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Abstract—We present VC3, the first system that allows users
to run distributed MapReduce computations in the cloud while
keeping their code and data secret, and ensuring the correctness
and completeness of their results. VC3 runs on unmodified
Hadoop, but crucially keeps Hadoop, the operating system and
the hypervisor out of the TCB; thus, confidentiality and integrity
are preserved even if these large components are compromised.
VC3 relies on SGX processors to isolate memory regions on
individual computers, and to deploy new protocols that secure
distributed MapReduce computations. VC3 optionally enforces
region self-integrity invariants for all MapReduce code running
within isolated regions, to prevent attacks due to unsafe memory
reads and writes. Experimental results on common bench-
marks show that VC3 performs well compared with unprotected
Hadoop: VC3’s average runtime overhead is negligible for its
base security guarantees, 4.5% with write integrity and 8% with
read/write integrity.

I. INTRODUCTION

Cloud providers provision thousands of computers into data

centers and make them available on demand. Users rent this

computing capacity to run large-scale distributed computations

based on frameworks such as MapReduce [4], [20]. This is a

cost-effective and flexible arrangement, but it requires users to

trust the cloud provider with their code and data: while data

at rest can easily be protected using bulk encryption [35],

at some point, cloud computers typically need access to

the users’ code and data in plaintext in order to process

them effectively. Of special concern is the fact that a single

malicious insider with administrator privileges in the cloud

provider’s organization may leak or manipulate sensitive user

data. In addition, external attackers may attempt to access this

data, e. g., by exploiting vulnerabilities in an operating system

or even a hypervisor deployed in the cloud infrastructure.

Finally, attackers may also tamper with users’ computations

to make them produce incorrect results. Typically, cloud users

hope for the following security guarantees:

I Confidentiality and integrity for both code and data; i. e.,

the guarantee that they are not changed by attackers and

that they remain secret.

II Verifiability of execution of the code over the data; i. e.,

the guarantee that their distributed computation globally

ran to completion and was not tampered with.

In theory, multiparty computation techniques may address

these demands. For instance, data confidentiality can be

achieved using fully homomorphic encryption (FHE), which

enables cloud processing to be carried out on encrypted
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data [22]. However, FHE is not efficient for most com-

putations [23], [65]. The computation can also be shared

between independent parties while guaranteeing confidential-

ity for individual inputs (using e. g., garbled circuits [29])

and providing protection against corrupted parties (see e. g.,

SPDZ [19]). In some cases, one of the parties may have

access to the data in the clear, while the others only have

to verify the result, using zero-knowledge proofs (see e. g.,

Pinocchio [48], Pantry [13], and ZQL [21]). Still, our goals

cannot currently be achieved for distributed general-purpose

computations using these techniques without losing (orders

of magnitude of) performance. Other systems use specific

types of computation and provide practical guarantees, but do

not protect all code and data (see e. g., CryptDB [50] and

Cipherbase [6]).

We present Verifiable Confidential Cloud Computing (VC3),

a MapReduce framework that achieves the security guarantees

(I and II) formulated above, with good performance. Our threat

model accounts for powerful adversaries that may control

the whole cloud provider’s software and hardware infrastruc-

ture, except for the certified physical processors involved in

the computation. Denial-of-service, side-channels, and traffic-

analysis attacks are outside the scope of this work.

Our main contribution is the design, implementation, and

evaluation of a practical system that integrates hardware prim-

itives, cryptographic protocols, and compilation techniques.

We use trusted SGX processors [3], [27], [41] as a building

block, but we need to solve several challenges not directly

addressed by the hardware. The first is to partition the system

into trusted and untrusted parts, to minimize its TCB. VC3
runs on unmodified Hadoop, but our design crucially keeps

Hadoop, the operating system and the hypervisor out of the

TCB. Thus, our confidentiality and integrity guarantees hold

even if these large software components are compromised. To

keep the TCB small in our design, users simply write the usual

map and reduce functions in C++, encrypt them, bind them

to a small amount of code that implements our cryptographic

protocols, and finally upload the code to the cloud. On each

worker node, the cloud operating system loads the code into

a secure region within the address space of a process and

makes use of the security mechanisms of SGX processors to

make the region inaccessible to the operating system and the

hypervisor. Subsequently, the code inside the region runs our

key exchange protocol, decrypts the map and reduce functions,

and runs the distributed computation that processes the data.

By comparison, recent work [9] proposes loading a library

variant of Windows 8 together with an application into an

SGX-isolated region; this allows running unmodified Windows

2015 IEEE Symposium on Security and Privacy

© 2015, Felix Schuster. Under license to IEEE.

DOI 10.1109/SP.2015.10

38

2015 IEEE Symposium on Security and Privacy

© 2015, Felix Schuster. Under license to IEEE.

DOI 10.1109/SP.2015.10

38



binaries, but results in a TCB that is larger than VC3’s by

several orders of magnitude.

The second challenge is to guarantee integrity for the whole

distributed computation, since the processors guarantee only

integrity of memory regions on individual computers. We thus

propose an efficient job execution protocol that guarantees the

correct and confidential execution of distributed MapReduce

jobs: the computing nodes produce secure summaries of the

work they perform, and they aggregate the summaries they

receive from their peers. By verifying the final summaries

included in the results, the user can check that the cloud

provider did not interfere with the computation. At the same

time, the cloud provider can freely schedule and balance

the computation between the nodes, as long as all data is

eventually processed correctly.

The final challenge is to protect the code running in the

isolated memory regions from attacks due to unsafe memory

accesses. SGX processors allow this code to access the en-

tire address space of its host process, thus unsafe memory

accesses can easily leak data or enable other attacks. Since

implementing full memory safety for C/C++ [43], [44], [60]

is expensive, we instead provide a compiler that efficiently

enforces two region self-integrity invariants for code in an

isolated region: region-write-integrity which guarantees that

writes through pointers write only to address-taken variables

or heap allocations in the isolated region, and that indirect call

instructions target only address-taken functions in the region;

and region-read-write-integrity, which further guarantees that

reads through pointers read only from addresses inside the

region. Users who want these additional security assurances

may use our compiler.

We implemented VC3 for the popular Hadoop distribution

HDInsight on the Windows operating system. Our implemen-

tation is based on the new hardware security mechanisms

of Intel SGX, but it could in principle target other secure

computing technologies [46]. Experimental results on com-

mon benchmarks show that VC3 performs well compared

with unprotected Hadoop; VC3’s average runtime overhead

is negligible for its base security guarantees, 4.5% with write

integrity and 8% with read/write integrity.

In summary we make the following contributions:

• We describe the design and implementation of VC3, the

first system executing MapReduce jobs with good performance

while guaranteeing confidentiality and integrity of code and

data, as well as the correctness and completeness of the

results. We propose a partitioning of the system that achieves

a small TCB: we keep Hadoop, the operating system and the

hypervisor out of the TCB. Our design runs on unmodified

Hadoop and works well with Hadoop’s scheduling and fault-

tolerance services.

• We design and implement two new security protocols,

for each MapReduce job, first for cloud attestation and key

exchange, then for running the job and gathering evidence of

its correct execution. We establish their security by reduction

to standard cryptographic assumptions. The security proofs

appear in the extended version of this paper [55].
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Fig. 1: The steps of a MapReduce job as discussed in this work with mappers
(M) and reducers (R).

• We design and implement efficient, compiler-based,

region-write-integrity and region-read-write-integrity invari-

ants for all user code running within isolated regions.

• We report on the performance of a practical imple-

mentation of VC3 under realistic conditions by running 7

applications on a Hadoop cluster.

We proceed as follows: we provide background (§II), in-

troduce our adversary model (§III), present an overview of

our design (§IV), present our cryptographic protocols (§V and

§VI), describe our region self-integrity invariants and how to

enforce them (§VII), discuss limitations (§VIII), present our

implementation (§IX), evaluate our approach (§X), discuss

related work (§XI), and conclude (§XII).

II. BACKGROUND

A. MapReduce

MapReduce [20] is a popular programming model for process-

ing large data sets: users write map and reduce functions, and

the execution of both functions is automatically parallelized

and distributed.

The abstract data-flow of a parallel MapReduce job is de-

picted in Figure 1. Each job is a series of three steps: splitting,

mapping, and reducing. In the splitting step, the framework

breaks raw input data into so called input splits. Input splits are

then distributed between mappers. Each mapper node parses

its splits into input key-value pairs, and calls the map function

on each of them to produce intermediate key-value pairs. The

framework groups these pairs by key and distributes them

between reducers (partitioning and shuffling). Each reducer

node calls the reduce function on sets of all the values with

the same key to produce output key-value pairs.

Probably the most popular framework for the execution and

deployment of MapReduce jobs is Hadoop [4]. Hence, we

chose it as our default execution environment.

B. Intel SGX

SGX [3], [32], [41] is a set of x86-64 ISA extensions that

makes it possible to set up protected execution environments

(called enclaves) without requiring trust in anything but the

processor and the code users place inside their enclaves.

Enclaves are protected by the processor: the processor controls

access to enclave memory. Instructions that attempt to read

or write the memory of a running enclave from outside

the enclave will fail. Enclave cache lines are encrypted and
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integrity protected before being written out to RAM. This

removes a broad class of hardware attacks and limits the

hardware TCB to only the processor. The software TCB is

only the code that users decide to run inside their enclave.

Enclave code can be called from untrusted code by means

of a callgate-like mechanism that transfers control to a user-

defined entry point inside the enclave. Enclave execution may

be interrupted due to interrupts or traps. In such cases, the

processor will save the register context to enclave memory and

scrub the processor state before resuming execution outside the

enclave. Enclaves reside within regular user mode processes.

