
Counterfeit Object-oriented Programming
On the Difficulty of Preventing Code Reuse Attacks in C++ Applications

Felix Schuster∗, Thomas Tendyck∗, Christopher Liebchen†, Lucas Davi†, Ahmad-Reza Sadeghi†, Thorsten Holz∗
∗Horst Görtz Institut (HGI) †CASED

Ruhr-Universität Bochum, Germany Technische Universität Darmstadt, Germany

Abstract—Code reuse attacks such as return-oriented program-
ming (ROP) have become prevalent techniques to exploit memory
corruption vulnerabilities in software programs. A variety of
corresponding defenses has been proposed, of which some have
already been successfully bypassed—and the arms race continues.

In this paper, we perform a systematic assessment of recently
proposed CFI solutions and other defenses against code reuse
attacks in the context of C++. We demonstrate that many of these
defenses that do not consider object-oriented C++ semantics pre-
cisely can be generically bypassed in practice. Our novel attack
technique, denoted as counterfeit object-oriented programming
(COOP), induces malicious program behavior by only invoking
chains of existing C++ virtual functions in a program through
corresponding existing call sites. COOP is Turing complete in
realistic attack scenarios and we show its viability by developing
sophisticated, real-world exploits for Internet Explorer 10 on
Windows and Firefox 36 on Linux. Moreover, we show that
even recently proposed defenses (CPS, T-VIP, vfGuard, and VTint)
that specifically target C++ are vulnerable to COOP. We observe
that constructing defenses resilient to COOP that do not require
access to source code seems to be challenging. We believe that
our investigation and results are helpful contributions to the
design and implementation of future defenses against control-
flow hijacking attacks.

I. INTRODUCTION

For more than two decades, attackers have been exploit-

ing memory-related vulnerabilities such as buffer overflow

errors to hijack the control flow of software applications

developed in unsafe programming languages like C or C++.

In the past, attackers typically immediately redirected the

hijacked control flow to their own injected malicious code.

This changed through the broad deployment of the well-known

data execution prevention (DEP) countermeasure [33] that

renders immediate code injection attacks infeasible. However,

attackers adapted quickly and are typically resorting to code
reuse attacks today.

Code reuse attack techniques, such as return-oriented pro-
gramming (ROP) [46] or return-to-libc [37], avoid injecting

code. Instead, they induce malicious program behavior by

misusing existing code chunks (called gadgets) residing in

the attacked application’s address space. In general, one can

distinguish between two phases of a runtime exploit: (1) the

exploitation of a memory corruption vulnerability initially

allowing the adversary to hijack the control flow of an

application, and (2) the actual adversary-chosen malicious

computations and program actions that follow. A generic

mitigation of code reuse attacks is to prevent the initial

exploitation step. In other words, code reuse attacks cannot

be instantiated, if spatial memory corruptions like buffer

overflows and temporal memory corruptions like use-after-free

conditions are prevented in the first place [51]. Indeed, a large

number of techniques have been proposed that provide means

of spatial memory safety [5], [6], temporal memory safety [4],

or both [13], [31], [36], [45]. On the downside, for precise

guarantees, these techniques typically require access or even

changes to an application’s source code and may incur consid-

erable overhead. This hampers their broader deployment [51].

Orthogonally, several defenses have been proposed that do

not tackle the initial control-flow hijacking, but rather aim

at containing or detecting the subsequent malicious control-

flow transitions of code reuse attacks. A popular line of work

impedes code reuse attacks by hiding [7], shuffling [55], or

rewriting [39] an application’s code or data in memory; often

in a pseudo-random manner. For example, the widely de-

ployed address space layout randomization (ASLR) technique

ensures that the stack, the heap, and executable modules of

a program are mapped at secret, pseudo-randomly chosen

memory locations. This way, among others, the whereabouts of

useful code chunks are concealed from an attacker. Bypassing

these defenses often requires the exploitation of an additional

memory disclosure—or information leak—vulnerability [51].

A complementary line of work concerns a generic security

principle called control-flow integrity (CFI). It enforces the

control flow of the program to adhere to a pre-determined

or at runtime generated control-flow graph (CFG) [3]. Pre-

cise CFI—also known as fine-grained CFI—is conceptually

sound [1]. However, similar to memory safety techniques,

there are practical obstacles like overhead or required access to

source code that hinder its broad deployment. Consequently,

different instantiations of imprecise CFI—or coarse-grained
CFI—and related runtime detection heuristics have been pro-

posed, oftentimes working on binary code only. However,

several researchers have recently shown that many of these

solutions [3], [14], [23], [40], [56], [58], [59] can be bypassed

in realistic adversary settings [11], [16], [25], [26], [43].

Contributions: In this paper, we present counterfeit object-
oriented programming (COOP), a novel code reuse attack

technique against applications developed in C++. With COOP
we demonstrate the limitations of a range of proposed defenses

against code reuse attacks in the context of C++. We show

that it is essential for code reuse defenses to consider C++

semantics like the class hierarchy carefully and precisely.

As recovering these semantics without access to source code

2015 IEEE Symposium on Security and Privacy

© 2015, Felix Schuster. Under license to IEEE.

DOI 10.1109/SP.2015.51

745

can be challenging or sometimes even impossible, our results

demand for a rethinking in the assessment of binary-only

defenses and make a point for the deployment of precise

source code-based defenses where possible.

Our observation is that COOP circumvents virtually all CFI

solutions that are not aware of C++ semantics. Further, we also

find a range of other types of defenses that do not consider

these semantics precisely to be prone to attacks. In fact, we

show that even several recently and concurrently proposed

defenses against control-flow hijacking/code reuse attacks that

specifically target C++ applications (CPS [31], T-VIP [24],

vfGuard [41], and VTint [57]) offer at most partial protection

against COOP, and we can successfully bypass all of them

in realistic attack scenarios. We also discuss how COOP can

reliably be prevented by precise C++-aware CFI, defenses that

provide (spatial and temporal) integrity for C++ objects, or

defenses that prevent certain common memory disclosures.

We demonstrate the viability of our attack approach by

implementing working low-overhead exploits for real-world

vulnerabilities in Microsoft Internet Explorer 10 (32-bit and

64-bit) on Windows and a proof-of-concept vulnerability in

Firefox 36 on Linux x64. To launch our attacks against

modern applications, we inspected and identified easy-to-use

gadgets in a set of well-known Windows system libraries—

among them the standard Microsoft Visual C/C++ runtime

that is dynamically linked to many applications—using basic

symbolic execution techniques. We also show that COOP is

Turing complete under realistic conditions.

Attack Technique Overview: Existing code reuse attacks

typically exhibit unique characteristics in the control flow (and

the data flow) that allow for generic protections regardless of

the language an application was programmed in. For example,

if one can afford to monitor all return instructions in an

application while maintaining a full shadow call stack, even

advanced ROP-based attacks [11], [16], [25], [26], [43] cannot

be mounted [2], [17], [22]. This is different for COOP: it

exploits the fact that each C++ virtual function is address-
taken, which means that a constant pointer exists to it. Ac-

cordingly, C++ applications usually contain a high ratio of

address-taken functions; typically a significantly higher one

compared to C applications. If, for example, an imprecise CFI

solution does not consider C++ semantics, these functions are

all likely valid indirect call targets [3] and can thus be abused.

COOP exclusively relies on C++ virtual functions that are

invoked through corresponding calling sites as gadgets. Hence,

without deeper knowledge of the semantics of an application

developed in C++, COOP’s control flow cannot reasonably be

distinguished from a benign one. Another important difference

to existing code reuse attacks is that in COOP conceptually no

code pointers (e. g., return addresses or function pointers) are

injected or manipulated. As such, COOP is immune against

defenses that protect the integrity and authenticity of code

pointers. Moreover, in COOP, gadgets do not work relative

to the stack pointer. Instead, gadgets are invoked relative to

the this pointer on a set of adversary-defined counterfeit
objects. Note that in C++, the this pointer allows an object

to access its own address. Addressing relative to the this
pointer implies that COOP cannot be mitigated by defenses that

prevent the stack pointer to point to the program’s heap [23],

which is typically the case for ROP-based attacks launched

through a heap-based memory corruption vulnerability.

The counterfeit objects used in a COOP attack typically

overlap such that data can be passed from one gadget to

another. Even in a simple COOP program, positioning coun-

terfeit objects manually can become complicated. Hence, we

implemented a programming framework that leverages the Z3

SMT solver [18] to derive the object layout of a COOP program

automatically.

II. TECHNICAL BACKGROUND

Before presenting the ideas and concepts behind COOP in

detail, we review the background necessary for understanding

our approach and its relation to existing work.

A. Code Reuse Attack Techniques

Return-oriented programming (ROP) [46] is a widely used

code reuse attack technique. The basic idea is to hijack the

control flow of an application and redirect it to existing

short instruction sequences ending in a return instruction

(called gadgets) residing in the executable modules of a

target application. Gadgets are oftentimes not aligned with

the original instruction stream of an executable module. Each

gadget fulfills a specific task such as performing an addition,

or storing a value to memory. In order to execute a malicious

ROP program, the adversary injects a chunk of code pointers

into the address space of an application, where each pointer

references one gadget. Finally, the attacker, abusing a memory

corruption vulnerability, pivots a thread’s stack pointer to that

area. In the following, the injected code pointers on the (fake)

stack are interpreted as return addresses making the control

flow “return” from one attacker-chosen gadget to another.

ROP can be considered a generalization of the older return-to-
libc [37] code reuse attack technique where the attacker makes

the hijacked control flow immediately “return” to the entry of

a sensitive library functions residing for example in libc.

Jump-oriented programming (JOP) is a variant of ROP that

uses indirect jumps and calls rather than return instructions [9],

[12]. In basic JOP, return instructions are emulated by using

a combination of a pop-jmp pair. In addition, JOP attacks

do not necessarily require the stack pointer as base register

to reference code pointers. In particular, an “update-load-

branch” sequence with general purpose registers can be used

instead [12]. The term call-oriented programming (COP) is

also sometimes used to refer to ROP-derived techniques that

employ indirect calls [11], [25].

Although these code reuse attack techniques are very pow-

erful and return-to-libc, ROP, and JOP have even been shown

to enable Turing complete (i. e., arbitrary) malicious computa-

tions [12], [46], [53] in realistic scenarios, they differ in several

subtle aspects from ordinary program execution, which can be

exploited to detect their execution. This is discussed in more

detail in §III-A.

746

B. Control-Flow Integrity

Abadi et al. introduced the principle of Control-Flow In-
tegrity (CFI) [3] as a generic defense technique against code

reuse attacks. Since then, it has been generally used to refer to

the concept of instrumenting indirect branches in native pro-

grams to thwart code reuse attacks. Usually, the enforcement

of CFI is a two-step process:

1) determination of a program’s approximate control-flow

graph (CFG) X ′.
2) instrumentation of (a subset of) the program’s indirect

branches with runtime checks that enforce the control

flow to be compliant with X ′.
The approximate CFG X ′ can be determined statically or

dynamically; on source code or on binary code. X ′ should be

a supergraph of the intrinsic CFG X encoded in the original

source code of a program. If X ′ is equal to X , it is in general

difficult for an attacker to divert control flow in a way that is

not conform to the semantics of a program’s source code. CFI

checks are often implemented by assigning IDs to all possible

indirect branch locations in a program. At runtime, a check

before each indirect branch validates if the target ID is in

compliance with X ′. When the same ID is assigned to most

of a program’s address-taken functions and returns are not

restricted to comply with the call stack at runtime, one often

speaks of coarse-grained CFI. It has recently been shown that

certain coarse-grained CFI solutions for binary code [3], [58],

[59] cannot prevent advanced ROP-based attacks [16], [25].

