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Abstract—We propose a new approach for securely verifying
sequences of location claims from mobile nodes. The key idea
is to exploit the inherent mobility of the nodes in order to
constrain the degree of freedom of an attacker when spoofing
consecutive location updates along a claimed track. We show
that in the absence of noise, our approach is able to securely
verify any 2-D track with a minimum of three verifiers or any
3-D track with four verifiers. Our approach is lightweight in
the sense that it considerably relaxes the system requirements
compared to previous secure location verification schemes which
are all agnostic to mobility. As opposed to previous schemes, our
track verification solution is at the same time (i) passive, (ii)
does not require any time synchronization among the verifiers,
(iii) does not need to keep the location of the verifiers secret,
(iv) nor does it require specialized hardware. This makes our
solution particularly suitable for large-scale deployments. We
have evaluated our solution in a realistic air traffic monitoring
scenario using real-world data. Our results show that 25 position
claims on a track are sufficient to detect spoofing attacks with
a false positive rate of 1.4% and a false negative rate of 1.2%.
For tracks with more than 40 claims, the false positive and false
negative rates drop to zero.

I. INTRODUCTION

The ability to track the motion of vehicles in airborne,

ground, or maritime traffic control systems is a key feature to

enable safe navigation and collision avoidance. For example

in commercial air traffic control systems, the tracks of all

aircraft are continuously monitored to inform pilots and safety

personnel on the ground about potential aircraft collisions.

Similarly, collision avoidance systems in future autonomous

car navigation systems will require car tracking to prevent

collisions at intersections [1].

A common paradigm for tracking the mobility of vehicles

is to let nodes determine their own positions and broadcast

them to nearby nodes. For example, in the next-generation air

transportation system, aircraft determine their own positions

with the aid of global navigation satellite systems such as

GPS. This information is then periodically broadcast over

the Automatic Dependent Surveillance - Broadcast (ADS-B)

system to surrounding aircraft and sensors on the ground [2].

While this autonomous paradigm has many advantages such

as relatively low costs, it makes the system vulnerable to

location spoofing attacks [3], [4]. As an example related to

ADS-B, Figure 1 shows the situation in which an attacker

injects false position messages in order to emulate the track

of a ghost aircraft into the air traffic surveillance and collision

avoidance systems. This attack is performed by sending fake

Fig. 1. Attack scenario: an attacker injects ghost aircraft to mislead the
instruments of controllers and pilots. The confusion caused by such an attack
can have severe or even life-threatening consequences.

position reports of airplanes which do not exist. In that way,

an adversary could mislead collision avoidance systems and

unmanned air vehicles or confuse air traffic controllers. It

has been shown that these attacks are easy to launch on real

systems [4] and the ability to verify the track claims in such

systems is therefore of high importance [5].

Many schemes have been proposed in the literature to

securely verify the location claims in wireless broadcast

networks [6]–[11]. However, most of these systems are ac-

tive and require specialized hardware or directional antennas.

A real implementation of these protocols remains therefore

often a challenge as they require expensive deployments or

upgrades of existing infrastructure. Passive schemes such as

multilateration [5], [12] or verification with hidden and mobile

base stations [13] have also been proposed. However, passive

multilateration requires a very tight time synchronization on

the order of a few nanoseconds between the verifiers. Further-

more, proposals such as [13] require the verifying nodes to be

at locations that are kept secret from the attacker.

In this paper, we propose a secure track verification tech-

nique which is completely passive, does not require a tight

time synchronization between the verifiers, and works even if

the attacker knows the positions of the verifiers. In addition, it

does neither require any specialized hardware nor directional

antennas. This makes the approach particularly suitable for

low-cost and large-scale deployments. The core idea of our

approach is to exploit the mobility of the prover to verify its

position securely as it moves along a track. As we show in this

work, the mobility of the prover is a useful dimension that can
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be exploited to significantly relax costly system requirements

of existing location verification schemes which are agnostic to

the mobility of the prover.

Our novel scheme is based on the mobility-differentiated

time of arrival (ToA). In constrast to existing point-wise

location verification or multilateration schemes, our approach

verifies a sequence of location claims of a prover. We show that

with this technique, it is possible to verify the track of mobile

nodes locally at each receiver and, hence, avoid the need for

tight synchronization among the verifiers. The verification is

based on physical signal propagation constraints and local time

differences at the verifier between messages that are sent by

the mobile node at different positions and times.

This technique is able to correctly verify tracks from honest

nodes. However, it is not secure against attacks on single

verifiers. An attacker could easily adjust the transmission times

of its messages to spoof any desired track for a given receiver.

We thus derive the requirements for using our technique for

secure verification of track claims. We show that the resulting

track verification scheme is secure against attacks from a

stationary adversary. The two-dimensional track of a mobile

node can be constrained to a unique solution when at least

three messages are received by at least three geographically

distributed verifiers. With four or more distributed verifiers,

any three-dimensional track can be securely verified as well.

In order to understand the performance of track verification

under real-world conditions, we have further performed simu-

lations with different levels of noise and losses at the verifiers.

Additionally, we demonstrate the ability to securely verify

flights as obtained from OpenSky [14], a large-scale ADS-

B sensor network deployed in Central Europe. Our results

suggest that our solution is able to effectively detect track

spoofing attacks under realistic noise and air traffic conditions.

A. Contributions

The contributions of this work are as follows:

• We present a passive and lightweight solution to the

secure track verification problem which exploits the mo-

bility of the provers in order to relax the costly system

requirements of existing solutions.

• We provide a formal analysis, proving the security of our

scheme for two-dimensional and three-dimensional track

verification.

• We analyze the performance of our method by conducting

simulations with a realistic noise model.

• We demonstrate the feasibility to verify tracks in an air

traffic monitoring scenario by using real tracks from the

OpenSky sensor network.

II. PROBLEM STATEMENT

Similar to secure location verification as defined by Sastry

et al. [6], we define the problem of secure track verification

as follows: A set of verifiers V wish to check whether a

prover moves on a claimed track T . A track claim consists

of a sequence of location claims, that is T = {C1, . . . , Cn}.
Each location claim Ci is a tuple (ti, �pi), where ti denotes

Verifier Vx

Prover
time

tx1 tx2 tx3

Δ1,2 Δ2,3

Δ1,3

Δx
1 Δx

2 Δx
3

Δx
1,2 Δx

2,3

Δx
1,3

t1 t2 t3

Fig. 2. The notation of time used in this paper. Timespans are denoted with
an Δ, points in time with t. The indexes refer to positions and the superscripts
to entities such as verifiers (x, y, . . . ) or an adversary (A).

a prover-local timestamp with its corresponding location �pi.
Locations are assumed to be two- or three-dimensional Eu-

clidean coordinates. The location claim Ci is sent at time ti
and from location �pi. In other words, by transmitting Ci, the

prover claims to be at position �pi at the transmission time of

Ci and its local, unsynchronized clock shows the value ti.
Our goal is to verify tracks of moving nodes. Accordingly,

we further assume that |T | > 1 and pi �= pj for at least one

pair of location claims Ci, Cj ∈ T . This assumption clearly

draws a distinction between our problem and that of location

or in-region verification as defined in [6].

A. Time Notation

We assume that both, prover and verifiers are equipped

with clocks which do not have to be synchronized – a major

advantage of our scheme. Timestamps represent the local time

of a node at a certain event. To distinguish between global time

and local timestamps, we denote global time with t and the

node-local time that corresponds to t (i.e., the timestamp at

time t) with t. For the theoretical analysis, we assume that

all clocks run at the same speed and positions as well as

timestamps are perfect, i.e., can be measured without error.

The effects of clock drift and measurement error are studied

in detail in Section IV.