Enclave code can access the entire address space of its host

process. This feature allows for efficient interaction between

enclave code and the outside world.

SGX supports sealed storage and attestation [3]. While

different in many details, these features have the same basic

purpose as sealed storage and attestation in other trusted com-

puting hardware. During enclave construction (by untrusted

software), the processor computes a digest of the enclave

which represents the whole enclave layout and memory con-

tents. This digest is roughly comparable to the PCR values of

the TPM [62]. Untrusted software, like the operating system

(OS) or the hypervisor, can freely interfere with enclave

creation, but such interference will cause the processor to

register a different digest for the enclave. The sealing facilities

provide each enclave with keys that are unique to the processor

and the enclave digest. Local attestation allows an enclave to

prove to another enclave that it has a particular digest and

is running on the same processor. This privileged mechanism

can be used to establish authenticated shared keys between

local enclaves. It also enables the deployment of enclaves that

support remote attestation. To this end, each SGX processor is

provisioned with a unique asymmetric private key that can be

accessed only by a special quoting enclave (QE) [3]. We refer

to this special QE as SGX QE. The SGX QE signs digests of

local enclaves together with digests of data produced by them,

creating so called quotes. A quote proves to a remote verifier

that certain information came from a specific enclave running

on a genuine SGX processor.

C. Cryptographic Assumptions

We now introduce standard notations and security assumptions

for the cryptography we use.

We write m | n for the tagged concatenation of two

messages m and n. (That is, m0 | n0 = m1 | n1 implies

both m0 = m1 and n0 = n1.)

Cryptographic Hash, PRF, and Enclave Digest
We rely on a keyed pseudo-random function, written

PRFk(text) and a collision-resistant cryptographic hash func-

tion, written H(text). Our implementation uses HMAC and

SHA-256.

We write EDigest(C) for the SGX digest of an enclave’s

initial content C. We refer to C as the code identity of an

enclave. Intuitively, EDigest provides collision resistance; the

SGX specification [32] details its construction.

Public-key Cryptography
We use both public-key encryption and remote attestation

for key establishment.

A public-key pair pk, sk is generated using an algorithm

PKGen(). We write PKEncpk{text} for the encryption of

text under pk. In every session, the user is identified and

authenticated by a public-key pku. We assume the public-

key encryption scheme to be at least IND-CPA [10]: without

the decryption key, and given the ciphertexts for any chosen

plaintexts, it is computationally hard to extract any information

from those ciphertexts. Our implementation uses an IND-
CCA2 [10] RSA encryption scheme.

We write ESigP [C]{text} for a quote from a QE with

identity P that jointly signs H(text) and the EDigest(C)
on behalf of an enclave with code identity C. We assume

that this quoting scheme is unforgeable under chosen message
attacks (UF-CMA). This assumption follows from collision-

resistance for H and EDigest and UF-CMA for the EPID

group signature scheme [15]. Furthermore, we assume that

Intel’s quoting protocol implemented by QEs is secure [3]:

only an enclave with code identity C may request a quote of

the form ESigP [C]{text}.
Authenticated Encryption

For bulk encryption, we rely on a scheme that provides

authenticated encryption with associated data (AEAD). We

write Enck(text, ad) for the encryption of text with associated

data ad, and Deck(cipher, ad) for the decryption of cipher
with associated data ad. The associated data is authenticated,

but not included in the ciphertext. When this data is commu-

nicated with the ciphertext, we use an abbreviation, writing

Enck[ad]{text} for ad | Enck(text, ad). (Conversely, any IV

or authentication tag used to implement AEAD is implicitly

included in the ciphertext.) We assume that our scheme is

both IND-CPA [11] (explained above) and INT-CTXT [11]:

without the secret key, and given the ciphertexts for any

chosen plaintexts and associated data, it is hard to forge any

other pair of ciphertext and associated data accepted by Deck.

Our implementation uses AES-GCM [40], a high-performance

AEAD scheme.

III. ADVERSARY MODEL

We consider a powerful adversary who may control the entire

software stack in a cloud provider’s infrastructure, including

hypervisor and OS. The adversary may also record, replay,

and modify network packets. The adversary may also read or

modify data after it left the processor using probing, DMA, or

similar techniques. Our adversary may in particular access any

number of other jobs running on the cloud, thereby accounting

for coalitions of users and data center nodes. This captures

typical attacks on cloud data centers, e. g., an administrator

logging into a machine trying to read user data, or an attacker

exploiting a vulnerability in the kernel and trying to access

user data in memory, in the network, or on disk.

We assume that the adversary is unable to physically open

and manipulate at least those SGX-enabled processor pack-

ages that reside in the cloud provider’s data centers. Denial-

4040



Stack

Public Code E+

Private Code E-

Heap

Framework F

Shared Memory

En
cl

av
e

...

Private Code E-

Framework F

Public Code E+

readKV()/writeKV()

Operating System

Process Memory Layout Dependencies
Fig. 2: Left: Memory layout of process containing SGX enclave and
framework code. Right: Dependencies between the involved components.

of-service, network traffic-analysis, side-channels, and fault

injections are also outside the scope of this paper.

We consider the user’s implementation of the map and

reduce functions to be benign but not necessarily perfect: the

user’s code will never intentionally try to leak secrets from

enclaves or compromise the security of VC3 in any other way,

but it may contain unintended low-level defects.

IV. DESIGN OVERVIEW

Our goal is to maintain the confidentiality and integrity of

distributed computations running on a network of hosts poten-

tially under the control of an adversary. This section outlines

our design to achieve this with good performance and keeping

large software components out of the TCB.

In VC3, users implement MapReduce jobs in the usual way:

they write, test, and debug map and reduce functions using

normal C++ development tools. Users may also statically link

libraries for particular data analytics domains (e. g., machine

learning) with their code; these libraries should contain pure

data-processing functions that do not depend on the operating

system (we provide mathematical and string libraries in our

prototype).

When their map and reduce functions are ready for produc-

tion, users compile and encrypt them, obtaining the private

enclave code E−. Then they bind the encrypted code together

with a small amount of generic public code E+ that imple-

ments our key exchange and job execution protocols (see §V).

Users then upload a binary containing the code to the cloud;

they also upload files containing encrypted data. In the cloud,

enclaves containing E− and E+ are initialized and launched

by public and untrusted framework code F on worker nodes.

Figure 2 depicts the memory layout of a process containing

the described components; it also shows their dependencies.

In VC3, a MapReduce job starts with a key exchange between

the user and the public code E+ running in the secure enclave

on each node. After a successful key exchange, E+ is ready

to decrypt the private code E− and to process encrypted data

following the distributed job execution protocol.

Enclave 
Code

CPU

RAM

M

R
M

R

Input

M

Fig. 3: High-level concept of a VC3 enhanced MapReduce job: code and data
are always kept encrypted when outside the processor chip.

To keep the operating system out of VC3’s TCB, we kept

the interface between E+ and the outside world narrow.

Conceptually, it has only two functions: readKV() and

writeKV(), for reading and writing key-value pairs from

and to Hadoop (akin to receiving and sending messages). Since

F and enclave share the virtual address space of a process,

data is passed from E+ inside the enclave to F outside the

enclave over a shared memory region outside the enclave.

Other than relying on this narrow interface, the code in the

enclave is self-sufficient: it has no further dependencies on

the operating system. The enclave has its own stack which we

reserve on start-up (it includes a guard page to detect stack

out-of-memory conditions); it has its own heap, carved out

of the enclave memory region; and we guarantee that only

one thread at a time executes the user code (the enclave is

created with a single thread control structure, to ensure that

all execution of enclave code is single threaded); parallelism

is achieved in MapReduce jobs by running many instances of

the map and reduce functions in parallel in separate enclaves.

With this design, the operating system and the hypervisor can

still mount attacks such as not scheduling processes, dropping

or duplicating network packets, not performing disk I/O, and

corrupting data when it is out of the enclaves. While we cannot

guarantee progress if the operating system mounts denial of

service attacks, our job execution protocol guarantees that the

results are correct and complete if the distributed computation

terminates successfully.

Note that while in the cloud, both E− and the user’s data

are always kept encrypted, except when physically inside the

trusted processor chip on a mapper or reducer node, as shown

in Figure 3. Inside the processor chip, the user’s map and

reduce functions run on plaintext data at native speed. At

the same time, we allow Hadoop to manage the execution of

VC3 jobs. The framework code (F ) implements the Hadoop

streaming interface [5] to bind to unmodified Hadoop de-

ployments; VC3’s map and reduce nodes look like regular

worker nodes to Hadoop. Thus, Hadoop can use its normal

scheduling and fault-tolerance mechanisms to manage all data-

flows, including performance mechanisms for load balancing

and straggler mitigation. But the Hadoop framework, the

operating system, and the hypervisor are kept out of the TCB.
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Some of these properties could also be achieved using

trusted hypervisors [17], [28], [36], [38], [58], but trusted

hypervisors are problematic in a cloud environment. They

force a potentially large privileged software component that is

under the control of the (possibly adversarial) cloud provider

into the TCB of every user. While users can use attestation to

authenticate a digest of such software, it is unclear how they

can establish trust in it, especially in light of periodic software

upgrades. While the software TCB of a VC3 application

may have as many or more lines of code as small special-

purpose hypervisors [38], [58], the former code is entirely

chosen and compiled by the user, whereas the latter are not.

