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Abstract—Finding and exploiting vulnerabilities in binary
code is a challenging task. The lack of high-level, semantically
rich information about data structures and control constructs
makes the analysis of program properties harder to scale.
However, the importance of binary analysis is on the rise. In
many situations binary analysis is the only possible way to prove
(or disprove) properties about the code that is actually executed.

In this paper, we present a binary analysis framework that
implements a number of analysis techniques that have been
proposed in the past. We present a systematized implementation
of these techniques, which allows other researchers to
compose them and develop new approaches. In addition, the
implementation of these techniques in a unifying framework
allows for the direct comparison of these approaches and
the identification of their advantages and disadvantages. The
evaluation included in this paper is performed using a recent
dataset created by DARPA for evaluating the effectiveness of
binary vulnerability analysis techniques.

Our framework has been open-sourced and is available to
the security community.

I. INTRODUCTION

Despite the rise of interpreted languages and the World

Wide Web, binary analysis has remained an extremely

important topic in computer security. There are several

reasons for this. First, interpreted languages are either

interpreted by binary programs or Just-In-Time (JIT)

compiled down to binary code. Second, “core” OS constructs

and performance-critical applications are still written in

languages (usually, C or C++) that compile down to binary

code. Third, the rise of the Internet of Things is powered

by devices that are, in general, very resource-constrained.

Without cycles to waste on interpretation or Just-In-Time

compilation, the firmware of these devices tends to be written

in languages (again, usually C) that compile to binary.

Unfortunately, many low-level languages provide few

security guarantees, often leading to vulnerabilities. For

example, buffer overflows stubbornly remain as one of the

most-common software flaws despite a concerted effort to

develop technologies to mitigate such vulnerabilities. Worse,

the wider class of “memory corruption vulnerabilities”, the

vast majority of which also stem from the use of unsafe

languages, make up a substantial portion of the most common

vulnerabilities [2]. This problem is not limited to software

on general-purpose computing devices: remotely-exploitable

vulnerabilities have been discovered in devices ranging from

smartlocks, to pacemakers, to automobiles [10].

Another important aspect to consider is that compilers and

tool chains are not bug-free. Properties that were proven by

analyzing the source code of a program may not hold after

the very same program has been compiled [56]. This happens

in practice: recently, a malicious version of Xcode, known

as Xcode Ghost [3], silently infected over 40 popular iOS

applications by inserting malicious code at compile time,

compromising the devices of millions of users. These vulnera-

bilities have serious, real-world consequences, and discovering

them before they can be abused is paramount. To this end, the

security research community has invested a substantial amount

of effort in developing analysis techniques to identify flaws

in binary programs [55]. Such “offensive” (because they find

“attacks” against the analyzed application) analysis techniques

vary widely in terms of the approaches used and the vulnera-

bilities targeted, but they suffer from two main problems.

First, many implementations of binary analysis techniques

begin and end their existence as a research prototype. When

this happens, much of the effort behind the contribution

is wasted, and future researchers must often start from

scratch in terms of implementation of work based upon these

approaches. This startup cost discourages progress: every

week spent re-implementing previous techniques is one less

week devoted to developing novel solutions.

Second, as a consequence of the amount of work required

to reproduce these systems and their frequent unavailability

to the public, replicating their results becomes impractical.

As a result, the applicability of individual binary analysis

techniques relative to other techniques becomes unclear. This,

along with the inherent complexity of modern operating

systems and the difficulty to accurately and consistently

model the applications’ interaction with their environment,

makes it extremely difficult to establish a common ground

for comparison. Where comparisons do exist, they tend to

compare systems with different underlying implementation

details and different evaluation datasets.

In an attempt to mitigate the first issue, we have created

angr, a binary analysis framework that integrates many of

the state-of-the-art binary analysis techniques in the literature.

We did this with the goal of systematizing the field and en-

couraging the development of next-generation binary analysis

techniques by implementing, in an accessible, open, and usable

way, effective techniques from current research efforts so that

they can be easily compared with each other. angr provides
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building blocks for many types of analyses, using both static

and dynamic techniques, so that proposed research approaches

can be easily implemented and their effectiveness compared

to each other. Additionally, these building blocks enable the

composition of analyses to leverage their different strengths.

Over the last year, a solution has also been introduced

to the second problem, aimed towards comparing analysis

techniques and tools, with research reproducibility in mind.

Specifically, DARPA organized the Cyber Grand Challenge,

a competition designed to explore the current state of

automated binary analysis, vulnerability excavation, exploit

generation, and software patching. As part of this competition,

DARPA wrote and released a corpus of applications that

are specifically designed to present realistic challenges to

automated analysis systems and produced the ground truth
(labeled vulnerabilities and exploits) for these challenges. This

dataset of binaries provides a perfect test suite with which

to gauge the relative effectiveness of various analyses that

have been recently proposed in the literature. Additionally,

during the DARPA CGC qualifying event, teams around the

world fielded automated binary analysis systems to attack and

defend these binaries. Their results are public, and provide an

opportunity to compare existing offensive techniques in the

literature against the best that the competitors had to offer1.

Our goal is to gain an understanding of the relative efficacy

of modern offensive techniques by implementing them in our

binary analysis system. In this paper, we detail the implemen-

tation of a next-generation binary analysis engine, angr. We

present several offensive analyses that we developed using

these techniques (specifically, replications of approaches

currently described in the literature) to reproduce results

in the fields of vulnerability discovery, exploit replaying,

automatic exploit generation, compilation of ROP shellcode,

and exploit hardening. We also describe the challenges that

we overcome, and the improvements that we achieved, by

combining these techniques to augment their capabilities.

By implementing them atop a common analysis engine, we

can explore the differences in effectiveness that stem from

the theoretical differences behind the approaches, rather than

implementation differences of the underlying analysis engines.

This has enabled us to perform a comparative evaluation of

these approaches on the dataset provided by DARPA.

In short, we make the following contributions:

1) We reproduce many existing approaches in offensive

binary analysis, in a single, coherent framework, to

provide an understanding of the relative effectiveness of

current offensive binary analysis techniques.

2) We show the difficulties (and solutions to those

difficulties) of combining diverse binary analysis

techniques and applying them on a large scale.

3) We open source our framework, angr, for the use of

future generations of research into the analysis of binary

code.

1The top-performing 7 teams each won a prize of 750, 000 USD. We
expect that, with this motivation, the teams fielded the best analyses that
were available to them.

II. AUTOMATED BINARY ANALYSIS

Researchers have been striving toward automated binary

analysis techniques for many years. However, despite recent

advances in this field, such systems are challenging to develop

and deploy in the real world. This is because, depending

on the technique in question, there are serious limitations

that must be overcome to perform automated analysis on

real-world software. In this section, we will touch on the

challenges of automated analysis and discuss why the DARPA

Cyber Grand Challenge contest can provide a meaningful

way to compare different analysis approaches.

A. Trade-offs

It is not hard to see why binary analysis is challenging:

in a sense, asking “will it crash?” is analogous to asking

“will it stop?”, and any such analysis quickly runs afoul of

the halting problem [32]. Program analyses, and especially

offensive binary analyses, tend to be guided by carefully

balanced theoretical trade-offs to maintain feasibility. There

are two main areas where such trade-offs must be made:

Replayability. Bugs are not all created equal. Depending

on the trade-offs made by the system, bugs discovered by

a given analysis might not be replayable. This boils down

to the scope that an analysis operates on. Some analyses

execute the whole application, from the beginning, so they

can reason about what exactly needs to be done to trigger

a vulnerability. Other systems analyze individual pieces of

an application: they might find a bug in a specific module,

but cannot reason about how to trigger the execution of that

module, and therefore, cannot automatically replay the crash.

Semantic insight. Some analyses lack the ability to reason

about the program in semantically meaningful ways. For

example, a dynamic analysis might be able to trace the code

executed by an application but not understand why it was

executed or what parts of the input caused the application

to act in that specific way. On the other hand, a symbolic

analysis that can determine the specific bytes of input

responsible for certain program behaviors would have a

higher semantic understanding.

In order to offer replayability of input or semantic insight,

analysis techniques must make certain trade-offs. For example,

high replayability is associated with low coverage. This is

intuitive: since an analysis technique that produces replayable

input must understand how to reach any code that it wants

to analyze, it will be unable to analyze as much code as an

analysis that does not. On the other hand, without being able

to replay triggering inputs to validate bugs, analyses that do

not prioritize bug replayability suffer from a high level of

false positives (that is, flaw detections that do not represent

actual vulnerabilities). In the absence of a replayable input,

these false positives must be filtered by heuristics which can,

in turn, introduce false negatives.

Likewise, in order to achieve semantic insight into the

program being analyzed, an analysis must store and process a
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large amount of data. A semantically-insightful dynamic anal-

ysis, for example, might store the conditions that must hold in

order for specific branches of a program to be taken. On the

other hand, a static analysis tunes semantic insight through the

chosen data domain – simpler data domains (i.e., by tracking

ranges instead of actual values) represent less semantic insight.

Analyses that attempt both reproducibility and a high

semantic understanding encounter issues with scalability.

Retaining semantic information for the entire application, from

the entry point through all of the actions it might take, requires

a processing capacity conceptually identical to the resources

required to execute the program under all possible conditions.

Such analyses do not scale, and, in order to be applicable,

must discard information and sacrifice soundness (that is, the

guarantee that all potential vulnerabilities will be discovered).

Aside from these fundamental challenges, there are also

implementation challenges. The biggest one of these is the

environment model. Any analysis with a high semantic under-

standing must model the application’s interaction with its en-

vironment. In modern operating systems, such interactions are

incredibly complex. For example, modern versions of Linux

include over three hundred system calls, and for an analysis

system to be complete, it must model the effects of all of them.

Example. To demonstrate the various challenges of binary

analysis, we provide a concrete example of a program with

multiple vulnerabilities in Listing 1. For clarity and space rea-

sons, this example is simplified, and it is meant only to expose

the reader to ideas that will be discussed later in the paper.

Observe the three calls to memcpy: the ones on lines 10

and 30 will result in buffer overflows, while the one on line 16

will not. However, depending on the amount of information

tracked, a static analysis technique might report all three calls

to memcpy as potential bugs, including the one on line 16,

because it would not have the information to determine that

no buffer overflow is possible. Additionally, while the report

from a static analysis would include the locations of these

bugs, it will not provide inputs to trigger them.

A dynamic technique, such as fuzzing, has the benefit of

creating actionable inputs that will trigger any bugs found.

On the other hand, simple fuzzing techniques typically only

find shallow bugs and fail to pass through code requiring

precisely crafted input. In Listing 1, dynamic techniques will

have difficulty finding the bug at line 10, because it requires

a specific input for the condition to be satisfied. However,

because the overflow on line 30 can be triggered through

random testing, fuzzing techniques should be able to find an

input which triggers the bug.

To find the bug on line 10, one could introduce an abstract

data model to reason about many possible inputs at once.

One such approach is Dynamic Symbolic Execution (DSE).

However, dynamic symbolic techniques, while powerful,

suffer from the “path explosion problem”, where the number

of paths grows exponentially with each branch and quickly

becomes intractable. A symbolic execution will detect the

bug on line 10 and generate an input for it using a constraint

solver. Additionally, it should be able to prove that the

memcpy on line 16 cannot overflow. However, the execution

will likely not be able to find the bug at line 30, as there are

too many potential paths which do not trigger the bug.

