in a globally distributed net-

work.

Acknowledgements. We thank the anonymous reviewers

for their invaluable suggestions, and members of the Bit-

coin community (especially Gregory Maxwell) for early dis-

cussions leading to this work. This research was funded in

part by NSF under grant numbers CNS-1223623 and CNS-

489

1314857, and by a Google Faculty Research Award.

References
[1] P. M. Fraser, Ptolemaic Alexandria. Clarendon Press

Oxford, 1972, vol. 3.

[2] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash

system,” 2008.

[3] C. Dwork and M. Naor, “Pricing via processing or com-

batting junk mail,” in CRYPTO, 1993.

[4] A. L. Beberg, D. L. Ensign, G. Jayachandran, S. Khaliq,

and V. S. Pande, “Folding@ home: Lessons from eight

years of volunteer distributed computing,” in Parallel &
Distributed Processing (IPDPS), 2009, pp. 1–8.

[5] A. Juels and B. S. Kaliski Jr, “PORs: Proofs of retriev-

ability for large files,” in ACM CCS, 2007, pp. 584–597.

[6] R. K. Ko, S. S. Lee, and V. Rajan, “Understanding cloud

failures,” IEEE Spectrum, vol. 49, no. 12, 28 Nov. 2012.

[7] B. Cohen, “Incentives build robustness in bittorrent,” in

Workshop on Economics of Peer-to-Peer systems, vol. 6,

2003, pp. 68–72.

[8] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski,

P. Eaton, D. Geels, R. Gummadi, S. Rhea, H. Weath-

erspoon, W. Weimer et al., “Oceanstore: An architec-

ture for global-scale persistent storage,” ACM Sigplan
Notices, vol. 35, no. 11, pp. 190–201, 2000.

[9] C. Decker and R. Wattenhofer, “Information propaga-

tion in the Bitcoin network,” in IEEE P2P, 2013.

[10] K. D. Bowers, A. Juels, and A. Oprea, “HAIL: a high-

availability and integrity layer for cloud storage,” in

ACM CCS, 2009, pp. 187–198.

[11] C. Kellogg, “Government shutdown closes Library of

Congress – online too,” Los Angeles Times, 1 Oct. 2013.

[12] I. Eyal and E. G. Sirer, “Majority is not enough: Bitcoin

mining is vulnerable,” in In FC’14), March 2014.

[13] J. A. Kroll, I. C. Davey, and E. W. Felten, “The eco-

nomics of bitcoin mining or, bitcoin in the presence of

adversaries,” WEIS, 2013.

[14] D. Bradbury, “Alydian targets big ticket miners with

terahash hosting,” http://www.coindesk.com/alydian-

targets-big-ticket-miners-with-terahash-hosting/, Au-

gust 2013.

[15] L. Reyzin and N. Reyzin, “Better than BiBa: Short one-

time signatures with fast signing and verifying,” in In-
formation Security and Privacy. Springer, 2002, pp.

144–153.

[16] A. Miller, A. Juels, E. Shi, B. Parno, and J. Katz, “Per-

macoin: Repurposing bitcoin work for data preserva-

tion,” online full version: http://cs.umd.edu/∼amiller/

permacoin full.pdf, March 2014.

[17] I. Miers, C. Garman, M. Green, and A. D. Rubin, “Ze-

rocoin: Anonymous distributed e-cash from bitcoin,” in

Security and Privacy (SP), 2013 IEEE Symposium on.

IEEE, 2013, pp. 397–411.

[18] A. L. Shimpo, “The Seagate 600 & 600 Pro SSD re-

view,” URL: www.anandtech.com/show/6935/seagate-

600-ssd-review/5, 7 May 2013.

[19] P. Lyman, H. Varian, J. Dunn, A. Strygin, and

K. Swearingen, “How much information?” UC Berke-

ley, Tech. Rep., 2000.

[20] B. Parno, C. Gentry, J. Howell, and M. Raykova,

“Pinocchio: Nearly practical verifiable computation,” in

IEEE Symposium on Security and Privacy, 2013, pp.

238–252.

[21] E. Shi, E. Stefanov, and C. Papamanthou, “Practical dy-

namic proofs of retrievability,” in ACM CCS, 2013, pp.

325–336.

[22] N. Chandran, B. Kanukurthi, and R. Ostrovsky, “Lo-

cally updatable and locally decodable codes,” (to ap-
pear) TCC, 2014.

[23] R. Dingledine, N. Mathewson, and P. Syverson, “Tor:

The second-generation onion router,” DTIC Document,

Tech. Rep., 2004.

[24] A. Tversky and D. Kahneman, “Advances in prospect

theory: Cumulative representation of uncertainty,” J.
Risk Uncertainty, vol. 5, no. 4, pp. 297–323, 1992.

[25] E. Oster, “Are all lotteries regressive? evidence from the

powerball,” National Tax Journal, June, 2004.

[26] K. D. Bowers, A. Juels, and A. Oprea, “Proofs of re-

trievability: Theory and implementation,” in CCSW,

2009, pp. 43–54.

[27] H. Shacham and B. Waters, “Compact proofs of retriev-

ability,” in Asiacrypt, 2008, pp. 90–107.

[28] G. Ateniese et al., “Provable data possession at un-

trusted stores,” in ACM CCS, 2007, pp. 598–609.

[29] D. Chaum, “Blind signatures for untraceable payments.”

in Crypto, vol. 82, 1982, pp. 199–203.

[30] W. Dai, “b-money,” 1998.

[31] J. Aspnes, C. Jackson, and A. Krishnamurthy, “Expos-

ing computationally-challenged byzantine impostors,”

Department of Computer Science, Yale University, New
Haven, CT, Tech. Rep, 2005.

[32] S. King, “Primecoin: Cryptocurrency with prime num-

ber proof-of-work,” http://www.primecoin.org/static/

primecoin-paper.pdf, 2013.

[33] ——, “Ppcoin: Peer-to-peer crypto-currency with

proof-of-stake,” http://www.peercoin.net/bin/peercoin-

paper.pdf, 2012.

[34] A. Rowstron and P. Druschel, “Storage management

and caching in past, a large-scale, persistent peer-to-

peer storage utility,” in ACM SIGOPS Operating Sys-
tems Review, vol. 35, no. 5. ACM, 2001, pp. 188–201.

[35] ——, “Pastry: Scalable, decentralized object location,

and routing for large-scale peer-to-peer systems,” in

Middleware, 2001, pp. 329–350.

[36] B. F. Cooper and H. Garcia-Molina, “Peer-to-peer data

trading to preserve information,” ACM TOIS, vol. 20,

no. 2, pp. 133–170, 2002.

490