C. C++ Code on Binary Level

As our attack approach targets C++ applications, we provide

a brief introduction to the basic concepts of C++ and describe

how they are implemented by compilers in the following.

In C++ and other object-oriented programming languages,

programmers define custom types called classes. Abstractly, a

class is composed of a set of member data fields and member

functions [50]. A concrete instantiation of a class at runtime

is called object. Inheritance and polymorphism are integral

concepts of the object-oriented programming paradigm: new

classes can be derived from one or multiple existing ones,

inheriting at least all visible data fields and functions from

their base classes. Hence, in the general case, an object can

be accessed as instance of its actual class or as instance of

any of its (immediate and not immediate) base classes. In

C++, it is possible to define a member function as virtual.
The implementation of an inherited virtual function may be

overridden in a derived class. Invoking a virtual function on

an object always invokes the specific implementation of the

object’s class even if the object was accessed as instance of

one of its base classes. This is referred to as polymorphism.

C++ compilers implement calls to virtual functions (vcalls)

with the help of vtables. A vtable is an array of pointers to

all, possibly inherited, virtual functions of a class; hence, each

virtual function is address-taken in an application. (For brevity,

we do not consider the case of multiple inheritance here.)

Every object of a class with at least one virtual function

contains a pointer to the corresponding vtable at its very

beginning (offset +0). This pointer is called vptr. Typically,

a vcall on Windows x64 is translated by a compiler to an

instruction sequence similar to the following:

mov rdx, qword ptr [rcx]
call qword ptr [rdx+8]

Here, rcx is the object’s this pointer—also referred to as

this-ptr in the following. First, the object’s vptr is temporarily

loaded from offset +0 from the this-ptr to rdx. Next, in the

given example, the second entry in the object’s vtable is called

by dereferencing rdx+8. Compilers generally hardcode the

index into a vtable at a vcall site. Accordingly, this particular

vcall site always invokes the second entry of a given vtable.

III. COUNTERFEIT OBJECT-ORIENTED PROGRAMMING

COOP is a code reuse attack approach targeting applications

developed in C++ or possibly other object-oriented languages.

We note that many of today’s notoriously attacked applications

are written in C++ (or contain major parts written in C++);

examples include, among others, Microsoft Internet Explorer,

Google Chrome, Mozilla Firefox, Adobe Reader, Microsoft

Office, LibreOffice, and OpenJDK.

In the following, we first state our design goals and our

attacker model for COOP before we describe the actual build-

ing blocks of a COOP attack. For brevity reasons, the rest

of this section focuses on Microsoft Windows and the x86-

64 architecture as runtime environment. The COOP concept

is generally applicable to C++ applications running on any

operating system; it also extends to other architectures.

A. Goals

With COOP we aim to demonstrate the feasibility of creating

powerful code reuse attacks that do not exhibit the revealing

characteristics of existing attack approaches. Even advanced

existing variants of return-to-libc, ROP, JOP, or COP [8], [10],

[11], [16], [25], [26], [43], [53] rely on control flow and data-

flow patterns that are rarely or never encountered for regular

code; among these are typically one or more of the following:

C-1 indirect calls/jumps to non address-taken locations

C-2 returns not in compliance with the call stack

C-3 excessive use of indirect branches

C-4 pivoting of the stack pointer (possibly temporarily)

C-5 injection of new code pointers or manipulation of existing

ones

These characteristics still allow for the implementation of

effective, low-level, and programming language-agnostic pro-

tections. For instance, maintaining a full shadow call stack [2],

[17], [22] suffices to fend off virtually all ROP-based attacks.

With COOP we demonstrate that it is not sufficient to

generally rely on the characteristics C-1–C-5 for the design of

code reuse defenses; we define the following goals for COOP
accordingly:

G-1 do not expose the characteristics C-1–C-5.

G-2 exhibit control flow and data flow similar to those of

benign C++ code execution.

G-3 be widely applicable to C++ applications.

G-4 achieve Turing completeness under realistic conditions.

747

B. Adversary Model

In general, code reuse attacks against C++ applications

oftentimes start by hijacking a C++ object and its vptr.

Attackers achieve this by exploiting a spatial or temporal

memory corruption vulnerability such as an overflow in a

buffer adjacent to a C++ object or a use-after-free condition.

When the application subsequently invokes a virtual function

on the hijacked object, the attacker-controlled vptr is deref-

erenced and a vfptr is loaded from a memory location of the

attacker’s choice. At this point, the attacker effectively controls

the program counter (rip in x64) of the corresponding thread

in the target application. Generally for code reuse attacks,

controlling the program counter is one of the two basic

requirements. The other one is gaining (partial) knowledge on

the layout of the target application’s address space. Depending

on the context, there may exist different techniques to achieve

this [8], [28], [44], [48].

For COOP, we assume that the attacker controls a C++

object with a vptr and that she can infer the base address of

this object or another auxiliary buffer of sufficient size under

her control. Further, she needs to be able to infer the base

addresses of a set of C++ modules whose binary layouts are

(partly) known to her. For instance, in practice, knowledge on

the base address of a single publicly available C++ library in

the target address space can be sufficient.

These assumptions conform to the attacker settings of most

defenses against code reuse attacks. In fact, many of these

defenses assume far more powerful adversaries that are, e. g.,

able to read and write large (or all) parts of an application’s

address space with respect to page permissions.

C. Basic Approach

Every COOP attack starts by hijacking one of the target

application’s C++ objects. We call this the initial object. Up

to the point where the attacker controls the program counter,

a COOP attack does not deviate much from other code reuse

attacks: in a conventional ROP attack, the attacker typically

exploits her control over the program counter to first manipu-

late the stack pointer and to subsequently execute a chain of

short, return-terminated gadgets. In contrast, in COOP, virtual

functions existing in an application are repeatedly invoked on

counterfeit C++ objects carefully arranged by the attacker.

1) Counterfeit Objects: Typically, a counterfeit object car-

ries an attacker-chosen vptr and a few attacker-chosen data

fields. Counterfeit objects are not created by the target appli-

cation, but are injected in bulk by the attacker. Whereas the

payload in a ROP-based attack is typically composed of fake

return addresses interleaved with additional data, in a COOP
attack, the payload consists of counterfeit objects and possibly

additional data. Similar to a conventional ROP payload, the

COOP payload containing all counterfeit objects is typically

written as one coherent chunk to a single attacker-controlled

memory location.

2) Vfgadgets: We call the virtual functions used in a COOP
attack vfgadgets. As for other code reuse attacks, the attacker

identifies useful vfgadgets in an application prior to the actual

attack through source code analysis or reverse engineering

of binary code. Even when source code is available, it is

necessary to determine the actual object layout of a vfgadget’s

class on binary level as the compiler may remove or pad cer-

tain fields. Only then the attacker is able to inject compatible

counterfeit objects.

We identified a set of vfgadget types that allows to imple-

ment expressive (and Turing complete) COOP attacks in x86

and x64 environments. These types are listed in Table I. In

the following, we gradually motivate our choice of vfgadget

types based on typical code examples. These examples revolve

around the simple C++ classes Student, Course, and

Exam, which reflect some common code patterns that we

found to induce useful vfgadgets. From §III-C3 to §III-C5,

we first walk through the creation of a COOP attack code

that writes to a dynamically calculated address; along the

way, we introduce COOP’s integral concepts of The Main
Loop, Counterfeit Vptrs, and Overlapping Counterfeit Ob-
jects. After that, from §III-D to §III-F, extended concepts for

Passing Arguments to Vfgadgets, Calling API Functions, and

Implementing Conditional Branches and Loops in COOP are

explained.

The reader might be surprised to find more C++ code

listings than actual assembly code in the following. This is

owed to the fact that most of our vfgadgets types are solely

defined by their high-level C++ semantics rather than by the

side effects of their low level assembly code. These types of

vfgadgets are thus likely to survive compiler changes or even

the transition to a different operating system or architecture. In

the cases where assembly code is given, it is the output of the

Microsoft Visual C++ compiler (MSVC) version 18.00.30501
that is shipped with Microsoft Visual Studio 2013.

3) The Main Loop: To repeatedly invoke virtual functions

without violating goals G-1 and G-2, every COOP program

essentially relies on a special main loop vfgadget (ML-G).

The definition of an ML-G is as follows:

A virtual function that iterates over a container (e. g., a C-
style array or a vector) of pointers to C++ objects and invokes
a virtual function on each of these objects.

Virtual functions that qualify as ML-G are common in

C++ applications. Consider for example the code in Figure 1:

the class Course has a field students that points to

a C-style array of pointers to objects of the abstract base

class Student. When a Course object is destroyed (e. g.,

via delete), the virtual destructor1 Course::˜Course is

executed and each Student object is informed via its virtual

function decCourseCount() that one of the courses it was

subscribed to does not exist anymore.

a) Layout of the Initial Object: The attacker shapes the

initial object to resemble an object of the class of the ML-

G. For our example ML-G Course::˜Course, the initial

object should look as depicted in Figure 2: its vptr is set

to point into an existing vtable that contains a reference to

the ML-G such that the first vcall under attacker control

1It is common practice to declare a virtual destructor when a C++ class
has virtual functions.

748

Vfgadget type Purpose Code example
ML-G The main loop; iterate over container of pointers to counterfeit object and invoke a virtual function

on each such object.
see Figure 1

ARITH-G Perform arithmetic or logical operation. see Figure 4
W-G Write to chosen address. see Figure 4
R-G Read from chosen address. no example given, similar to W-G
INV-G Invoke C-style function pointer. see Figure 8
W-COND-G Conditionally write to chosen address. Used to implement conditional branching. see Figure 6

ML-ARG-G Execute vfgadgets in a loop and pass a field of the initial object to each as argument. see Figure 6
W-SA-G Write to address pointed to by first argument. Used to write to scratch area. see Figure 6
MOVE-SP-G Decrease/increase stack pointer. no example given
LOAD-R64-G Load argument register rdx, r8, or r9 with value (x64 only). see Figure 4

TABLE I: Overview of COOP vfgadget types that operate on object fields or arguments; general purpose types are atop;

auxiliary types are below the double line.

class Student {
public:
 virtual void incCourseCount() = 0;
 virtual void decCourseCount() = 0;
};

class Course {
private:
 Student **students;
 size_t nStudents;
public:
 /* ... */
 virtual ~Course() {
 for (size_t i = 0; i < nStudents; i++)
 students[i]->decCourseCount();
 delete students;
 }
};

ML-G

Fig. 1: Example for ML-G: the virtual destructor of the class

Course invokes a virtual function on each object pointer in

the array students.

leads to the ML-G. In contrast, in a ROP-based attack, this

first vcall under attacker control typically leads to a gadget

moving the stack pointer to attacker controlled memory. The

initial object contains a subset of the fields of the class of

the ML-G; i. e., all data fields required to make the ML-G

work as intended. For our example ML-G, the initial object

contains the fields students and nStudents of the class

Course; the field students is set to point to a C-style

array of pointers to counterfeit objects (object0 and object1
in Figure 2) and nStudents is set to the total number

of counterfeit objects. This makes the Course::˜Course
ML-G invoke a vfgadget of the attacker’s choice for each

counterfeit object. Note how the attacker controls the vptr of

each counterfeit object. Figure 3 schematically depicts the

control-flow transitions in a COOP attack.

4) Counterfeit Vptrs: The control flow and data flow in a

COOP attack should resemble those of a regular C++ program

(G-2). Hence, we avoid introducing fake vtables and reuse

existing ones instead. Ideally, the vptrs of all counterfeit

objects should point to the beginning of existing vtables.