1 int main(void) {
2 char buf[32];
3

4 char *data = read_string();
5 unsigned int magic = read_number();
6

7 // difficult check for fuzzing
8 if (magic == 0x31337987) {
9 // buffer overflow

10 memcpy(buf, data, 100);
11 }
12

13 if (magic < 100 && magic % 15 == 2 &&
14 magic % 11 == 6) {
15 // Only solution is 17; safe
16 memcpy(buf, data, magic);
17 }
18

19 // Symbolic execution will suffer from
20 // path explosion
21 int count = 0;
22 for (int i = 0; i < 100; i++) {
23 if (data[i] == ’Z’) {
24 count++;
25 }
26 }
27

28 if (count >= 8 && count <= 16) {
29 // buffer overflow
30 memcpy(buf, data, count*20);
31 }
32

33 return 0;
34 }

Listing 1: An example where different techniques will report
different bugs.

B. The DARPA Cyber Grand Challenge

In October of 2013, DARPA announced the DARPA Cyber

Grand Challenge [23]. Like DARPA Grand Challenges in

other fields (such as robotics and autonomous vehicles), the

CGC pits teams from around the world against each other in

a competition in which all participants must be autonomous

programs. A participant’s goal in the Cyber Grand Challenge

is straight-forward: their system must autonomously identify,

exploit, and patch vulnerabilities in the provided software.

Millions of dollars in prize money were announced: the top 7

teams to complete the CGC Qualifying Event (held in June,

2015) received 750, 000 USD, and the top 3 teams in the CGC

Final Event (held in August, 2016) will receive 2, 000, 000
USD, 1, 000, 000 USD, and 750, 000 USD, respectively.

The organizers of the Cyber Grand Challenge have put

much thought into designing a competition for automated

binary analysis systems. For example, they addressed the

environment model problem by creating a new OS specifically

for the CGC: the DECREE OS. DECREE is an extremely

simple operating system with just 7 system calls: transmit,

receive, and waitfd to send, receive, and wait for data

over file descriptors, random to generate random data,
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allocate and deallocate for memory management,

and terminate to exit.

Despite the simple environment model, the binaries

provided by DARPA for the CGC have a wide range of

complexity. They range from 4 kilobytes to 10 megabytes

in size, and implement functionality ranging from simple

echo servers, to web servers, to image processing libraries.

DARPA has open-sourced all of the binaries used in the

competition thus far, complete with proof-of-concept exploits

and write-ups about the vulnerabilities [24].

Because the simple environment model makes it feasible to

accurately implement and evaluate (on a large scale) binary

analysis techniques, we use the DARPA CGC samples as our

dataset for the comparative evaluations in this paper.

C. Comparative Analysis of CGC Binaries

Offensive binary analyses use different underlying

techniques to reason about the application that is being

processed. For example, they may analyze data over different

domains or utilize different levels of interaction with the

application being tested. In the next two sections, we survey

the current state of the art, and choose several analyses

for in-depth evaluation in the rest of the paper. We focus

specifically on analyses whose goals are to identify and

exploit flaws in binary software (for example, memory safety

violation identification using symbolic execution), as opposed

to the more general binary analysis techniques on which

those are based (in this case, symbolic execution itself).

III. BACKGROUND: STATIC VULNERABILITY DISCOVERY

Static techniques reason about a program without executing

it. Usually, a program is interpreted over an abstract domain.

Memory locations containing bits of ones and zeroes contain

other abstract entities (at the familiar end, this might simply

be integers, but, as we explain below, these can include more

abstract constructs). Additionally, program constructs such as

the layout of memory, or even the execution path taken, may

be abstracted as well.

Here, we split static analyses into two paradigms: those

that model program properties as graphs (i.e., a control-flow
graph) and those that model the data itself.

Static vulnerability identification techniques have two main

drawbacks, relating to the trade-offs discussed in Section II-A.

First, the results are not replayable: detection by static analysis

must be verified by hand, as information on how to trigger

the detected vulnerability is not recovered. Second, these

analyses tend to operate on simpler data domains, reducing

their semantic insight. In short, they over-approximate: while

they can often authoritatively reason about the absence of

certain program properties (such as vulnerabilities), they

suffer from a high rate of false positives when making

statements regarding the presence of vulnerabilities.

A. Recovering Control Flow

The recovery of a control-flow graph (CFG), in which

the nodes are basic blocks of instructions and the edges are

possible control flow transfers between them, is a pre-requisite

for almost all static techniques for vulnerability discovery.

Control-flow recovery has been widely discussed in the

literature [21], [33], [34], [50], [58], [59]. CFG recovery

is implemented as a recursive algorithm that disassembles

and analyzes a basic block (say, Ba), identifies its possible

exits (i.e., some successor basic block such as Bb and Bc)

and adds them to the CFG (if they have not already been

added), connects Ba to Bb and Bc, and repeats the analysis

recursively for Bb and Bc until no new exits are identified.

CFG recovery has one fundamental challenge: indirect jumps.

Indirect jumps occur when the binary transfers control flow

to a target represented by a value in a register or a memory

location. Unlike a direct jump, where the target is encoded

into the instruction itself and, thus, is trivially resolvable, the

target of an indirect jump can vary based on a number of

factors. Specifically, indirect jumps fall into several categories:

Computed. The target of a computed jump is determined by

the application by carrying out a calculation specified by

the code. This calculation could further rely on values

in other registers or in memory. A common example

of this is a jump table: the application uses values in a

register or memory to determine an index into a jump

table stored in memory, reads the target address from

that index, and jumps there.

Context-sensitive. An indirect jump might depend on the

context of an application. The common example is

qsort() in the standard C library – this function takes

a callback that it uses to compare passed-in values. As

a result, some of the jump targets of basic blocks inside

qsort() depend on its caller, as the caller provides

the callback function.

Object-sensitive. A special case of context sensitivity is

object sensitivity. In object-oriented languages, object

polymorphism requires the use of virtual functions, often

implemented as virtual tables of function pointers that

are consulted, at runtime, to determine jump targets.

Jump targets thus depend on the type of object passed

into the function by its callers.

Different techniques have been designed to deal with

different types of indirect jumps, and we will discuss the

implementation of several of them in Section VII. In the

end, the goal of CFG recovery is to resolve the targets of as

many of these indirect jumps as possible, in order to create

a CFG. A given indirect jump might resolve to a set of

values (i.e., all of the addresses in a jump table, if there are

conditions under which their use can be triggered), and this

set might change based on both object and context sensitivity.

Depending on how well jump targets are resolved, the CFG

recovery analysis has two properties:

Soundness. A CFG recovery technique is sound if the set

of all potential control flow transfers is represented in

the graph generated. That is, when an indirect jump is

resolved to a subset of the addresses that it can actually

target, the soundness of the graph decreases. If a potential
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target of a basic block is missed, the block it targets

might never be seen by the CFG recovery algorithm,

and any direct and indirect jumps made by that block

will be missed as well. This has a cumulative effect:

the failure to resolve an indirect jump might severely

reduce the completeness of the graph. Soundness can

be thought of as the true positive rate of indirect jump

target identification in the binary.

Completeness. A complete CFG recovery builds a CFG

in which all edges represent actually possible control

flow transfers. If the CFG analysis errs on the side of

completeness, it will likely contain edges that cannot

really exist in practice. Completeness can be thought of

as the inverse of the false positive rate of indirect jump

target identification.

A CFG recovery analysis that produces an empty graph

would be considered complete, and an analysis that produces

a graph in which every instruction points to every other

instruction is considered sound. 2 While the ideal is

somewhere in between, this is difficult to achieve with a

scalable algorithm. Thus, different analyses require a different

compromise between the two.

A further difficulty of control-flow graphs is accurately

measuring code coverage, which is the measure of how much

code is discovered by a control-flow graph. This is often

complicated by the presence of dead code, code which is

unreachable by any jumps.

B. Vulnerability Detection with Flow Modeling

Some vulnerabilities in a program can be discovered

through the analysis of graphs of program properties.

Graph-based vulnerability discovery. Program property

graphs (e.g., control-flow graphs, data-flow graphs and control-

dependence graphs) can be used to identify vulnerabilities in

software. Initially applied to source code [60], [61], related

techniques have since been extended to binaries [45]. These

techniques rely on building a model of a bug, as represented

by a set of nodes in a control-flow or data-dependency graph,

and identifying occurrences of this model in applications.

However, such techniques are geared toward searching for

copies of vulnerable code, allowing the techniques to benefit

from the pre-existing knowledge of an already existing

vulnerability. Unlike these techniques, the focus of this paper

is on the discovery of completely new vulnerabilities.

C. Vulnerability Detection with Data Modeling

Static analysis can also reason over abstractions of the data

upon which an application operates.

Value-Set Analysis. One common static analysis approach is

Value-Set Analysis (VSA) [6]. At a high level, VSA attempts

to identify a tight over-approximation of the program state

(i.e., values in memory and registers) at any given point in the

2Xu et. al. defines soundness and completeness of a CFG in the opposite
way, where an empty graph is sound and a full graph is complete [59]. In
this paper, we stick to the definition in Section III-A.

program. This can be used to understand the possible targets

of indirect jumps or the possible targets of memory write

operations. While these approximations suffer from a lack of

accuracy, they are sound. That is, they may over-approximate,

but never under-approximate.

By analyzing the approximated access patterns of memory

reads and writes, the locations of variables and buffers

can be identified in the binary. Once this is done, the

recovered variable and buffer locations can be analyzed to

find overlapping buffers. Such overlapping buffers can be, for

example, caused by buffer overflow vulnerabilities, so each

detection is one potential vulnerability.

IV.

BACKGROUND: DYNAMIC VULNERABILITY DISCOVERY

Dynamic approaches are analyses that examine a program’s

execution, in an actual or emulated environment, as it

acts given a specific input. In this section, we will focus

specifically on dynamic techniques that are used for

identifying vulnerabilities, rather than the general binary

analysis techniques on which they are based.

Dynamic techniques are split into two main categories:

concrete and symbolic execution. These techniques produce

inputs that are highly replayable, but vary in terms of

semantic insight.

A. Dynamic Concrete Execution

Dynamic concrete execution is the concept of executing

a program in a minimally-instrumented environment. The

program functions as normal, working on the same domain
of data on which it would normally operate (i.e., ones and

zeroes). These analyses typically reason at the level of single

paths (i.e., “what path did the program take when given

this specific input”). As such, dynamic concrete execution

requires test cases to be provided by the user. This is a

problem, as with a large or unknown dataset (such as ours)

such test cases are not readily available.

1) Fuzzing: The most relevant application of dynamic con-

crete execution to vulnerability discovery is fuzzing. Fuzzing

is a dynamic technique in which malformed input is provided

to an application in an attempt to trigger a crash. Initially, such

input was generated by hardcoded rules and provided to the ap-

plication with little in-depth monitoring of the execution [38].

If the application crashed when given a specific input, the input

was considered to have triggered a bug. Otherwise, the input

would be further randomly mutated. Unfortunately, fuzzers

suffer from the test case requirement. Without carefully

crafted test cases to mutate, a fuzzer has trouble exercising

anything but the most superficial functionality of a program.

Coverage-based fuzzing. The requirement for carefully-

crafted test cases was partially mitigated with the advent

of code-coverage-based fuzzing [39]. Code-coverage-based

fuzzers attempt to produce inputs that maximize the amount

of code executed in the target application based on the insight

that the more code is executed, the higher the chance of

executing vulnerable code. American Fuzzy Lop (AFL) [1], a
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state-of-the art fuzzer responsible for the discovery of many

recent vulnerabilities, uses a code coverage metric as its sole

guiding principle, and its success at finding vulnerabilities

has driven an increase of interest in fuzzing in recent years.