It is also unclear how these special-purpose hypervisors could

be extended to coexist with the more functional hypervisors

used in cloud systems [8]. Finally, note that VC3’s hardware

TCB is only the SGX processor package; this is smaller than

traditional systems based on TXT [31] or a TPM (large parts

of the motherboard); this is important in a cloud setting where

the hardware is under the control of the cloud provider.

The final aspect of the VC3 design is that users may enforce

region self-integrity invariants using our compiler. The region

integrity invariants act as an additional layer of protection that

allows the trusted code inside the enclave to continuously

monitor its internal state to prevent memory corruption and

disclosure of information due to low-level defects. Users who

want the additional security assurances may use our compiler,

but we emphasize that this optional; users may use other

mechanisms, including manual inspection, testing, and formal

verification, to check that their code does not have defects.

V. JOB DEPLOYMENT

After preparing their code, users deploy it in the cloud. The

code is then loaded into enclaves in worker nodes, and it runs

our key exchange protocol to get cryptographic keys to decrypt

the map and reduce functions. After this, the worker nodes run

our job execution and verification protocol. This section and

the next present our cryptographic protocols for the exchange

of keys and the actual MapReduce job execution, respectively.

Before describing these protocols in detail, we first discuss the

concept of cloud attestation used in VC3.

A. Cloud Attestation

As described above, in SGX, remote attestation for enclaves

is achieved via quotes issued by QEs. The default SGX QE

only certifies that the code is running on some genuine SGX

processor, but it does not guarantee that the processor is

actually located in the cloud provider’s data centers. This may

be exploited via a type of cuckoo attack [47]: an attacker could,

for example, buy any SGX processor and conduct a long term

physical attack on it to extract the processor’s master secret.

If no countermeasures were taken, she would then be in a

position to impersonate any processor in the provider’s data

centers. Note that our threat model excludes physical attacks

only on the processors inside the data centers.

To defend against such attacks, we use an additional Cloud

QE, created by the cloud provider whenever a new SGX-

enabled system is provisioned. The purpose of the Cloud QE

is to complement quotes by the SGX QE with quotes stating

that the enclave runs on hardware owned and certified by the

cloud provider, in a certain data center. At the same time, to

defend against possibly corrupted cloud providers, we only use

the Cloud QE in conjunction with the SGX QE. (Note that the

cloud provider cannot fake quotes from the SGX QE, since

our threat model excludes physical attacks on the processors

inside the data centers.) The procedure to provision Cloud

QEs is simple. Before a new machine enters operation in a

data center, a Cloud QE is created in it. This Cloud QE then

generates a public/private key pair, outputs the public key and

seals the private key which never leaves the Cloud QE.

In the following, we assume two fixed signing

identities for SGX and for the cloud, we write

ESigSGX [C]{text} and ESigCloud[C]{text} for quotes

by the main SGX QE and the Cloud QE, respectively,

and write ESigSGX,Cloud[C]{text} for their concatenation

ESigSGX [C]{text} | ESigCloud[C]{text}.
We foresee that cloud providers will create groups of proces-

sors based on geographical, jurisdictional, or other boundaries

that are of interest to the user, and will publish the appropriate

public keys to access these groups of processors.

B. Key Exchange

To execute the MapReduce job, enclaves first need to get keys

to decrypt the code and the data, and to encrypt the results.

In this section we describe our protocol for this. Our key

exchange protocol is carefully designed such that it can be

implemented using a conventional MapReduce job that works

well with existing Hadoop installations. We first describe

the protocol using generic messages, and then show how to

integrate it with Hadoop. We present a multi-user variant in

Appendix A and a lightweight variant in Appendix B.

Recall that the user is identified and authenticated by her key

pku for public-key encryption and each SGX processor runs

a pair of SGX and Cloud QEs. Before running the protocol

itself, the user negotiates with the cloud provider an allocation

of worker nodes for running a series of jobs.

Setting up a new job involves three messages between the

user and each node:

1) The user chooses a fresh job identifier j and generates a

fresh symmetric key kcode to encrypt E−, then sends to

any node involved the code for its job enclave (Cj,u):

Cj,u = E+ | Enckcode
[]{E−} | j | pku.

2) Each node w starts an enclave with code identity Cj,u.

Within the enclave E+ derives a symmetric key kw
1 and

encrypts it under the user’s public key:

mw = PKEncpku
{kw}.

1This can be the enclave’s sealing key or a key generated using the random
output of the x86-64 instruction RDRAND.
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The enclave then requests quotes from the SGX and

Cloud QEs with text mw, thereby linking mw to its code

identity Cj,u (and thus also to the job-specific j and pku).

The message mw and the quotes are sent back to the user:

pw = mw | ESigSGX,Cloud[Cj,u]{mw}.
3) The user processes a message pw from each node w, as

follows: the user verifies that both quotes sign the mes-

sage payload mw with the code identity Cj,u sent in the

initial message; then, the user decrypts mw and responds

with job credentials encrypted under the resulting node

key kw:

JCw = Enckw
[]{kcode | k}

where kcode is the key that protects the code E− and

k = kjob | kin | kinter | kout | kprf
is the set of authenticated-encryption keys used in the

actual job execution protocol (see §VI). Specifically, kjob
is used to protect verification messages while kin, kinter,

and kout are used to protect input splits, intermediate key-

value pairs, and output key-value pairs respectively; kprf
is used for keying the pseudo-random function PRF.

4) Each node resumes E+ within the job enclave, which

decrypts the job credentials JCw using kw, decrypts its

private code segment E− using kcode, and runs E−.

On completion of the protocol, the user knows that any enclave

that contributes to the job runs the correct code, and that she

shares the keys for the job with (at most) those enclaves.

Our protocol provides a coarse form of forward secrecy,

inasmuch as neither the user nor the nodes need to maintain

long-term private keys. (The user may generate a fresh pku
in every session.) The protocol can also easily be adapted to

implement a Diffie-Hellmann key agreement, but this would

complicate the integration with Hadoop described in §V-C.

An outline of the security theorem for the key exchange

is given below; the formal theorem statement, auxiliary def-

initions, and proof appear in the extended version of this

paper [55].

Theorem 1. Enclave and Job Attestation (Informally)

1) If a node completes the exchange with user public key pku
and job identifier j, then the user completed the protocol
with those parameters; and

2) all parties that complete the protocol with (pku, j) share
the same job code E+, E− and job keys in k; and

3) the adversary learns only the encrypted size of E−, and
nothing about the job keys in k.

C. Integrating Key Exchange with Hadoop

Hadoop does not foresee online connections between nodes

and the user, hence we need another mechanism to implement

the key exchange in practice. We now describe the in-band
variant of key exchange that is compatible with unmodified

Hadoop installations and is implemented in our VC3 prototype.

The in-band variant of key exchange is designed as a

lightweight key exchange job that is executed before the actual
job. The online communication channels between nodes and

user are replaced by the existing communication channels in

a MapReduce job: user → mapper → reducer → user.

By design, our in-band key exchange also does not require

nodes to locally maintain state between invocations. (Per

default, Hadoop does not foresee applications to store files

permanently on nodes.) This is achieved by diverting the

enclaves’ unique and secret sealing keys from their common

use. The exact procedure is described in the following.
The user creates Cj,u and the accompanying parameters for

the actual job as described. The user then deploys this exact

Cj,u first for the special key exchange job. It is important that

the same Cj,u is executed on the same nodes for both jobs.
When launched on a mapper or reducer node, E+ obtains

the enclave’s unique sealing key (unique to the processor

and digest of Cj,u, see §II-B) and uses it as its node key

kw. Each node outputs the corresponding pw in the form

of a MapReduce key-value pair. Mapper nodes immediately

terminate themselves subsequently, while reducer nodes re-

main active until having forwarded all intermediate key-value

pairs containing the mappers’ pw. E− is not (and cannot be)

decrypted during the key exchange job. The user obtains all

pw from the final outputs of the key exchange job. The user

creates the job credentials JCw for each node as described.

Finally, the user writes JCw for all nodes to a file and deploys

it together with Cj,u for the actual job.
During the actual job, E+ derives the unique sealing key

(equivalent to kw) on each node again and uses it to decrypt the

corresponding entry in D, obtaining kcode and k. Afterward,

E− is decrypted and the execution of the job proceeds as

normal. Note how it is essential to use the exact same Cj,u in

both jobs. Otherwise, the sealing keys used in the key exchange
job could not be re-obtained during the execution of the actual
job. Thus, E+ needs to implement the required functionality

for both jobs.

VI. JOB EXECUTION AND VERIFICATION

After obtaining keys to decrypt the secret code and data,

worker nodes need to run the distributed MapReduce com-

putation. A naı̈ve approach for protecting the computation

would be to simply encrypt and authenticate all the key-

value pairs exchanged between the nodes. A hostile cloud

environment would though still be in the position to arbitrarily

drop or duplicate data. This would allow for the manipulation

of outputs. A dishonest cloud provider might also simply be

tempted to drop data in order to reduce the complexity of

jobs and thus to save on resources. Furthermore, care has to

be taken when encrypting data in a MapReduce job in order

not to negatively impact the load-balancing and scheduling

capabilities of Hadoop or the correctness of results. In this

section we present our protocol that tackles these problems and

guarantees the overall integrity of a job and the confidentiality

of data. As before, we first describe the protocol using generic

messages, and then show how to integrate it with Hadoop.