Depending on the target application, it can though be difficult

to find vtables with a useful entry at the offset that is fixed

for a given vcall site. Consider for example our ML-G from

Figure 1: counterfeit objects are treated as instances of the

vptr

Student **students

size_t nStudents

Student *object0

Student *object1

...

object1

object0

vptr

vptr

.rdata

…

attacker controlled memory

Course::vtable

2nd entry

1st entry

2nd entry

1st entry

ClassA::vtable

3rd entry

4th entry

ClassB::vtable

Fig. 2: Basic layout of attacker controlled memory (left) in a

COOP attack using the example ML-G Course::˜Course.

The initial object (dark gray, top left) contains two fields from

the class Course. Arrows indicate a points-to relation.

Main Loop
(ML-G)

initial attacker-
controlled vcall vfgadget 0

vfgadget 1

...

0 3
2, 4,
6, ... 5

Fig. 3: Schematic control flow in a COOP attack; transitions

are labeled according to the order they are executed.

abstract class Student. For each counterfeit object, the

2nd entry—corresponding to decCourseCount()—in the

supplied vtable is invoked. (The 1st entry corresponds to

incCourseCount().) Here, a COOP attack would ideally

only use vfgadgets that are the 2nd entry in an existing vtable.

Naturally, this largely shrinks the set of available vfgadgets.

This constraint can be sidestepped by relaxing goal G-2 and

letting vptrs of counterfeit objects not necessarily point to the

exact beginning of existing vtables but to certain positive or

negative offsets as is shown for object1 in Figure 2. When

such counterfeit vptrs are used, any available virtual function

can be invoked from a given ML-G.

5) Overlapping Counterfeit Objects: So far we have shown

how, given an ML-G, an arbitrary number of virtual functions

749

class Exam {
private:
 size_t scoreA, scoreB, scoreC;
public:
 /* ... */
 char *topic;
 size_t score;
 virtual void updateAbsoluteScore() {
 score = scoreA + scoreB + scoreC;
 }

 virtual float getWeightedScore() {
 return (float)(scoreA*5+scoreB*3+scoreC*2) / 10;
 }
};

struct SimpleString {
 char* buffer;
 size_t len;
 /* ... */
 virtual void set(char* s) {
 strncpy(buffer, s, len);
 }
};

W-G

LOAD-R64-G

ARITH-G

Fig. 4: Examples for ARITH-G, LOAD-R64-G, and W-G; for

simplification, the native integer type size_t is used.

(vfgadgets) can be invoked while control flow and data flow

resemble those of the execution of benign C++ code.

Two exemplary vfgadgets of types ARITH-G (arithmetic)

and W-G (writing to memory) are given in Figure 4: in

Exam::updateAbsoluteScore() the field score is set

to the sum of three other fields; in SimpleString::set()
the field buffer is used as destination pointer in a write

operation. In conjunction, these two vfgadgets can be used to

write attacker-chosen data to a dynamically calculated memory

address. For this, two overlapping counterfeit objects are

needed and their alignment is shown in Figure 5.

The key idea here is that the fields score in object0
and buffer in object1 share the same memory. This way,

the result of the summation of the fields of object0 in

Exam::updateAbsoluteScore() is written to the field

buffer of object1. Note how here, technically, also ob-
ject0.topic and object1.vptr overlap. As the attacker does not

use object0.topic this not a problem and she can simply make

the shared field carry object1.vptr. Of course, in our example,

the attacker would likely not only wish to control the desti-
nation address of the write operation through object1.buffer
but also the source address. For this, she needs to be able to

set the argument for the vfgadget SimpleString::set().

How this can be achieved in COOP is described next.

D. Passing Arguments to Vfgadgets

The overlapping of counterfeit objects is an important

concept in COOP. It allows for data to flow between vfgadgets

through object fields regardless of compiler settings or calling

conventions. Unfortunately, we found that useful vfgadgets

that operate exclusively on object fields are rare in practice.

In fact, most vfgadgets we use in our real world exploits (see

vptr

size_t scoreA

size_t scoreB

size_t len

vptr

size_t score char* buffer

ob
je

ct
1

(S
im
pl

eS
tr
in

g)

size_t scoreC

char *topic

...

ob
je

ct
0

(E
xa
m)

+

da
ta

-fl
ow

: E
xa
m:
:g
et
Ab
so
lu

te
Sc
or
e(
)

Fig. 5: Overlapping counterfeit objects of types Exam and

SimpleString

§V) operate on both fields and arguments as is the case for

SimpleString::set().

Due to divergent default calling conventions, we describe

different techniques for passing arguments to vfgadgets for

x64 and x86 in the following.

1) Approach Windows x64: In the default x64 calling

convention on Windows, the first four (non-floating point)

arguments to a function are passed through the registers rcx,

rdx, r8, and r9 [35]. In case there are more than four

arguments, the additional arguments are passed over the stack.

For C++ code, the this-ptr is passed through rcx as the

first argument. All four argument registers are defined to be

caller-saved; regardless of the actual number of arguments a

callee takes. Accordingly, virtual functions often use rdx, r8,

and r9 as scratch registers and do not restore or clear them

on returning. This circumstance makes passing arguments to

vfgadgets simple on x64: first, a vfgadget is executed that

loads one of the corresponding counterfeit object’s fields into

rdx, r8, or r9. Next, a vfgadget is executed that interprets

the contents of these registers as arguments.

We refer to vfgadgets that can be used to load argument

registers as LOAD-R64-G. For the x64 arguments passing

concept to work, a ML-G is required that itself does not

pass arguments to the invoked virtual functions/vfgadgets. Of

course, the ML-G must also not modify the registers rdx,

r8, and r9 between such invocations. In our example, the

attacker can control the source pointer s of the write operation

(namely strncpy()) by invoking a LOAD-R64-G that loads

rdx before SimpleString::set().

As an example for a LOAD-R64-G, consider

Exam::getWeightedScore() from Figure 4; MSVC

compiles this function to the following assembly code:

mov rax, qword ptr [rcx+10h]
mov r8, qword ptr [rcx+18h]
xorps xmm0, xmm0
lea rdx, [rax+rax*2]
mov rax, qword ptr [rcx+8]
lea rcx, [rax+rax*4]
lea r9, [rdx+r8*2]
add r9, rcx
cvtsi2ss xmm0, r9
addss xmm0, dword ptr [__real0]
divss xmm0, dword ptr [__real1]
ret

750

In condensed from, this LOAD-R64-G provides the following

useful semantics to the attacker:

rdx← 3 · [this + 10h]

r8← [this + 18h]

r9← 3 · [this + 18h] + 2 · [this + 10h]

Thus, by carefully choosing the fields at offsets 10h and

18h from the this-ptr of the corresponding counterfeit object,

the attacker can write arbitrary values to the registers rdx,

r8, and r9.

In summary, to control the source pointer in the writing

operation in SimpleString::set(), the attacker would

first invoke Exam::getWeightedScore() for a counter-

feit object carrying the desired source address divided by 3

at offset 10h. This would load the desired source address to

rdx, which would next be interpreted as the argument s in

the vfgadget SimpleString::set().

a) Other Platforms: In the default x64 C++ calling

convention used by GCC [32], e. g., on Linux, the first six

arguments to a function are passed through registers instead of

only the first four registers. In theory, this should make COOP
attacks simpler to create on Linux x64 than on Windows x64,

as two additional registers can be used to pass data between

vfgadgets. In practice, during the creation of our example

exploits (see §V), we did not experience big differences

between the two platforms.

Although we did not conduct experiments on RISC plat-

forms such as ARM or MIPS, we expect that our x64 approach

directly extends to these because in RISC calling conventions

arguments are also primarily passed through registers.

2) Approach Windows x86: The standard x86 C++ calling

convention on Windows is thiscall [35]: all regular arguments

are passed over the stack whereas the this-ptr is passed in the

register ecx; the callee is responsible for removing arguments

from the stack. Thus, the described approach for x64 does not

work for x86.

In our approach for Windows x86, contrary to x64, we rely

on a main loop (ML-G) that passes arguments to vfgadgets.

More precisely, a 32-bit ML-G should pass one field of the

initial object as argument to each vfgadget. In practice, any

number of arguments may work; for brevity we only discuss

the simplest case of one argument here. We call this field the

argument field and refer to this variant of ML-G as ML-ARG-

G. For an example of an ML-ARG-G, consider the virtual

destructor of the class Course2 in Figure 6: the field id is

passed as argument to each invoked virtual function. Given

such an ML-ARG-G, the attacker can employ one of the two

following approaches to pass chosen arguments to vfgadgets:

A-1 fix the argument field to point to a writable scratch area.

A-2 dynamically rewrite the argument field.

In approach A-1, the attacker relies on vfgadgets that

interpret their first argument not as an immediate value

but as a pointer to data. Consider for example the virtual

function Student2::getLatestExam() from Figure 6

that copies an Exam object; MSVC produces the optimized

W-SA-G

W-COND-G

class Student2 {
private:
 std::list<Exam> exams;
public:
 /* ... */
 virtual void subscribeCourse(int id) { /* ... */ }
 virtual void unsubscribeCourse(int id) { /* ... */ }

 virtual bool getLatestExam(Exam &e) {
 if (exams.empty()) return false;
 e = exams.back();
 return true;
 }
};

class Course2 {
private:
 Student2 **students;
 size_t nStudents;
 int id;
public:
 /* ... */
 virtual ~Course2() {
 for (size_t i = 0; i < nStudents; i++)
 students[i]->unsubscribeCourse(id);
 delete students;
 }
};

ML-ARG-G

Fig. 6: Examples for W-SA-G, W-COND-G, ML-ARG-G

push ebp
mov ebp, esp
cmp dword ptr [ecx+8], 0
jne copyExam

5 xor al, al
pop ebp
ret 4
copyExam:
mov eax, dword ptr [ecx+4]

10 mov ecx, dword ptr [ebp+8]
mov edx, dword ptr [eax+4]
mov eax, dword ptr [edx+0Ch]
mov dword ptr [ecx+4], eax
mov eax, dword ptr [edx+10h]

15 mov dword ptr [ecx+8], eax
mov eax, dword ptr [edx+14h]
mov dword ptr [ecx+0Ch], eax
mov eax, dword ptr [edx+18h]
mov dword ptr [ecx+10h], eax

20 mov al, 1
pop ebp
ret 4

Listing 1: Optimized x86 assembly code produced by

MSVC for Student2::getLatestExam().

x86 assembly code shown in Listing 1 for the function. In

condensed form, lines 9–22 of the assembly code provide the

following semantics:

[arg0 + 4]← [[[this + 4] + 4] + Ch]

[arg0 + 8]← [[[this + 4] + 4] + 10h]

[arg0 + Ch]← [[[this + 4] + 4] + 14h]

[arg0 + 10h]← [[[this + 4] + 4] + 18h]

751

Note that for approach A-1, arg0 always points to the scratch
area. Accordingly, this vfgadget allows the attacker to copy

16 bytes (corresponding to the four 32-bit fields of Exam)

from the attacker-chosen address [[this + 4] + 4+] + Ch to

the scratch area. We refer to this type of vfgadget that writes

attacker-controlled fields to the scratch area as W-SA-G.

Using Student2::getLatestExam() as W-SA-G in

conjunction with a ML-ARG-G allows the attacker, for exam-

ple, to pass a string of up to 16 characters as first argument

to the vfgadget SimpleString::set().

In approach A-2, the argument field of the initial object

is not fixed as in approach A-1. Instead, it is dynamically

rewritten during the execution of a COOP attack. This allows

the attacker to pass arbitrary arguments to vfgadgets; as

opposed to a pointer to arbitrary data for approach A-1.