Coverage-based fuzzing suffers from a lack of semantic

insight into the target application. This means that, while

it is able to detect that a certain piece of code has not yet

been executed, it cannot understand what parts of the input

to mutate to cause the code to be executed.

Taint-based fuzzing. Another approach to improve fuzzing is

the development of taint-based fuzzers [9], [62]. Such fuzzers

analyze how an application processes input to understand

what parts of the input to modify in future runs. Some of these

fuzzers combine taint tracking with static techniques, such as

data dependency recovery [30], [42]. Others introduce work

from protocol analysis to improve fuzzing coverage [22].

While a taint-based fuzzer can understand what parts of the

input should be mutated to drive execution down a given path

in the program, it is still unaware of how to mutate this input.

2) Dynamic Symbolic Execution: Symbolic techniques

bridge the gap between static and dynamic analysis and

provide a solution to cope with the limited semantic insight

of fuzzing. Dynamic symbolic execution, a subset of symbolic

execution, is a dynamic technique in the sense that it executes a

program in an emulated environment. However, this execution

occurs in the abstract domain of symbolic variables. As

these systems emulate the application, they track the state of

registers and memory throughout program execution and the

constraints on those variables. Whenever a conditional branch

is reached, execution forks and follows both paths, saving

the branch condition as a constraint on the path in which the

branch was taken and the inverse of the branch condition as a

constraint on the path in which the branch was not taken [49].

Unlike fuzzing, dynamic symbolic execution has an ex-

tremely high semantic insight into the target application: such

techniques can reason about how to trigger specific desired

program states by using the accumulated path constraints to

retroactively produce a proper input to the application when

one of the paths being executed has triggered a condition in

which the analysis is interested. This makes it an extremely

powerful tool in identifying bugs in software and, as a result,

dynamic symbolic execution is a very active area of research.

Classical dynamic symbolic execution. Dynamic Symbolic

Execution can be used directly to find vulnerabilities in

software. Initially applied to the testing of source code [12],

[13], dynamic symbolic execution was extended to binary

code by Mayhem [16] and S2E [19]. These engines analyze an

application by performing path exploration until a vulnerable

state (for example, the instruction pointer is overwritten by

input from the attacker) is identified.

However, the trade-offs discussed in Section II-A come into

play: all currently proposed symbolic execution techniques

suffer from very limited scalability due to the problem of path
explosion: because new paths can be created at every branch,

the number of paths in a program increases exponentially

with the number of branch instructions in every path. There

have been attempts to survive path explosion by prioritizing
promising paths [11], [37] and by merging paths where the

situation is appropriate [5], [35], [47]. However, in general,

this challenge to pure dynamic symbolic execution analysis

engines has not yet been surmounted, and (as we show later in

this paper), most bugs discovered by such systems are shallow.

Symbolic-assisted fuzzing. One proposed way to address the

path explosion problem is to offload much of the processing

to faster techniques, such as fuzzing. This approach leverages

the strength of fuzzing, i.e., its speed, and attempts to mitigate

the main weakness, i.e., its lack of semantic insight into

the application. Thus, researchers have paired fuzzing with

symbolic execution [14], [15], [17], [28], [29], [54]. Such

symbolically-guided fuzzers modify inputs identified by the

fuzzing component by processing them in a dynamic symbolic

execution engine. Dynamic symbolic execution uses a more

in-depth understanding of the analyzed program to properly

mutate inputs, providing additional test cases that trigger

previously-unexplored code and allow the fuzzing component

to continue making progress (i.e., in terms of code coverage).

Under-constrained symbolic execution. Another way to

increase the tractability of dynamic symbolic execution is to

execute only parts of an application. This approach, known as

Under-constrained Symbolic Execution [26], [46], is effective

at identifying potential bugs, with two drawbacks. First, it is

not possible to ensure a proper context for the execution of

parts of an application, which leads to many false positives

among the results. Second, similar to static vulnerability

discovery techniques, under-constrained symbolic execution

gives up the replayability of the bugs it detects in exchange

for scalability.

V. BACKGROUND: EXPLOITATION

Vulnerability discovery analyses actually discover crashing
inputs. Triaging these crashing inputs – that is, understanding

which crashes represent actual security issues, is outside of

the scope of most such approaches. However, some work

does exist on the reproduction and analysis of the discovered

vulnerabilities. In this section, we go through the process

of reproducing an identified crash, automatically generating

the exploit to verify the security impact of the crash, and

hardening the exploit to make it resilient in the presence of

modern mitigation techniques.

A. Crash Reproduction

Most vulnerability discovery analyses execute a tested

application in less-than-realistic conditions. For example,

many fuzzers will de-randomize execution. That is, they will

hard-code any sources of randomness, such as the PID of

the executable, the current time, and so on. This is done for

two main reasons. First, in most modern fuzzing approaches,

there is an implicit assumption that the same input, provided

to two instantiations of an application, will produce the same

result both times. Second, the modeling of randomness in
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other techniques, such as dynamic symbolic execution, is not

a well-explored research area.

Because of de-randomization, the crashes reported by

vulnerability discovery techniques might not be trivially

replayable outside of the analysis environment. Consider the

case of an application that generates a random token and

requires the token to be provided by the user before entering

an unsafe section of code and crashing. In the de-randomized

analysis environment, the generated token will always have

the same value, and the crashing input identified by the

analysis will always take the same path, resulting in a crash.

However, outside of the analysis environment, the token will

always be different, and the previously-crashing input might

instead take a non-crashing path.

Crashing inputs that are not trivially replayable generally

fall into two categories.

Missing data. Vulnerability discovery techniques sometimes

manage to “guess” correct response values without having

first received them from the application. The token in our

example is always a constant value in the de-randomized

environment, and an analysis engine such as a fuzzer

might accidentally guess it without first retrieving it

from the program. When replaying the resulting crashing

input outside of the analysis environment, the token

value will not match and the crash will not occur.

Missing relationships. Techniques with low semantic insight,

such as fuzzing, are unable to recover the relationships
between data retrieved from the program and subsequent

data provided to it. In our example, even though the crash-

ing input might cause the application to provide the token

to the user, so it can later be used to cause the crash, the

output of the fuzzer lacks the relationship between the to-

ken value that the application provides to the user and the

token value that the user must provide to the application.

In the case of missing data, the input is simply not

replayable outside of the analysis environment, and a new

crashing input might be found. Analyses exist that specialize

in the identification of data leaks [42], but we have not yet

implemented such analyses in angr.

In the latter case, the de-randomized crashing input must

be converted into an input specification that defines how to

communicate with an application in terms of the relationship

between data received from the application and data later

provided to it. One approach that does this is Replayer [43],

which computes preconditions on program paths to understand

how to reproduce a program path under real-world conditions.

B. Exploit Generation

With a productive vulnerability excavation engine utilizing

one or more of the methods described above, many crashes

might be produced for a tested application. However, not

all of these crashes will be exploitable. An example of a

non-exploitable input is a NULL-pointer dereference. Because

modern operating systems disallow the mapping of memory

at address 0, these previously-exploitable situations have been

reduced to non-exploitable crashes. Understanding whether a

crash is exploitable helps with the triaging of bugs (that is,

understanding which bugs to investigate and fix first).

The obvious way to test if a crash would be exploitable is

to try to exploit it. To this end, several systems have been pro-

posed that attempt to take a crashing input and automatically

convert it into an exploit for the application [4], [31], [51].

C. Exploit Hardening

In recent years, binary hardening techniques, such as

non-executable stack regions and Address Space Layout

Randomization (ASLR), have severely reduced the efficacy of

traditional exploits, such as those generated by first-generation

automatic exploitation engines. Thus, even an exploitable

vulnerability might be mitigated by modern protections.

Current automatic exploitation techniques were designed

before the widespread adoption of modern mitigation

techniques, and modern software protections make the exploits

they produce non-functional. To circumvent this, approaches

have been created to automatically harden the exploits

generated using current techniques against such defenses.

Such techniques work by translating a traditional, shellcode-

based exploit into an equivalent exploit utilizing Return-

Oriented Programming [52]. As such, an automatic approach

to constructing Return-Oriented Programs is required, and

several such approaches have been developed [18], [48].

VI. ANALYSIS ENGINE

The analyses that we described in sections III, IV and V

were proposed at various times over the last several years,

implemented with different technologies, and evaluated

on disparate datasets with varying methodologies. This is

problematic, as it makes it hard to understand the relative

effectiveness of different approaches and their applicability

to different types of applications.

To alleviate this problem, we have developed a flexible,

capable, next-generation binary analysis system, angr, and

used it to implement a selection of the analyses we presented

in the previous sections. This section describes the analysis

system, our design goals for it, and the impact that this design

has had on the analysis of realistic binaries.

A. Design Goals

Our design goals for angr are the following:

Cross-architecture support. With the rise of embedded

devices, often running ARM and MIPS processors,

modern software is made for varying hardware

architectures. This is a departure from the previous

decade, where x86 support was enough for most analysis

engines: a modern binary analysis engine must be able

to perform cross-architecture analyses. Furthermore,

32-bit processors are no longer the standard; a modern

analysis engine must support analysis of 64-bit binaries.

Cross-platform support. In a similar vein to cross-

architecture support, a modern analysis system must be

able to analyze software from different operating systems.

This means that concepts specific to individual operating
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systems must be abstracted, and support for loading
different executable formats must be implemented.

Support for different analysis paradigms. A useful

analysis engine must provide support for the wide range

of analyses described in earlier sections. This requires

that the engine itself abstract away, and provide different

types of memory models as well as data domains.

Usability. The purpose of angr is to provide a tool for the

security community that will be useful in reproducing,

improving, and creating binary analysis techniques. As

such, we strove to keep angr’s learning curve low and its

usability high. angr is almost completely implemented

in Python, with a concise, simple API that is easily usable

from the IPython interactive shell [44]. While Python

results in constant-time lower performance than other po-

tential language choices, most binary analysis techniques

suffer from algorithmic slowness, and the language-

imposed performance impact is rarely felt. When lan-

guage overhead is important, angr can run in the Python

JIT engine, PyPy for a significant speed increase.

Our goal was for angr to allow for the reproduction of a

typical binary analysis technique, on top of our platform, in

about a week. In fact, we were able to reproduce Veritesting [5]

in eight days, guided symbolic execution in a month, AEG [4]

in a weekend, Q [48] in about three weeks, and under-

constrained symbolic execution [46] in two days. It is hard

to produce an implementation effort estimate for dynamic

symbolic execution and value-set analysis, as we implemented

those while building the system itself over two years.

In order to meet these design goals, we had to carefully

build our analysis engine. We did this by creating a set of

modular building blocks for various analyses, being careful

to maintain strict separation between them to reduce the

number of assumptions that higher-level parts of angr (such

as the state representation) make about the lower-level parts

(such as the data model). This makes it easier for us to mix

and convert between analyses on-the-fly. We hope that it will

also make it easier for other researchers to reuse individual

modules of angr. In the next several sections, we discuss

the technical design of each angr submodule.

B. Submodule: Intermediate Representation

In order to support multiple architectures, we translate

architecture-specific native binary code into an intermediate

representation (IR) atop which we implement the analyses.

Rather than writing our own “IR lifter”, which is an extremely

time-consuming engineering effort, we leveraged libVEX, the

IR lifter of the Valgrind project. libVEX produces an IR, called

VEX, that is specifically designed for program analysis. We

used PyVEX, which we originally wrote for Firmalice [53],

to expose the VEX IR to Python. By leveraging VEX, we

can provide analysis support for 32-bit and 64-bit versions of

ARM, MIPS, PPC, and x86 (with the 64-bit version of the

latter being amd64) processors. Improvements are constantly

being made by Valgrind contributors, with, for example, a

port to the SPARC architecture currently underway.