The following temporal relationships and notations are sum-

marized in Figure 2. The timespan between the transmissions

of two location claims Ci and Cj is denoted by Δi,j = tj−ti.
The arrival time of a location claim Ci at verifier Vx ∈ V
is denoted by txi . Analogously, the timespan between the

arrivals of two location claims Ci and Cj at Vx is denoted

by Δx
i,j = txj − txi . The propagation delay of Ci’s signal on

its way to a verifier Vx is denoted by Δx
i = txi − ti.

Values derived by local timestamps are overlined. For the

following analysis, it is worth noting that for two honest
location claims Ci and Cj , it holds that Δi,j = tj− ti = Δi,j .

B. System Model

The system model is motivated by air traffic monitoring

(ATM) systems. In the upcoming next generation air trans-

portation system, aircraft determine their own position using
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satellite navigation and broadcast it periodically to surrounding

ground stations. These position reports can be considered as

location claims of the aircraft’s track. The receiving ground

stations are connected via ground networks. In aviation, fa-

cilities are usually well protected and therefore, the ground

stations and the network can be assumed to be secure.

In our model, a moving prover accordingly broadcasts a

sequence of location claims Ci (i = 1, 2, . . . ) to a set of sta-

tionary verifiers {Vx, Vy, . . . } using a wireless communication

channel. We assume that there is no compromised verifier and

all verifiers are able to communicate securely with each other.

Each verifier Vx knows its position �px.
Besides ATM, other systems are also well conceivable areas

of application for our scheme. The key characteristic of our

system model is the mobility of the prover. Therefore, any

location-aware application with mobile stations (e.g., vehicular

ad hoc networks or cellular networks) might be a potential

target system for our scheme.

C. Adversarial Model

In order to analyze the security of our track verification

scheme, we use the following threat model. We consider a

single adversary A located at position �pA. We assume for our

theoretical analysis that it uses an omni-directional antenna to

broadcast the location claims. This strong assumption ensures

that all verifiers in the reception area of A receive the exact

same location claims during the verification process. In section

V, we propose an extension to our scheme that allows to also

defend against attackers that are able to control exactly who

is receiving which location claim.

The adversary has full control of the location claim’s

content. In particular, �pi and ti are chosen by the attacker and

the transmission time ti of Ci does not necessarily correlate

with the timestamp ti. In addition to these assumptions, the

adversary also knows the exact position of all verifiers. Further

adversarial models such as mobile attackers or attackers with

limited knowledge are discussed in section VIII.

With respect to the ATM scenario, a realization of our

threat model could be an adversary positioned close to an

airport that injects fake position reports to cause confusion

or prevent departures. As mentioned above, the feasibility of

such attacks has been successfully demonstrated, even with

low-cost hardware [3], [4].

III. BASIC VERIFICATION SCHEME

Using the above notations, we can conclude that for valid

location claims, the inter-arrival times of the location claims

Ci and Cj at verifier Vx differ from the inter-transmission

times by the difference in propagation delays from �pi and �pj
to �px:

Δx
i,j = Δi,j + (Δx

j −Δx
i ) (1)

Provers and verifiers do not have a common time base

since they are not assumed to be synchronized. Yet, based

on the reported and measured local timestamps, the verifier

can calculate Δi,j and Δ
x

i,j . The propagation delays can be

estimated using Δx
i/j = ‖�pi/j − �px‖/c, where c denotes the

signal propagation speed and ‖ · ‖ the Euclidean distance.

At the core of our track verification scheme, each verifier

checks for all pairs Ci, Cj ∈ T whether the following property

holds:

Δ
x

i,j
?
= Δi,j + (Δx

j −Δx
i ) (2)

It is easy to see that Equation (2) is the same as Equation

(1) if the prover reported its position and timestamps correctly.

Thus, Equation (2) holds if the prover claimed its track

honestly. Using the terminology of location verification, our

scheme therefore satisfies the property of completeness [6].

Concerning the security property of our verification scheme,

we claim that given a certain number of verifiers, a dishonest

prover cannot send false location claims without violating

Equation (2) for at least one verifier. To prove this hypothesis,

we conduct a theoretical security analysis next.

A. Security Analysis

For our analysis, we assume that the adversary’s goal is to

claim a track with two location claims C1 = (t1, �p1) and

C2 = (t2, �p2) with �p1 �= �p2. We can do so without loss

of generality, since Equation (2) constitutes a pairwise check

for all claims in T without particular order. Hence, if our

scheme is secure for arbitrary C1 and C2, it is also secure

for track T . To provide a better understanding how security is

established in our verification scheme, we analyze it step by

step by increasing the number of verifiers |V | which receive

C1 and C2.

Case |V | = 1: With respect to the calculation done by the

verifiers, we can rewrite Equation (2) as

t
x
2 − t

x
1

?
= (t2 − t1) + (Δx

2 −Δx
1) (3)

The adversary’s goal is to find a transmission time t2 for C2

relative to t1, such that the inter-arrival time at Vx (left-hand

side of the equation) corresponds to the location claims C1 and

C2 (right-hand side). Therefore, it waits for the appropriate

time ΔA after the transmission of C1, i.e. t2 = t1 +ΔA. By

plugging this into Equation (3), we obtain

(

=t2︷ ︸︸ ︷
t1 +ΔA +Δx

A)︸ ︷︷ ︸
=tx2

− (t1 +Δx
A)︸ ︷︷ ︸

=tx1

= (t2 − t1) + (Δx
2 −Δx

1)

with Δx
A = ‖�pA − �px‖/c being the propagation delay from

the adversary to Vx. This equation can be solved for ΔA and

thus, the attacker can simply use

ΔA = (t2 − t1) + (Δx
2 −Δx

1)

to spoof C1 and C2.

This result means that adversaries are able to spoof arbitrary

tracks by simply adjusting the time between the transmissions

of the location claims if there is only one verifier (and they

are close enough to the verifier). An illustration of such an

attack is provided in Figure 3.
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Verifier Vx
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time

Adversary

t
x
1 t

x
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t1 t2

t1 t2

Δx
A Δx

A

ΔA

Δx
1 Δx

2

Δ
x

1,2

Fig. 3. Illustration of an attack on a single verifier. By adjusting the
transmission time t2 with respect to t1 and the desired Δ

x
i,j , the adversary’s

location claims C1 and C2 are received by the verifier Vx as they were sent
from the spoofed track.

Case |V | = 2: As above, the adversary tries to forge a

location claim by adapting the difference in transmission times

Δ1,2 such that its location claims C1 and C2 seem honest for

two verifiers Vx and Vy . The difference to the previous case is

that the adversary’s signal now experiences two independent

propagation delays Δx
A and Δy

A and both verifiers expect

independent propagation delays Δx
i and Δy

i . As a result and

similar to the previous case, the adversary has to find ΔA such

that the following system of equations is satisfied:

ΔA = (t2 − t1) + (Δx
2 −Δx

1)

ΔA = (t2 − t1) + (Δy
2 −Δy

1)

Hence, the adversary is limited in its choice of �p1 and �p2.
In particular, it has to choose them such that

Δx
2 −Δx

1 = Δy
2 −Δy

1.

Without loss of generality, we fix position �p1 for the first

location claim. Then, the adversary can use any position

�p2 ∈ H(�p1, �px, �py) for its second location claim C2 with

H(�p1, �px, �py) = {�p ∈ R
n ‖�p− �px‖ − ‖�p− �py‖ =
‖�p1 − �px‖ − ‖�p1 − �py‖ }

where n is the number of dimensions. In the two-dimensional

case, this set of positions H(�p1, �px, �py) corresponds to one

arm of a hyperbola with foci �px and �py and a difference of

distances to the foci of ‖�p1 − �px‖ − ‖�p1 − �py‖. With n = 3,
H is one sheet of a hyperboloid with the same parameters.