For this approach, naturally, a usable W-G is required. As

stated above, we found vfgadgets working solely with fields

to be rare. Hence, the attacker would typically initially follow

approach A-1 and implement A-2-style argument writing on

top of that when required.

a) Passing Multiple Arguments and Balancing the Stack:
So far, we have described how a single argument can be passed

to each vfgadget using a ML-ARG-G main loop gadget on

Windows x86. Naturally, it can be desirable or necessary to

pass more than one argument to a vfgadget. Doing so is simple:

the ML-ARG-G pushes one argument to each vfgadget. In

case a vfgadget does not expect any arguments, the pushed

argument remains on the top of the stack even after the

vfgadget returned. This effectively moves the stack pointer

permanently one slot up as depicted in Figure 7 3©. This

technique allows the attacker to gradually “pile up” arguments

on the stack as shown in Figure 7 4© before invoking a

vfgadget that expects multiple arguments. This technique only

works for ML-ARG-Gs that use ebp and not esp to access

local variables on the stack (i.e., no frame-pointer omission)

as otherwise the stack frame of the ML-ARG-G is destroyed.

Analogously to how vfgadgets without arguments can be

used to move the stack pointer up under an ML-ARG-G,

vfgadgets with more than one argument can be used to move

the stack pointer down as shown in Figure 7 2©. This may

be used to compensate for vfgadgets without arguments or

to manipulate the stack. We refer to vfgadgets with little or

no functionality that expect less or more than one argument

as MOVE-SP-Gs. Ideally, a MOVE-SP-G is an empty virtual

function that just adjusts the stack pointer.

The described technique for passing multiple arguments to

vfgadgets in 32-bit environments can also be used to pass more

than three arguments to vfgadgets in 64-bit environments.

b) Other Platforms: The default x86 C++ calling con-

vention used by GCC, e. g., on Linux, is not thiscall but

cdecl [35]: all arguments including the this-ptr are passed over

the stack; instead of the callee, the caller is responsible for

cleaning the stack. The technique of “piling up” arguments

described in §III-D2a does thus not apply to GCC-compiled

(and compatible) C++ applications on Linux x86 and other

POSIX x86 platforms. Instead, for these platforms, we propose

using ML-ARG-Gs that do not pass one but many control-

lable arguments to vfgadgets. Conceptually, passing too many

arguments to a function does not corrupt the stack in the

cdecl calling convention. Alternatively, ML-ARG-Gs could be

switched during an attack depending on which arguments to

a vfgadget need to be controlled.

E. Calling API Functions

The ultimate goal of code reuse attacks is typically to

pass attacker-chosen arguments to critical API functions or

system calls, e. g., Windows API (WinAPI) functions such

as WinExec() or VirtualProtect(). We identified the

following ways to call a WinAPI function in a COOP attack:

W-1 use a vfgadget that legitimately calls the WinAPI function

of interest.

W-2 invoke the WinAPI function like a virtual function from

the COOP main loop.

W-3 use a vfgadget that calls a C-style function pointer.

While approach W-1 may be practical in certain scenarios

and for certain WinAPI functions, it is unlikely to be feasible

in the majority of cases. For example, virtual functions that

call WinExec() should be close to non-existent.

Approach W-2 is simple to implement: a counterfeit object

can be crafted whose vptr does not point to an actual vtable

but to the import table (IAT) or the export table (EAT) [42]

of a loaded module such that the ML-G invokes the WinAPI

function as a virtual function. Note that IATs, EATs, and

vtables are all arrays of function pointers typically lying

in read-only memory; they are thus in principle compatible

data structures. As simple as it is, the approach has two

important drawbacks: (i) it goes counter to our goal G-2 as

a C function is called at a vcall site without a legitimate

vtable being referenced; and (ii) for x64, the this-ptr of the

corresponding counterfeit object is always passed as the first

argument to the WinAPI function due to the given C++ calling

convention. This circumstance for example effectively prevents

the passing of a useful command line to WinExec(). This

can be different for other WinAPI functions, though. For

example, calling VirtualProtect() with a this-ptr as

first argument still allows the attacker to mark the memory

of the corresponding counterfeit object as executable. Note

that VirtualProtect() changes the memory access rights

for a memory region pointed to by the first argument. Other

arguments than the first one can be passed as described in

§III-D1 for x64. For x86, all arguments can be passed using

the technique from §III-D2.

For approach W-3 a special type of vfgadget is re-

quired: a virtual function that calls a C-style function

pointer with non-constant arguments. We refer to this type

of vfgagdet as INV-G, an example is given in Figure 8:

the virtual function GuiButton::clicked() invokes the

field GuiButton::callbackClick as C-style function

pointer. This particular vfgadget allows for the invocation of

arbitrary WinAPI functions with at least three attacker-chosen

arguments. Note that, depending on the actual assembly code

of the INV-G, a fourth argument could possibly be passed

752

ML-ARG-G
stack frame

arg.
esp

before
esp
after

vfgadget(x)

ML-ARG-G
stack frame

arg.
esp

before esp
after

vfgadget(x, x)

ML-ARG-G
stack frame

arg.
esp

before

esp
after

vfgadget()

ML-ARG-G
stack frame

arg.
esp

before

esp
after

vfgadget()

arg.

vfgadget()
1 2 3 4

Fig. 7: Examples for stack layouts before and after invoking vfgadgets under an ML-ARG-G (thiscall calling convention). The

stack grows upwards. 1© vfgadget with one argument: the stack is balanced. 2© vfgadget with two arguments: esp is moved

down. 3© vfgadget without arguments: esp is moved up. 4© two vfgadgets without arguments: two arguments are piled up.

class GuiButton {
private:
 int id;
 void(*callbackClick)(int, int, int);
public:
 void registerCbClick(void(*cb)(int, int, int)) {

callbackClick = cb;
 }

 virtual void clicked(int posX, int posY) {
 callbackClick(id, posX, posY);
 }
};

INV-G

Fig. 8: Example for INV-G: clicked invokes a field of

GuiButton as C-style function pointer.

through r9 for x64. Additional stack-bound arguments for

x86 and x64 may also be controllable depending on the actual

layout of the stack. Calling WinAPI functions through INV-

Gs should generally be the technique of choice as this is more

flexible than approach W-1 and stealthier than W-2. An INV-

G also enables seemingly legit transfers from C++ to C code

(e. g., to libc) in general. On the downside, we found INV-

Gs to be relatively rare overall. For our real-world example

exploits discussed in §V, we could though always select from

multiple suitable ones.

F. Implementing Conditional Branches and Loops

Up to this point, we have described all building blocks

required to practically mount COOP code reuse attacks. As

we do not only aim for COOP to be stealthy, but also to be

Turing complete under realistic conditions (goal G-4), we now

describe the implementation of conditional branches and loops
in COOP.

In COOP, the program counter is the index into the con-

tainer of counterfeit object pointers. The program counter is

incremented for each iteration in the ML-G’s main loop. The

program counter may be a plain integer index as in our exem-

plary ML-G Course::˜Course or may be a more complex

data structure such as an iterator object for a C++ linked list.

Implementing a conditional branch in COOP is generally possi-

ble in two ways: through (i) a conditional increment/decrement

of the program counter or (ii) a conditional manipulation of the

next-in-line counterfeit object pointers in the container. Both

can be implemented given a conditional write vfgadget, which

we refer to as W-COND-G. An example for this vfgadget type

is again Student2::getLatestExam() from Figure 6.

As can be seen in lines 3–7 of the function’s assembly code

in Listing 1, the controllable write operation is only executed

in case [this-ptr + 8] �= 0. With this semantics, the attacker

can rewrite the COOP program counter or upcoming pointers

to counterfeit objects under the condition that a certain value

is not null. In case the program counter is stored on the stack

(e. g., in the stack frame of the ML-G) and the address of the

stack is unknown, the technique for moving the stack pointer

described in §III-D2a can be used to rewrite it.

Given the ability to conditionally rewrite the program

counter, implementing loops with an exit condition also be-

comes possible.

IV. A FRAMEWORK FOR COUNTERFEIT

OBJECT-ORIENTED PROGRAMMING

Implementing a COOP attack against a given application

is a three step process: (i) identification of vfgadgets, (ii)
implementation of attack semantics using the identified vfgad-

gets, and (iii) arrangement of possibly overlapping counterfeit

objects in a buffer. Since the individual steps are cumbersome

and hard to perform by hand, we created a framework in the

Python scripting language that automates steps (i) and (iii).
This framework greatly facilitated the development of our

example exploits for Internet Explorer and Firefox (see §V). In

the following, we provide an overview of our implementation.

A. Finding Vfgadgets Using Basic Symbolic Execution

For the identification of useful vfgadgets in an application,

our vfgadget searcher relies on binary code only and optionally

debug symbols. Binary x86-64 C++ modules are disassembled

using the popular Interactive Disassembler (IDA) version

6.5. Each virtual function in a C++ module is considered a

potential vfgadget. The searcher statically identifies all vtables

in a C++ module using debug symbols or, if these are not

available, a set of simple but effective heuristics. Akin to other

work [41], [57], our heuristics consider each address-taken

array of function pointers a potential vtable. The searcher

examines all identified virtual functions whose number of

basic blocks does not exceed a certain limit. In practice, we

found it sufficient and convenient to generally only consider

753

virtual functions with one or three basic blocks as potential

vfgadgets; the only exception being ML-Gs and ML-ARG-

Gs that due to the required loop often consist of more basic

blocks. Using short vfgadgets is favorable as their semantics

are easier to evaluate automatically and they typically exhibit

fewer unwanted side effects. Including long vfgadgtes can,

however, be necessary to fool heuristics-based code reuse

attack detection approaches (see §VI).
The searcher summarizes the semantics of each basic block

in a vfgadget in single static assignment (SSA) form. These

summaries reflect the I/O behavior of a basic block in a com-

pact and easy to analyze form. The searcher relies for this on

the backtracking feature of the METASM binary code analysis

toolkit [27], which performs symbolic execution on the basic

block level. An example of a basic block summary as used by

our searcher was already provided in the listed semantics for

the second basic block of Exam::getWeightedScore()
in §III-D1. To identify useful vfgadgets, the searcher applies

filters on the SSA representation of the potential vfgadgets’

basic blocks. For example, the filter: “left side of assignment
must dereference any argument register; right side must deref-
erence the this-ptr” is useful for identifying 64-bit W-Gs; the

filter: “indirect call independent of [this]” is useful for finding

INV-Gs; and the filter: “looped basic block with an indirect
call dependent on [this] and a non-constant write to [esp-4]”

can in turn be used to find 32-bit ML-ARG-Gs.

B. Aligning Overlapping Objects Using an SMT Solver
Each COOP “program” is defined by the order and posi-

tioning of its counterfeit objects of which each corresponds

to a certain vfgadget. As described in §III-C5, the overlap-

ping of counterfeit objects is an integral concept of COOP;

it enables immediate data flows between vfgadgets through

fields of counterfeit objects. Manually obtaining the align-

ment of overlapping counterfeit objects right on the binary

level is a time-consuming and error-prone task. Hence, we

created a COOP programming environment that automatically,

if possible, correctly aligns all given counterfeit objects in

a fixed-size buffer. In our programming environment, the

“programmer” defines counterfeit objects and labels. A label

may be assigned to any byte within a counterfeit object. When

bytes within different objects are assigned the same label,

the programming environment takes care that these bytes are

mapped to the same location in the final buffer, while assuring

that bytes with different labels are mapped to distinct locations.

Fields without labels are in turn guaranteed to never overlap.

These constraints are often satisfiable, as actual data within

counterfeit objects is typically sparse.
For example, the counterfeit object A may only contain its

vptr (at relative offset +0), an integer at the relative offset

+16 and have the label X for its relative offset +136; the

counterfeit object B may only contain its vptr and have the

same label X for its relative offset +8. Here, the object B fits

comfortably and without conflicts inside A such that B +8
maps to the same byte as A +136.