As we will discuss later, there is no fundamental restriction

for angr to always use VEX as its IR. As implemented,

supporting a different intermediate representation would be a

straightforward engineering effort.

C. Submodule: Binary Loading

The task of loading an application binary into the analysis

system is handled by a module called CLE, a recursive

acronym for CLE Loads Everything. CLE abstracts

over different binary formats to handle loading a given binary

and any libraries that it depends on, resolving dynamic

symbols, performing relocations, and properly initializing

the program state. Through CLE, angr supports binaries

from most POSIX-compliant systems (Linux, FreeBSD, etc.),

Windows, and the DECREE OS created for the DARPA

Cyber Grand Challenge.

CLE provides an extensible interface to a binary loader by

providing a number of base classes representing binary objects

(i.e., an application binary, a POSIX .so, or a Windows

.dll), segments and sections in those objects, and symbols

representing locations inside those sections. CLE uses file

format parsing libraries (specifically, elftools for Linux

binaries and pefile for Windows binaries) to parse the

objects themselves, then performs the necessary relocations

to expose the memory image of the loaded application.

D. Submodule: Program State Representation/Modification

The SimuVEX module is responsible for representing the

program state (that is, a snapshot of values in registers and

memory, open files, etc.). The state, named SimState in

SimuVEX terms, is implemented as a collection of state
plugins, which are controlled by state options specified by

the user or analysis when the state is created. Currently, the

following state plugins exist:

Registers. SimuVEX tracks the values of registers at any

given point in the program as a state plugin of the

corresponding program state.

Symbolic memory. To enable symbolic execution, SimuVEX
provides a symbolic memory model as a state plugin.

This implements the indexed memory model proposed

by Mayhem [16].

Abstract memory. The abstract memory state plugin is used

by static analyses to model memory. Unlike symbolic

memory, which implements a continuous indexed mem-

ory model, the abstract memory provides a region-based

memory model which is used by most static analyses.

POSIX. When analyzing binaries for POSIX-compliant

environments, SimuVEX tracks the system state in this

state plugins. This includes, for example, the files that

are open in the symbolic state. Each file is represented

as a memory region and a symbolic position index.

Log. SimuVEX tracks a log of everything that is done to the

state (i.e., memory writes, file reads, etc.) in this plugin.

Inspection. SimuVEX provides a powerful debugging

interface, allowing breakpoints to be set on complex

conditions, including taint, exact expression makeup, and
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symbolic conditions. This interface can also be used to

change the behavior of SimuVEX. For example, memory

reads can be instrumented to emulate memory-mapped

I/O devices.

Solver. The Solver is a plugin that exposes an interface to

different data domains, through the data model provider

(Claripy, discussed below). For example, when this

plugin is configured to be in symbolic mode, it inter-

prets data in registers, memory, and files symbolically

and tracks path constraints as the application is analyzed.

Architecture. The architecture plugin provides architecture-

specific information that is useful to the analysis (i.e.,

the name of the stack pointer, the wordsize of the

architecture, etc). The information in this plugin is

sourced from the archinfo module, that is also

distributed as part of angr.

These state plugins provide building blocks that can be

combined in various ways to support different analyses.

Additionally, SimuVEX implements the base unit of

an analysis: representing the semantic changes made to a

program state by a block of application code (in SimuVEX
terminology, such a block of code is called a SimRun). That

is, SimuVEX provides the capability to process an input state

through a block of VEX-represented code, and to generate an

output state (or a set of output states, in case we encounter a

block from which multiple output states are possible, such as

a conditional jump). Again, this part of SimuVEX is modular:

in addition to VEX translations of basic blocks, SimuVEX
currently allows the user to provide a handcrafted Python

function as a SimRun, providing a powerful way to instrument

blocks with Python code. In fact, this is how we implement

our environment model: system calls are implemented as

Python functions that modify the program state.

E. Submodule: Data Model

The values stored in the registers and memory of a

SimState are represented by abstractions provided by

another module, Claripy.

Claripy abstracts all values to an internal representation

of an expression that tracks all operations in which it is

used. That is, the expression x, added to the expression 5,

would become the expression x + 5, maintaining a link to

x and 5 as its arguments. These expressions are represented

as “expression trees” with values being the leaf nodes and

operations being non-leaf nodes.

At any point, an expression can be translated into data

domains provided by Claripy’s backends. Specifically,

Claripy provides backends that support the concrete domain

(integers and floating-point numbers), the symbolic domain

(symbolic integers and symbolic floating point numbers,

as provided by the Z3 SMT solver [25]), and the value-set

abstract domain for Value Set Analysis [6]. Claripy is easily

extensible to other backends. Specifically, implementing other

SMT solvers would be interesting, as work has shown that dif-

ferent solvers excel at solving different types of constraints [8].

User-facing operations, such as interpreting the constructs

provided by the backends (for example, the symbolic expres-

sion x+1 provided by the Z3 backend) into Python primitives

(such as possible integer solutions for x + 1 as a result of

a constraint solve) are provided by frontends. A frontend

augments a backend with additional functionality of varying

complexity. Claripy currently provides several frontends:

FullFrontend. This frontend exposes symbolic solving to

the user, tracking constraints, using the Z3 backend to

solve them, and caching the results.

CompositeFrontend. As suggested by KLEE and Mayhem,

splitting constraints into independent sets reduces the

load on the solver. The CompositeFrontend provides a

transparent interface to this functionality.

LightFrontend. This frontend does not support constraint

tracking, and simply uses the VSA backend to interpret

expressions in the VSA domain.

ReplacementFrontend. The ReplacementFrontend expands

the LightFrontend to add support for constraints on VSA

values. When a constraint (i.e., x+1 < 10) is introduced,

the ReplacementFrontend analyzes it to identify bounds

on the variables involved (i.e., 0 <= x <= 8). When

the ReplacementFrontend is subsequently consulted for

possible values of the variable x, it will intersect the

variable with the previously-determined range, providing

a more accurate result than VSA would otherwise be

able to produce.

HybridFrontend. The HybridFrontend combines the

FullFrontend and the ReplacementFrontend to provide

fast approximation support for symbolic constraint

solving. While Mayhem [16] hinted at such capability, to

our knowledge, angr is the first publicly available tool

to provide this capability to the research community.

This modular design allows Claripy to combine the

functionalities provided by the various data domains in

powerful ways and to expose it to the rest of angr.

F. Submodule: Full-Program Analysis

The analyst-facing part of angr provides complete

analyses, such as dynamic symbolic execution and control-

flow graph recovery. The “entry point” into these analyses

is the Project, representing a binary with its associated

libraries. From this object, all of the functionality of the other

submodules can be accessed (i.e., creating states, examining

shared objects, retrieving intermediate representation of basic

blocks, hooking binary code with Python functions, etc.).

Additionally, there are two main interfaces for full-program

analysis: Path Groups and Analyses.

Path Groups. A PathGroup is an interface to dynamic

symbolic execution – it tracks paths as they run through

an application, split, or terminate.The creation of this

interface stemmed from frustration with the management

of paths during symbolic execution. Early in angr’s

development, we would implement ad-hoc management

of paths for each analysis that would use symbolic
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execution. We found ourselves re-implementing the same

functionality: tracking the hierarchy of paths as they

split and merge, analyzing which paths are interesting

and should be prioritized in the exploration, and

understanding which paths are not promising and should

be terminated. We unified the common actions taken on

groups of paths, creating the PathGroup interface.

Analyses. angr provides an abstraction for any full program

analysis with the Analysis class. This class manages

the lifecycle of static analyses, such as control-flow

graph recovery, and complex dynamic analyses as those

presented in Section IX.

When angr identifies some truth about a binary (i.e., “the

basic block at address X can jump to the basic block at address

Y ”), it stores it in the knowledge base of the corresponding

Project. This shared knowledge base allows analyses to col-

laboratively discover information about the application.

G. Open-Source Release
We started to work on angr with the goal of developing a

platform on which we could implement new binary analysis

approaches. As we faced the unexpected challenges associated

with the analysis of realistic binaries, we realized that such

an analysis engine would be extremely useful to the security

community. We have open-sourced angr in the hope that it

will provide a basis for the future of binary analysis, and it

will free researchers from the burden of having to re-address

the same challenges over and over. angr is implemented

in just over 65, 000 lines of code, usable directly from the

IPython shell or as a python module, and easily installable

via the standard Python package manager, pip.
The open-source release of angr includes the analysis

engine modules (as described in Sections VI-A through VI-F)

on top of which we implemented the applications discussed

in Section XV. Of the latter, we have open-sourced our

control-flow graph recovery, the static analysis framework, our

dynamic symbolic execution engine, and the under-constrained

symbolic execution implementation. While we plan to release

the other applications in the future, they are currently in a

state that is a mix of being prototype-level code and being

actively applied toward the DARPA Cyber Grand Challenge.
angr has been met with extreme enthusiasm by the

community. In the first 3 months after the open-source

release, we gathered almost 500 “stars” (measures of persons

valuing the software) on GitHub across the different modules

that make up the system. In the same time period, angr had

roughly 6,000 total installations via pip and an average of

20 “clones” of the Git repository weekly. angr has already

been used in at least one class project in another institution

to introduce students to binary analysis. Additionally, we are

aware of several other institutions using it as a basis to build

research prototypes and a number of corporations evaluating

it for usability in commercial binary analysis systems.

VII. IMPLEMENTATION: CFG RECOVERY

We will describe the process that angr uses to generate

a CFG, including specific techniques that were developed to

improve the completeness and soundness of the final result.

Given a specific program, angr performs an iterative CFG

recovery, starting from the entry point of the program, with

some necessary optimizations. angr leverages a combination

of forced execution, backwards slicing, and symbolic execution
to recover, where possible, all jump targets of each indirect

jump. Moreover, it generates and stores a large quantity of

data about the target application, which can be used later in

other analyses such as data-dependence tracking.

This algorithm has three main drawbacks: it is slow, it does

not automatically handle “dead code”, and it may miss code

that is only reachable through unrecovered indirect jumps.

To address this issue, we created a secondary algorithm that

uses a quick disassembly of the binary (without executing

any basic block), followed by heuristics to identify functions,

intra-function control flow, and direct inter-function control

flow transitions. The secondary algorithm, however, is much

less accurate – it lacks information about reachability between

functions, is not context sensitive, and is unable to recover

complex indirect jumps.

In the reminder of this section, we discuss our advanced

recovery algorithm, which we dub CFGAccurate. We then

discuss our fast algorithm, CFGFast, in Section VII-F.

A. Assumptions

angr’s CFGAccurate makes several assumptions about

binaries to optimize the run time of the algorithm.

1) All code in the program can be distributed into different

functions.

2) All functions are either called by an explicit call

instruction (or its equivalents), or are preceded by a tail

jump (an optimization, often used to reduce stack space

for recursive functions, in which a call at the very end

of a function is changed to a jump so that the newly

called function simply reuses the return address of its

caller) in the control flow.

3) The stack cleanup behavior of each function is

predictable, regardless of where it is called from. This

lets CFGAccurate safely skip functions that it has

already analyzed while analyzing a caller function and

keep the stack balanced.

These assumptions place constraints on the types of

binaries that angr is designed to analyze. Assumptions 1, 2,

and 3 require that the binary being analyzed is not obfuscated

and behaves in a “normal” way. We can remove those

assumptions when analyzing obfuscated or abnormal binaries,

but this would lead to a higher run time of the CFG recovery.