4343



KVC

I

KVC

II RVSjob RRIInput‘ MMMM

KVCKVclose

MMMM

RRR

V Soutput

KVC
outKVC

outKVC
outKVC
outKV‘inter

IIFR

KVC
outKVC

outKVC
outKVC
outKV‘out

Setup Execution Verification
KVCKVCKVCFM
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For now, we rely on a not further specified verifier that

can communicate securely with the user and is trusted by the

user. In practice, the verifier can run on a user’s local machine

or in an enclave. We show later how the verifier can also

be implemented “in-band” as a distinct MapReduce job. Our

implementation uses a distinct tag for each type of message;

these tags are omitted below for simplicity. The entire protocol

is implemented in E+. Figure 4 gives a schematic overview

of the message flows in the protocol.
Step 1: Setup
As a preliminary step, the user uploads chunks of AEAD-

encrypted data as input splits to the cloud provider. Each

encrypted input split Input is cryptographically bound to a

fresh, unique identifier (ID) �in:

Input′ = Enckin
[�in]{Input}

(In practice, we use the 128-bit MAC of the AES-GCM

encryption as ID. Book keeping can though be simpler

for incremental IDs.) All encrypted input splits Input′ are

stored by the cloud provider. The user decides on a subset

of all available input splits as input for the job: Bin =
{�in,0, �in,1, . . . , �in,n−1}; chooses a number of logical reduc-

ers for the job: R; and passes the job specification Sjob =
j | kjob | R | Bin securely to the verifier. The number of

mapper instances is not fixed a priori as Hadoop dynamically

creates and terminates mappers while executing a job. We

write m ∈ m for the mapper indexes used for the job. (This

set of indexes is a priori untrusted; one goal of the protocol

is to ensure that all reducers agree on it.)
Step 2: Mapping
Hadoop distributes input splits to running mapper instances.

As input splits are encrypted, Hadoop cannot parse them

for key-value pairs. Hence, the parsing of input splits is

undertaken by E+. Mappers keep track of the IDs of the input

splits they process, and they refuse to process any input split

more than once.
Intermediate Key-Value Pairs

Mappers produce intermediate key-value pairs KVinter =
〈Kinter :Vinter〉 from the input splits they receive. Hadoop

assigns these to reducers for final processing according to each

pair’s key (the shuffling step). For the functional correctness

of a job, it is essential that key-value pairs with identical

keys are processed by the same reducer; otherwise the job’s

final output could be fragmented. However, the user typically

has a strong interest in keeping not only the value Vinter

but also the key Kinter of an intermediate key-value pair

secret. Thus, our mappers wrap plaintext intermediate key-

value pairs in encrypted intermediate key-value pairs KV ′inter
of the following form:

K ′
inter = r ≡ PRFkprf

(Kinter) mod R

V ′inter = Enckinter [j | �m | r | im,r]{〈Kinter :Vinter〉}
KV ′inter = 〈K ′

inter :V
′
inter〉

By construction, we have K ′
inter ∈ 0..R− 1, and all interme-

diate key-value pairs KV with the same key are assigned to

the same logical reducer. The derivation of K ′
inter is similar

to the standard partitioning step performed by Hadoop [4].
In the associated authenticated data above, �m is a secure

unique job-specific ID randomly chosen by the mapper m ∈m
for itself (in our implementation we use the x86-64 instruction

RDRAND inside the enclave); r is the reducer index for the

key; and im,r is the number of key-value pairs sent from

this mapper to this reducer so far. Thus, (�m, r, im,r) uniquely

identifies each intermediate key-value pair within a job. Note

that, in practice, many plaintext KVinter from one mapper to

one reducer may be batched into a single KV ′inter.
Mapper Verification

For verification purposes, after having processed all their in-

puts, our mappers also produce a special closing intermediate
key-value pair for each r ∈ R:

KVclose = 〈r :Enckinter
[j | �m | r | im,r]{}〉

This authenticated message ensures that each reducer knows

the total number im,r of intermediate key-value pairs (zero

or more) to expect from each mapper. In case a reducer

does not receive exactly this number of key-value pairs, or

receives duplicate key-value pairs, it terminates itself without

outputting its final verification message (see next step).
Furthermore, each mapper sends the following final verifi-

cation message to the verifier:

FM = Enckjob
[j | �m | Bin,m]{}

where Bin,m is the set of IDs of all input splits the mapper

m ∈m processed. This authenticated message lets the verifier

aggregate information about the distribution of input splits.
Step 3: Reducing
Assuming for now that Hadoop correctly distributes all

intermediate key-value pairs KV ′inter and KVclose, reducers

produce and encrypt the final output key-value pairs for the

job:

KV ′out = 〈�out :Enckout
[�out]{KVout}〉
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where KVout is a split of final output key-value pairs, with

secure unique ID �out. (Again, we may use the MAC of the

AES-GCM encryption as unique ID.) By design, the format of

V ′out is compatible with the format of encrypted input splits,

allowing the outputs of a job to be immediate inputs to a

subsequent one.

Reducer Verification
After having successfully processed and verified all key-

value pairs KV ′inter and KVclose received from mappers, each

reducer sends a final verification message to the verifier:

FR = j | r | Bout,r | Enck(j | r | Bout,r | Pr, {})
Pr ⊆ (�m)m∈m

The authenticated message FR carries the set Bout,r of IDs

�out for all outputs produced by the reducer with index r ∈ R.

It also authenticates a sorted list Pr of mapper IDs, one for

each closing intermediate key-value paper it has received. (To

save bandwidth, Pr is authenticated in FR but not transmitted.)

Step 4: Verification
The verifier receives a set of FM messages from mappers

and a set of FR messages from reducers. To verify the global

integrity of the job, the verifier first checks that it received

exactly one FR for every r ∈ 0..R− 1.

The verifier collects and sorts the mapper IDs Pverifier ⊆
(�m)m∈m from all received FM messages, and it checks that

Pverifier = Pr for all received FR messages, thereby ensuring

that all reducers agree with Pverifier.

The verifier checks that the sets Bin,m received from the

mappers form a partition of the input split IDs of the job

specification, thereby guaranteeing that every input split has

been processed once.

Finally, the verifier accepts the union of the sets received

from the reducers, Bout =
⋃

r∈0..R−1 Bout,r, as the IDs of the

encrypted job output. The user may download and decrypt this

output, and may also use Bout in turn as the input specification

for another job (setting the new kin to the previous kout).

A. Security Discussion

We outline below our security theorem for the job execution

and subsequently discuss the protocol informally; the formal

theorem statement, auxiliary definitions, and proof appear in

the extended version of this paper [55].

Theorem 2. Job Execution (Informally)
1) If the verifier completes with a set of output IDs, then

the decryptions of key-value pairs with these IDs (if they
succeed) yield the correct and complete job output.

2) Code and data remains secret up to traffic analysis: The
adversary learns at most (i) encrypted sizes for code,
input splits, intermediate key-value pairs, and output key-
value pairs; and (ii) key-repetition patterns in intermedi-
ate key-value pairs.

We observe that, if the verifier completes with a set of output

IDs, then the decryptions of key-value pairs with these IDs

(if they succeed) yield the correct and complete job output.

For each cryptographic data key, AEAD encryption guarantees

the integrity of all messages exchanged by the job execution

protocol; it also guarantees that any tampering or truncation

of input splits will be detected.
Each message between mappers, reducers, and verifier

(KV ′inter, KVclose, FM, and FR) includes the job-specific

ID j, so any message replay between different jobs is also

excluded. Thus, the adversary may at most attempt to duplicate

or drop some messages within the same job. Any such attempt

is eventually detected as well: if the verifier does not receive

the complete set of messages it expects, verification fails;

otherwise, given the FM messages from the set m′ of mappers,

it can verify that the mappers with distinct IDs (�m)m∈m′

together processed the correct input splits. Otherwise, if any

inputs splits are missing, verification fails. Furthermore, given

one FR message for each r ∈ 0..R− 1, the verifier can verify

that every reducer communicated with every mapper. Given

R, the verifier can also trivially verify that it communicated

with all reducers that contributed to the output.
Reducers do not know which mappers are supposed to

send them key-pairs. Reducers though know from the KVclose

messages how many key-value pairs to expect from mappers

they know of. Accordingly, every reducer is able to locally

verify the integrity of all its communication with every mapper.

Although the adversary can remove or replicate entire streams

of mapper/reducer communications without being detected by

the reducer, this would lead to an incomplete set Pr of mapper

IDs at the reducer, eventually detected by the verifier.

B. Analysis of Verification Cost

We now analyze the cost for the verification of a job with

M mappers and R reducers. VC3’s full runtime cost is

experimentally assessed in §X.
There are M + R verification messages that mappers and

reducers send to the verifier. These messages most significantly

contain for each mapper the set Bin,m of processed input split

IDs and for each reducers the set Bout,r of IDs of produced

outputs. Each ID has a size of 128 bits. Typically, input splits

have a size of 64 MB or larger in practice. Hence, mappers

need to securely transport only 16 bytes to the verifier per 64+

MB of input. As reducers should batch many output key-value

pairs into one KV ′out, a similarly small overhead is possible for

reducer/verifier communication. There are M ×R verification

messages sent from mappers to reducers. These messages are

small: they contain only four integers. The computational cost

of verification amounts to the creation and verification of

the MACs for all M + R + M × R verification messages.

Additionally, book keeping has to be done (by all entities).

We consider the cost for verification to be small.