The key insight is that the adversary cannot claim arbitrary

tracks anymore. In particular, it loses one degree of freedom

with the introduction of a second verifier. It is limited in

its choice for the second position �p2 to positions that lie on

H(�p1, �px, �py).
In conclusion, the adversary can still spoof tracks that go

through one arbitrary position of interest. Although this might

be sufficient for some attacks, being restricted to a hyperbola is

already a significant limitation. Furthermore, the two verifiers

can easily check whether the locations of the track lie on such

a hyperbola. In case they do, they can consider the track

being suspicious. In scenarios where hyperbolic tracks are

impossible (e.g. roads in a vehicular network), attacks would

not remain undetected.

Case |V | = 3: Analogously to the previous case, we can

derive the constraint

Δx
2 −Δx

1 = Δy
2 −Δy

1 = Δz
2 −Δz

1

for two location claims C1 and C2 and three verifiers Vx, Vy ,

and Vz . This constraint can only be satisfied by an adversary

if it forges the location claims C1 and C2 such that the

pairwise hyperbolas (or hyperboloids, respectively) with the

three verifiers intersect at �p1 and �p2. That means, for a position

�p1, �p2 it must satisfy the following constraint:∧
{Vx,Vy}∈V

Vx �=Vy

�p2 ∈ H(�p1, �px, �py) (4)

We now analyze these intersections. For the sake of concise

presentation, we only consider the two-dimensional case.

Extending our results to three dimensions is straightforward:

intersections of hyperboloids instead of hyperbolas must be

considered.

With dxy(�p1) = ‖�p1−�px‖−‖�p1−�py‖ and �pi = (xi, yi), we
can set up a system of equations for the intersections of two

hyperbolas H(�p1, �px, �py) and H(�p1, �px, �pz). Each intersection

(x, y) ∈ R
2 must be a solution for the system of equations

derived by the definition of H:√
(x− xx)2 + (y − yx)2 −

√
(x− xy)2 + (y − yy)2 = dxy(�p1)√

(x− xx)2 + (y − yx)2 −
√
(x− xz)2 + (y − yz)2 = dxz(�p1)

By squaring and rearranging these equations, we obtain√
(x− xx)2 + (y − yx)2 = x · c1 + y · c2 + c3 (5)√
(x− xx)2 + (y − yx)2 = x · c4 + y · c5 + c6 (6)

with constants

c1 = (xx − xy)/dxy(�p1)

c2 = (yx − yy)/dxy(�p1)

c3 = (x2
y + y2y − x2

x − y2x + dxy(�p1)
2)/(2dxy(�p1))

c4 = (xx − xz)/dxz(�p1)

c5 = (yx − yz)/dxz(�p1)

c6 = (x2
z + y2z − x2

x − y2x + dxz(�p1)
2)/(2dxz(�p1))

Subtracting Equation (6) from Equation (5) results in

y = x · c1 − c4
c5 − c2

+
c3 − c6
c5 − c2

Plugging this equation into one of the initial equations results

in a quadratic equation for x and y. Quadratic equations have

either zero, one, or two solutions. In our case, we even know

that by construction of the hyperbolas, it has at least one

solution, that is �p1. Thus, there is either no or at most one

possible position left for the adversary to spoof a track without

violating Equation (2) for one of the verifiers.
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Fig. 4. Example with three verifiers and their pairwise hyperbolas for a
claimed position �p1. No further position can be spoofed without being detected
since there is no other intersection.

A scenario with three verifiers and their pairwise hyperbolas

is depicted in Figure 4. The adversary wants to spoof a track

and claims to be at �p1. As there is no further intersection of the

three hyperbolas, it cannot claim any second position without

being detected by at least one verifier.

In three dimensions and similar to navigation methods based

on time-difference of arrival measurements (e.g. multilatera-

tion), a fourth verifier would be necessary to pin the attacker

down to a single position. In general, |V | verifiers result

in |V | − 1 pairwise hyperboloids. With three-dimensional

locations and |V | = 3, the two hyperboloids intersect on a

curve. As in the two-dimensional case, adding a fourth verifier

reduces the number of intersections to at most two points in

space.

Case |V | > 3: Equation (4) is a general result which also

holds for more than three verifiers. For the two-dimensional

case, the guarantees given by three verifiers are already

sufficient since attacks using tracks with two intersections can

simply be prevented by requiring |T | ≥ 3. However, more

than three verifiers can be beneficial to mitigate noise in the

verification data such as measurement errors or clock drifts.

This interesting issue of imperfect verification data and how

to use |V | > 3 to improve the accuracy of verification is dealt

with below in Sections IV and VI.

B. Conclusions from the Analysis

The above analysis shows that the adversary loses one

degree of freedom with each additional verifier. The intuition

behind this is as follows: As the adversary is changing its

position between individual location claims, the propagation

delay to each verifier must also change in order to satisfy

Equation (2) at all verifiers. Thus, adversaries would have to

vary the propagation delays to each of the verifiers indepen-

dently to successfully pretend movement. Since all verifiers

receive the same messages (due to the broadcast transmission),

this is not possible. As a result, the only spoofable track for

a stationary adversary is the track on which the difference in

propagation delay to each verifier is constant. For two verifiers,

this is a hyperbola. For more than two verifiers, this property

only holds for the intersections of the pairwise hyperbolas (see

Figure 4).

In summary, we can generalize the assumptions for secure

track verification as follows. Let n be the number of dimen-

sions, that is �pi ∈ R
n. Then our scheme can detect track

spoofing attacks if any of the following two conditions is met:

1) |V | ≥ n ∧ ∃�p1,�p2∈T p2 �∈ H(�p1, �px, �py): The location

claims of T are received by at least n verifiers and there are

two different positions in T , where one position does not lie

on the hyperbola (or the hyperboloid, respectively) spanned

by the other position and the two verifiers’ positions.

2) |T | ≥ 3 ∧ |V | ≥ n + 1: The track consists of at least

three location claims and the claims are received by at least

n+ 1 verifiers.

IV. DEALING WITH NOISE

In practice, verifiers have to deal with imperfect verification

data since time and position measurements are error-prone. For

instance, clocks have different speeds which results in non-

negligible drifts. In order to assess the practicality and perfor-

mance of our verification scheme under realistic conditions,

we use the following error model.

A. Error Model

1) Clock Drift: The speed of clocks is highly dependent on

environmental conditions such as pressure or temperature [15].

However, we assume that the duration of the verification pro-

cess is on the order of seconds or minutes. Most environments

(such as the interior of vehicles) are sufficiently stable within

such time periods. Hence, we assume that clock drift is linear

and thus increases at a constant rate during the verification

process.

In accordance to that, we model clock drift as follows. The

error due to clock drift εdrift linearly depends on the duration

between two time measurements. It can be modeled by a drift

coefficient tdrift for an entity X . Assuming that X wants to

measure a period of time Δi,j = tj − ti, the clock drift error

εdrift of X’s measurement Δ
X

i,j is given by

εdrift = Δi,j · tdrift = (tj − ti) · tdrift .
2) Measurement & Channel Noise: Measuring points in

time at which events occur always involves measurement

errors. For instance, systems are clocked by an oscillator at

a certain rate and they only perform actions if a pulse or

pulse edge of the oscillator is present. Hence, observations

can only be made at discrete points in time. This leads to

measurement errors when events of interest (such as the arrival

of a signal) occur between two clock ticks. Besides timing

errors, wireless transmission characteristics such as multipath

propagation distort the signal. This may also results in noise

when determining timestamps for signal arrivals. In addition

to erroneous time measurements, our scheme may also suffer

from erroneous position information. If provers use GPS to

determine their positions, the location claims may contain

errors of up to 15 m.

We assume that measurement and channel noise are in-

dependent for each location claim and each of its associ-

ated timestamps. In accordance with [16], we summarize all
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sources of noise in a zero-mean Gaussian random variable

ε ∼ N (0, σ2). The variance σ2 depends on the accuracy of

the system components involved in the verification process.