Our CFG recovery code is built upon techniques proposed

by related literature [21], [34], [50], [58], [59]. However,

these techniques make assumptions that are overly strict or

are unrealistic for real-world binaries. Specifically, we do not
assume any of the following, unlike the work that our CFG

recovery is based on:

1) All functions return to the next instruction after their

call-site [59].
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2) The jump target of an indirect branch is always deter-

mined by a control flow path, not by a program state

or context [59]. For example, some existing literature as-

sumes that indirect jumps are all computed, as opposed to

being passed in as a function pointer from prior contexts.

3) Expressions for jump targets of indirect jumps must

match a set of common idioms [21], [58]. Unlike existing

work, we make no assumptions on the type of operations

that can be applied to pointers.

4) The stack pointer is the same before entering a function

as it is after returning from it.

5) No two functions overlap (in other words, they cannot

share basic blocks [34].) CFGAccurate handles

functions that share code.

6) Additional information, such as symbol tables or

relocation information, is available [50].

The actual algorithm to recover a control-flow graph from

a binary is described in the next few sections.

B. Iterative CFG Generation

Unfortunately, no single technique meets CFGAccurate’s

goal of recovering a complete and sound CFG. Thus,

CFGAccurate constructs a CFG by interleaving a series of

techniques to achieve speed and completeness. Specifically,

four techniques are used: forced execution, lightweight

backward slicing, symbolic execution, and value set analysis.

The CFG to be iteratively recovered by these techniques, C,

is initialized with the basic block at the entry point of the

application.

Throughout CFG recovery, CFGAccurate maintains

a list of indirect jumps, Lj , whose jump targets have not

been resolved. When the analysis identifies such a jump, it

is added to Lj . After each iterative technique terminates,

CFGAccurate triggers the next one in the list. This next

technique may resolve jumps in Lj , may add new unresolved

jumps to Lj , and may add basic blocks and edges to the CFG

C. CFGAccurate terminates when a run of all techniques

results in no change to Lj or C, as that means that no further

indirect jumps can be resolved with any available analysis.

C. Forced Execution

angr’s CFGAccurate leverages the concept of Dynamic

Forced Execution for the first stage of CFG recovery [59].

Forced Execution ensures that both directions of a conditional

branch will be executed at every branch point.

CFGAccurate maintains a work-list of basic blocks,

Bw, and a list of analyzed blocks, Ba. When the analysis

starts, it initializes its work-list with all the basic blocks

that are in C but not in Ba. Whenever CFGAccurate
analyzes a basic block from this work-list, the basic block

and any direct jumps from the block are added to C. Indirect

jumps, however, cannot be handled this way. Under forced

execution, the targets of indirect jumps may differ from those

of an actual run of the program because forced execution

will execute code in an unexpected order. Thus, each indirect

jump is stored in the list Lj for later analysis.

As it cannot resolve any indirect jumps, this analysis

functions as a fast-pass CFG recovery analysis to quickly

seeds the other analyses with detected basic blocks and

unresolved indirect jumps.

D. Symbolic Execution

The main issue with dynamic forced execution is the

presence of indirect jumps, as there is no way to make sure that

the target of an indirect jump is correctly resolved. On the one

hand, an indirect jump may be completely unresolvable (i.e.,

the forced execution resulted in a state where the jump target is

read from uninitialized memory), which leaves a broken con-

trol flow transition in the recovered CFG. On the other hand, an

indirect jump may also be partially solvable (i.e. our analysis

only retrieves a portion of all the possible jump targets).

For each jump J ∈ Lj , CFGAccurate traverses the CFG

backwards until it find the first merge point (that is, multiple

paths converging on the way to the indirect jump) or up

to a threshold number of blocks (empirically, we found a

reasonable threshold to be 8). From there, it performs forward

symbolic execution to the indirect jump and uses a constraint

solver to retrieve possible values for the target of the indirect

jump.

CFGAccurate considers a jump successfully resolved

if the computed set of possible targets is smaller than a

threshold size. We use a value of 256 for this threshold but

we have found that, in practice, in the cases where jumps

are not resolved successfully, this value is unconstrained
(meaning, the set of possible targets is bounded only by the

number of bits in the address).

If the jump is resolved successfully, J is removed from Lj

and edges and nodes are added to the CFG for each possible

value of the jump target.

E. Backward Slicing

angr’s forced execution and symbolic execution analyses

fail to resolve many of the unresolved jumps due to the lack of

context. Those analyses are carried out in a context-insensitive

manner: if a function takes pointer as an argument, and that

pointer is used as the target of an indirect jump, the analyses

will be unable to resolve it.

To achieve better completeness, our CFG generation

requires a context-sensitive component. We accomplish this

with backward slicing. CFGAccurate computes a backward

slice starting from the unresolved jump. The slice is extended

through the beginning of the previous call context. That is, if

the indirect jump being analyzed is in a function Fa that is

called from both Fb and Fc, the slice will extend backward

from the jump in Fa and contain two start nodes: the basic

block at the start of Fb and the one at the start of Fc.

CFGAccurate then executes this slice using angr’s

symbolic execution engine and uses the constraint engine to

identify possible targets of the symbolic jumps, with the same

threshold of 256 for the size of the solution set for the jump

target. If the jump target is resolved successfully, the jump

is removed from Lj and the edge representing the control
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flow transition, and the target basic blocks are added to the

recovered CFG.

F. CFGFast

The goal of the fast CFG generation algorithm is to

generate a graph, with high code coverage, that identifies at

least the location and content of functions in the binary. This

graph lacks much of the control flow, so it is not complete.

However, such a graph can still be useful for both manual

and automated analysis of binaries.

CFGFast carries out the following steps:

Function identification. We use hard-coded function

prologue signatures, which can be generated from

techniques like ByteWeight [7], to identify functions

inside the application. If the application includes

symbols, specifying the locations of functions, they are

also used to seed the graph with function start positions.

Additionally, the basic block representing the entry point

of the program is added to the graph.

Recursive disassembly. Recursive disassembly is used to

recover the direct jumps within the identified functions.

Indirect jump resolution. Lightweight alias analysis, data-

flow tracking, combined with pre-defined strategies are

used to resolve intra-function control flow transfers.

Currently CFGFast includes strategies for jump table

identification and indirect call target resolution.

The goal is to quickly recover a CFG with a high coverage,

without a concern for understanding the reachability of

functions from one another.

G. Using the CFG Recovery

angr exposes the CFG recovery algorithms as two

analyses: CFGFast and CFGAccurate. These analyses

output CFG data to angr’s knowledge base, as discussed

in Section VI-F. This data can then be used in the course of

manual analysis or later automated analyses.

VIII. IMPLEMENTATION: VALUE SET ANALYSIS

Once a CFG is generated, more advanced analyses can

be run. One of these is Value-Set Analysis [6]. Value-Set

Analysis (VSA) is a static analysis technique that combines

numeric analysis and pointer analysis for binary programs.

It uses an abstract domain, called the Value-Set Abstract

domain, for approximating possible values that registers or

abstract locations may hold at each program point.

VSA analyzes a program until it reaches a fix-point for all

program points in the function. This fix-point represents a tight

over-approximation of all values that any register or abstract

memory location can have at any point in the function. With

respect to, for example, a memory write to a computed address

A, consulting the values of A in the computed fix-point will

contain a complete list of all possible write targets.

The original VSA design, proposed by Balakrishnan et

al. [6], does not perform well when analyzing real-world

binaries. To make VSA work on such binaries, we had to

develop a number of improvements to increase the precision

of our analysis.

Creating a discrete set of strided-intervals. The basic

data type of VSA, the strided interval, is essentially

an approximation of a set of numbers. It is great for

approximating a set of normal concrete values. However,

if those values are used as jump targets in the program,

the over-approximating nature of strided-intervals yields

unsoundness in our recovered CFG by creating control

flow transitions to addresses that should not be jump

targets. To effectively solve this problem, we developed

a new data type called “strided interval set”, which

represents a set of strided intervals that are not unioned

together. A strided interval set will be unioned into a

single strided interval only when it contains more than K
elements, where K is a threshold that can be adjusted. In

our model discussed in Section II-A, this threshold con-

trols a trade-off of semantic insight versus scalability – a

higher value of K allows us to maintain high precision,

but comes at a cost of increased analysis complexity.

Applying an algebraic solver to path predicates. Tracking

branch conditions helps us constrain variables in a state

after taking a conditional exit or during a merging

procedure, which produces a more precise analysis

result. Affine-Relation Analysis has been proposed as

a technique to track these conditions [40]. However, it

is both complicated to implement (generally leading to

support for very few arithmetic operations in constraint

expressions), and is computationally expensive in reality.

Our solution is to implement a lightweight algebraic

solver that works on the strided interval domain, based on

modulo arithmetic which take care of some of the affine

relations. When a new path predicate is seen (i.e., when

following a conditional branch), we attempt to simplify

and solve it to obtain a number range for the variables

involved in the path predicate. Then we perform an inter-

section between the newly generated number range and

the original values for each corresponding variable. This

allows us to continuously refine the result of our value-

set analysis as new branch conditions are encountered,

increasing the precision of the eventual fix-point.

Adopting a signedness-agnostic domain. As originally

proposed, VSA operates on a signed strided interval

domain, which assumes all values are signed. That

is, for an n-bit strided-interval with l as its lower

bound and h as its upper bound, we always have

l ∈ [−2n−1, 2n−1 − 1] ∧ h ∈ [−2n−1, 2n−1 − 1] ∧ l ≤ h.

However, this results in heavily over-approximated

results of unsigned arithmetic calculations. In fact, this

over-approximation is exacerbated by the fact that, since

jump addresses are unsigned, the computation of jump

addresses generally relies on unsigned values (i.e., in

the case of unsigned comparisons). The solution to this

problem is to adopt a signedness-agnostic domain for

our analysis. Wrapped Interval Analysis [41] is such
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an interval domain for analyzing LLVM code, which

takes care of signed and unsigned numbers at the same

time. We based our signedness-agnostic strided-interval

domain on this theory, applied to the VSA domain.

We use VSA for memory corruption detection in three

phases. First, we collect all read and write access patterns in

the program during the VSA. On top of those access patterns,

we perform a variable recovery for variables on both the

stack and heap regions. Our implementation is similar to the

variable recovery in TIE [36]. Next, we scan all stack and heap

regions to find abnormal buffers, including a) overlapping

buffers, and b) out-of-bound buffers. Then we simply report

all abnormal buffers as potential memory corruptions.

A. Using VSA
The main interface that angr provides into a full-program

VSA analysis is the Value Flow Graph. The VFG is an

enhanced CFG that includes the program state representing

the VSA fix-point at each program location. Depending on

the parameters passed to the VFG analysis, this can include a

single function, a tree of function calls, or the entire program.
The program states contained in the VFG present memory

in an abstract layout provided by SimuVEX (specifically,

the SimAbstractMemory memory model), with values in

memory represented by value-sets, as provided by Claripy.

We performed our buffer overlap analysis over the data

contained in these program states by analyzing the range of

values that memory accesses may take.

IX. IMPLEMENTATION: DYNAMIC SYMBOLIC EXECUTION

The dynamic symbolic execution module of our analysis

platform is mainly based on the techniques described in

Mayhem [16]. Our implementation follows the same memory

model and path prioritization techniques. This module

represents one of the core functionalities of angr, other

analyses, such as Veritesting and under-constrained symbolic

execution, use it as a base.
We use Claripy’s interface into Z3 to populate the sym-

bolic memory model (specifically, SimSymbolicMemory)

provided by SimuVEX. Individual execution paths through a

program are managed by Path objects, provided by angr,

which track the actions taken by paths, the path predicates, and

various other path-specific information. Groups of these paths

are managed by angr’s PathGroup functionality, which

provides an interface for managing the splitting, merging, and

filtering of paths during dynamic symbolic execution.
angr has built-in support for Veritesting [5], implementing

it as a Veritesting analysis and exposing transparent

support for it with an option passed to PathGroup objects.