C. Integrating the Verifier with Hadoop

For the job execution protocol it is again desirable to avoid

online connections between the involved entities. We now

describe a variant of the protocol that implements an in-
band verifier as a simple MapReduce job. Our VC3 prototype

implements this variant of the job execution protocol.
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Mappers send FM messages in the form of key-value pairs

to reducers. Reducers output all FM key-value pairs received

from mappers and also output their own FR messages in the

form of key-value pairs. The verification job is given Sjob

of the actual job and is invoked on the entire corresponding

outputs. The mappers of the verification job parse input splits

for FM and FR messages and forward them to exactly one

verification reducer by wrapping them into key-value pairs

with a predefined key K ′
inter. On success, the verification

reducer outputs exactly one key-value pair certifying Bout as

valid output for Sjob. This key-value pair can finally easily

be verified by the user. In practice, the verification job can be

bundled with a regular job that already processes the outputs

to be verified while parsing for verification messages. In such

a case, one of the regular reducers also acts as verification
reducer (we use the reducer with r = 0). The bundled job in

turn creates its own verification messages FM and FR. This

way, it is possible to chain an arbitrary number of secure

MapReduce jobs, each verifying the integrity of its immediate

successor with low overhead.

VII. REGION SELF-INTEGRITY

The final aspect of our design is the enforcement of region

self-integrity invariants for user code loaded into enclaves. By

design, code within an enclave can access the entire address

space of its host process. This enables the implementation of

efficient communication channels with the outside world but

also broadens the attack surface of enclaves: if enclave code,

due to a programming error, ever dereferences a corrupted

pointer to untrusted memory outside the enclave, compromise

of different forms becomes possible. For example, the enclave

code may write through an uninitialized pointer or a null
pointer; if the pointer happens to contain an address that is

outside of the enclave, data immediately leaks out. Conversely,

reads through such pointers may cause the user code to read

data from arbitrary addresses outside the enclave; in this

case, the untrusted environment is in the position to inject

arbitrary data into the enclave. Such a data injection may in

the simplest case affect the correctness of computations but

may also, depending on the context of the corrupted pointer

dereference, pave the way for a control-flow hijacking attack

eventually allowing the adversary to capture all the enclave’s

secrets. We stress that we assume the code inside the enclave is

not malicious, but it may have low-level defects; applications

written in languages like C and C++ have a long history of

problems induced by unsafe memory accesses.

Since memory safety implementations for C/C++ have high

overhead [43], [44], [60], we instead address this problem

with a compiler that efficiently enforces two security invariants

for code running inside the enclave. Before presenting the

invariants, we introduce some terminology. An address-taken
variable is a variable whose address is taken in the code,

e. g. &v, or an array (the address of arrays is implicitly taken).

By write through a pointer we mean writing to the memory

targeted by the pointer (this includes array accesses, which use

a pointer and an offset). Likewise for read through a pointer.

We define two invariants:

Region-write-integrity guarantees that writes through point-

ers write only to address-taken variables in the enclave or to

allocations from the enclave heap. Additionally, it guarantees

that indirect call instructions can target only the start of

address-taken functions in the enclave.

Region-read-write-integrity includes the region-write-

integrity guarantee, plus the guarantee that reads through

pointers read only from addresses inside the enclave.

Region-write-integrity prevents memory corruption: it pre-

vents corruption of all non-address-taken variables in the

program (typically a large fraction of the stack frames contain

only non-address-taken variables [34]) and it prevents corrup-

tion of all compiler-generated data such as return addresses on

the stack. It also prevents information leaks caused by writes to

outside of the enclave. Region-read-write-integrity additionally

prevents use of un-authenticated data from outside the enclave,

which may be injected by an attacker.

The integrity invariants are enforced with dynamic checks

on memory reads, writes and control-flow transitions. The

compiler inserts dynamic checks when it cannot verify the

safety of memory operations or control-flow transitions at

compile time. Note that direct writes/reads to local or global

variables access memory at fixed offsets in the stack-frame

or from the enclave base address are guaranteed to neither

corrupt memory, nor access memory outside the enclave (we

reserve space for global variables when creating the enclave;

and we stop the program if we exhaust stack space). Hence,

we only need to check memory accesses through pointers.

Checking memory reads adds runtime overhead. We therefore

let users choose between no integrity, region-write-integrity,

and full region-read-write-integrity, depending on the runtime

cost they are willing to pay.

The checks on indirect calls together with the integrity

of return addresses enforce a form of control-flow integrity

(CFI) [1], but our invariants are stronger than CFI. Attacks on

CFI [24] typically require an initial step to corrupt memory

(e. g., through a buffer overflow) and/or leak information. CFI

solutions do not try to prevent memory corruption; they aim

only to mitigate the malicious effects of such corruption by

restricting the sets of possible targets for indirect control-flow

transitions. On the other hand, our read and write checks are

mainly designed to prevent memory corruptions and informa-

tion leaks; the main purpose of our control-flow checks is

to guarantee that the checks on writes and reads cannot be

bypassed: control never flows to unaligned code potentially

containing unexpected and unchecked memory reads or writes.

Our invariants share some properties with recent proposals

for efficient execution integrity, such as CPI [34] and WIT [2],

but our invariants and enforcement mechanisms are adapted to

the enclave environment. For example, on x64 (VC3’s target

environment), CPI relies on hiding enforcement information

at a random address (with leak-proof information hiding);

while that is effective in large address-spaces, it would be

less effective inside VC3’s small (512MB) memory regions.
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Our enforcement data structures are also a factor of 8 smaller

than WIT’s, and unlike CPI and WIT we do not require

sophisticated compiler analysis (e. g., points-to analysis).

The instrumentation for memory accesses is applied for all

enclave code except for the functions that implement commu-

nication with the outside world through the shared memory

area, but these functions encrypt/decrypt and authenticate the

data being written/read. Next, we describe how we enforce the

integrity invariants.

A. Enforcing region-write-integrity

To enforce that writes through pointers go to address-taken

variables in the enclave or memory allocated from the enclave

heap, we maintain a bitmap to record which memory areas

inside the enclave are writable. The bitmap maps every 8-

byte slot of enclave memory to one bit. When the bit is set,

the memory is writable. The bitmap is updated at runtime,

when stack frames with address-taken variables are created and

destroyed and when heap memory is allocated and freed. When

the compiler determines that a stack frame contains address-

taken variables, it generates code to set the corresponding

bits on the bitmap on function entry, and to reset them on

function exit. The compiler also ensures that address-taken

variables have free 8-byte slots around them (and similarly

for heap allocations), to detect sequential overflows. The

compiler also records the addresses and sizes of address-taken

global variables in a data structure that our runtime uses to

set the corresponding bits in the bitmap at enclave startup.

Our heap implementation sets/resets the bits in the bitmap

on heap allocations/deallocations. When the compiler cannot

prove statically that a write conforms to region-write-integrity,

it inserts a check of the form (VC3 works on x64 processors):

mov rax,r8
and rax,0xFFFFFFFFE0000000
xor rax,0x20000000
je $L1
int 3

$L1:mov rdx,_writeBitmap
mov rcx,r8
shr rcx,9
mov rax,r8
shr rax,3
mov rcx,[rdx+rcx*8]
bt rcx,rax
jb $L2
int 3

$L2:mov [r8],4 #unsafe write

The first part of the check, up to the L1 label, checks that the

address being written to is within the enclave address range. If

the check fails, the program stops with an exception; we chose

this exception because it uses an efficient encoding: a single

byte. If the check succeeds, we then check that the address is

marked as writable in the bitmap. The initial range check on

the address allows us to allocate the bitmap to cover only a

small portion of the address space. If the bitmap check also

succeeds, the write is allowed to proceed (label L2).

This design is efficient: the bitmap is a compact repre-

sentation of which addresses are writable: one bit per 8

bytes of enclave address space and, as shown above, we can

access it with fast code sequences. The compiler also includes

optimizations to make write checks more efficient (§IX).

To implement the checks on indirect control-flow transi-

tions, we maintain a separate bitmap that records where the

entry points of address-taken functions are. This bitmap maps

each 16-byte slot of enclave memory to a bit. The bit is set

if an address-taken function starts at the beginning of the

slot. The compiler aligns address-taken functions on 16-byte

boundaries, and records the addresses of these function in a

data structure that our runtime uses to set the corresponding

bits in the bitmap at enclave startup. Using a 16-byte slot keeps

the bitmap small and wastes little space due to alignment; we

use smaller slots for the write bitmap to reduce the amount of

free space around address-taken variables and heap allocations.

When generating code for an indirect control-flow transfer, the

compiler emits code to check that the target is 16-byte aligned

and that the corresponding bit is set in the bitmap (the code

sequence is similar to the write checks).

Note that code outside the enclave cannot corrupt the

bitmaps used for the integrity checks, since the bitmaps are

allocated inside the enclave. Even writes inside the enclave

cannot corrupt the bitmaps, because they are always instru-

mented and the write bitmap disallows writes to the bitmaps.

B. Enforcing region-read-write-integrity

To enforce region-read-write-integrity, the compiler further

emits checks of the form:

mov rax,r8
and rax,0xFFFFFFFFE0000000
xor rax,0x20000000
je $L1
int 3

$L1:mov rdx,[r8] #unsafe read

These checks guarantee that the memory being read is

within the enclave region. If it is not, the program stops.

An alternative design would be to simply mask the bits

in the address to make sure they are within the enclave,

without stopping if they are not [66]. While that is more

efficient, it is safer to stop the program when the error is

detected. Again, when memory accesses are guaranteed to not

violate region-read-write-integrity, for example direct accesses

to scalar variables on the enclave stack, the compiler elides the

read checks at compile time.