Our programming environment relies on the Z3 SMT

solver [18] to determine the alignment of all counterfeit objects

within the fixed-size buffer such that, if possible, all label-

related constraints are satisfied. At the baseline, we model

the fixed-size buffer as an array mapping integers indexes to

integers in Z3. To prevent unwanted overlaps, for each byte in

each field, we add a select constraint [19] in Z3 of the form

select(offset-obj + reloffset-byte) = id-field

where offset-obj is an integer variable to be determined by

Z3 and reloffset-byte and id-field are constant integers that

together uniquely identify each byte. For each desired overlap

(e. g., between objects A and B using label X), we add a

constraint of the form

offset-objA + reloffset(A,X) = offset-objB + reloffset(B,X)

where offset-objA and offset-objB are integer variables to

be determined by Z3 and reloffset(A,X) = 136 and

reloffset(B,X) = 8 are constants.

In the programming environment, for convenience, symbolic

pointers to labels can be added to counterfeit objects. Symbolic

pointers are automatically replaced with concrete values once

the offsets of all labels are determined by Z3. This way, mul-

tiple levels of indirection can be implemented conveniently.

V. PROOF OF CONCEPT EXPLOITS

To demonstrate the practical viability of our approach, we

implemented exemplary COOP attacks for Microsoft Internet

Explorer 10 (32-bit and 64-bit) and Mozilla Firefox 36 for

Linux x64. In the following, we discuss different aspects of our

attack codes that we find interesting. We used our framework

described in §IV for the development of all three attack codes.

Each of them fits into 1024 bytes or less. All employed

vfgadgets and their semantics are listed in Tables A.I–A.IV

in the Appendix.

For our Internet Explorer 10 examples, we used a publicly

documented vulnerability related to an integer signedness error

in Internet Explorer 10 [30] as foundation. The vulnerability

allows a malicious website to perform arbitrary reads at any

address and arbitrary writes within a range of approximately

64 pages on the respective heap using JavaScript code. This

gives the attacker many options for hijacking C++ objects

residing on the heap and injecting her own buffer of counterfeit

objects; it also enables the attacker to gain extensive knowl-

edge on the respective address space layout. We successfully

tested our COOP-based exploits for Internet Explorer 10 32-bit

and 64-bit on Windows 7. Note that our choice of Windows 7

as target platform is only for practical reasons; the described

techniques also apply to Windows 8. To demonstrate the

flexibility of COOP, we implemented different attack codes

for 32-bit and 64-bit. Both attack codes could be ported to the

respective other environment without restrictions.

A. Internet Explorer 10 64-bit

Our COOP attack code for 64-bit only relies on vfgadgets

contained in mshtml.dll that can be found in every Internet

Explorer process; it implements the following functionality:

(1) read pointer to kernel32.dll from IAT; (2) calculate pointer

754

to WinExec() in kernel32.dll; (3) read the current tick count

from the KUSER_SHARED_DATA data structure; (4) if tick

count is odd, launch calc.exe using WinExec() else, execute

alternate execution path and launch mspaint.exe.
The attack code consists of 17 counterfeit objects with

counterfeit vptrs and four counterfeit objects that are pure

data containers. Overall eight different vfgadgets are used;

including one LOAD-R64-G for loading rdx through the

dereferencing of a field that is used five times. The attack

code is based on a ML-G similar to our exemplary one given

in Figure 1 that iterates over a plain array of object pointers.

With four basic blocks, the ML-G is the largest of the eight

vfgadgets. The conditional branch depending on the current

tick count is implemented by overwriting the next-in-line

object pointer such that the ML-G is recursively invoked for

an alternate array of counterfeit object pointers. In summary,

the attack code contains eight overlapping counterfeit objects

and we used 15 different labels to create it in our programming

environment.
1) Attack Variant Using only Vptrs Pointing to the Begin-

ning of Vtables: The described 64-bit attack code relies on

counterfeit vptrs (see §III-C4) that do not necessarily point to

the beginning of existing vtables but to positive or negative

offset from them. As a proof of concept, we developed a

stealthier variant of the attack code above that only uses vptrs

that point to the beginning of existing vtables. Accordingly,

at each vcall site, we were restricted to the set of virtual

functions compatible with the respective fixed vtable index.

Under this constraint, our exploit for the given vulnerability

is still able to launch calc.exe through an invocation of

WinExec(). The attack code consists of only five counterfeit

objects, corresponding to four different vfgadgets (including

the main ML-G) from mshtml.dll. Corresponding to the given

vulnerability, the used main ML-G can be found as fourth

entry in an existing vtable whereas, corresponding to the vcall

site of the ML-G, the other three vfgadgets can be found as

third entries in existing vtables. The task of calculating the

address of WinExec is done in JavaScript code beforehand.

B. Internet Explorer 10 32-bit
Our 32-bit attack code implements the following function-

ality: (1) read pointer to kernel32.dll from IAT; (2) calculate

pointer to WinExec() in kernel32.dll; (3) enter loop that

launches calc.exe using WinExec() n times; (4) finally, enter

an infinite waiting loop such that the browser does not crash.
The attack code does not rely on an array-based ML-

ARG-G (recall that in 32-bit ML-ARG-Gs are used instead

of ML-Gs); instead, it uses a more complex ML-ARG-G

that traverses a linked list of object pointers using a C++

iterator. We discovered this ML-ARG-G in jscript9.dll that is

available in every Internet Explorer process. The ML-ARG-

G consists of four basic blocks and invokes the function

SListBase::Iterator::Next() to get the next object

pointer from a linked list in a loop. The assembly code of the

ML-ARG-G is given in Listing A.1 in the Appendix.
Figure 9 depicts the layout of the linked list: each item in

the linked list consists of one pointer to the next item and

*next
*obj

*next
*obj

*next
*obj

obj0 obj1 obj2

...

...

loop

Fig. 9: Schematic layout of the linked list of object pointers

the ML-ARG-G traverses in the Internet Explorer 10 32-

bit exploit; dashed arrows are examples for dynamic pointer

rewrites for the implementation of conditional branches.

another pointer to the actual object. This layout allows for

the low-overhead implementation of conditional branches and

loops. For example, to implement the loop in our attack code,

we simply made parts of the linked list circular as shown in

Figure 9. Inside the loop in our attack code, a counter within

a counterfeit object is incremented for each iteration. Once

the counter overflows, a W-COND-G rewrites the backward
pointer such that the loop is left and execution proceeds along

another linked list. Our attack code consists of 11 counterfeit

objects, and 11 linked list items of which two point to the same

counterfeit object. Four counterfeit objects overlap and one

counterfeit object overlaps with a linked list item to implement

the conditional rewriting of a next pointer.

This example highlights how powerful linked list-based ML-

Gs/ML-ARG-Gs are in general.

C. Firefox 36.0a1 for Linux x64

To demonstrate the wide applicability of COOP, we also

created an attack code for the GCC-compiled Firefox 36.0a1

for Linux x64. For this proof of concept, we created an

artificial vulnerable application and loaded Firefox’s main

library libxul.so into the address space. Our COOP attack code

here invokes system("/bin/sh"). It is comprised of nine

counterfeit objects (of which two overlap) corresponding to

five different vfgadgets. The attack code reads a pointer to

libc.so from the global offset table (GOT) and calculates the

address of system() from that.

VI. DISCUSSION

We now analyze the properties of COOP, discuss different

defense concepts against it, and review our design goals G-1–

G-4 from §III-A. The effectiveness against COOP of several

existing defenses is discussed afterwards in §VII.

A. Preventing COOP

We observe that the characteristics C-1–C-5 of existing

code reuse attack approaches cannot be relied on to defend

against COOP (goal G-1): in COOP, control flow is only

dispatched to existing and address-taken functions within an

application through existing indirect calls. In addition, COOP
does neither inject new nor alter existing return addresses as

well as other code pointers directly. Instead, only existing vptrs

(i. e., pointers to code pointers) are manipulated or injected.

Technically, depending on the choice of vfgadgets, a COOP

755

attack may however execute a high ratio of indirect branches

and thus exhibit characteristic C-3. But we note that ML-Gs

(which are used in each COOP attack as central dispatchers)

are legitimate C++ virtual functions whose original purpose

is to invoke many (different) virtual functions in a loop. Any

heuristics attempting to detect COOP based on the frequency

of indirect calls will thus inevitably face the problem of high

numbers of false positive detections. Furthermore, similar to

existing attacks against behavioral-based heuristics [16], [26],

it is straightforward to mix-in long “dummy” vfgadget to

decrease the ratio of indirect branches.

As a result, COOP cannot be effectively prevented by (i) CFI

that does not consider C++ semantics or (ii) detection heuris-

tics relying on the frequency of executed indirect branches and

is unaffected by (iii) shadow call stacks that prevent rogue

returns and (iv) the plain protection of code pointers.

On the other hand, a COOP attack can only be mounted

under the preconditions given in §III-B. Accordingly, COOP
is conceptually thwarted by defense techniques that prevent

the hijacking or injection of C++ objects or conceal necessary

information from the attacker, e. g., by applying ASLR and

preventing information leaks.

1) Generic Defense Techniques: We now discuss the ef-

fectiveness of several other possible defensive approaches

against COOP that do not require knowledge of precise C++

semantics and can thus likely be deployed without analyzing

an application’s source code or recompiling it.

a) Restricting the Set of Legitimate API Invocation Sites:
A straightforward approach to tame COOP attacks is to restrict

the set of code locations that may invoke certain sensitive

library functions. For example, by means of binary rewriting

it is possible to ensure that certain WinAPI functions may only

be invoked through constant indirect branches that read from a

module’s IAT (see CCFIR [58]). In the best case, this approach

could effectively prevent the API calling techniques W-2 and

W-3 described in §III-E. However, it is also common for

benign code to invoke repeatedly used or dynamically resolved

WinAPI functions through non-constant indirect branches like

call rsi. Accordingly, in practice, it can be difficult to

precisely identify the set of a module’s legitimate invocation

sites for a given WinAPI function. We also remark that even

without immediate access to WinAPI functions or systems

calls COOP is still potentially dangerous, because, for example,

it could be used to manipulate or leak critical data.

b) Monitoring of the Stack Pointer: In 64-bit COOP,

the stack pointer is virtually never moved in an irregular

or unusual manner. For the 32-bit thiscall calling convention

though, this can be hard to avoid as long as not only vfgadgets

with the same fixed number of arguments are invoked. This

is a potential weakness that can reveal a COOP attack on

Windows x86 to a C++-unaware defender that closely observes

the stack pointer. However, we note that it may be difficult to

always distinguish this behavior from the benign invocation of

functions in the cdecl calling convention.

c) Fine-grained Code Randomization: COOP is con-

ceptually resilient against the fine-grained randomization of

locations of binary code, e. g., on function, basic block, or

instruction level. This is because in a COOP attack, other than

for example in a ROP attack, knowing the exact locations

of certain instruction sequences is not necessary but rather

only the locations of certain vtables. Moreover, in COOP, the

attacker mostly misuses the actual high-level semantics of ex-

isting code. Most vfgadget types, other than ROP gadgets, are

thus likely to be unaffected by semantics-preserving rewriting

of binary code. Only LOAD-R64-Gs that are used to load x64

argument registers could be broken by such means. However,

the attacker could probably oftentimes fall back to x86-style

ML-ARG-G-based COOP in such a case.