For instance, if clocks with higher rates are used, σ2 becomes

smaller.

By combining clock drift and noise, we conclude that the

error contained in measuring a time period Δi,j for our

verification scheme can be modeled as

Δi,j −Δi,j = εdrift + ε = (tj − ti) · tdrift + ε (7)

In the following, we propose two versions of our scheme:

local and global verification. In local verification, verifiers cal-

culate and check their verification results locally. They do not

need to communicate with each other. This has the advantage,

that communication overhead is minimal and verifiers do not

have to be connected. They could simply send an alarm to a

central entity in case an attack was detected. This simplicity,

however, comes at a price. Local verification does not take

full advantage of the total number of verifiers. Therefore, we

also propose a global scheme, which is based on the local

scheme but verifiers collaborate in order to reduce the impact

of noise. We conclude the section with a comparison of both

approaches.

B. Local Track Verification Scheme

The noise in real systems makes a simple check of Equation

(2) to verify a track impractical. Therefore, we adapt our basic

verification scheme to deal with noisy values. The idea is

to use all received location claims to estimate the error. As

shown in [16], jointly estimating clock drift and measurement

error is not feasible since the Cramer-Rao lower bound of

the estimation error is too large. Therefore, we perform our

verification in two steps.

The first step estimates the clock drift. This estimate is

then used in the second step to cancel out εdrift from our

measurements. Let n = |T | be the number of received location

claims. The clock drift coefficient txdrift of Vx can then be

estimated using

t̂xdrift =
1(
n
2

) n−1∑
i=1

n∑
j=i+1

(
Δ

x

i,j

Δi,j + (Δx
j −Δx

i )
− 1

)
(8)

From a security perspective, estimating the clock drift in

this way raises the question whether an adversary can take

advantage of pretending certain clock drifts or not. The answer

to that question is no. Since we do not make any assumptions

on clock drifts, a fake clock drift is just as good as a true one,

and both will be equally eliminated by Equation (8). Faking

different clock drifts during one track is even worse, since

the estimation error will be high and, thus, increase the final

verification result Vx
T defined below (which leads to a rejection

of the claimed track). Hence, fake clock drifts do not pose a

threat to our scheme.

The verification is finally done in the second step by

calculating the mean squared error when subtracting the right-

hand side from the corrected left-hand side of Equation (2).

We denote this local verification result Vx
T of Verifier Vx for

a track T by

Vx
T =

1(
n
2

) n−1∑
i=1

n∑
j=i+1

(
(Δi,j + (Δx

j −Δx
i )) · (1 + t̂xdrift)−Δ

x

i,j

)2

(9)

The results of our security analysis in Section III-A imply

that for honest track claims, Vx
T should converge to the average

squared error. For dishonest claims, Vx
T must be higher for at

least one verifier due to the deviation caused by its dishonesty.

In our track verification scheme, each verifier Vx ∈ V
calculates Vx

T and checks whether it is below a predefined

threshold. In case a verifier’s local result is higher than the

threshold, the verification fails and the track is considered

to be dishonest. We call this verification process local track
verification as each verifier calculates its verification result

locally. Accordingly, the threshold for the local verification

result is denoted by Tlocal .
The threshold for the local verification should be chosen

based on the variance σ2 of the measurement error ε and the

number of location claims n. As n increases, t̂xdrift becomes

more accurate and Vx
T is supposed to converge to a value close

to zero. An optimal Tlocal must fulfill the same properties as

a location verification scheme according to [6]:

1) Completeness: If T is an honest track claim, Vx
T < Tlocal

must hold for all verifiers Vx ∈ V .

2) Security: If T is a false track claim, Vx
T ≥ Tlocal must

hold for at least one verifier if one of the constraints given in

Section III-B holds.

If such an optimal threshold exists, the local verification

scheme is able to perfectly distinguish between honest and

dishonest track claims. For later analyses and optimizations,

we measure the “optimality” of Tlocal and our system in terms

of false rejection and false acceptance rates. A false rejection

of a track means the detection of an attack, although the prover

is honest. A false acceptance occurs if a false track claim is not

rejected by the system. Both rates can be controlled with Tlocal .
On the one hand, if Tlocal is smaller than the highest possible

Vx
T for honest tracks, false rejections can occur. On the other

hand, false acceptances are possible if Tlocal is greater than

the smallest possible Vx
T for false track claims.

C. Global Track Verification Scheme

As our evaluation below shows, bad hardware accuracy and

verifier placement may result in false rejections and accep-

tances by our local verification scheme. The local verification

scheme, however, does not take advantage of the total number

of verifiers since it only considers local results. Given a higher

number of verifiers, a better verification decision can be made

by obtaining all local results instead of considering them

separately. We call this extension global track verification.
In our global verification scheme, the verifiers exchange

their verification results Vx
T and each verifier calculates the

average verification result:

VT =
1

|V | ·
∑
Vx∈V

Vx
T (10)
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Fig. 5. Example scenario: three verifiers Vx, Vy , and R (located at �px,
�py , �pR) are arranged such that the area of interest for R is covered by the
three verifiers reception ranges (dotted circles). The attacker (located at �pA)
transmits its signal to R using a directed antenna (dashed area) and avoids
being detected by the other verifiers.

Similar to Tlocal , we can define a threshold Tglobal for VT . A
track T is then accepted by the system if VT < Tglobal and

rejected if VT ≥ Tglobal holds.

The choice, whether to use the local or the global verifica-

tion scheme depends on hardware constraints and infrastruc-

ture. In case it is cheaper to distribute many low-cost verifiers

instead of a few high-end devices, the global verification

is preferable. If verifiers are equipped with very accurate

hardware, the local check might be the better choice as it is

more sensitive to anomalies. Besides that, the local verification

scheme produces less communication overhead and does not

require a fully connected network of verifiers.

V. RECEPTION AREA SANITY CHECK

As discussed in Section II-C, we assume that the adversary

uses an omni-directional antenna. In this section, we discuss

a simple extension to our scheme to basically ”catch” an

adversary that does not conform to this assumption. The alert

reader might already have noticed the problem related to

an attacker not using an omni-directional antenna: Assume

receiver R wants to monitor tracks in a certain area of interest

A. To securely verify the claimed tracks in A, there are v ≥ 3
verifiers deployed such that their reception ranges cover A. R
itself is one of the verifiers.

Remember the practical example from the introduction

where a ground station receives tracks from aircraft and

provides them to air traffic controllers who are responsible

for managing the traffic in A. Now, an adversary wants to

inject false tracks in order to mislead the controllers. It could

transmit its track claim with a directional antenna such that

it is only received by R. As R would be the only receiver,

the attacker could adjust its transmission times as shown in

Section III-A (case |V | = 1) and the attack would not be

detected. This scenario is depicted in Figure 5.

This attack is possible because our verification scheme

implicitly assumes that location claims are always received

by all verifiers (in the transmission area of an omnidirectional

prover). To address this problem, we extend our scheme with

the following protocol.

A. Sanity Check Protocol

We assume that each verifier knows its reception area and

can check whether a position �p lies within the reception range

using an indicator function Rx(�p):

Rx(�p) =

{
1 if �p lies within Vx’s reception range

0 else
(11)

In an obstacle-free line-of-sight communication scenario,

where the communication is only limited by the free-space

path loss, Rx would be

Rx(�p) =

{
1 if ‖�px − �p‖ ≤ r

0 else

for the maximum reception range r. For more complex recep-

tion areas, an initial sampling phase or a more sophisticated

propagation model can be used to determine Rx.