VIII. DISCUSSION

We now discuss several attack scenarios on VC3 which are

partly outside the adversary model from §III.
A. Information Leakage

One basic principle of MapReduce is that all key-value pairs

with the same key be processed by the same reducer. Thus,

inasmuch as a network attacker can count the number of

pairs delivered to each reducer, we should not expect semantic

security for the intermediate keys (as in “key-value pair”) as

soon as there is more than one reducer. Next, we discuss this
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information leakage in more detail: For the whole job, each

key Kinter is mapped to a fixed, uniformly-sampled value

K ′
inter ∈ 0..R − 1. where R is the number of reducers for

the job chosen by the user (§VI). For each intermediate key-

value pair, the adversary may observe the mapper, the reducer,

and K ′
inter. Intuitively, the smaller the overall number of

unique intermediate keys Kinter in relation to R, the more

the adversary may learn on the actual distribution of keys.

For example, in the case of a presidential election vote count,

there are only two possible intermediate keys (the names of

both candidates). If R > 1, then the adversary easily learns

the distribution of the votes but not necessarily the name of

the successful candidate. Conversely, if there are many keys

(each with a small number of key-value pairs) relative to R,

then leaking the total number of pairs dispatched to each

reducer leaks relatively little information. In particular, when

all intermediate keys are unique, no information is leaked.

Attackers may also use more advanced traffic analyses against

VC3 [16], [56], [68]. For example, by observing traffic, an

attacker may correlate intermediate key-value pairs and output

key-value pairs to input splits; over many runs of different jobs

this may reveal substantial information about the input splits.

We plan to address these attacks with padding, clustering, and

distributed shuffle techniques [45].

B. Replay Attacks

The adversary could try to profit in various ways from fully or

partially replaying a past MapReduce job. Such replay attacks

are generally prevented in case the online key exchange (§V-B)

is employed, as the user can simply refuse to give JCw a

second time to any enclave. This is different for the in-band
version of our approach (§V-C): an enclave is not able to tell

if it ran on a set of input data before as it cannot securely

keep state between two invocations. (The adversary can always

revert a sealed file and reset the system clock.) Given Cj,u and

JCw corresponding to a certain processor under their control,

the adversary is in the position to arbitrarily replay parts of

a job that the processor participated in before or even invoke

a new job on any input splits encrypted under kin contained

in JCw. This allows the adversary to repeatedly examine the

runtime behavior of E− from outside the enclave and thus

to amplify other side-channel attacks against confidentiality.

The resilience of VC3 against such attacks can be enhanced

by hardcoding a job’s specification into mappers to restrict the

input splits they should accept to process. Finally, Strackx et

al. recently proposed an extension to SGX that provides state
continuity for enclaves [57] and, if adopted, could be used in

VC3 to largely prevent replay attacks.

IX. IMPLEMENTATION

We implemented VC3 in C++ for Windows 64-bit and the

HDInsight distribution of Hadoop. Jobs are deployed as 64-

bit native code in the form of an executable (fw.exe) which

contains the framework code F , and a dynamic link library

(mapred.dll) that contains the enclave code E+ and E−.

A. SGX Emulation

We successfully tested our implementation in an SGX em-

ulator provided by Intel. However since that emulator is not

performance accurate, we have implemented our own software

emulator for SGX. Our goal was to use SGX as specified

in [32] as a concrete basis for our VC3 implementation and

to obtain realistic estimates for how SGX would impact the

performance of VC3. Our software emulator does not attempt

to provide security guarantees.

The emulator is implemented as a Windows driver. It hooks

the KiDebugRoutine function pointer in the Windows

kernel that is invoked on every exception received by the

kernel. Execution of an SGX opcode from [32] will generate

an illegal instruction exception on existing processors, upon

which the kernel will invoke our emulator via a call to

KiDebugRoutine. The emulator contains handler functions

for all SGX instructions used by VC3, including EENTER,

EEXIT, EGETKEY, EREPORT, ECREATE, EADD, EEX-

TEND, and EINIT. We use the same mechanism to handle

accesses to model specific registers (MSR) and control regis-

ters as specified in [32]. We also modified the SwapContext
function in the Windows kernel to ensure that the full register

context is loaded correctly during enclave execution.

The code in each handler function is modeled after the

corresponding pseudo code in [32]. We emulate the en-
clave page cache (EPC) by allocating a contiguous range

of physical memory (using the memory manager function

MmAllocateContiguousMemorySpecifyCache) and

using a data structure along the lines of the Enclave Page
Cache Map of [32] to keep track of it.

B. Performance Model

We are interested in estimating the performance of VC3
on a hypothetical SGX-enabled processor. We assume that

the performance of the existing processor instructions and

mechanisms would be unaffected by the extensions of [32].

Furthermore, the execution of most SGX instructions does

not appear to be relevant to VC3 performance. As the enclave

setup instructions ECREATE, EADD, EEXTEND and EINIT

constitute only a one-time cost at initialization of VC3, we

exclude them from the performance model. Other instruc-

tions (EGETKEY, EREPORT) are called only once during a

VC3 run and seem unlikely to have a noticeable impact on

performance. In all cases, we believe that the cost on our

emulator overestimates the cost on a hypothetical hardware

implementation.

These simplifications allow us to focus our performance

model on the cost of entering and exiting enclaves, which

we conservatively model as roughly the cost of an address

space switch. In particular, upon each transition, we perform

a kernel transition, do a TLB flush, and execute a number

of delay cycles. We perform these actions in the handlers

for EENTER (enter enclave), ERESUME (enter enclave) and

EEXIT (exit enclave). As interrupts during enclave execution

also cause transitions, we also add the performance penalty
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at the beginning and end of each interrupt that occurs during

enclave execution. In particular, we patch the low-level in-

terrupt handling code in the Windows kernel to add the TLB

flush and the delay cycles. We performed a sensitivity analysis

by running sample applications repeatedly while varying the

number of delay cycles, but we found that our optimizations to

control enclave transitions (batching of key-value pairs) allow

us to reduce the performance impact of transitions to negligible

levels even for large numbers of delay cycles. Therefore, for

the experiments described in the evaluation, we used 1,000

delay cycles, which is similar to the cost of crossing other

security boundaries such as performing system calls.

The SGX facility for encrypting and integrity protecting

data before they are written from CPU caches to platform

memory [41] could also affect performance. It is impossible

for us to model this effect accurately since the additional cost

of cache misses depends strongly on how the crypto pro-

tections for memory are implemented in hardware. However,

we can estimate the cache miss rate of typical VC3 appli-

cations. We have used the processor’s performance counter

for Last Level Cache Misses (LLC Misses) to measure the

memory bandwidth required by the enclave code of each

of the applications described in §X. In particular, we bound

the execution to one core and started that core’s counter

upon enclave entry and stopped it upon enclave exit. We

ran one application at a time. Several of the applications,

in particular the reducers, used hundreds of MB of memory,

which is significantly larger than the processor’s L3 cache

size (6 MB). The measured memory bandwidths were well

below the bandwidths of modern memory encryption engines,

which indicates that SGX memory encryption should not have

a noticeable performance impact on VC3.

C. Enclave Creation

We implemented a driver (fw.sys) to provide functionality for

enclave creation. The driver obtains the physical addresses

of EPC memory from the emulator, maps pages into user

mode and calls SGX instructions involved in enclave creation.

Fw.sys is expected to be installed on all nodes; it would

typically be distributed with the operating system.

D. Enclave and Protocols

Fw.exe acts as the host process of the enclave. It performs un-

trusted I/O interaction with Hadoop via the streaming protocol

[5] over stdin/stdout. E+ implements the in-band variants of

both the key exchange and the job execution protocols, which

work on top of the Hadoop protocol. Our implementation uses

two optimizations: (i) We batch read/writes of key-value pairs

from within the enclave. This is important because transitions

in and out of the enclave come at a cost; we want to avoid

them when possible. Our implementation processes key-value

pairs in batches of 1000. (ii) We use the AES-NI instructions

[30] to accelerate our implementation of AES-GCM, including

the PCLMULQDQ instruction [25]. Our implementation of

E+ consists of roughly 5500 logical lines of code (LLOC)

of C, C++ and Assembly. About 2500 LLOC of these imple-

ment standard cryptographic algorithms. The user can inspect,

change and recompile the code of E+, or even use our protocol

specification to completely re-implement it.

E. In-enclave Library

As a convenience for application development, we have cre-

ated an enclave-compatible C++ runtime library. Existing

C/C++ libraries which have operating system dependencies

cannot be used in an enclave environment because system

calls are conceptually not available [32]. Accordingly, we

could neither use common implementations of the Standard
C Library nor of the C++ Standard Template Library. Our

library contains functions which we found useful when writing

our sample applications: a set of mathematical functions, string

classes, containers, and a heap allocator which manages an in-

enclave heap and is the default backend for new. This library

is relatively small (3702 LLOC) and we stress that users may

choose to change it, use other libraries instead, or write their

own libraries.

F. Compiler

We implemented the compiler that supports our enclave self-

integrity invariants as a modification to the Microsoft C++

compiler version 18.00.30501. The implementation consists

of two main parts: changes to code generation to emit our

runtime checks when needed, and changes to generate data

that our runtime library needs to initialize our enforcement

bitmaps in the enclave. We now describe each of the parts.