This advanced state merging technique helps mitigate the

problem of exponential state explosion by statically (and

selectively) merging paths.

X. IMPLEMENTATION:

UNDER-CONSTRAINED SYMBOLIC EXECUTION

We implemented under-constrained symbolic execution

(UCSE), as proposed in UC-KLEE [46], and dubbed it

UC-angr. UCSE is a dynamic symbolic execution technique

where execution is performed on each function separately.

Since the analysis cannot reason about how to get to the

specific function, detections by UCSE are not replayable.

Because each function is generated without its context (i.e.,

the arguments and global variables with which it is called

in actual executions), the analysis is not accurate and suffers

from false positives.
UCSE tags missing context in the state as under-

constrained. When such under-constrained data is used as

a pointer, a new under-constrained region is created and

the pointer is directed at the new region. This “on-demand”

memory allocation enables code that manages complex data

structures to be analyzed. When a security violation is identi-

fied (i.e., a write to the saved return address on the stack), the

values involved are checked for their under-constrained status.

Under certain conditions (i.e., if all data involved is under-

constrained), the violation is filtered out as a false positive.
We made two changes to the technique described in UCSE:

Global memory under-constraining. The original UC-

KLEE implementation does not treat access to global

memory as under-constrained. However, such memory

is part of the program context that is impossible to

predict with UCSE, since, when analyzing a given

function, global data could have already potentially been

overwritten. Thus, we mark all global data as under-

constrained, allowing us to lower our false positive rate.

Path limiters. The original UC-KLEE implementation

had several built-in limitations to prevent a path

explosion. For example, they would limit the depth

of under-constrained pointer dereferences to avoid a

search through an under-constrained linked list never

terminating. We added an additional limiter: we abort

the analysis of a function when we find that it is

responsible for a path explosion. We detect this by

hard-coding a limit (in our experiments, we used an

empirically-determined limit of 64 paths) and, when

a single function branches over this many paths, we

replace the function with an immediate return, and

rewind the analysis from the call site of that function.

This keeps the analysis tractable by avoiding path

explosions, but makes the analysis even less accurate.

False positive filtering. We introduced several additional

false positive filters into our implementation of UC-

angr. Specifically, when we detect an exploitable state,

we attempt to ensure that the state is not incorrectly made

exploitable by a lack of constraints on under-constrained

data. First, we perform a constraint solve with an

additional constraint, E, that expresses the fact that the

state is not exploitable (i.e., if the security violation

was an overwrite of the return address, we constrain

the state so that the return address could not have been

overwritten). Then, we constrain each under-constrained

value to its possible solution from this unexploitable

state. We call these constraints U . Finally, we remove

the constraint E, keeping the constraints U , and check
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that the state can still be exploited. If it can, this means

that the function likely has some inherent flaw, and the

flaw does not necessarily depend on missing data from

the context. Note that the flaw could still be a false

positive due to missing constraints, or due to the limited

context on data that is not under-constrained.

UC-angr is implemented as a SimState plugin that

tracks under-constrained data accesses and carries out the

required relocations. Once this plugin is initialized, under-

constrained symbolic execution can be performed using the

same PathGroup paradigm as dynamic symbolic execution.

XI. IMPLEMENTATION: SYMBOLIC-ASSISTED FUZZING

While we give a summary of our symbolic-assisted fuzzing

implementation here, the full approach, called Driller, is

detailed in a separate paper [54].

Our implementation of symbolic-assisted fuzzing uses the

AFL fuzzer as its foundation and angr as its symbolic tracer.

By monitoring AFL’s performance, we can decide when to

begin symbolically-tracing the inputs that AFL has created.

To make this decision, we act on the rate at which the fuzzer

is discovering new state transitions. If AFL reports that it

has discovered no new state-transitions after performing a

round of mutations of the input, we assume the fuzzer to

be having trouble making progress, and invoke angr on

all paths AFL has deemed as unique (i.e., any path that has

a jump, identified by a tuple of the source and destination

address, that no other path has), looking for transitions that

AFL was unable to find inputs for.

Driller’s symbolic component is implemented using

angr’s symbolic execution engine, so as to symbolically

trace paths based on the concrete inputs provided by AFL.

This avoids the path explosion problem inherent to symbolic

execution, as each concrete input corresponds to a single

(traced) path, and these inputs are heavily filtered by AFL

to ensure that only promising ones are traced. Each concrete

input corresponds to an individual path in a PathGroup.

At each step of the PathGroup, every branch is checked

so as to ensure that the most recent jump instruction leads

to a path previously unknown to AFL. When such a jump

is found, the SMT solver is queried to create an input that

would drive execution to the new jump. This input is fed back

to AFL, which goes on to mutate it in future fuzzing steps.

This feedback loop allows us to balance expensive symbolic

execution time with cheap fuzzing time, and mitigates

fuzzing’s low semantic insight into program operation.

XII. IMPLEMENTATION: CRASH REPRODUCTION

We implemented the approach proposed by Replayer [43]

to recover missing relationships between input values (i.e.,

values that the attacker sends) and output values (i.e., values

that the attacker leaks from the application).

Our implementation of Replayer is built atop our symbolic

execution engine. We can define the problem of replaying

a crashing input as the search for an input specification is
to bring a program from an initial state s to a crash state

q. Our algorithm takes, as input, the program P , an initial

state sa (i.e., the state at the entry point of the executable),

the crash state qa, and the input ia that brings sa to qa in

the instrumented (de-randomized) environment, but does not

properly replay in an uninstrumented environment. Our imple-

mentation symbolically executes the path from sa to qa, using

the input ia. It records all constraints that are generated while

executing P . Given the constraints, the execution path, the

program P , and the new initial state sb, we can symbolically

execute P with an unconstrained symbolic input, following the

previously recorded execution path until the new crash state qb
is reached. At this point, the input constraints on the input and

output can be analyzed, and relationships between them can be

recovered. This relationship data is used to generate the input

specification is, allowing the crashing input to be replayed.

The implementation proposed by Replayer has two main

limitations in its application to crash reproduction. First, as

we discuss in Section V-A, it is possible that a given crash

does not retrieve all of the data that is required to properly

replay the crash. Replayer is unable to handle these cases,

and new crashing inputs must be found.

Second, Replayer uses only the exact path, as executed by

the application in the de-randomized environment while pro-

cessing the crashing input, to generate the input specification.

If the execution trace of a binary changes, based on the exact

value of random data, then Replayer cannot compute the cor-

rect input. For example, if the random cookie introduces path

predicates, by causing the execution of a specific path through

a decoding function, replaying execution with that exact path

will constrain the cookie to a value that might differ from the

initial one. When this happens, the replayed cookie will not be

correct, and the replaying attempt will fail. As we will discuss

later, AEG is facing a similar limitation. This suggests that re-

search in this area could make progress for both of these tasks.

XIII. IMPLEMENTATION: EXPLOIT GENERATION

By implementing algorithms similar to those described in

AXGEN [51], AEG [4] and Mayhem [16], we were able to

evaluate the effectiveness of the current state of the art in

automatic exploit generation. Our implementation allows us

to create exploits for vulnerabilities, allowing the attacker

to take control of the program’s execution by overwriting

a saved instruction pointer (e.g., by overwriting function

pointers, or exploiting buffer overflows on the stack).

Vulnerable States. Unlike AEG/Mayhem, but similar

to AXGEN, we generate exploits by performing concolic

execution on crashing program inputs using angr. We drive

concolic execution forward, forcing it to follow the same

path as a dynamic trace gathered by concretely executing the

crashing input applied to the program. Concolic execution

is stopped at the point where the program crashed, and we

inspect the symbolic state to determine the cause of the

crash and measure exploitability. By counting the number

of symbolic bits in certain registers, we can triage a crash

into a number of categories such as frame pointer
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overwrite, instruction pointer overwrite, or

arbitrary write, among others.
Instruction Pointer Overwrite Technique. The simplest

exploitable bug we can encounter is where symbolic bits

appear in the instruction pointer at crash time. When detecting

that symbolic bits are contained in the instruction pointer,

we can constrain our instruction pointer to point to either a

controlled sequence of instructions, such as shellcode, or a

ROP gadget that pivots the stack to a symbolic buffer where we

can execute a ROP chain (generated by our exploit hardening

step). angr itself handles many of the implementation details

discussed in AEG and AXGEN, such as taint tracking and path

condition building, allowing us to limit ourselves to finding

symbolic memory buffers and applying constraints to register

values to generate an exploit, as proposed by these approaches.
Exploiting CGC Binaries. The Cyber Grand Challenge

hosts the game on a custom OS which includes only 7 system

calls. The lack of system calls which can execute programs

and open files means exploitation within the Cyber Grand

Challenge is limited to demonstrating register control and the

ability to read and write memory. By DARPA standards, two

type of exploits exist for the CGC:

• A Type 1 exploit demonstrates that the attacker controls

a general purpose register and the instruction pointer

register.

• A Type 2 exploit demonstrates that the attacker can per-

form a controlled read from the process memory space.

Out of the 126 binaries we applied AEG to, we succeeded

in exploiting only a total of 4 binaries. For only two of these

binaries, we were able to generate a “Type 2” exploit. Both of

these “Type 2” exploits were unable to be hardened with ROP

and resorted to jumping to shellcode. Additionally, AEG was

only able to generate 2 hardened, ROP “Type 1” exploits. We

believe these results show that much more work in the field of

automated exploit generation is to be done, and that the current

methods are not well-applicable to modern vulnerabilities.
Challenges Faced. Here we demonstrate some of the

challenges that our tool faced while attempting to exploit

Cyber Grand Challenge binaries, using CROMU00019 [24].

We will focus on the exploitation of the second vulnerability

mentioned in this challenge’s README (specifically, a buffer

overflow on the stack that exists during the decoding of an

attacker-supplied string).
The major issue we ran into during exploit generation was

the presence of path predicates that constrained each byte

of the overflowing data to being a single value, despite the

values of these bytes being chosen based on symbolic input.

CROMU00019 demonstrates this in its decode function.

Each byte of the payload takes a branch of the switch

statement contained in decode, placing restrictive predicates

on our path representing the vulnerable state. While the arms

of this switch statement are taken based on symbolic data, the

data returned is concrete, and each of these arms represents

a separate path through the program. The traditional AEG

approach assumes the ability to place the proper constraints

on symbolic data to carry out control flow hijacking, but this

behavior requires finding the single path through the decode
function which places our desired bytes into the output buffer.

The solution to this problem would be to search for a

single path which performs a desirable control flow hijack

out of the many paths which present vulnerable conditions.

However, modern exploit generation capabilities do not have

this capacity, and cases like these prevent many of the stack

buffer overflow vulnerabilities presented in the CGC Qualifier

event from being exploited with the current state-of-the-art

automatic exploit generation.

XIV. IMPLEMENTATION: EXPLOIT HARDENING

To harden exploits against modern mitigation techniques,

we implemented a ROP chain compiler based on the ideas

in Q [48]. This means that we can automatically generate

ROP payloads to fulfill an end goal, such as writing data

to memory or calling an arbitrary function in a library. This

section focuses on the differences and improvements we

made over Q itself.