In principle, the following algorithm simply checks whether

the reception of the location claim Ci is normal or not. If

the location claim was received although the position is not

in its reception range, something is suspicious and an alarm

is raised. In case the reception range covers �pi, the location

claim is accepted and the other verifiers are notified about the

reception. For each reception of a location claim Ci = (ti, �pi),
verifier Vx performs the following verification procedure:

if Rx(�pi) = 0 then // I shouldn’t have received this claim
broadcastAlert(Ci) // alert all verifiers

else
if Ci �∈ N then // I received it first

broadcastNotification(Ci) // notify all verifiers
end if
T = T ∪ {Ci} // add claim to track

end if

where N is the set of all received notifications.

The second part of the protocol checks whether location

claims are always received by all verifiers which cover �pi.
Assuming that the notification was sent by the verifier with

the shortest distance to the prover, all other verifiers should

receive the claim at latest after the difference in propagation

delays. Let εmax be an upper bound for the maximum expected

measurement error. For each received reception notification

Ni = (Ci) from Vy , verifier Vx performs the following

procedure:

if Rx(�pi) = 1 then // I should also receive this claim
wait(Δx

i −Δy
i + εmax) // wait for it

if Ci �∈ T then // I should have received it by now
broadcastAlert(Ci) // alert all verifiers

end if
else

N = N ∪ {Ci} // save notification
end if
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The protocol raises an alarm in two cases. First, a verifier

receives a location claim from a position which is under

legitimate conditions not within its reception range. In this

case, the prover must either be at a position other than the

claimed one or use anomalous parameters such as a higher

transmit power. Second, a verifier does not receive a claim it

should receive under normal conditions. Both cases indicate

a false track claim and attacks such as the one above are

detected.

B. Channel Loss

Message loss is a natural phenomenon in wireless channels.

In ADS-B for instance, message loss rates of up to 40% in

peak traffic periods have been reported [4]. However, channel

loss results in alarms not caused by an adversary. Thus, a

single alarm does not necessarily indicate an attack and the

sanity check must tolerate some loss in practice. We propose

a simple statistical scheme here to do so.

Let m = |T | be the number of transmitted messages, v =
|V | the number of verifiers, and na the number of alarms due

to channel loss. Under the assumption that loss is a Bernoulli

process1 and the loss probability p is known, the expected

number of alarms due to channel loss is E(na) = v ·m · p.
Furthermore, the number of alarms due to channel loss, na,

is binomially distributed and we can easily build a confidence

interval for na. Thus, a track T only passes our sanity check

successfully, if na is within this confidence interval for a given

confidence level α. In other words, if T passes the sanity

check, we can be certain with a confidence of α, that the

alarms are caused by channel loss, otherwise we detect an

attack.

C. Security

Using the confidence interval check has certain advantages.

By choosing an appropriate confidence level, a user can

control the false positive and false negative detection rate. For

instance, higher confidence levels result in wider confidence

intervals. This, on the one hand, offers the adversary a wider

scope for its attacks but, on the other hand, the false rejection

rate for legitimate tracks will be decreased. In practice, a trade-

off has to be found for the concrete application scenario.

For applications where provers report their track over longer

periods, another advantage is the behavior of the confidence

interval if m increases. In particular, the confidence interval

becomes smaller for each additional location claim at an ex-

ponential rate. Figuratively speaking and in terms of security,

the sanity check tightens the noose on the attacker with each

additional location claim.

Most importantly, by employing this sanity check along with

our track verification scheme, we force adversaries to send

their location claims to all verifiers which cover the spoofed

positions. This requirement issues a big challenge for realistic

attackers. In order to launch an attack, they have to know the

exact reception ranges of all verifiers and have to be able to

1more complex loss models or a sampling phase can be used analogously

TABLE I
OVERVIEW ON THE SIMULATION PARAMETERS FOR THE ERROR

PROPAGATION ANALYSIS.

Parameter Description
r The radius of the circular area around the verifier
m The number of messages per track, i.e. m = |T |
v The number of verifiers that receive the provers location

claims, i.e. v = |V |
σ The standard deviation of the measurement error
σdrift The standard deviation of the random clock drift coef-

ficient txdrift of the verifiers

Constant Description/Value
c The propagation speed of the signal is fixed to the speed

of light (299792458 m/s)

control exactly which verifiers receive which location claims.

In addition to that, they have to make sure, that the channel

loss of their claims is similar to that of honest provers.

VI. ERROR PROPAGATION ANALYSIS

This section provides insights on the requirements, perfor-

mance, and security of our approach. We conducted extensive

simulations and analyzed the effect of measurement error,

clock drift, and number of claims on the verification result. To

draw conclusions on the security (i.e. on false rejection and

false acceptance rates), we compare the verification results of

honest and dishonest track claims.

In order to keep the detection time low, it is desirable to

keep the number of required messages as small as possible.

Therefore we assume that the drift estimator t̂xdrift is calculated
with the same set of claims as the verification value Vx

T . As

a result, they are not independent and since t̂xdrift is used to

calculate Vx
T , the error propagation in our scheme is complex

and hard to analyze formally. While we know that the variance

of t̂xdrift can be estimated with

Var(t̂xdrift) =
σ2∑m−1

i=1

∑m
j=i+1

(
Δi,j + (Δx

j −Δx
i )
)2 · (m2 )2

and the average estimation error converges to zero with

increasing m, we cannot set up a trivial error model for

Vx
T analogously. However, to analyze the error propagation

nevertheless, we implemented the local and global verification

schemes as a discrete-event simulation.

A. Simulation Setup

Initially, we assigned a random clock drift txdrift to each veri-
fier Vx. We draw txdrift from a zero-mean Gaussian distribution

with standard deviation σdrift . The signal propagation speed is

fixed to the speed of light (299792458 m/s) for all simulations.

To cancel effects caused by tracks with special properties2,

the prover moves on random tracks for this analysis. Real

tracks are considered below in Section VII. The location

claims for each track are randomly chosen from a circular area

A with radius r around the verifier’s position. The prover’s

maximal change in distance to the verifier (and thus the

2e.g. errors due to a bad dilution of precision
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mobility-differentiated time of arrival which is considered by

our verification scheme) is limited by r. The unit for distances
is meters. Times and periods are in seconds. Our simulation

parameters and constants are summarized in Table I.

A result of our formal security analysis in Section III-A

is that an implementation of our scheme must always ensure

that an area of interest is always covered by at least three

verifiers. If this is the case, we know that for at least one

verifier Vx, the period Δ
x

i,j differs from the expected inter-

arrival time (Equation (2)). To produce valid insights on the

security of our scheme, we are particularly interested in Vx
T of

this verifier. Without loss of generality, we consider only one

verifier in each simulation run and assume that it is the one

we are interested in, namely the one for which Equation (2)

does not hold. We generate the deviation of the adversary’s

signal arrival times from those of the honest prover by simply

putting the adversary at a random but fixed position within

A. The adversary then claims the same track as the honest

prover and uses the same transmission times. The magnitude

of the deviations can be controlled by r (larger r leads to

larger deviations).

B. Clock Drift & Measurement Error

To keep our simulations realistic, we had to find appropriate

parameters for our error model. With regard to our later

analysis of our scheme’s performance in a realistic air traffic

scenario, we choose σ and σdrift based on experiences from

the OpenSky Network3. The OpenSky Network is a low-cost

sensor network which monitors air traffic at a large scale and

provides the data to researchers [14]. Low-cost receivers are

distributed to volunteers in Europe and these collect (among

other things) the position reports periodically broadcast by

aircraft. The receivers used by OpenSky provide timestamps

with a 50 ns precision for the arrival of position reports.

Besides that, most aircraft are using GPS to determine their

positions. The typical position accuracy of GPS is about 15 m.

That leads to an estimation error of propagation delays Δx
i

of about 50 ns. Therefore, choosing σ = 50 ns for the

measurement error seems appropriate.