We inserted our new code generation module immediately

before the compiler phase that generates machine dependent

code. Although our implementation of VC3 is only for Intel

x64 processors at the moment, this will allow us to target

other architectures in the future. Our code generation module

is intra-function only, i. e., it does not perform global static

analysis. We do a pass over the instructions in a function to

find any address-taken local variables; if we find any such

variables, we emit code in the function’s prolog and epilog

to update the corresponding bits in our write bitmap. In the

prolog we set the bits in the bitmap, in the epilog we clear

them. Our implementation does this efficiently by generating

the appropriate bit masks and setting/resetting up to 64 bits

at a time. We also change the locations of these variables in

the function’s stack frame to make sure they do not share 8-

byte memory slots with other variables (recall that we keep

our bitmap information as 1 bit per every 8-bytes of enclave

memory). When iterating over the instructions in a function,

we insert a write check if we find a store instruction that is not

a direct write to a local or a global variable. Direct writes to

local or globals are stores to fixed offsets in the stack-frame or

the enclave base address and are guaranteed to be inside the

enclave. We also insert indirect call checks for every indirect

call instructions that we find in the function. Note that we do

not insert checks on function returns, because the integrity of

the return addresses in the enclave stack is guaranteed by our
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write checks. We also perform a simple intra-function analysis

to simplify write checks when possible: when the write’s target

is a local or global variable, but the write is to a computed

offset in the variable, for example an array access, we replace

the full write check with a check of the form offset <
size. Finally, when generating code to enforce region-read-

write-integrity we also generate our read checks when we find

load instructions whose target is not a local or global variable.

Our compiler also needs to generate data that our runtime

library uses to initialize our enforcement bitmaps when starting

the enclave. We generate two kinds of data: a list of addresses

of address-taken functions, and a list of the addresses and

sizes of address-taken global variables. These lists are simply

generated by emitting the addresses in special sections of the

object files whenever the compiler finds an instruction that

takes the address of a function or a global variable. We perform

this operation while iterating over all the code to generate the

runtime checks, i. e., we do not require an extra pass over

the code. We also iterate over all the initializers in global

data, to find address-taken functions or address-taken global

variables there. The linker merges and removes duplicates

from this information when generating the binary to load into

the enclave. When we create the enclave, our runtime library

iterates over the addresses in these lists and sets the appropriate

bits in our enforcement bitmaps.

G. Other tools

We also created several other tools to support VC3, including

tools to generate symmetric and asymmetric keys, and tools to

encrypt and decrypt data. We created a tool called packer.exe
that encrypts E− and merges it with E+ to create the

self-contained and signed mapred.dll. E− and E+ are first

compiled into distinct DLLs. The packer statically resolves

dependencies between the two DLLs and relocates both to a

fixed virtual base address. It also makes sure that the DLLs’

sections (e. g., .text and .data) are page-aligned, as they

would be when loaded into a user mode process by the stan-

dard Windows image loader [53]. This is necessary to make

sure that the enclave code can be loaded into memory and

run unaltered without the help of the standard image loader.

Users need to be able to reliably compute the enclave digest in

advance. Otherwise, they could not verify statements by QEs.

Our tools are incorporated into the Microsoft Visual Studio

environment. They automatically create mapred.dll from a

user’s C++ MapReduce code.

X. EVALUATION

We used the applications listed in Table I to evaluate VC3.

We chose a mix of real-world applications and well-known

benchmarks, including IO-intensive and CPU-intensive appli-

cations. We measured the performance of the applications on

Hadoop, and also in isolation to remove the overhead-masking

effects of disk I/O, network transfers, and spawning of Hadoop

tasks. Before discussing our results, we briefly describe each

application.

Application LLOC Size input Size E−

(vc3)
map tasks

UserUsage 224 41 GB 18 KB 665
IoVolumes 241 94 GB 16 KB 1530
Options 6098 1.4 MB 42 KB 96
WordCount 103 10 GB 18 KB 162
Pi 88 8.8 MB 15 KB 16
Revenue 96 70 GB 16 KB 256
KeySearch 125 1.4 MB 12 KB 96

TABLE I: Applications used to evaluate VC3.

UserUsage and IoVolumes: Real applications that process

resource usage information from a large compute/storage

platform consisting of tens of thousands of servers. UserUsage
counts the total process execution time per user. IoVolumes
is a join. It filters out failed tasks and computes storage I/O

statistics for the successful tasks.

Options: Simulates the price of European call options using

Monte Carlo methods [42]. The large size of the application

in terms of LLOC (see Table I) stems from the inclusion of a

set of optimized mathematical functions.

WordCount: Counts the occurrences of words in the input.2

Pi: Benchmark that statistically estimates the value of Pi.3

Revenue: Reads a synthetic log file of users visiting websites

and accumulates the total ad revenue per IP (from [49]).

KeySearch: Conducts a known plaintext attack on a 16-byte

message encrypted with RC4 [63].

All experiments ran under Microsoft Windows Server 2012

R2 64-Bit on workstations with a 2.9 GHz Intel Core i5-4570

(Haswell) processor, 8 GB of RAM, and a 250 GB Samsung

840 Evo SSD. We used a cluster of 8 workstations connected

with a Netgear GS108 1Gbps switch. All code was compiled

with the Microsoft C++ compiler version 18.00.30501 for x64,

optimizing for speed. We compiled our 7 applications in four

configurations:

baseline runs the applications on plaintext data and with-

out following the job execution protocol. Also, no performance

penalty for enclave transitions (TLB flush, delay cycles, and

swapping of the stack) is applied and unnecessary copying of

data across (non-existent) enclave boundaries is avoided.

vc3 runs the same application on VC3 with encrypted

mapper and reducer inputs and outputs. Sizes of the E− DLL

range from 12 KB for KeySearch to 42 KB for Options (see

Table I); the generic E+ DLL has a size of 210 KB. The

enclave memory size was set to be 512 MB and the cost of

an enclave transition (including interrupts) to one TLB flush

and 1,000 delay cycles. This version provides the base security

guarantees of VC3.

vc3-w uses the same configuration as vc3, but applications

were compiled to further guarantee region-write-integrity.

2http://wiki.apache.org/hadoop/WordCount
3http://hadoop.sourcearchive.com/documentation/0.20.2plus-pdfsg1-1/

PiEstimator 8java-source.html
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Fig. 5: Execution time of running MapReduce jobs in a Hadoop cluster
over typical input data-sets. Running times are normalized to the perfor-
mance of running the same job in normal mode and with unencrypted data
(baseline). Note: vc3-w and vc3-wr correspond to vc3 with extra
region-write-integrity checks and region-read-write-integrity checks respec-
tively.

vc3-wr uses the same configuration as vc3, but applica-

tions were compiled to further guarantee region-read-write-
integrity.

A. Performance on Hadoop

We measured the execution times of baseline and vc3 in

an unmodified Hadoop environment. We used the Hortonworks

distribution of Hadoop 2 (HDP 2.1) for Windows with 8

worker nodes (one per workstation). We used the default con-

figuration options for resource management, and configured

our jobs to use 8 reduce tasks; except for Pi, Options, and

KeySearch that conceptually use 1. We ran each job and each

configuration at least 10 times and measured the execution

time. To facilitate comparisons, we normalized the running

times with the average running time for each job using the

baseline configuration. Figure 5 plots the average ratios

for each job and configuration, and the values of two standard

deviations below and above each average.

Figure 5 shows that vc3’s performance is similar to

baseline; the differences in performance are well below

the experimental variability for all jobs. vc3’s overhead is

negligible with its base security guarantees. When introducing

the write and read-write integrity checks, the performance

overhead increases on average by 4.5% and 8% respectively.

The increased overhead is a small price for the extra security

guarantees. We believe these results show that VC3 can be

used in practice to provide general-purpose secure cloud

computation with good performance.

B. Performance in Isolation

When running applications, Hadoop performs many activities,

such as spawning mappers and reducers, waiting for disk I/O,

network transfers, and others, that may mask the overheads of

VC3. To better understand the performance impact of VC3 on

the execution times of individual map and reduce tasks, we ran

Fig. 6: Execution time of running the map phase of MapReduce jobs in
isolation over typical input data-sets. Running times are normalized to the
performance of running the same computation in the baseline configura-
tion.

the mappers and reducers in isolation, i.e., on a single machine

without Hadoop. We repeated each experiment 10 times, and,

as in Section X-A, we normalize using the average of the

baseline run. Figure 6 plots the average ratios for the map

tasks, as well as the values of two standard deviations below

and above the average. (The results for reduce tasks are similar

— we omit them for brevity.)

On average, vc3’s overhead was 4.3% compared to

baseline, vc3-w’s was 15.3%, and vc3-wr’s was 24.5%.

The overheads were negligible for the three compute intensive

jobs (Key Search, Options, and Pi); these jobs spend little

time in copying and encryption/decryption operations, and

most of the time they compute using plain-text data off of the

processor’s caches; in addition, for these jobs the compiler was

effective at eliding checks on safe memory accesses, and hence

the overheads of vc3-w and vc3-wr are also negligible.