2) C++ Semantics-aware Defense Techniques: We observe

that the control flow and data flow in a COOP attack are

similar to those of benign C++ code (goal G-2). However,

there are certain deviations that can be observed by C++-aware

defenders. We now discuss several corresponding defenses.

a) Verification of Vptrs: In basic COOP, vptrs of coun-

terfeit objects point to existing vtables but not necessarily to

their beginning. This allows for the implementation of viable

defenses against COOP when all legitimate vcall sites and

vtables in an application are known and accordingly each

vptr access can be augmented with sanity checks. Such a

defense can be implemented without access to source code by

means of static binary code rewriting as concurrently shown

by Prakash et al. [41]. While such a defense significantly

shrinks the available vfgadget space, our exploit code from

§V-A1 demonstrates that COOP-based attacks are still possible,

at least for large C++ target applications.

Ultimately, a defender needs to know the set of allowed

vtables for each vcall site in an application to reliably prevent

malicious COOP control flow (or at least needs to arrive at

an approximation that sufficiently shrinks the vfgadget space).

For this, the defender needs (i) to infer the global hierarchy

of C++ classes with virtual functions and (ii) to determine

the C++ class (within that hierarchy) that corresponds to each

vcall site. Both can easily be achieved when source code is

available. Without source code, given only binary code and

possibly debug symbols or RTTI metadata2, the former can

be achieved with reasonable precision while, to the best of

our knowledge, the latter is generally considered to be hard

for larger applications by means of static analysis [20], [21],

[24], [41].

b) Monitoring of Data Flow: COOP also exhibits a

range of data-flow patterns that can be revealing when C++

semantics are considered. Probably foremost, in basic COOP,

vfgadgtes with varying number of arguments are invoked

from the same vcall site. This can be detected when the

number of arguments expected by each virtual function in an

application is known. While trivial with source code, deriving

this information from binary code can be challenging [41].

An even stronger (but also likely costlier) protection could be

created by considering the actual types of arguments.

2Runtime Type Information (RTTI) metadata is often linked into C++
applications for various purposes. RTTI includes the literal names of classes
and the precise class hierarchy.

756

In a COOP attack, counterfeit objects are not created and

initialized by legitimate C++ constructors, but are injected by

the attacker. Further, the concept of overlapping objects creates

unusual data flows. To detect this, the defender needs to be

aware of the life-cycle of C++ objects in an application. This

requires knowledge of the whereabouts of (possibly inlined)

constructors and destructors of classes with virtual functions.

c) Fine-grained Randomization of C++ Data Structures:
In COOP, the layout of each counterfeit object needs to be

byte-compatible with the semantics of its vfgadget. Accord-

ingly, randomizing C++ object layouts on application start-

up, e. g., by inserting randomly sized paddings between the

fields of C++ objects, can hamper COOP. Also, the fine-grained

randomization of the positions or structures of vtables could

be a viable defense against COOP.

We conclude that COOP can be mitigated by a range of

means that do not require knowledge of C++ semantics. But

we regard it as vital to consider and to enforce C++ semantics

to reliably prevent COOP. Doing so by means of static binary

analysis and rewriting only is challenging as the compilation

of C++ code is in most cases a lossy process. For example, in

binary code, distinguishing the invocation of a virtual function

from the invocation of a C-style function pointer that happens

to be stored in a read-only table can be difficult. Hence,

unambiguously recovering essential high-level C++ semantics

afterwards can be hard or even impossible. In fact, as we

discuss in more detail in §VII, we know of no binary-only

CFI solution that considers C++ semantics precisely enough

to fully protect against COOP.

B. Applicability and Turing Completeness

We have shown that COOP is applicable to popular C++

applications on different operating systems and hardware

architectures (goal G-3). Naturally, a COOP attack can only

be mounted in case at least a minimum set of vfgadgets is

available. We did not conduct a quantitative analysis on the

general frequency of usable vfgadgets in C++ applications: de-

termining the actual usefulness of potential vfgadgets in an au-

tomated way is challenging and we leave this for future work.

In general, we could choose from many useful vfgadgets in the

libraries mshtml.dll (around 20 MB) and libxul.so (around 60

MB) and found the basic vfgadget types ARITH-G, W-G, R-

G, LOAD-R64-G, and W-SA-G to be common even in smaller

binaries. The availability of ML-Gs/ML-ARG-Gs is vital to ev-

ery COOP attack. While sparser than the more basic types, we

found well-usable representatives, e. g., in Microsoft’s standard

C/C++ runtime libraries msvcr120.dll and msvcp120.dll (both

smaller than 1 MB; dynamically linked to many C and C++

applications on Windows): the virtual function Scheduler-
Base::CancelAllContexts() with five basic blocks in

msvcr120.dll is a linked list-based ML-G and the virtual func-

tion propagator_block::unlink_sources() with

eight basic blocks in msvcp120.dll is an array-based ML-

ARG-G. Interestingly, this particular ML-ARG-G is also de-

fined in Visual Studio’s standard header file agents.h. In

msvcr120.dll, we also found the INV-G Cancellation-

TokenRegistration_TaskProc::_Exec() that con-

sists of one basic block and is suitable for x86 and x64 COOP.

Given the vfgadget types defined in Table I, COOP has the

same expressiveness as unrestricted ROP [46]. Hence, it allows

for the implementation of a Turing machine (goal G-4) based

on memory load/store, arithmetic, and branches. In particular,

the COOP examples in §V show that complex semantics like

loops can be implemented under realistic conditions.

VII. COOP AND EXISTING DEFENSES

Based on the discussions in §VI, we now assess a selection

of contemporary defenses against code reuse attacks and

discuss whether they are vulnerable to COOP in our adversary

model. A summary of our assessment is given in Table II.

A. Generic CFI

We first discuss CFI approaches that do not consider C++

semantics for the derivation of the CFG that should be

enforced. We observe that all of them are vulnerable to COOP.

The basic implementation of the original CFI work by

Abadi et al. [3] instruments binary code such that indirect

calls may only go to address-taken functions (coarse-grained

CFI). This scheme and a closely related one [59] have re-

cently been shown to be vulnerable to advanced ROP-based

attacks [16], [25]. Abadi et al. also proposed to combine their

basic implementation with a shadow call stack that prevents

call/return mismatches. This extension effectively mitigates

these advanced ROP-based attacks while, as discussed in §VI,

it does not prohibit COOP.

Davi et al. described a hardware-assisted CFI solution for

embedded systems that incorporates a shadow call stack and

a certain set of runtime heuristics [15]. However, the indirect

call policy only validates whether an indirect call targets a

valid function start. As COOP only invokes entire functions, it

can bypass this hardware-based CFI mechanism.

CCFIR [58], a CFI approach for Windows x86 binaries,

uses a randomly arranged “springboard” to dispatch all indirect

branches within a code module. On the baseline, CCFIR

allows indirect calls and jumps to target all address-taken

locations in a binary and restricts returns to certain call-

preceded locations. One of CCFIR’s core assumptions is that

the attacker is unable to “[...] selectively reveal [s]pringboard

stub addresses of their choice” [58]. Göktaş et al. recently

showed that ROP-based bypasses for CCFIR are possible given

an up-front information leak from the springboard [25]. In con-

trast, COOP breaks CCFIR without violating its assumptions:

the springboard technique is ineffective against COOP as we

do not inject code pointers but only vptrs (pointers to code

pointers). CCFIR though also ensures that sensitive WinAPI

functions (e. g., CreateFile() or WinExec()) can only

be invoked through constant indirect branches. However, as

examined in §VI-A1a, this measure does not prevent dangerous

attacks and can probably also be sidestepped in practice. In

any case, COOP can be used in the first stage of an attack to

selectively readout the springboard.

Many system modules in the Microsoft Windows 10 Tech-

nical Preview are compiled with Control Flow Guard (CFG),

757

Category Scheme Realization Effective against COOP ?

Generic CFI

Original CFI + shadow call stack [3] Binary + debug symbols �
CCFIR [58] Binary �
O-CFI [54] Binary �
SW-HW Co-Design [15] Source code + specialized hardware �
Windows 10 Tech. Preview CFG Source code �
LLVM IFCC [52] Source code ?

C++-aware CFI

—various— [5], [29], [52] Source code ���
T-VIP [24] Binary �
VTint [57] Binary �
vfGuard [41] Binary ?

Heuristics-based detection
—various— [14], [40], [56] CPU debugging/performance monitoring features ���
HDROP [60] CPU performance monitoring counters �
Microsoft EMET 5 [34] WinAPI function hooking �

Code hiding, shuffling, or rewriting
STIR [55] Binary �
G-Free [38] Source code �
XnR [7] Binary / source code ?

Memory safety
—various— [4]–[6], [13], [36], [45] Mostly source code (���) - see §VII-E
CPI/CPS [31] Source code �/�

TABLE II: Overview of the effectiveness of a selection of code reuse defenses and memory safety techniques (below double

line) against COOP; � indicates effective protection and � indicates vulnerability; ? indicates at least partial protection.

a simple form of CFI. We analyzed the proprietary implemen-

tation of Microsoft CFG. In summary, Microsoft CFG ensures

that protected indirect calls may only go to a certain set of

targets. This set is specified in a module’s PE header [42].

If multiple CFG-enabled modules reside in a process, their

sets are merged. For system libraries (written in C), this

set is mostly comprised of exported functions. For the C++

mshtml.dll we discovered that all virtual functions are

contained in the set and can thus be invoked from any indirect

call site. Accordingly, Microsoft CFG in its current form does

not prevent COOP, but also likely not advanced ROP-based

attacks like the one by Göktaş et al.

Tice et al. recently described two variants of Forward-Edge
CFI for the GCC and LLVM compiler suites [52] that solely

aim at constraining indirect calls and jumps but not returns. As

such, taken for itself, forward-edge CFI does not prevent ROP

in any way. One of the proposed variants is the C++-aware

virtual table verification (VTV) technique for GCC. It tightly

restricts the targets of each vcall site according to the C++

class hierarchy and thus prevents COOP. VTV is available

in mainline GCC since version 4.9.0. However, the variant

for LLVM called indirect function-call checks (IFCC) “[...]

does not depend on the details of C++ or other high-level

languages” [52]. Instead, each indirect call site is associated

with a set of valid target functions. A target is valid if (i) it is

address-taken and (ii) its signature is compatible with the call

site. Tice et al. discuss two definitions for the compatibility of

function signatures for IFCC: (i) all signatures are compatible

or (ii) signatures with the same number of arguments are

compatible. We observe that the former configuration does not

prevent COOP, whereas the latter can still allow for powerful

COOP-based attacks in practice as discussed in §VI-A2b.

B. C++-aware CFI

As discussed in §VI, COOP’s control flow can be reliably

prevented when precise C++ semantics are considered from

source code. Accordingly, various source code-based CFI so-

lutions exist that prevent COOP, e. g., GCC VTV as described

above, Safedispatch [29], or WIT [5].

Recently and concurrently, three C++-aware CFI approaches

for legacy binary code have been proposed: T-VIP [24],

vfGuard [41], and VTint [57]. They follow a similar basic

approach:

1) identification of vcall sites and vtables (only vfGuard and

VTint) using heuristics and static data-flow analysis

2) instrumentation of vcall sites to restrict the set of allowed

vtables.

T-VIP ensures at each instrumented vcall site that the vptr

points to read-only memory. Optionally, it also checks if a

random entry in the respective vtable points to read-only

memory. Similarly, VTint copies all identified vtables into

a new read-only section and instruments each vcall site to

check if the vptr points into that section. Both effectively

prevent attacks based on the injection of fake vtables, but as

in a COOP attack only actual vtables are referenced, they do

not prevent COOP. VfGuard instruments vcall sites to check

if the vptr points to the beginning of any known vtable. As

discussed §VI-A2a, such a policy restricts the set of available

vfgadgets significantly, but still cannot reliably prevent COOP.