Our approach comprises the following steps:

Gadget discovery. We scan all executable code in the

application, at every byte offset, to identify ROP gadgets

and classify them according to their effects. For example,

the instruction sequence: mov [ebx], eax; pop
ebx; ret would be classified as a memory write and a

register load. To carry out the classification, our analysis

leverages the action history provided by angr’s Path
objects and symbolic relations provided by Claripy.

Gadget arrangement. The ROP chain compiler then

determines arrangements of gadgets that can be used to

perform high-level actions. For example, a gadget that

pushes data to the stack can be paired with a gadget that

pops data to create an arrangement that moves data from

one register to another.

Payload generation. After the ROP compiler identifies the

requisite set of gadget arrangements, it combines these

gadgets into a chain to carry out high-level actions

(such as executing attacker-specified system calls with

specified arguments). This is done by writing gadget

arrangements into a program state in angr, constraining

their outputs to the provided arguments, and querying

the SMT solver for a solution for their inputs.

Our implementation differs from Q in minor ways. First,

Q made no use of the stack as scratch storage space. It is

not clear why this is: one explanation is that their analysis

platform did not support the modeling of stack operation,

while another is that the approach remains more general if

we assume that the stack is not necessarily pointed to by

the stack pointer (and, thus, in an unknown location). In our

integrated system, we could identify whether the stack pointer

was pointing to the stack, since we had this metadata from the

exploit that we generated with our implementation of AEG.

Another improvement has to do with the gadget classifi-

cation. Q used a value sampling method to identify specific

classes of gadgets, which led to some number of missed

gadgets chains due to the limited coverage of the sample
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Technique Based On Described In
Dynamic Symbolic Execution Various [12], [16], [20] IV-A2, IX

Veritesting Veritesting [5] IV-A2, IX
Under-constrained DSE UCSE [46] IV-A2, X

Symbolic-Assisted Fuzzing Driller [54] IV-A1, XI
Static Analyses VSA [6] III-C, VIII

Crash Replay Replayer [43] V-A, XII
Exploit Generation AEG [4] V-B, XIII
Exploit Hardening Q [48] V-C, XIV

TABLE I
ANALYSES IMPLEMENTED AND EVALUATED IN THIS PAPER, THE

LITERATURE ON WHICH THEY ARE BASED, AND THE SECTIONS OF THIS

PAPER IN WHICH THEY ARE DISCUSSED.

data. In our approach, we symbolically analyze every gadget,

using careful caching techniques to keep the analysis fast.

XV. COMPARATIVE EVALUATION

By leveraging angr’s design, we were able to reproduce

the binary analysis techniques that we have discussed, on

the same codebase, enabling a comparative evaluation of

their effectiveness. To the best of our knowledge, this has

not been done before: previous comparisons were carried

out on different implementations, leaving the possibility of

differences in results being introduced by implementation

differences. With the exception of the fuzzer itself (AFL),

our analyses are all implemented on the same analysis engine

and share over 90% of the same code base with each other.

We use a corpus of CGC binaries, released by DARPA

for the CGC Qualification Event, to carry out our evaluation.

As discussed in Section II-B, these binaries vary widely in

complexity, but utilize a simple environment model, designed

by DARPA to reduce the implementation effort of analysis

systems.

We evaluate the techniques that we implemented for CFG

recovery, dynamic and static vulnerability discovery, crash

replay, exploitation, and exploit hardening. A summary of

the analyses we implemented and evaluated, along with the

literature on which they are based and the sections in this

paper in which they are described, is produced in Table I.

A. CFG recovery

As the CFG is used as a pre-requisite for other analyses in

angr, it is important to understand how well angr’s CFG

recovery performs. As we discussed in detail in Section VII,

angr has two CFG recovery algorithms: CFGAccurate
relies on a base approach of forced execution and provides

two methods of indirect jump resolution (backwards slicing
and symbolic back-traversal), while CFGFast mainly uses

recursive disassembly and heuristics to quickly identify

functions and inter-function control flow.

To understand the effectiveness of these recovery

techniques, we compared CFGFast and CFGAccurate
against the CFG recovery of a state-of-the-art commercial

tool, IDA Pro 6.9, on CGC binaries. While little details

about how IDA Pro recovers the CFG are available, based on

descriptions in previous work [59] as well as our observations,

we believe that IDA Pro disassembles a binary recursively,

uses symbols and other heuristics to determine locations

CGC Qualifying Position Binaries Crashed
First 77

Second 12
Third 57

Fourth 9
Fifth 23
Sixth 57

Seventh 44
Eighth (did not qualify) 39
Ninth (did not qualify) 65

TABLE III
NUMBER OF CRASHED BINARIES FOR THE TOP 9 COMPETITORS IN THE

CGC QUALIFICATION EVENT.

of functions throughout a binary, and then utilizes some

lightweight data-flow analyses to further solve the targets of

indirect jumps. This makes it more similar, conceptually, to

CFGFast than to CFGAccurate. As ground truth CFG

information is not available, we evaluate our results in terms of

the relative number of recovered basic blocks and control flow

transfers between the results of IDA’s and our CFG recovery.

We first evaluate the completeness of our CFG, comparing

the blocks and edges identified by CFGFast and the graph

generated by IDA Pro. Table II shows our results. CFGFast
has a slightly better code coverage than IDA Pro, and recovers

more edges. We believe that this is because the lightweight

data-flow analyses and heuristics that are used by CFGFast
are more advanced than those used by IDA. Manual analysis

of recovery results on a few binaries indicates that CFGFast
is more aggressive in terms of code recovery: while IDA Pro

believes certain parts of code are not reachable and refuses

to disassemble it as code, CFGFast identifies such locations

as code. A possible explanation for this is that our approach

might be overly aggressive, and as such, it might mis-identify

such locations. However, we have not identified such cases

when analyzing CGC binaries.

As some binary analyses require reachability information
from the entry point, we have also included a comparison

against the reachable portion of a CFG generated by IDA Pro

(that is, a CFG comprising those blocks for which a path from

the entry point can be determined) against the CFG recovered

by angr’s CFGAccurate analysis. Table II shows our

results. By improving the forced execution technique with

backward slicing, angr substantially improves its ability to

reconstruct the CFG. However, since CFGAccurate does

not leverage ad hoc heuristics, the resulting CFG’s code

coverage is not as high as IDA Pro’s. To achieve a better

coverage, the user can provide CFGAccurate with all

recovered functions from CFGFast as starting points.

B. Evaluation of Vulnerability Analysis Techniques

In Sections VIII through XI, we describe the implementation

of several vulnerability discovery techniques. Here, we present

the result of a comparative evaluation of these techniques as

applied to the CGC dataset. We ran these evaluations with a

timeout of 24 hours, which is the time period of the DARPA

competition from which we retrieved the evaluation dataset.

We provide a summary of these results in Table IV.

Additionally, to provide a better context for the number of
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Approach Functions Function Edges Blocks Block Edges Bytes Time (s)
M A M A M A M A M A M A

IDA Pro 6.9 48 52.96 76.5 99.62 829 3589.93 1188 6487.68 14037 104779.66 1.14 1.80
angr - CFGFast 61 70.08 88 118.74 843 3609.45 1193 6538.52 14296 105007.49 0.87 5.01

IDA Pro 6.9 - reachability 37 40.96 74 90.76 496 1043.81 759 1693.01 7874 21721.85 1.14 1.80
angr - forced execution 31 33.24 48 55.22 349.5 413.85 612 751.96 6125 13963.5 23.50 36.96

angr - symbolic back traversal 32 33.76 50 56.28 368 635.41 645 1089.78 6323 10883.51 27.22 34.10
angr - backward slicing 30 32.80 47.5 53.89 344.5 653.56 594 1178.98 6109.5 14641.85 24.78 79.46

TABLE II
EVALUATION OF CFGFAST’S AND CFGACCURATE’S RECOVERED CFG VERSUS THE CFG RECOVERED BY IDA PRO. THE MEDIAN NUMBER (M) AND

AVERAGE NUMBER (A) OF EACH VALUE ACROSS ALL BINARIES ARE SHOWN.

Technique Replayable Semantic Insight Scalability Crashes False Positives
Dynamic Symbolic Execution Yes High Low 16 0

Veritesting Yes High Medium 11 0
Dynamic Symbolic Execution + Veritesting Yes High Medium 23 0

Fuzzing (AFL) Yes Low High 68 0
Symbolic-Assisted Fuzzing Yes High High 77 0

VSA No Medium High 27 130
Under-constrained Symbolic Execution No High High 25 346

TABLE IV
EVALUATION RESULTS ACROSS ALL VULNERABILITY DISCOVERY TECHNIQUES.

crashes identified by our techniques, we have included the

number of crashes identified by the competitors at the actual

CGC Qualification Event, in Table III. The overall scores

of the teams relied on more than just crash counts, so the

placement in the qualifying event is not correlated with

the position of the competitors. Two of these competitors,

the first-place team [27] and the seventh-place team [57],

have written blog posts describing their techniques in the

competition. Both teams used a symbolically-assisted fuzzing

technique, conceptually similar to Driller. Note that, while

our implementation of Driller identifies the same number of

vulnerabilities as the first place team, this is a coincidence

(likely driven by the similarity between the techniques).

Dynamic symbolic execution. We chose to evaluate dynamic

symbolic execution both alone and in the presence of the

Veritesting path explosion mitigation technique. We describe

the implementation details of these approaches in Section IX.

As expected, dynamic symbolic execution frequently suc-

cumbed to the path explosion problem. In total, the standard

approach identified vulnerabilities in 16 of the CGC binaries.

Veritesting, which is designed to partially mitigate the path

explosion problem, identified only 11, for a combined count

of 23 applications in which vulnerabilities were identified.

We were initially surprised to find that, despite the better

results, the Veritesting approach found less vulnerabilities

than dynamic symbolic execution alone. Investigating these

four binaries, we identified an interesting trade-off inherent to

Veritesting. Veritesting uses efficient path merging to combat

path explosion, which is responsible for its ability to explore

deeper paths in the binary before path explosion renders

further progress impossible. However, such path merging

introduces complex expressions (e.g., if the value of register

eax differs between two merged paths, the value of the

merged path must be a complex expression encoding both

previous values) and overloads the constraint solver. Thus, the

solve times of the constraint solver tend to increase as more

and more of these merges are done. As constraint solving

is an NP-complete problem, the increased complexity leads

to vulnerabilities becoming unreachable within a reasonable

time. The result of this is that Veritesting is able to identify

shallow bugs that dynamic symbolic execution otherwise

experiences a path explosion with, but overwhelms the

constraint solver for longer paths.

Symbolic-assisted fuzzing. Assisted fuzzing has proven to

be extremely effective in the literature. In Section XI, we

discuss an implementation of a symbolic-assisted fuzzing

method, dubbed Driller [54].

This symbolic-assisted fuzzer uses AFL for the fuzzing

component. Each input that AFL produces is traced in the

dynamic symbolic execution engine to identify code sections

that could be reached by careful mutation of the input. This

careful mutation is carried out by the symbolic constraint

solver, and the input is reintroduced to AFL for further

execution and mutation. Because the individual inputs traced

by the DSE engine do not branch (as all the input is concrete),

there is no path explosion during tracing, and AFL limits the

number of inputs passed to the DSE engine by filtering out

all the inputs that do not increase code coverage.

It should be mentioned that AFL alone is able to identify

vulnerabilities in a significant amount of the CGC services. In

fact, of the 77 vulnerabilities that our symbolic-assisted fuzzer

detected, 68 were detected by AFL alone. The remaining 9

were found through the use of symbolic assistance.