It is worth mentioning here, that this is a rather pessimistic

assumption. The OpenSky network is using low-cost receivers

which are not equipped with particularly good clocks. For bet-

ter devices, timestamps with higher precision can be assumed.

Furthermore, the Federal Aviation Administration (FAA) in

the US is implementing navigation systems for civil aviation

which can reduce positioning error to less than a meter [17].

To determine an appropriate standard deviation for clock

drift errors, we considered the drift of OpenSky’s receivers

relatively to each other. To determine the clock drifts of the

sensors, we used position reports received by multiple stations.

By subtracting the difference in propagation delays to each

receiver from the reception timestamps, we were able to obtain

the offsets of the clocks over time and thus, the clock drift. We

observed the clock drifts of eight receivers over a period of one

3http://opensky-network.org
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Fig. 6. Estimated clock drifts of 8 receivers of the OpenSky network over
one hour. The drifts are relative to the clock of receiver 4.

hour and we found that they were constantly linear during that

period. At this point it must be mentioned that the receivers

are mostly indoors and not exposed to extreme temperature

variation. The results are shown in Figure 6. According to

these results, we choose a pessimistic standard deviation of

20 μs per second for the clock drifts of the verifiers σdrift .

C. Simulation Results

1) Local Verification Scheme: We first look at the local

verification scheme as it is the basis for the global scheme. The

goal of this analysis is twofold. On the one hand, we want to

determine the least number of location claims needed to verify

a track under the above error model. On the other hand, we are

also interested in the benefits of receiving more location claims

than actually needed. Ideally, the difference in Vx
T between

honest and dishonest tracks becomes more pronounced with

each additional location claim as the estimators of our scheme

become more accurate.

To draw inferences from the local simulation results about

the overall performance of our verification scheme, we com-

pare the maximum Vx
T of 1000 honest tracks with the min-

imum Vx
T of 1000 dishonest tracks. In doing so, we check

whether the worst verification result of the honest tracks is

greater than the best verification result of the dishonest tracks.

If this is the case, we can conclude that Tlocal does not exist

since we cannot perfectly distinguish honest from dishonest

tracks. Let maxhonest be the maximum verification result for

the honest tracks and mindishonest the minimum verification

result for dishonest tracks. We then use the “best-evil-to-worst-

good ratio”

EGR := mindishonest/maxhonest

as response variable for our simulations. This ratio can be

interpreted as follows. If the EGR ≤ 1, Tlocal does not exist.
Otherwise, there is a secure interval

Σ = (maxhonest ,maxhonest · EGR)
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Fig. 8. Result of our simulation for different radii and increasingm. The “best
evil-to-worst good ratio” (EGR) is defined as the ratio of the best dishonest
result divided by the worst honest result. If EGR > 1 holds, there exists
an optimal threshold Tlocal which perfectly separates honest from dishonest
tracks.

where any Tlocal ∈ Σ results in zero false rejections and zero

false acceptances for the 1000 simulated tracks and the given

configuration.

Figure 7 shows the empirical cumulative distribution func-

tion of the local verification results of an example simulation.

In this particular example, we used a radius of 200 m and 19

messages per track. The EGR is 2.854879 which is greater

than 1 and hence, Tlocal ∈ Σ exists. In fact, the estimated

secure interval for this configuration is

Σ = (1.147019 · 10−14, 3.274601 · 10−14)

As mentioned above, the verification result is directly de-

pendent on the simulation radius r. Therefore, we repeated our

simulations for different radii. Transferred into a real-world

scenario, a greater radius means larger distances between

location claims. The results of the simulations are shown in

Figure 8. For the radii 200 m, 2 km, and 20 km, the EGR

becomes greater than 1 after a few location claims. In fact, for

radii on the order of kilometers, dishonest tracks are perfectly

distinguishable from honest tracks after 4 location claims.

If r becomes too small, Tlocal does not exist anymore. For

instance, the maximum EGR for r = 20 m is 0.34. That

means that there is no optimal threshold Tlocal which perfectly

separates honest from dishonest tracks. This result, however,

is natural since we have chosen a standard deviation for the

measurement error which does not enable us to measure such

small changes in propagation delay. For r = 20 m, the change

in distance (and thus propagation delay) for random tracks is

on average 10 m, but we have chosen a standard deviation of

15 m for the measurement error.

Figure 8 also illustrates that the EGR almost stagnates for

more than 15-20 location claims. This knowledge can be used

to include a notion of freshness into the verification scheme. If

an adversary is claiming the correct path in the beginning but

lies about its track later on, the verification might work better

if only the most recent 15 location claims are considered.

We can conclude that verification only works for tracks

on which provers cover distances greater than the system’s

measurement error. For such tracks, we can say that the greater

the distances covered by the prover, the less messages we

need to verify tracks without false acceptances or rejections.

To provide a real-world example for distances covered by

potential provers, we again looked at data from the OpenSky

network. Airplanes in the en-route airspace (i.e. at an altitude

of about 30,000 ft) travel at a velocity of up to 300 m/s. That

means that they cover distances of the order of kilometers

within a few seconds, making them suitable provers for our

track verification scheme.

2) Global Verification Scheme: In case the system has

many verifiers covering an area of interest, our global scheme

can be used to reduce false acceptances and rejections for

small m. To gain insights on the global verification result, we

conducted simulations similar to the previous ones. We placed

a varying number of verifiers at random positions in a circular

area with radius r = 200 m and used the same error model

parameters (σ and σdrift ) as above. We picked this radius

because it produces false rejections and acceptances with the

local verification for m ≤ 13 (see Figure 8). Compared to

larger radii, this is a rather high number of least required

messages for doing local verification without false rejections

and/or acceptances. Thus, there is room for improvement

which makes this radius illustrative for the benefits of the

global scheme. Besides that and as mentioned above, distances

on the order of hundreds of meters is realistic for location

claims in aviation.

As before, we run our simulations for 1000 random tracks

to derive maxhonest and mindishonest for each track length |T |
and number of verifiers |V |. Figure 9 shows the results. As in

the local verification, tracks with just three location claims are

still not properly verifiable due to the small number of samples

for eliminating the noise. However, by increasing the number

of verifiers to 7, we can perfectly verify tracks already after

the fifth location claim with our global verification scheme.
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Fig. 10. The 1000 trajectories fetched from the OpenSky database for our
applicability analysis. To achieve a good distribution of the verifiers across the
considered area, we arranged 25 verifiers on a grid as marked by the bubbles.

Another result of this analysis is, that adding more than 7

verifiers does not result in a significant increase of the EGR.

VII. APPLICABILITY TO AIR TRAFFIC

Besides analyzing error propagation, we conducted addi-

tional simulations with real flight tracks recorded by the

OpenSky Network [14]. This enables us to assess the per-

formance of our scheme with realistic tracks, proves the

applicability to air traffic surveillance systems, and highlights

challenges for a secure deployment of our scheme.

A. Simulation Setup & Data Preparation

The OpenSky Network is an Automatic Dependent

Surveillance–Broadcast (ADS-B) sensor network which col-

lects real-world air transportation communication data. In

ADS-B, airplanes (and other vehicles) broadcast their posi-

tion, velocity, and other status information periodically. The

position reports, for instance, are broadcast twice per second.

They contain the airplane’s longitude, latitude, and altitude.

Interpreting these position reports as location claims, ADS-B

perfectly fits to our track verification scheme. The tracks are

the trajectories of airplanes described by their ADS-B position

reports.

For our analysis, we fetched 1000 flights from OpenSky’s

database which were received by one receiver. To have a large

variety of trajectories, we selected a receiver close to Zurich

Airport. This way, our simulations contain trajectories from

the en-route airspace as well as from the approach area of

the airport. We placed 25 verifiers in the reception area of the

OpenSky receiver. To achieve a good distribution of verifiers

across the reception area, we arranged the verifiers in a grid.