VfGuard also checks the compatibility of calling conventions

and consistency of the this-ptr at vcall sites, but this does

not affect COOP. Nonetheless, we consider vfGuard to be one

of the strongest available binary-only defenses against COOP.

VfGuard significantly constraints attackers and we expect it to

be a reliable defense in at least some attack scenarios, e. g.,

for small to medium-sized x86 applications.

C. Heuristics-based Detection

Microsoft EMET [34] is probably the most widely deployed

exploit mitigation tool. Among others, it implements different

heuristics-based strategies for the detection of ROP [23].

Additionally, several related heuristics-based defenses have

been proposed that utilize certain debugging features avail-

able in modern x86-64 CPUs [14], [40], [56]. All of these

defenses have recently been shown to be unable to detect more

758

advanced ROP-based attacks [11], [16], [26], [43]. Similarly,

the HDROP [60] defense utilizes the performance monitoring
counters of modern x86-64 CPUs to detect ROP-based attacks.

The approach relies on the observation that a CPU’s internal

branch prediction typically fails in abnormal ways during the

execution of common code reuse attacks.

As discussed in §VI-A, such heuristics are unlikely to be

practically applicable to COOP and we can in fact confirm

that our Internet Explorer exploits (§V-A and §V-B) are not

detected by EMET version 5.

D. Code Hiding, Shuffling, or Rewriting

STIR [55] is a binary-only defense approach that randomly

reorders basic blocks in an application on each start-up to

make the whereabouts of gadgets unknown to an attacker—

even if she has access to the exact same binary. As discussed

in §VI-A1c, approaches like this do conceptually not affect

our attack, as COOP only uses entire functions as vfgadgets

and only knowledge on the whereabouts of vtables is required.

This applies also to the recently proposed O-CFI approach [54]

that combines the STIR concept with coarse-grained CFI.

Execute-no-Read (XnR) [7] is a proposed defense against

so-called JIT-ROP [49] attacks that prevents code pages from

being read. We note that, depending on the concrete scenario,

a corresponding JIT-COOP attack could not always be thwarted

by such measures as it can suffice to readout vtables and

possibly RTTI metadata (which contains the literal names of

classes) from data sections and apply pattern matching to

identify the addresses of the vtables of interest.

G-Free [38] is an extension to the GCC compiler. G-

Free produces x86 native code that (largely) does not contain

unaligned indirect branches. Additionally, it aims to prevent

attackers from misusing aligned indirect branches: return

addresses on the stack are encrypted/decrypted on a function’s

entry/exit and a “cookie” mechanism is used to ensure that

indirect jump/call instructions may only be reached through

their respective function’s entry. While effective even against

many advanced ROP-based attacks [11], [16], [25], [26], [43],

G-Free does not affect COOP.

E. Memory Safety

Systems that provide forms of memory safety for C/C++

applications [4]–[6], [13], [31], [36], [45] can constitute strong

defenses against control-flow hijacking attacks in general. As

our adversary model explicitly foresees an initial memory

corruption and information leak (see §III-B), we do not explore

the defensive strengths of these systems in detail. Instead, we

exemplarily discuss two recent approaches in the following.

Kuznetsov et al. proposed Code-Pointer Integrity (CPI) [31]

as a low-overhead control-flow hijacking protection for C/C++.

On the baseline, CPI guarantees the spatial and temporal

integrity of code pointers and, recursively, that of pointers to

code pointers. As in C++ applications typically many pointers

to code pointers exist (i. e., each object’s vptr), CPI can

still impose a significant overhead there. As a consequence,

Kuznetsov et al. also proposed Code-Pointer Separation (CPS)

as a less expensive variant of CPI that specifically targets C++.

In CPS, sensitive pointers are not protected recursively, but it

is still enforced that “[...] (i) code pointers can only be stored

to or modified in memory by code pointer store instructions,

and (ii) code pointers can only be loaded by code pointer

load instructions from memory locations to which previously

a code pointer store instruction stored a value” [31] where

code pointer load/store instructions are fixed at compile time.

Kuznetsov et al. argue that the protection offered by CPS

could be sufficient in practice as it conceptually prevents recent

advanced ROP-based attacks [11], [16], [26]. We observe

that CPS does not prevent our attack, because COOP does

not require the injection or manipulation of code pointers.

In the presence of CPS, it is though likely hard to invoke

library functions not imported by an application. But we

note that almost all applications import critical functions. The

invocation of library functions through an INV-G could also

be complicated or impossible in the presence of CPS. This

is however not a hurdle, because, as CPS does not consider

C++ semantics, imported library functions can always easily

be called without taking the detour through an INV-G as

described in §III-E in approach W-2.

VIII. RELATED WORK

Since we covered related work throughout the paper, we

only briefly review contributions similar to ours in this section.

Closely related to our work, several advanced ROP-based

attacks were recently demonstrated [11], [16], [25], [26],

[43] that bypassed certain coarse-grained CFI systems [3],

[58], [59] or heuristics-based systems [14], [23], [40], [56].

However, to the best of our knowledge, we are the first

to demonstrate bypasses of the latest defenses CPS [31],

T-VIP [24], vfGuard [41], and VTint [57] and the coarse-
grained CFI + shadow call stack [3] concept. We also regard

COOP’s tolerance against the fine-grained rewriting, shuffling,

and hiding of executable code as unique.
Bosman and Bos presented Sigreturn Oriented Program-

ming (SROP) [10], a distinct code reuse attack approach

that misuses UNIX signals. SROP is Turing complete and in

contrast to ROP does not chain short chunks of instructions

sequences. In SROP, the UNIX system call sigreturn is re-

peatedly invoked on an attacker supplied signal frames lying

on the stack. Accordingly, as prerequisites, the attacker needs

to control the stack and needs to be able to divert the control

flow such that sigreturn is invoked. SROP was not specifically

designed to circumvent modern protection techniques, but

rather as an easy-to-use and portable alternative to ROP and

for implementing stealthy backdoors.
Tran et al. demonstrated that Turing complete return-to-libc

attacks are possible [53]. In their described attack, a thread’s

stack is prepared in such a way that certain functions from

libc such as longjmp() or wordexp() are subsequently

executed for varying arguments, where each function returns
to the entry point of its successor. At its core, their approach

shares similarities with ours. However, it can conceptually

not be used to bypass modern CFI systems. Skowyra et

al. demonstrated how the attack by Tran et al. can also be

implemented using other libraries than libc [47].

759

IX. CONCLUSION

In this paper, we introduced counterfeit object-oriented
programming (COOP), a novel code reuse attack technique to

bypass almost all CFI solutions and many other defenses that

do not consider object-oriented C++ semantics. We discussed

the specifics of object-oriented programming and explained

the technical details behind COOP. We believe that our results

contribute to the ongoing research on designing practical and

secure defenses against control-flow hijacking attacks, a severe

threat that has been around for more than two decades. Our

basic insight that higher-level programming language-specific

semantics need to be taken into account is a valuable guide for

the design and implementation of future defenses. In particular,

our results demand for a rethinking in the assessment of

defenses that rely solely on binary code.

ACKNOWLEDGMENT

We thank the anonymous reviewers and Herbert Bos for

their constructive comments that guided the final version of

this paper. This work has been supported by several organiza-

tion: the German Federal Ministry of Education and Research

(BMBF) under support code 16BP12302 (EUREKA project

SASER), the German Science Foundation as part of project

S2 within the CRC 1119 CROSSING, and the European

Unions Seventh Framework Programme under grant agreement

No. 609611, PRACTICE project.

REFERENCES

[1] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti. A theory of
secure control-flow. In International Conference on Formal Engineering
Methods (ICFEM), pages 111–124, 2005.

[2] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-flow
integrity: Principles, implementations, and applications. ACM Trans-
actions on Information and System Security (TISSEC), 13(1), 2009.

[3] M. Abadi, M. Budiu, lfar Erlingsson, and J. Ligatti. Control-flow
integrity. In Proceedings of ACM Conference on Computer and Com-
munications Security (CCS), 2005.

[4] P. Akritidis. Cling: A memory allocator to mitigate dangling pointers.
In USENIX Security Symposium, 2010.

[5] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Castro. Preventing
memory error exploits with WIT. In IEEE Symposium on Security and
Privacy, 2008.

[6] P. Akritidis, M. Costa, M. Castro, and S. Hand. Baggy bounds checking:
An efficient and backwards-compatible defense against out-of-bounds
errors. In USENIX Security Symposium, 2009.

[7] M. Backes, T. Holz, B. Kollenda, P. Koppe, S. Nürnberger, and J. Pewny.
You can run but you cant read: Preventing disclosure exploits in
executable code. In Proceedings of ACM Conference on Computer and
Communications Security (CCS), 2014.

[8] A. Bittau, A. Belay, A. Mashtizadeh, D. Mazieres, and D. Boneh.
Hacking blind. In IEEE Symposium on Security and Privacy, 2014.

[9] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang. Jump-oriented
programming: A new class of code-reuse attack. In ACM Symposium on
Information, Computer and Communications Security (ASIACCS), 2011.

[10] E. Bosman and H. Bos. Framing signals—a return to portable shellcode.
In IEEE Symposium on Security and Privacy, 2014.

[11] N. Carlini and D. Wagner. ROP is still dangerous: Breaking modern
defenses. In USENIX Security Symposium, 2014.

[12] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham,
and M. Winandy. Return-oriented programming without returns. In
Proceedings of ACM Conference on Computer and Communications
Security (CCS), 2010.

[13] X. Chen, A. Slowinska, D. Andriesse, H. Bos, and C. Giuffrida.
StackArmor: Comprehensive protection from stack-based memory error
vulnerabilities for binaries. In Symposium on Network and Distributed
System Security (NDSS), 2015.

[14] Y. Cheng, Z. Zhou, M. Yu, X. Ding, and R. H. Deng. ROPecker: A
generic and practical approach for defending against ROP attacks. In
Symposium on Network and Distributed System Security (NDSS), 2014.

[15] L. Davi, P. Koeberl, and A.-R. Sadeghi. Hardware-assisted fine-grained
control-flow integrity: Towards efficient protection of embedded systems
against software exploitation. In DAC, 2014.

[16] L. Davi, D. Lehmann, A.-R. Sadeghi, and F. Monrose. Stitching the
gadgets: On the ineffectiveness of coarse-grained control-flow integrity
protection. In USENIX Security Symposium, 2014.

[17] L. Davi, A.-R. Sadeghi, and M. Winandy. ROPdefender: A detection
tool to defend against return-oriented programming attacks. In ACM
Symposium on Information, Computer and Communications Security
(ASIACCS), 2011.

[18] L. De Moura and N. Bjørner. Z3: An efficient SMT solver. In Conference
on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), 2008.

[19] L. De Moura and N. Bjørner. Generalized, efficient array decision
procedures. In Formal Methods in Computer Aided Design (FMCAD),
2009.

[20] D. Dewey and J. T. Giffin. Static detection of C++ vtable escape
vulnerabilities in binary code. In Symposium on Network and Distributed
System Security (NDSS), 2012.

[21] A. Fokin, E. Derevenetc, A. Chernov, and K. Troshina. SmartDec:
Approaching C++ decompilation. In Working Conference on Reverse
Engineering (WCRE), 2011.

[22] M. Frantzen and M. Shuey. StackGhost: Hardware facilitated stack
protection. In USENIX Security Symposium, 2001.

[23] I. Fratric. Runtime Prevention of Return-Oriented Programming Attacks.
http://ropguard.googlecode.com/svn-history/r2/trunk/doc/ropguard.pdf.

[24] R. Gawlik and T. Holz. Towards automated integrity protection of C++
virtual function tables in binary programs. In Anual Computer Security
Applications Conference (ACSAC), 2014.