The IoVolumes and UserUsage jobs were slower than

baseline in all configurations. The IoVolumes(UserUsage)

job was 23.1%(6.1%), 41.4%(23.6%) and 63.4%(55.3%)

slower in the vc3, vc3-w, and vc3-wr configurations

respectively. The overheads are higher in these cases, because

these applications are IO-intensive. Since they perform little

computation, the relative cost of encryption is higher. Revenue

and WordCount are also IO-intensive, but these applications

implement a combine operation which increases the compu-

tation performed at the mapper, hence reducing the relative

cost of encryption. The combine operation performs a group-

by of the key-value pairs generated by the map function, and

calls a combine function that performs a partial reduction

at the mapper. This is a common optimization to reduce

network traffic (IoVolumes does not implement combining,

which contributes to its larger overhead). We thus observe little

performance difference between baseline and vc3 for Rev-

enue and WordCount. The write(read-write) integrity checks

increased their running times by 18%(26%) and 22%(27%)

respectively. The performance differences between vc3 and

vc3-w/vc3-wr are due to the region self-integrity checks
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and they vary according to the ability of the compiler to check

if memory accesses are safe at compile-time.
We now turn our attention to the performance difference

between baseline and vc3. This difference is due to:

(i) copying data to and from the enclave, (ii) encryption

and decryption operations, and (iii) enclave transitions (either

due to normal operations or due to system interrupts). We

measure the copy operations and the total encryption and

decryption times and use that to explain the difference in the

execution times of vc3 versus baseline. We find that the

crypto(copying) operations contributed 13.3(4.8) percentage

points for IoVolumes; the crypto operations dominated the

overhead for UserUsage. Despite the use of hardware accelera-

tion to speed up encryption and decryption (with the AES-NI

instructions, see section IX), there is a performance penalty

for using encrypted data; this is unavoidable in our setting.
We believe that in all cases the overheads are reasonable for

the provided security guarantees. Moreover, when run as part

of Hadoop jobs, these overheads have small (if any) impact

on the total run time (Figure 5).

C. Effectiveness of region self-integrity

We also conducted fault-injection experiments to verify the

effectiveness of the region self-integrity invariants. We wrote

a tool that injects three types of faults in the source code

of applications: writes to a random address outside of the

enclave, reads from a random address outside the enclave, and

pointer dereferences that corrupt a return address inside the

enclave. For each type of fault, we conducted 10 experiments

per application. In all cases the region self-integrity checks

caught the invalid access and stopped the application.

XI. RELATED WORK

Applications of SGX were first discussed in [27]. Haven [9] is

a recently proposed SGX-based system for executing Windows

applications in the cloud. Haven loads a given application

together with a library OS variant of Windows 8 into an

enclave. Haven makes a different trade-off between security

and compatibility: it can run unmodified Windows binaries, but

its TCB is larger than VC3’s by several orders of magnitude.

Unlike VC3, Haven neither guarantees integrity for distributed

computations, nor does it provide our region self-integrity

properties. Brenner et al. presented an approach to run Apache

ZooKeeper in enclaves [14].
Several systems protect confidentiality of data in the cloud.

Fully homomorphic encryption and multiparty computation

[21], [22] can achieve data confidentiality, but they are not ef-

ficient enough for general-purpose computation. CryptDB [50]

and MrCrypt [61] use partial homomorphic encryption to

run some computations on encrypted data; they neither pro-

tect confidentiality of code, nor guarantee data integrity or

completeness of results. On the other hand, they do not

require trusted hardware. TrustedDB [7], Cipherbase [6], and

Monomi [64] use different forms of trusted hardware to

process database queries over encrypted data, but they do not

protect the confidentiality and integrity of all code and data.

Monomi splits the computation between a trusted client and an

untrusted server, and it uses partial homomorphic encryption

at the server. Mylar [51] is a platform for building Web

applications that supports searches over encrypted data.

Several systems combine hardware-based isolation [37],

[46], [59] with trusted system software [17], [28], [36], [38],

[54], [58], [69], which is typically a trusted hypervisor. The

Flicker [39] approach uses TXT [31] and avoids using a trusted

hypervisor by time-partitioning the host machine between

trusted and untrusted operation. Virtual Ghost [18] avoids

using a trusted hypervisor and specialized hardware-based

isolation mechanisms by instrumenting the kernel.

Some systems allow the user to verify the result of a

computation without protecting the confidentiality of the data

or the code [48]. Pantry [13] can be used to verify the integrity

of MapReduce jobs which are implemented in a subset of C.

Pantry incurs a high overhead. Hawblitzel et al. presented the

concept of formally verified Ironclad Apps [26] running on

partially trusted hardware. They report runtime overheads of

up to two orders of magnitude.

Several security-enhanced MapReduce systems have been

proposed. Airavat [52] defends against possibly malicious

map function implementations using differential privacy. Se-

cureMR [67] is an integrity enhancement for MapReduce that

relies on redundant computations. Ko et al. published a hybrid

security model for MapReduce where sensitive data is handled

in a private cloud while non-sensitive processing is outsourced

to a public cloud provider [33]. PRISM [12] is a privacy-

preserving word search scheme for MapReduce that utilizes

private information retrieval methods.

XII. CONCLUSIONS

We presented VC3, a novel approach for the verifiable and con-

fidential execution of MapReduce jobs in untrusted cloud en-

vironments. Our approach provides strong security guarantees,

while relying on a small TCB rooted in hardware. We show

that our approach is practical with an implementation that

works transparently with Hadoop on Windows, and achieves

good performance. We believe that VC3 shows that we can

achieve practical general-purpose secure cloud computation.
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editors, Privacy Enhancing Technologies, volume 7384 of Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2012.

[13] B. Braun, A. J. Feldman, Z. Ren, S. Setty, A. J. Blumberg, and
M. Walfish. Verifying computations with state. In ACM Symposium
on Operating Systems Principles (SOSP), 2013.

[14] S. Brenner, C. Wulf, and R. Kapitza. Running ZooKeeper coordination
services in untrusted clouds. In USENIX Workshop on Hot Topics in
Systems Dependability (HotDep), 2014.

[15] E. Brickell and J. Li. Enhanced privacy ID from bilinear pairing
for hardware authentication and attestation. In IEEE International
Conference on Social Computing (SocialCom), 2010.

[16] S. Chen, R. Wang, X. Wang, and K. Zhang. Side-channel leaks in web
applications: A reality today, a challenge tomorrow. In IEEE Symposium
on Security and Privacy, 2010.

[17] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C. A. Wald-
spurger, D. Boneh, J. Dwoskin, and D. R. Ports. Overshadow: A
virtualization-based approach to retrofitting protection in commodity
operating systems. In International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2008.

[18] J. Criswell, N. Dautenhahn, and V. Adve. Virtual Ghost: Protecting
applications from hostile operating systems. In International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2014.
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APPENDIX

A. Multi-User Key Exchange

We describe a variant of our basic key exchange protocol in

case there are several users u ∈ U , each contributing their

own set of input splits (using separate keys), and all getting

access to the output. For simplicity, it is assumed that online

communication channels between the involved parties exist.

It is though possible to implement the multi-user protocol as

regular MapReduce job without such channels the same way

it is described in §V-C for the single-user protocol.

1) Each user is still identified by its public encryption key

pku.

2) The users agree on the code to run; they exchange fresh

random shares ju, kcode,u, kjob,u, kout,u and compute

j = ⊕u∈U ju, kcode = ⊕u∈Ukcode,u, kjob = ⊕u∈Ukjob,u,

kout = ⊕u∈Ukout,u. They then prepare the enclave

code Cj,u as above (using the same randomness for the

encryption), except that all their public keys (pku)u∈U
are included in the Cj,u package.

3) Each enclave prepares and sends the message of the base

protocol pw to every user, each encapsulating a distinct,

fresh, symmetric key kw,u. (The collection of messages

may be jointly quoted once by each effective QE.)

4) Each user independently receives, verifies, and decrypts

its message, then sends the encrypted job credentials

Encki,u []{kcode | kjob | kin,u | kinter,u | kout | kprf ,u},
where kin,u, kout are the authenticated-encryption keys

for their input and the output file, and where kinter,u and

kprf ,u are their fresh shares of the keys for the intermedi-

ate key-value pairs and the pseudo-random function PRF
respectively.

5) Each enclave decrypts all job credentials, checks that they

all provide the same keys kcode, kjob, kout, and computes

kinter = ⊕u∈Ukinter,u and kprf = ⊕u∈Ukprf ,u.

At this stage, kcode, kjob, and kout are known to every user

and every enclave in the job; kin,u is known to every enclave

and to user u; kinter and kprf are known to every enclave

in the job, but not to any strict subset of users. VC3 does

currently not implement a multi-user key exchange but we

plan to support it in the future.

B. Lightweight Key Exchange

The in-band key exchange protocol (§V-C) implemented in our

VC3 prototype works well with existing Hadoop installations,

but requires executing a full (though lightweight) MapReduce

job just for exchanging keys.
In case the user is willing to put extended trust into a

special Support Enclave (SE), the necessity for a separate key

exchange job can be avoided while maintaining compatibility

with existing Hadoop installations. We briefly describe a

corresponding protocol in the following.
As described in §V-A, we generally foresee the cloud

provider to deploy a Cloud QE to each of its SGX-enabled

nodes that is functionally equivalent to the standard SGX

QE. Here, a special Support Enclave (SE) with extended

functionality is deployed instead of such a Cloud QE. Instead

of an EPID private key, each SE creates and manages a node-

specific long-term RSA key pair that is permanently sealed to

local storage. Each SE acquires a quote from the regular local

SGX QE for its RSA public key. The cloud provider makes

the quoted public keys for all SEs available to the user. For

each SE, the user verifies the quotes and sends

Encke
[Cj,u]{kcode | k} | PKEncpkSE

{ke}
where ke is a fresh job-specific ephemeral symmetric key.

Each SE decrypts ke and then verifies Cj,u and decrypts

kcode | k. Subsequently, on each node, a new enclave con-

taining Cj,u is started. A mutually authenticated secure local

channel between E+ (running in the newly created enclave)

and SE is created using local attestation (see §II-B). The SE

passes kcode | k over this channel to E+. Finally, E+ decrypts

E− and the enclave is able to process job data afterwards.
In this protocol variant, the user needs to trust the SE

deployed by the cloud provider as it handles kcode and k in

the clear. In order to facilitate the establishment of this trust,

the cloud provider should make the source code of the SE

publicly available.
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