Figure 10 shows the 1000 trajectories and the positions of the

25 verifiers.

While OpenSky provides timestamps with nanosecond pre-

cision for the time of arrival of the position reports, ADS-B

does unfortunately not support timestamps for the transmission

times. An attempt to estimate Δi,j for two position reports

based on the airplane’s reported velocity and the distance

between the two reported positions failed due to the low

resolution of velocity reports.

It is worth noting here that ADS-B has a feature in which

transponders transmit position reports at discrete, known time

intervals (see A.1.4.2.3.1 of [18]). This allows a receiver to

estimate Δi,j very accurately without the need for explicit

transmission timestamps. Thus, our scheme is fully realizable
within the ADS-B standard. As of this writing, however,

the ADS-B deployment is still in an initial phase. Too few

airplanes support this mode at the moment and there are no

guarantees and information on the accuracy of the current

implementation as it is not yet certified for operational use.

Thus, we had to generate the timestamps ti artificially to

be able to apply our track verification scheme to the data.

Therefore, we assumed that the track claimed by the airplane

was correct and used the verifiers positions to estimate the

propagation delay for each position report and verifier. Noise

was added to these estimations in the same way as in the

previous simulations from Section VI. This way, we were able

to apply our scheme to trajectories with realistic properties

such as dilution of precision and real shapes.

As in the previous simulations, the timestamps for the

position reports were generated with random clock drifts with

standard deviation σdrift = 20 μs/s for each airplane and

measurement error with σ = 50 ns for each timestamp. Then,

we calculated the local verification results of all flights for

each verifier. In order to gain insights on the time needed to

verify a flight, we replayed 50 random position reports of each

flight and recalculated Vx
T after the reception of each position

report.
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B. Results

1) Verification Time: The average and median verification

time for different |T | is shown in Figure 11. The ADS-B

channel experiences high loss [2]. This loss results in a lower

arrival rate than the transmission rate (which is two position

reports per second). Altogether, the average message arrival

rate was 0.54 and the median rate 0.95 messages per second.

The difference in mean and median are a result of the high

loss close to the edge of the receiver’s reception range.

2) Verification Result: The false acceptance rate for

Tlocal = maxhonest and the false rejection rate for Tlocal =
mindishonest are shown in Figure 12. For example, if we

set Tlocal such that all honest flights get accepted, 2.4% of

the dishonest flights get falsely accepted after 15 messages.

Conversely, setting Tlocal such that all dishonest flights get

rejected, we observed a false rejection rate of 39.3%. Both,

the false acceptance and false rejection rate dropped to zero

after receiving 39 position reports.

A deeper analysis of the results revealed, that the false re-

jections and false acceptances are the result of some dishonest
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Fig. 13. Illustrative example scenario for a track which is highly linear for
Vx and non-linear for Vy . The RMSE for Vx is very small because of the
linear dependence of the distance on time. Vy cannot accurately approximate
the distance with the linear model which results in a large RMSE.
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Fig. 14. The local verification result of 1000 real trajectories consisting of 50
position reports depending on their linearity. The less linear (i.e. the higher
the RMSE), the greater the difference between honest and dishonest flights.

trajectories, which produce extremely small Vx
T . The problem

are particular trajectories, on which the change in distance to

the receiving verifiers is monotonically and linearly increasing

or decreasing. If this is the case, the deviation of the attacker’s

signal arrivals to the expected signal arrivals (i.e. Δx
i −Δx

A) is

also monotonically and linearly decreasing or increasing since

Δx
A is constant. The issue is, however, that clock drift also

results in a linear deviation. As a consequence, our system

cannot distinguish between these two deviations. Our drift

estimator (Equation (8)) not only cancels out the clock drift, it

also cancels out the linear deviation caused be the adversary’s

dishonesty. This results in very small Vx
T for dishonest tracks T

with a high linearity. Flights, especially en-route flights, often

have a shape close to a straight line with linearly changing

Δx
i . This leads to the false acceptances in our simulations. An

illustrative example for the linearity property of a trajectory is

provided in Figure 13. The flight has a high linearity for Vx

and a low linearity for Vy .

In order to further investigate this effect, we need an appro-

priate measure for the linearity property of tracks. Therefore,
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we quantified the linearity by doing a linear regression of the

distances ‖�pi− �px‖ on times ti. We then used the root-mean-

square error (RMSE) as a measure for non-linearity: the higher

the RMSE, the less linear the trajectory from the viewpoint of

Vx. Figure 14 shows the dependency of the verification results

of 1000 flights on the linearity. While the verification result

stays constantly small for honest trajectory claims, the results

for dishonest trajectories increases along with the non-linearity

(i.e. with the RMSE).

We also considered the least required RMSE to achieve a

zero false acceptance and rejection rate for the local verifi-

cation scheme. The results are shown in Figure 15. We can

conclude that the least required linearity becomes smaller the

more position reports we used to calculate Vx
T .

As this section showed, it is challenging to deal with

linear tracks in combination with clock drift. This might

pose a problem for some scenarios. For instance, the least

number of required location claims increases if linear tracks

are considered. This is disadvantageous for scenarios where

fast detection rates are desired. To mitigate this problem, we

discuss several approaches to avoid or deal with linearity in

the next section.

C. Linearity Mitigation Approaches

Long reception ranges result in a high dilution of precision

(DOP) for tracks far away from the verifiers. Due to DOP,

distances between locations further away appear shorter which

leaves less room for non-linearity. To tackle this problem, we

recommend a linearity-aware placement of verifiers in the area
of interest. For instance, distributing the available verifiers

evenly across the area reduces the distances between tracks

and verifiers and thus the DOP. In cases where only certain

tracks are possible (e.g. provers are moving on roads or rails),

a linearity-aware placement of verifiers can even prevent linear

tracks completely.

Another way to deal with linearity is to reduce the least

required RMSE by bounding the estimated clock drift. If the

upper bound of clock drifts is known and t̂xdrift exceeds it,

the track claim might be dishonest. This approach is only

applicable, if the clock drift bound is lower than the linear

deviation caused by the dishonesty of the adversary.

Lastly, a collaborative scheme for estimating t̂xdrift can

also prevent attacks which exploit linearity. Therefore, the

clock drift coefficients relative to some (or all) of the other

verifiers must be determined. This knowledge can then be

used to agree on a global t̂xdrift , making it impossible to

hide linear dishonesty in different clock drift estimations.

The pairwise clock drift coefficients can be determined using

trusted provers. After a track with a sufficiently high non-

linearity has been accepted by the system, they exchange

their clock drift estimators and, by that, learn the clock drift

coefficients for the other verifiers.

For cases in which none of the above approaches is feasible,

verifiers must calculate the RMSE as part of the verification

process. Each verifier can then assess whether it is in the posi-

tion to verify a track or not. Tracks too linear for verification

should be rejected a priori in order to avoid laying the system

open to attacks.

VIII. DISCUSSION & FUTURE WORK

The strength of our track verification scheme lies within its

simplicity. Any node which knows its own position and is able

to capture the timestamps of the received claims can calculate

Vx
T . Besides that, the scheme works completely passive. Ex-

cept the track claims, there is no additional communication

between verifiers and provers necessary. Hence, verifiers are

simple devices which can be integrated into existing systems

easily. Furthermore, they can run in parallel to systems which

need to be secured without touching them.

This simplicity of our scheme enables many applications.

In some of them, different threat models might be interesting.

Therefore, we discuss several adjustments of our threat model.

A deeper analysis will be subject to future work.