[25] E. Göktaş, E. Athanasopoulos, H. Bos, and G. Portokalidis. Out of
control: Overcoming control-flow integrity. In IEEE Symposium on
Security and Privacy, 2014.

[26] E. Göktaş, E. Athanasopoulos, M. Polychronakis, H. Bos, and G. Por-
tokalidis. Size does matter: Why using gadget-chain length to prevent
code-reuse attacks is hard. In USENIX Security Symposium, 2014.

[27] Y. Guillot and A. Gazet. Automatic binary deobfuscation. Journal in
Comp. Virology, 2010.

[28] R. Hund, C. Willems, and T. Holz. Practical timing side channel
attacks against kernel space ASLR. In IEEE Symposium on Security
and Privacy, 2013.

[29] D. Jang, Z. Tatlock, and S. Lerner. SAFEDISPATCH: Securing C++
virtual calls from memory corruption attacks. In Symposium on Network
and Distributed System Security (NDSS), 2014.

[30] N. Joly. Advanced exploitation of Internet Explorer 10 / Windows
8 overflow (Pwn2Own 2013). http://www.vupen.com/blog/
20130522.Advanced Exploitation of IE10 Windows8 Pwn2Own
2013.php, 2013.

[31] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song.
Code-pointer integrity. In USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2014.

[32] M. Matz, J. Hubicka, A. Jaeger, and M. Mitchell. System V Application
Binary Interface: AMD64 architecture processor supplement. http://x86-
64.org/documentation/abi.pdf, 2013.

[33] Microsoft. Data Execution Prevention (DEP). http:
//support.microsoft.com/kb/875352/EN-US/, 2006.

[34] Microsoft Corp. Enhanced mitigation experience toolkit (EMET) 5.1.
http://technet.microsoft.com/en-us/security/jj653751, November 2014.

[35] Microsoft Developer Network. Argument passing and naming conven-
tions. http://msdn.microsoft.com/en-us/library/984x0h58.aspx.

[36] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic. CETS:
Compiler enforced temporal safety for C. In International Symposium
on Memory Management, 2010.

[37] Nergal. The advanced return-into-lib(c) exploits: PaX case study. http:
//phrack.org/issues/58/4.html, 2001.

[38] K. Onarlioglu, L. Bilge, A. Lanzi, D. Balzarotti, and E. Kirda. G-Free:
Defeating return-oriented programming through gadget-less binaries. In
Anual Computer Security Applications Conference (ACSAC), 2010.

[39] V. Pappas, M. Polychronakis, and A. D. Keromytis. Smashing the
gadgets: Hindering return-oriented programming using in-place code
randomization. In IEEE Symposium on Security and Privacy, 2012.

760

[40] V. Pappas, M. Polychronakis, and A. D. Keromytis. Transparent ROP
exploit mitigation using indirect branch tracing. In USENIX Security
Symposium, 2013.

[41] A. Prakash, X. Hu, and H. Yin. vfGuard: Strict protection for virtual
function calls in COTS C++ binaries. In Symposium on Network and
Distributed System Security (NDSS), 2015.

[42] M. Russinovich, D. A. Solomon, and A. Ionescu. Windows Internals,
Part 1. Microsoft Press, 6th edition, 2012.

[43] F. Schuster, T. Tendyck, J. Pewny, A. Maaß, M. Steegmanns, M. Contag,
and T. Holz. Evaluating the effectiveness of current anti-ROP defenses.
In Symposium on Research in Attacks, Intrusions and Defenses (RAID),
2014.

[44] J. Seibert, H. Okhravi, and E. Söderström. Information leaks without
memory disclosures: Remote side channel attacks on diversified code.
In Proceedings of ACM Conference on Computer and Communications
Security (CCS), 2014.

[45] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov. Address-
Sanitizer: A fast address sanity checker. In USENIX Annual Technical
Conference, 2012.

[46] H. Shacham. The geometry of innocent flesh on the bone: Return-
into-libc without function calls (on the x86). In Proceedings of ACM
Conference on Computer and Communications Security (CCS), 2007.

[47] R. Skowyra, K. Casteel, H. Okhravi, N. Zeldovich, and W. Streilein.
Systematic analysis of defenses against return-oriented programming.
In Symposium on Research in Attacks, Intrusions and Defenses (RAID),
2013.

[48] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and A.-
R. Sadeghi. Just-in-time code reuse: On the effectiveness of fine-grained
address space layout randomization. In IEEE Symposium on Security
and Privacy, 2013.

[49] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and A.-
R. Sadeghi. Just-in-time code reuse: On the effectiveness of fine-grained
address space layout randomization. In IEEE Symposium on Security
and Privacy, 2013.

[50] B. Stroustrup. The C++ Programming Language, 4th Edition. Addison-
Wesley, 4th edition, 2013.

[51] L. Szekeres, M. Payer, T. Wei, and D. Song. Sok: Eternal war in memory.
In IEEE Symposium on Security and Privacy, 2013.

[52] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, Ú. Erlingsson,
L. Lozano, and G. Pike. Enforcing forward-edge control-flow integrity
in GCC & LLVM. In USENIX Security Symposium, 2014.

[53] M. Tran, M. Etheridge, T. Bletsch, X. Jiang, V. Freeh, and P. Ning. On
the expressiveness of return-into-libc attacks. In Symposium on Research
in Attacks, Intrusions and Defenses (RAID), 2011.

[54] M. Vishwath, P. Larsen, S. Brunthaler, K. W. Hamlen, and M. Franz.
Opaque control-flow integrity. In Symposium on Network and Dis-
tributed System Security (NDSS), 2015.

[55] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin. Binary stirring:
Self-randomizing instruction addresses of legacy x86 binary code. In
Proceedings of ACM Conference on Computer and Communications
Security (CCS), pages 157–168, 2012.

[56] Y. Xia, Y. Liu, H. Chen, and B. Zang. CFIMon: Detecting violation
of control flow integrity using performance counters. In IEEE/IFIP
Conference on Dependable Systems and Networks (DSN), 2012.

[57] C. Zhang, C. Song, K. Z. Chen, Z. Chen, and D. Song. VTint:
Defending virtual function tables integrity. In Symposium on Network
and Distributed System Security (NDSS), 2015.

[58] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant,
D. Song, and W. Zou. Practical control flow integrity and randomization
for binary executables. In IEEE Symposium on Security and Privacy,
2013.

[59] M. Zhang and R. Sekar. Control flow integrity for COTS binaries. In
USENIX Security Symposium, 2013.

[60] H. Zhou, X. Wu, W. Shi, J. Yuan, and B. Liang. HDROP: Detecting ROP
attacks using performance monitoring counters. In Information Security
Practice and Experience. Springer International Publishing, 2014.

APPENDIX

mov edi, edi
push ebp
mov ebp, esp
push ecx
push ecx
push esi
mov esi, ecx
lea eax, [esi+3ACh]
; -- inlined constructor of iterator --
mov [ebp+iterator.end], eax
mov [ebp+iterator.current], eax
; --

loop:
lea ecx, [ebp+iterator]
call SListBase::Iterator::Next()
test al, al
jnz end

mov eax, [ebp+iterator.current]
push [esi+140h] ; push argument field
mov ecx, [eax+4] ; read object pointer from iterator
mov eax, [ecx]
call [eax+4] ; call 2nd virtual function
jmp loop

end:
pop esi
mov esp, ebp
pop ebp
ret

Listing A.1: Assembly code of ML-ARG-G in jscrip9.dll

version 10.0.9200.16521 used in exemplary Internet Explorer

10 32-bit exploit: a linked list of object pointers is traversed; a

virtual function with one argument is invoked on each object.

761

Symbol name of vfgadget (mshtml.dll Win. 7 64-bit) # in attack code Vfgadget type Function
CExtendedTagNamespace::Passivate 1, 9b ML-G array-based main loop
CCircularPositionFormatFieldIterator::Next 2, 5, 7, 9a, 10b LOAD-R64-G load rdx from dereferenced field
XHDC::SetHighQualityScalingAllowed 3 ARITH-G store rdx&1
CWigglyShape::OffsetShape 4 LOAD-R64-G load r9 from field
CStyleSheetArrayVarEnumerator::MoveNextInternal 6 LOAD-R64-G load r8 from field
CDataCache<class CBoxShadow>::InitData 8 W-COND-G write r8 to [rdx] if r9 is not zero
CRectShape::OffsetShape 10a, 11b ARITH-G add [rdx] to field
Ptls6::CLsBlockObject::Display 11a, 12b INV-G invoke field as function pointer

TABLE A.I: Vfgadgets in mshtml.dll 10.0.9200.16521 used in exemplary Internet Explorer 10 64-bit exploit (§V-A); execution

splits into paths a and b after index 8.

Symbol name of vfgadget (mshtml.dll Win. 7 64-bit) # in attack code Vfgadget type Function
CExtendedTagNamespace::Passivate 1 ML-G array-based main loop
CMarkupPageLayout::IsTopLayoutDirty 2, 4 LOAD-R64-G load edx from field
HtmlLayout::GridBoxTrackCollection::GetRangeTrackNumber 3 ARITH-G r8 = 2 · rdx
CAnimatedCacheEntryTyped<float>::UpdateValue 4 INV-G invoke field from argument as

function pointer

TABLE A.II: Vfgadgets in mshtml.dll 10.0.9200.16521 used in exemplary Internet Explorer 10 64-bit exploit that only uses

vptrs pointing to the beginning of existing vtables (§V-A1)

Symbol name of vfgadget # in attack code Vfgadget type Function
jscript9!ThreadContext::
ResolveExternalWeakReferencedObjects

1 ML-ARG-G linked list-based main loop

CDataTransfer::Proxy 2 W-SA-G write deref. field to scratch area
CDCompSwapChainLayer::SetDesiredSize 3 R-G load field from scratch area
CDCompSurfaceTargetSurface::GetOrigin 4 ARITH-G and W-SA-G write summation of two fields to scratch area
CDCompLayerManager::
SetAnimationCurveToken

5 R-G load field from scratch area

HtmlLayout::SvgBoxBuilder::
PrepareBoxForDisplay

loop entry: 6, 11 W-G rewrite argument field

CDXTargetSurface::OnEndDraw 7, 8 MOVE-SP-G move stack pointer up
ieframe!Microsoft::WRL::
Callback::ComObject::Invoke

9 INV-G invoke function pointer with 2 arguments

CMarkupPageLayout::AddLayoutTaskOwnerRef 10 ARITH-G increment field
Ptls6::CLsDnodeNonTextObject::
SetDurFmtCore

12 W-COND-G conditionally write argument to field; rewrites
linked list; resumes at loop entry or loop exit

CDispRecalcContext::
OnBeforeDestroyInitialIntersectionEntry

loop exit NOP nop; loops to self

TABLE A.III: Vfgadgets used in exemplary Internet Explorer 10 32-bit exploit (§V-B); vfgadgets taken from mshtml.dll (if

not marked differently), jscript9.dll, or ieframe.dll version 10.0.9200.16521.

Symbol name of vfgadget (libxul.so Linux 64-bit) # in attack code Vfgadget type Function
nsMultiplexInputStream::Close 1 ML-G array-based main loop
mozilla::a11y::xpcAccessibleGeneric::˜xpcAccessibleGeneric
and
js::jit::MVariadicInstruction::getOperand

2, 4 LOAD-R64-G load rsi from memory

nsDisplayItemGenericGeometry::MoveBy 3 ARITH-G add [rsi] to field
ProfileSaveEvent::AddSubProfile 5 INV-G invoke field as function pointer

TABLE A.IV: Vfgadgets used in exemplary Firefox 36.0a1 64-bit exploit (§V-C)

762