DSE vs. fuzzing. The difference between the results of

the various dynamic symbolic execution approaches are

surprising. One might reasonably expect DSE to identify

roughly as many vulnerabilities as symbolically-assisted
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Fig. 1. Length of crashing paths discovered by fuzzing vs. dynamic symbolic
execution.

fuzzing, and more than fuzzing alone. In reality, fuzzing

identified almost three times as many vulnerabilities. In a

sense, this mirrors the recent trends in the security industry:

symbolic analysis engines are criticized as impractical while

fuzzers receive an increasing amount of attention. However,

this situation seems at odds with the research directions of

recent years, which seem to favor symbolic execution.

Analyzing the crashing inputs that these approaches did

find, we identified an interesting result: the exploits found by

dynamic symbolic execution engines tend to represent short
paths. This result is presented in Figure 1. By spot-checking

several applications where dynamic symbolic execution

(even with Veritesting) failed to find vulnerabilities, we have

concluded that this is due to an increase in analysis complexity,

exponentially proportional to the length of the path.

Specifically, given a path A, there is a chance pa that A
will split at the end of the next conditional jump, and A1 will

follow the path that takes the jump, while A2 will follow the

path that does not. At the next conditional jump, there is a

chance that A1 and A2 will fork as well. Thus, the amount

of resulting paths to analyze increases exponentially, and the

chance that an unreasonable number of paths will have to be

analyzed at any point is exponentially proportional to how

many basic blocks have been executed by the analysis. As a

result, the typical dynamic symbolic execution approach is best

for finding shallow crashes that do not require the execution

of many basic blocks. Deep crashes, on the other hand, tend

to be hidden and made unreachable by the path explosion.

To further understand the relative effectiveness of the tech-

niques, we calculated the code coverage of the generated test

cases. We found that symbolic execution (including Veritest-

ing) covered an average of 330 blocks per binary (with a me-

dian of 260), while fuzzing covered 689 (with a median of 402)

and symbolic-assisted fuzzing covered 698 (with a median of

406). These results yield another interesting conclusion: if the

paths generated by fuzzing or symbolic-assisted fuzzing were

combined into a graph, it would represent a CFG with more

code coverage than the one recovered by CFGAccurate
(and, by virtue of each edge in the graph being reachable by

definition, with perfect completeness), implying a need for

further improvement of the accurate CFG recovery algorithm.

Under-constrained symbolic execution. We extended angr
to support under-constrained symbolic execution to better

understand how effective such techniques are on our dataset.

These details are presented in Section X.

UC-angr reported 371 vulnerabilities in the CGC binaries.

However, as this approach analyzes functions without their

context, it suffers from similar problems as static analyses:

the results contain a large number of false positives, and the

results are not replayable (that is, they do not generate crashing

inputs, but instead point out the location of vulnerabilities). In

fact, we identified 346 false positives in UC-angr’s results,

leaving 25 true positives and resulting in a false positive rate of

93%, which is in line with those reported by UC-KLEE [46].

Static buffer overlap detection. To be able to compare

the different types of vulnerabilities identified by fuzzing,

symbolic execution, and other static analyses, we implemented

a VSA-based memory corruption detection analysis. We

describe it in detail in Section VIII.

Similarly to UC-angr, our VSA results are not replayable

and suffer from false positives. In total, VSA was able to iden-

tify 27 actual vulnerabilities in CGC binaries while producing

130 false positives, resulting in a false-positive rate of 82.8%.

Non-replayable vs replayable analyses. Another surprising

result is the comparatively low performance of non-replayable

techniques (VSA and under-constrained symbolic execution).

While these techniques, freed from the replayability

requirement, can achieve more coverage in their analysis, we

found that the context they lacked resulted in an enormous

amount of false positives in this dataset. To keep the false

positive rate reasonable, we had to implement aggressive false

positive filtering (as discussed in Section X), which filtered

out many true positives as well.

The improvement of static analysis techniques on real

binaries appears to be an area in need of research attention,

and we are considering it as a direction for future work.

C. Exploitation Evaluation.

After a crash is identified by the above approaches, we

attempt to replay and exploit it to understand its severity.

Crash replay. As we discuss in Section V-A, crashing inputs

identified by vulnerability discovery analyses might not be

trivially replayable due to environmental data (such as the ran-

dom seed) having been de-randomized by the analysis. We an-

alyzed crashes for each CGC binary, using the reference crash-

ing inputs provided by DARPA for binaries where we were un-

able to identify vulnerabilities with our vulnerability identifi-

cation techniques. Of these crashing inputs, 6 were not trivially

replayable. That is, rather than simply replaying the crashing

input provided to us by the vulnerability identification engines,

we had to re-analyze the interaction with the binary to recover

challenge-response components present in these binaries.

Interestingly, DARPA imposes a limitation on the authors of

CGC binaries from the CGC Qualifying Event that disallows

control flow from being impacted by random data. This means

that the limitation of Replayer discussed in Section XII,

the introduction of different path predicates due to different

values of random data, does not apply to its operation on CGC

binaries. Though angr did hang on one of the applications,

manual analysis revealed this to be an implementation issue,
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rather than one with the approach and, as expected, Replayer

was able to recover the input specification of the remaining 5.

While 6 binaries are not a large dataset, this result suggests

that current techniques in this area are able to adequately

handle binaries in the absence of control flow variance caused

by random data. Further work is needed to evaluate, and

possibly extend, these techniques on real-world binaries with

more complex control flow.

Automatic exploit generation. After identifying the crash

and running it through Replayer, we are left with an input

specification that reliably crashes the target application.

However, such inputs might still not be exploitable. For

example, crashes caused by null pointer dereferences, of which

there are many in the CGC dataset, are not exploitable on

modern systems. To separate exploitable from non-exploitable

inputs, we attempt to generate an exploit from the crash.

We attempted to automatically generate exploits for all

of the CGC applications, using techniques proposed in the

AEG system [4]. However, we were surprised to find that

only 4 crashing exploits could be weaponized into exploits

using these techniques. Looking deeper into the binaries, we

understood why. First, the goal of the CGC Qualification

Event was to find crashes for the binaries, not exploits.

As such, many of the vulnerabilities in these binaries are

not actually exploitable (i.e., null-pointer dereferences).

Second, as the CGC binaries model a wide range of realistic

exploitation scenarios, we found that the techniques proposed

by AEG were not applicable to the majority of them.

The current state of the art in this field is fairly basic, and

it appears in these results. Further research is required into

this field to enable the automatic exploitation of complex

vulnerabilities.

Exploit hardening. Even an exploitable vulnerability might

be mitigated by modern protections. As a result, exploit
hardening is required, and has been investigated by recent

work. We reimplemented the techniques proposed by Q [48]

and attempted to harden the exploits generated by AEG.

The Q implementation was able to harden 2 of the 4

exploits that AEG generated. Our analysis as to why the

remaining two exploits could not be hardened revealed that

the Q approach does not utilize enough information in the

binary. In these two examples, there is not enough attacker-

controlled data on the stack and a stack pivot is required to

use attacker-controlled data in other parts of the program. The

Q approach has no basis for reasoning about such operations

and, as a result, these exploits cannot be hardened.

XVI. CONCLUSIONS

In this paper, we presented angr, a system that implements,

in a unified framework, a number of techniques for the

automated identification and exploitation of vulnerabilities in

binaries. We presented, in a systematized fashion, the different

analyses and the challenges we encountered when including

them in our framework. By implementing these approaches in

a single system, we were able to meaningfully compare their

effectiveness on a dataset that was created for the evaluation

of these techniques. The results of this evaluation can be used

as a basis to highlight research directions, and to improve

existing techniques.

We made angr open-source, so that the community can

build on top of it and focus on addressing open challenges in

the field of binary analysis.
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[44] F. Pérez and B. E. Granger. IPython: A System for Interactive Scientific
Computing. Computing in Science and Engineering, 9(3):21–29, May
2007. http://ipython.org.

[45] J. Pewny, B. Garmany, R. Gawlik, C. Rossow, and T. Holz. Cross-
architecture bug search in binary executables. In Proceedings of the
2015 IEEE Symposium on Security and Privacy, volume 2015-July,
pages 709–724, 2015.

[46] D. a. Ramos and D. Engler. Under-Constrained Symbolic Execution:
Correctness Checking for Real Code. In Proceedings of the 24th
USENIX Security Symposium, pages 49–64, 2015.

[47] P. Saxena, P. Poosankam, S. McCamant, and D. Song. Loop-Extended
Symbolic Execution on Binary Programs. In Proceedings of the 18th
International Symposium on Software Testing and Analysis, page 225,
2009.

[48] E. Schwartz, T. Avgerinos, and D. Brumley. Q: Exploit hardening
made easy. In Proceedings of the 20th USENIX Security Symposium,
volume 8, page 25, 2011.

[49] E. J. Schwartz, T. Avgerinos, and D. Brumley. All You Ever Wanted to
Know About Dynamic Taint Analysis and Forward Symbolic Execution
(but Might Have Been Afraid to Ask). In Proceedings of the 2010
IEEE Symposium on Security and Privacy, SP ’10, pages 317–331,
Washington, DC, USA, 2010. IEEE Computer Society.

[50] B. Schwarz, S. Debray, and G. Andrews. Disassembly of Executable
Code Revisited. In Proceedings of Ninth working conference on
Reverse engineering, 2002, pages 45–54. IEEE, 2002.

[51] D. K. Sean Heelan. Automatic Generation of Control Flow Hijacking
Exploits for Software Vulnerabilities. PhD thesis, University of Oxford
computing laboratory, 9 2009.

[52] H. Shacham. The Geometry of Innocent Flesh on the Bone: Return-
into-libc without Function Calls (on the x86). In Proceedings of the
14th ACM Conference on Computer and Communications Security,
volume 22, pages 552–561, 2007.

[53] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and G. Vigna.
Firmalice - Automatic Detection of Authentication Bypass
Vulnerabilities in Binary Firmware. In Proceedings of Network
and Distributed System Security Symposium, number February, pages
8–11. Internet Society, 2015.

[54] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,
Y. Shoshitaishvili, C. Kruegel, and G. Vigna. Driller: Augmenting
Fuzzing Through Selective Symbolic Execution. In Proceedings of the
Network and Distributed System Security Symposium, 2016.

[55] L. Szekeres, M. Payer, T. Wei, and D. Song. SoK: Eternal War in
Memory. In Proceedings of the IEEE Symposium on Security and
Privacy, pages 48–62, 2013.

[56] K. Thompson. Reflections on Trusting Trust. Communications of the
ACM, 27(8):761–763, Aug. 1984.

[57] Trail of Bits Blog. How We Fared in the Cyber Grand Challenge.
http://blog.trailofbits.com/2015/07/15/how-we-fared-in-the-cyber-
grand-challenge/.

[58] J. Troger and C. Cifuentes. Analysis of Virtual Method Invocation for
Binary Translation. In Proceedings of Ninth Working Conference on
Reverse Engineering, 2002, pages 65–74. IEEE, 2002.

[59] L. Xu, F. Sun, and Z. Su. Constructing Precise Control Flow Graphs
from Binaries. University of California, Davis, Tech. Rep, 2009.

[60] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck. Modeling and discov-
ering vulnerabilities with code property graphs. In Proceedings of the
2014 IEEE Symposium on Security and Privacy, pages 590–604, 2014.

[61] F. Yamaguchi, A. Maier, H. Gascon, and K. Rieck. Automatic Inference
of Search Patterns for Taint-style Vulnerabilities. In Proceedings of
the 2015 IEEE Symposium on Security and Privacy, volume 2015-July,
pages 797–812, 2015.

[62] M. Zalwski. Bunny the Fuzzer Documentation. http:
//code.google.com/p/bunny-the-fuzzer/wiki/BunnyDoc.

157