A. Mobile Adversary

In section III-A, we have proven that our scheme is secure

for stationary adversaries by assuming a fixed propagation

delay Δx
A. If we remove this assumption, the scheme might

not be secure anymore. However, the adversary must be able

to move in a way such that the propagation delays from the

attackers positions to all verifiers change exactly as they would

change on the claimed track. In scenarios where the adversary

cannot move freely (e.g. due to obstacles in a city), a mobile

adversary might not be able to claim arbitrary tracks. Yet,

this might be a valid threat in other scenarios. For instance,

if the attacker has more degrees of freedom than legitimate

nodes, it might be able to successfully claim dishonest tracks.

An example would be a vehicular ad hoc network and an

adversary that uses a helicopter or drone to claim dishonest

tracks. From a practical point of view, such an attack would

still be hard to realize since such an adversary will most likely

violate the reception area sanity check described in section V.

In [19], Tippenhauer et al. investigate the requirements

for successful GPS spoofing attacks. They derive placement
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constraints for a mobile attacker which tries to spoof the

GPS-derived location of several receivers. One of their results

is that the attacker’s transmission locations must lie on a

hyperboloid to spoof two receivers and on a hyperbola for

three receivers. In GPS, receivers use the TDoA of satellite

signals to calculate their locations. Since our scheme also

relies on ToA measurements, a mobile attacker would face

similar placement constraints in our scheme. In fact, pre-

liminary research on placement constraints suggests that the

additional degree of freedom of the mobile attacker can be

compensated by requiring an additional verifier.

B. Adversary’s Knowledge

Another parameter of the threat model is the adversary’s

knowledge. In our security analysis, we assumed that the

attacker knows everything. In particular, it is aware of its

position and the positions of all verifiers. This knowledge

makes the verification with |V | < 3 insecure.

Čapkun et al. proposed a scheme for secure location verifi-

cation whose security is based on covert base stations (CBS)

[13]. By CBS, the authors mean verifiers whose locations are

not known to the attacker at the time of execution of the secure

location verification. A potential attacker would have to guess

the CBSs positions right in order to time the transmissions of

its claims without causing inconsistencies at the verifiers.

This idea is also applicable to our scheme. It would benefit

from CBSs in two ways. First, bypassing the reception area

sanity check is much harder if the adversary does not know

where its signal is expected. It could guess the area based

on signal propagation models, but the effort would be much

higher and the chance to be detected much larger. Second, the

number of verifiers required to securely verify tracks can be

reduced. In theory, just a single verifier would be sufficient as

long as it is covered. If the attacker is not able to estimate the

propagation delay Δx
A of its signal to verifier Vx, it can only

guess ΔA and would be detected with a high probability (see

Figure 3).

Similar to CBSs, mobile verifiers would increase the detec-

tion probability of dishonest tracks significantly. The adversary

must keep track of all verifiers to launch timing attacks and

bypass the reception area sanity check. Mobile verifiers are

indeed a realistic scenario. In air traffic monitoring, honest

airplanes could also act as verifiers. Airplanes equipped with

ADS-B receivers and GPS meet all requirements for calcu-

lating Vx
T for surrounding airplanes. If dishonest tracks are

detected, the pilot could warn the ground stations, e.g., using

voice communication. Another advantage of using airplanes

as verifiers is that at high altitudes, airplanes can have ranges

of more than thousand kilometers4. Together with the high

density of today’s air spaces, a world-wide coverage could

be easily achieved without the need of new infrastructure. In

OpenSky, a single sensor receives position reports of up to 60

airplanes at the same time during peak traffic hours. Thus, high

4assuming that communication is possible if there is a line-of-sight con-
nection

numbers of verifiers |V | could be achieved by using trusted

airplanes for verification.

C. Limits Of Our Scheme

As all location verification schemes which rely on signal

arrival measurements, our scheme is not secure if an adversary

is able to transmit independent signals to all verifiers. The

attacker could use directional antennas or launch a coordinated

attack from different positions. In that way, it can time the

signal arrivals at the verifiers exactly as if they were sent

from the claimed positions. However, such attacks are very

sophisticated since they require an extremely accurate timing.

In addition to that, the attacker still has to know the exact

positions and reception ranges of all verifiers.

IX. RELATED WORK

This section gives a brief overview of work that is related

to ours. A more general overview of secure localization and

secure location verification is available in [20].

1) Distance bounding protocols: Distance bounding pro-

tocols are two-way ranging protocols that rely on crypto-

graphic techniques to enable a verifier to establish an upper

bound on the physical distance to a prover. These protocols

are based on timing the delay between sending out chal-

lenge bits and receiving back the corresponding response

bits. The idea was first proposed by Brands and Chaum in

1994 [21]. Sastry et al. then proposed using it for secure

location verification in 2003 [6]. Later, more general concepts

for using distance bounding for secure location verification

were proposed among others by Singelee and Preneel [7]

and Čapkun and Hubaux [9]. Distance bounding protocols,

however, are active and require highly specialized hardware to

keep the processing time constant and as short as possible [8].

In contrast, our approach is passive and does not require any

specialized hardware or protocol.

2) Multilateration: Mutlilateration is a passive localiza-

tion technique based on the time difference of arrival (TDoA)

of signals at geographically distributed stations. Multilat-

eration is often used in radar systems for localization of

mobile targets [22] and has also been proposed for location

verification [5], [12]. The major drawback of multilateration

is that it requires very precise time synchronization on the

order of nanoseconds at the verifiers. This requirement makes

the technique quite expensive and affordable only for smaller

deployments. Conversely, secure track verification as we pro-

pose in this work does not require time synchronization which

dramatically reduces the costs of infrastructure.

The authors of [16] have used mobility-differentiated ToA

as a special form of TDoA for location surveying in sensor net-

works. However, the algorithms proposed in their work assume

non-adversarial settings whereas our approach is designed to

be secure against location spoofing attacks.

3) Angle-of-arrival: The location of wireless transmitters

can be estimated by using the angle-of-arrival of the incoming

signals. Systems have been proposed that rely on directional

antennas [10], [11] to prevent attacks and to localize emitters.
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However, directional antennas with a high degree of direc-

tionality are costly and several antennas are required at each

verifier in order to capture attacks from all possible directions.

In addition, angle-of-arrival methods are highly susceptible

to multi-path reflections of the signal [23] and directional

antennas typically exhibit side-lobes which can be exploited

by the attacker to fool the system in real-world scenarios.

4) Kalman Filters: Kalman filters are algorithms that use

a series of measurements observed over time to filter out noisy

input data and produce more accurate estimations of the output

state. Kalman filters have been proposed as a way to verify

the integrity of the tracks received from ADS-B data [24].

However as pointed out by [25], [26], Kalman filters assume

that the errors in the location claims are mainly because of

non-malicious factors such as mobility or channel interference.

Kalman filters are not secure against malicious injection of

spoofed position claims.

X. CONCLUCION

In this work, we presented a mechanism for securely verify-

ing tracks on which mobile nodes such as cars or aircraft claim

to move on. Our scheme exploits the prover’s mobility to avoid

the need for synchronization and additional communication.

Besides that, it does not assume any restrictions on the

attacker’s knowledge. We have proven that three verifiers using

our scheme are able to securely detect stationary attackers.

Furthermore, we have conducted extensive simulations to ana-

lyze the performance of our scheme under realistic conditions.

We analyzed many different aspects such as error propagation,

system requirements, and practicality. In particular, we used

real traffic data to demonstrate its applicability to air traffic

monitoring. Based on insights from our simulations, we de-

rived requirements for a secure implementation of our scheme

and discussed different threat models.
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[9] S. Čapkun and J.-P. Hubaux, “Secure positioning of wireless devices
with application to sensor networks,” in International Conference on
Computer Communications (INFOCOM). IEEE, March 2005.

[10] L. Hu and D. Evans, “Using Directional Antennas to Prevent Wormhole
Attacks ,” in Network and Distributed System Security Symposium
(NDSS), Feb. 2004.

[11] L. Lazos, R. Poovendran, and S. Čapkun, “ROPE: Robust Position
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